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INTRODUCTION 

Concurrency 
A process is the behaviour of a system. The system can be a machine, a communication protocol, a network of falling 
dominoes, a chess player, or any other system. Concurrency is the study of parallel processes. The features studied 
include communication between parallel processes, deadlock behaviour, abstraction from internal steps, divergence, 
nondeterminism, fairness, priorities in the choice of actions, tight regions, etc. Processes are mostly studied within a 
model, capturing some of the features of concurrency. Among these models one finds Petri nets (see for instance 
REISIG [13]), Topological models (as in DE BAKKER & ZUCKER [3]), .Algebraical models (like the projective limit 
models in BERGSTRA & KLOP [4]), Graph models (as in MILNER [10] and in BAETEN, BERGSTRA & Kl.OP [2]) and 
observation models, in which a process is fully determined by its possible interactions with the environment (like 
Hoare's failures model of Communicating Sequential Processes, see BROOKES, HOARE & RoscoE [7], and the models 
used in Trace theory, see for instance REM [14]). Parameters in the classification of these models of concurrency are 
the features captured by the model, the identifications made on processes and the particular way of representing them. 
The identification issue deals with the question when two processes are to be considered equal. Tbis is of importance 
on judging whether or not a certain system correctly implements a specification. The possible answers constitute a 
broad spectrum of process semantics, ranging from trace semantics, where two processes are identified as soon as their 
possible sequences of actions coincide, to bisimulation semantics, where all information about the timing of the diver
gencies of those traces is preserved. 

Process algebra 
Process algebra is an algebraic approach to the study of concurrent processes. Its tools are algebraical languages for 
the specification of processes and the formulation of statements about them, together with calculi for the verification 
of these statements. Process algebra is not to be regarded as a model of concurrency. On the one hand it is a method 
for specifying processes and proving statements about them without being limited to a particular model; on the other 
hand it is a method for analysing and comparing the different models of concurrency. 

To illustrate the first application, consider a typical example. Suppose a machine is composed out of two com
ponents. In order to verify that it behaves as it should, one specifies the behaviour of the two components as well as 
the intended behaviour of their composition in an algebraical language. This language should be equipped with a com
position operator and with a calculus, consisting of laws concerning the equality relation, the composition operator 
and the operators involved in the specifications of the three processes. In selecting the calculus it should be checked 
that all its rules and axioms are valid in the environment in which the machine is operating. Now one is able to for
mulate and prove the statement: the behaviour of the composition of the two components is equal to the intended 
behaviour of the desired machine. 

The creation of an algebraical framework suitable to deal with such applications, gives rise to the construction of 
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building blocks of operators and axioms, each block describing a feature of concurrency in a certain semantical set
ting. The models of concurrency serve to prove the consistency of the theories built from these blocks, and to illustrate 
the range of their applicability. 

As to the second application, the various models of concurrency can be studied and classified by axiomatising them, 
and pointing out which axioms constitute the differences between them. 

The first axiomatic treatment of concurrency is Milner's Calculus of Communicating Systems [10]. 1bis calculus is 
closely linked to Milner's graph model (of 'synchronisation trees') with bisirnulation semantics, and the axioms are 
presented as theorems, valid in this model. Other calculi are Milne's CIRCAL [9] and the Algebra of Communicating 
Processes (ACP) of BERGSTRA & Kl.OP [4]. The last one is not tied to a particular model. It is the core of a family of 
axioms systems, fitting in the process algebra methodology sketched above. Its standard semantics is bisirnulation 
semantics, since it identifies the least; any theorem proved in bisimulation semantics remains valid in coarser seman
tics; but there are building blocks with axioms for more identifications. The present paper examines some rules and 
axioms, belonging to this family, and employs the notation of ACP. Although it builds further on the research done 
in (4] and [2], it can be read independently. For further details is refered to the full paper [8]. 

I. ATOMIC ACTIONS AND COMMUNICATIONS 

An atomic action is the most elementary component of a process. It is considered not to be divisible into smaller parts 
and not subject to further investigations. Mostly an atomic action is considered to be observed pointwise in time, for if 
the time it takes is to be observed, two atomic actions can be distinguished: its beginning and its end. It depends on 
the level of abstraction, which actions one wants to see as atomic. 

Atomic actions are thought to occur simultaneously in a process only if they are communicating, like the actions 
'give' and 'receive'. The simultaneous occurrence of actions a and bis denoted by alb. In general alb = bla and 
(a Jb)lc =a l(b le). A multiset a 1 I · · · Ian (with n;;a.2) of communicating atomic actions is called a communication. 
The presentation of an algebra of communicating processes starts with postulating an alphabet A 0 of atomic actions 
and specifying which communications can occur. 

Formally, an alphabet A of atomic actions and communications is defined as a set of nonempty multisets of sym
bols, such that if a EA and b ~a then also b EA. Elements of A are called actions. A singleton action is called atomic; 
other actions are communications. A 0 is the set of atomic actions in A. Two actions a and bEA are said to communi
cate if their union a I b EA. 
Example: A= {a, b, c, blc, clc, blclc}. Thereiscornmunicationpossiblebetweenbandc,candc,blcandcand 
between b and c I c, while there is no communication possible between a and b or between b and b I c. 

If A = {a, b, a I b} and one wants to use c as an abbreviation for a I b, write A = {a, b, a I b = c }. This presenta
tion differs slightly from the presentation in BERGSTRA & KLoP [4,5], where A contains only atomic actions and com
munication is given by a partial binary function I: AXA-->A. There the last example would be A= {a,b,c} and 
alb =c. 

2. THE ALGEBRA OF COMMUNICATING PROCESSES WITH ABSTRACTION 

ACP,, the algebra of communicating processes with abstraction, is the equational theory, presented in the upper 
blocks of table 2. Its language is built inductively from a set V = { x,y,z,. .. } of variables, and the constants and 
operators of table I. The equality predicate = is always present, but never mentioned. An alphabet A of atomic 
actions and communications occurs as a parameter in ACP,. 

ACP,: constants: a 
li 

for any atomic action a EA 
deadlock 

T silent action 
unary operators: a H encapsulation, for any H ~A 

Ti abstraction, for any I \;;;A 
binary operators: + alternative composition (sum) 

sequential composition (product) 
II parallel composition (merge) 
lL left-merge 
I communication merge (bar) 

Table 1 

The meaning of these constructs will be given informally below, together with an explanation of the axioms of AC~,. 
In table 2, all axioms are in fact axiom schemes in a,b and c, with a,b,c ranging over A U { 8}, unless further restric
tions are made in the table. 
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ACPr x+y=y+x Al XT := X TI 
x+(y+z) = (x+y)+z A2 -rx+x = -rx T2 
x+x = x A3 a(TX +y) = a(TX +y)+ax T3 
(x +y)z = xz +yz A4 
(xy)z = x(yz) AS 
x+8 = x A6 
Bx= 8 A7 

alb=bla Cl 
(alb)lc = al(blc) C2 
alb = 8ifalb<;!A C3 

xllY = xlL.y+yllx+xly CMl 
allx = ax CM2 -rllx = TX TM! 
(ax)ll.y = a(xl[y) CM3 (-rx)ll.y = T(xl[y) TM2 
(x +y)llz = xll_z +yll_z CM4 TIX= 8 TC! 
(ax)lb = (alb)x CMS XIT = 8 TC2 
al(bx) = (alb)x CM6 (Tx)ly = xly TC3 
(ax)l(by) = (alb)(xl[y) CM7 xl('T)') = xly TC4 
(x+y)lz = xlz+ylz CMS 
xl(y+z) = xly+xlz CM9 

aH(T) = T DT 
TJ(T) = T TI! 

aH(a) =a if a<;!H DI -r1(a) = a if a<;![ TI2 
aH(a) = 8 if aeH D2 T1(a) = T if ael TB 
aH(x +y) = aH(x)+aH(y) D3 TJ(X +y) = T1(x)+T1(y) TI4 
aH(xy) = aH(x)·oH(Y) D4 T1(xy) = T1(x )·T1(Y) TIS 

PR 'IT.(T) = 'T 

wo(ax) = 8 
'ITn+i(a.x) = Q"'ITn(X) 
'ITn(TX) = T"'IT.(x) 
'ITn(X +y) = 1rn(x)+w.(y) 

Bo(x) B.(a) 
B.(x) Bn(x) B.(x),B.(y) 

B.(-r) B.(Tx) Bn+i(ax) B.(x +y) 

B 

'v'neN w.(x)=w.(y),B.(x) 

x=y 

KFAR x=ix+E 
'T{i) (x)=T"T(i) (y) 

CA T1°TJ(X) =TJUJ(X) 

Table 2 

a represents the process, starting with an a-step and terminating after some time. (see below) 8 is the action of acknowledging that there is no possibility to proceed. Put A 8 = A U { 8}. 
T represents the process terminating after some time, without performing observable actions. Put Ar =A U {'r}. 
x +y represents the process that executes either x or y. The choice between x and y is made at the begining of x +y. It is not specified by whom. The axioms Al, A2 and A3 state that in a choice the alternatives are regarded to form a set. Axiom A6 states that deadlock only occurs if there are no alternatives. xy represents the process x, followed after possible termination by y. The process x fails to terminate if it ends in deadlock (A7), or if it performs an infinite sequence of actions, or if it goes on forever without performing any action. The last possibility is called divergence. The axioms A4 and AS are rather straightforward, but 
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since (at least in bisimulation semantics) the timing of the choices is of importance, there is no axiom 
x(y +z) = xy+xz. 
represents the simultaneous execution of x and y. It starts when one of its components starts and terminates 
if both of them do. (see below) 
is as xl[y, but under the assumption that x starts first (CM2,3,4, TMl,2). 
is as xl[y, but starting with a communication between x andy (CMS,6,7,8,9). This communication may be 
preceded by some silent steps, but these are no part of the process (TC3,4). Silent processes do not take part 
in communications (TCl,2). Axiom CM! states that a process xl[y starts either with x or with y or with a 
communication between x and y. If the first actions from x and y do not colllJllunicate (as is always the case 
if x = 8 or y = 8) the summand x ly can be removed, using C3 and A6,7. 
represents the process x without the possibility of performing actions from H. ila renames the actions from 
H into 8 (DT, Dl-4). Mostly it is used to remove the remnants of unsuccessful communication from a merge, 
thereby indicating that the process is not at the same time communicating (through H at least) with the 
environment. This is why ila is called encapsulation. 
Example: A = {give, receive, give I receive}; H = {give, receive}. 

aa(givellreceive) = 'Oa(give·receive + receive·give + give J receive) = 

= 8·8 + 8·8 + give I receive = give J receive. 

1'1(x) represents the process x, of which the actions from I are not considered important anymore. 1'1 renames the 
actions from I into 1' (TI 1-5). 

For a eA the chosen semantics of the expression a can be motivated as follows: a denotes a process executing an 
action a. Although both the process and the action are denoted by a, they are different entities. We require the process 
a to take a positive amount of time, since it seems a natural assumption that all activity takes some time. However, in 
this time interval there should be only one single point where the execution of the action a is recorded (one could take 
the first moment that evidence is available for the execution of a), for if we would allow an action to manifest itself 
during a positive time span, then equations as allb =ab +ba, which hold in ACP., could be refuted on grounds of 
real-time behaviour. Hence there are three events to be recorded in the life of the. process a: its beginning, the 
occurrence of the action a and its termination. Now the question arises where the second event has to be situated 
between the other ones. Suppose a process like a +b operates in an environment where a cannot be executed (the 
process expression a +b appears in the scope of a a(o) operator); then this option cancels out and the process will per
form a b-step. However, if the process a can start without being recognizable as the process a, then it will be too late 
to do a b-step if the action a turns out to be impossible, and deadlock occurs. So, in order to define a a a operator 
properly, one has to assume that the identity of a process a is clear from its beginning, at least for an environment 
aa('). Therefore the expression a is chosen to denote a process that starts with executing the action a. A process that 
does the a-step only after some time can be denoted by the expression Ta (see figure I). 

a 
a: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I .. time 

a 
ta: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ... time 

fig. 1 

Now it is possible 'to motivate the 1'-laws of table 2. 
TI follows since any ACP,-process terminates only after a period in which no actions are performed. Since the 

length of this period is not specified, the process can be identified with a process that waits a little longer 
before terminating. A law TX =x can not be defended in the same way. a for instance is a process that has to 
start with an a-step, while Ta may wait some time first. 

T2 is less obvious in this semantics. 'l'a is a process that has to wait some time before the a-step can be per
formed, while -ra +a has the option to perform an a-step immediately. However, in ACP, these processes are 
identified, since the property 'having to wait some time before an action can happen' is not considered 
important enough for discriminating between processes. This in contrast with the property 'being able to wait 
some time before an action happens', which is used to discriminate between processes: 'l'a +a:;i=a. The argu
ment is that a 08 (') environment (in which certain actions can not be executed) discriminates only on 
grounds of the second property: in a sum only those summands can be canceled that are not able to wait 
some time before an action happens. 
Of course it is also possible to use a more subtle semantics in which both properties are used for distinguish
ing between processes. However, in unrestricted form such a semantics would clash with the axioms .CM2 
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and CM3: ab =all_b =(aT)ILb =a(Tb +b}. Therefore this option is not pursued in this paper. T3 is adopted since a ( TX + y} already has the possibility to start with an a-step and then, after some time, reach 
a state where only x is possible. 

These arguments will be formalised in section 5. Then propositions 4 and 5 of section 9 will tell us that the T-laws exactly reflect the proposed semantics in the theory. 

Using the axioms of table 2 it turns out that TfaJ(allb) is equal to Tb and hence different from b: 
1"(aj(allb) == T{a)(ab +ba} == -rb +bT == -rb +b == Tb. 

This fits in with the meaning of x l(y, given in section 2. a lib starts when one of its components starts and terminates if both of them do. 

a: 
b: 

(a 11 b): 

a 

a 

b 

b 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I • time 

r{al (a\ lb): b 

fig. 2 

As indicated in figure 2, it is quite possible that the process a starts before b does. After abstraction from a, the resulting process is Tb. 

ACPT was first presented in BERGSTRA & Kr.oP (5]. In this presentation only axiom C3 is different, as a consequence of the different treatment of communication, mentioned in section I. The -r-laws Tl,T2 and T3 originate from MILNER [10]. In [5] it is proved that ACPT is a sound and complete proof system for closed recursion free terms, with respect to the semantical notion of bisimulation. However it is possible to make more identifications (depending on a notion of observability for instance), by adding some axioms. In a completeness proof it is important to know that any finite closed process expression can be rewritten into a process expression, built up inductively, following the scheme 
T, ax, TX, x +y. Finally note that the axioms CM2,5 and 6 are derivable from the others. 

3. RECURSION 

A recursive specification Eis a set of equations (x =tx Ix E Ve} with VE a set of variables and Ix an ACP, term for xEVE. The variables of VE may appear in t,. Other variables occurring in fx (xEVE) are called parameters of E. Mostly, only recursive specifications without parameters are used. A solution of E is an interpretation of the variables of VE as processes (in a certain domain) (as a function of an interpretation of the parameters of E), such that the equations of E are satisfied. 
The Recursive Definition Principle (RDP) tells us that every recursive specification has a solution. In section 9 a model for ACPT will be presented, satisfying RDP. RDP cannot be expressed algebraically, since in algebraic languages no existential quantification is permitted. 
Recursive .specifications are used to define (or specify) processes. If E has a unique solution, let <x I E > (with x EVE) denote the x-component of this solution. If E has more than one solution, <x I E > denotes 'one of the solutions of E, and can be regarded as a kind of variable, ranging over these solutions. If E has no solutions (possible in a model, not satisfying RDP), then no meaning can be attached to <x I E >. In a recursive language, the syntactical constructs <x I E > may appear in the construction of terms (possibly nested). This limits the class of models of the language to the ones satisfying RDP. 
In most applications the variables XE VE in a recursive specification E will be chosen freshly, so that there is no need to repeat E in each occurrence of <X I E >. Therefore the convention will be adopted that once a recursive specifications is declared, <X I E > can be abbreviated by X. If this is done, X is called a Jonna/ variable. Formal variables are denoted by capital letters. So after the declaration X = aX, a statement X = aaX should be interpreted as an abbreviation of <X IX=aX> = aa<XIX=aX>. 
Let E = {x = Ix lxE VE} be a recursive specification, and ta process expression. Then <t I E > denotes the term t in which each (free) occurrence of x EVE is replaced by <x I E > (avoiding name clashes}. In a recursive language all formulas <x I E > = <tx I E > (with E as above and x EVE) may be considered provable. If the above convention is used, these formulas seem to be just the equations of E. 
Let T be an equational theory (like ACP,) over a signature ~ and e a ~-equation, both recursion free. The following 
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notation is employed: 
T • e: e is provable from Tin the recursion free language over :S. 
T e e: e is true in all ~-algebras, satisfying T. 
T + RDP • e: e is provable from Tin the recursive language over ~. 
T + RDP e e: e is true in all :S-algebras, satisfying T and RDP. 
Now Birkhofs completeness theorem for equational logic reads: 

T•e<=>Tee. 

It can be extended trivially to the case where T contains also conditional equations, and predicates are allowed in :S. 
Now the following proposition, whose proof is omitted, justifies the notation T + RDP • e. 

PROPOSITION I. T + RDP • e # T + RDP F e. 

4. THE APPROXIMATION INDUCTION PRINCIPLE 

PR is a building block that can be added to ACP,. It consists of the unary operators 11. (projection) for n El'IJ, and 
the axioms presented in the third block of table 2. 11.(x) represents the process x, which is only allowed to perform n 
visible actions. The next visible action is blocked, i.e. renamed into S. 

The Approximation Induction Principle (AIP) is the infinitary rule 

I AIP 

saying that a process is fully determined by its finite projections. It follows if one choses to identify processes that can 
not be distinguished by their finite observations. 

5. ACTION RELATIONS BETWEEN PROCESSES 

If x and y are processes and a eA, then write 

x ~y if x can evolve into y during a period in which only the action a is performed. 

x 4 y if x can evolve into y, taking a positive amount of time in which no visible actions occur. 

x ~ y if x can terminate after having done only an a-step, and 

x 4 y if x can terminate after some time, without performing visible actions. 

The involved binary predicates ~ and unary predicates ~ y, both for a EA,, are called action relations. A 
process expression is a term in the recursive language of ACP, +PR. Let '!!' be the domain of closed process expres
sions. On '!!' the action relations are generated by the action rules presented in the upper block of table 3. All these 
rules are schemes in a and b, with a, b ranging over A., unless further restrictions are made in the table. These action 
rules provide an alternative explanation of the meaning of the language constructs of ACP, +PR+ RDP. Note that 
the T-laws of table 3 exactly refiect the motivations for the T-laws of table 2, as given in section 2, in terms of action 

relations. Also note that the instance -r 4 T of the first T-law of table 3 does not imply that the process T may fail to 
terminate. It only says that after waiting some time on the process to terminate, it may still not be ready. The situa
tion is as in Zeno's paradox: Achilles will catch up with the Tortoise. 

The action relations can be generalised as follows. If x and y are processes and uEA •, then write 

x ~ y if x can evolve into y during a period (of positive duration) in which (only) the sequence of actions u occurs. 

x ~ y if x can terminate after a period (of positive duration) in which (only) the sequence of actions u occurs. 
On '!!' these generalised action relations are generated by the rules presented in the bottom block of table 3. There 
TEA• denotes the empty string, a ranges over A and u,p over A•. 

6. FAIR ABSTRACTION 

ExAMPLE (due to F. Vaandrager): A statistician performs a simple experiment in a closed room: he tosses a coin until 
tail comes up; then he leaves the room to report success. Let p be the probability that, if he tosses the coin, tail comes 
up. Assume O<p <I. The behaviour of the statistician is specified by 

S = head·S +tail-success 

Being outside the room, the only part of the process we can observe is the statistician leaving the room to report 



342 

a: a~y 

+: x~x' x~"':i._ !'.~( i:~"':i.. 
x+y ~x' x+y~y x+y ~y' x+y~y 

x~x' x~v 

xy~x'.Y xy ~y 

II: x~x' x~"':i._ !'.~!'.' 1'.~"':i.. 
xl[y ~x'l!Y xl[y ~y xl!Y ~xl[y' xl!Y ~x 

a b a b a b a b 
x~x',i:~i:' x~"':i._.i:~I'.' x~x',i:~"':i._ x ~:ti: ~"':i._ (if a lb EA) alb alb alb alb 
xl[y ~ x'l!Y' xl[y ~ y' xl[y ~ x' xl[y ~ v 

IL: x~x' x ~Y.. 
xll...Y ~xl[y xll...Y~Y 

a b a b a b a b 
x~x',i:~i:' x~Y...i:~I'.' x ~x',i: ~)/_ x ~)/_,)'. ~Y.. (if a I bEA) alb alb alb alb 
xly ~ x'l!Y' xly~y' xly~ x' xly ~ v 

OH: 
x~x' 

3H(X) ~OH(X') 

x~"':i._ 

aH(x) ~v 
(if a~H) 

x~x' x~)/_ 
(if a~J) -r1: 

'l"J(X) ~-ri(x') -r1(x) ~v 

x ~x' x~"':i._ 
(if a Ef) 

-r1(x) 4-ri(x') -r1(x) 4v 

x~x' x~y 
(if a""'-r) 'ITn: 

1Tn+1(x) ~1T.(x') 1Tn+1(x) ~v 

x~x' x 4-j_ 

1Tn(X) 417.(x') 1T.(x) 4v 

recursion: 
<txlE> ~y <txlE> ~v 

<xlE> ~y <xlE> ~v 
T Q 

x 4y, y ~Y.. x ~y, y 4z x ~y, !'. 4y_ ,,. - laws: 
a X~)'.•1'.~Z a~ .. 

X~Z x~y x~z x~v 

x~i: x ~"i. x4i: x 4-j_ " x --*!'.· !'. ~z " x -*' !'.· !'. ~"i. 
a x~y T 

x -*Y x -*Y x ...!:,i;, v 
ap 

x ~z x ~v 

Table 3 
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success. So the actions from I = {head, tail} are hidden, and the observed process is 1"I(S). Since O<p <I, the process 
S will perform a tail action sooner or later, which yields the identity 

'l)(S) = T"SUCCess. 

What is needed is an algebraic framework in which one can prove this equation. 
An infinite path of a process x is an infinite alternating sequence of labels a;eA, and processes x; (ieN), such that 
ao a1 a1 

X ~Xo ~XJ ~X2~ ... • 
b 

Such a path has an exit at x;(ieN) if X; --'-')oy with either b,,t=a,+ 1 or y'i:x;+I· This exit is called a T-exit if b ="·A 
path is called improbable if it has infinitely many exits. Now a process is said to be fair, if for any improbable path the 
probability that it will be executed is zero. In a theory for fair processes there is room for proof rules stating that cer

tain improbable paths may be discarded. There is however a problem in discarding improbable paths. If a process is 
placed in a context aHO then certain paths may stop to be improbable because their exits disappear. In that case they 
may not have been discarded. Thus only paths may be discarded which are improbable in all contexts. These are the 
paths with infinitely many T-exits. KF AR - is a proof rule, stating that certain paths with infinitely many T-exits, 
which are made invisible by a T1 operator, may be discarded. 

x-zx+ry +z 

A version of KFAR- appeared first in BERGSTRA, KLoP & OLDEROG [6]. It is a restricted version of Koomen's Fair 

Abstraction Rule (KFAR), which was presented in BAE'l'EN, BERGSTRA & KLOP [2], and will be discussed in the next 
section. 

The last axiom of table 2, the commutativity of abstraction (CA), says that it does not matter in which order actions 
are considered unimportant (or made invisible). It occurred already as one of the conditional axioms (also abbreviated 
as CA) in BAETEN, BERGSTRA & KLop [1], and will play an important role in observations to come. 

Using KFAR- and CA the identity '1'1(S) = Nuccess from the example of the statistician can be derived formally: 

T(rai/)(S) = "(tail)(head·S +tail·success) = head·T{taU)(S)+.,·success +8, 

so T1(S) = "U•«ad)°'T(rail)(S) = T'T(headJ(T·success+8) = T·success. 

A theory, containing rules like KF AR - is only suited for the study of fair processes. For any application it has to 

be checked that all processes concerned are fair indeed. 

7. DEADLOCK= LIVELOCK 

ExAMPLE. Choose A = {a, b, c, b le} and H = {b,c}. Then ACP, r aH(aaabllc) = aaa(b le). So the process c 
inside the encapsulated merge aH(aaabll') waits patiently until it can communicate with aaab. If such a communication 

is not possible, deadlock occurs: 

ACP, r aH(aaallc) = aaa8 

ACP, r aH(aaacllc) = aaa8. 

So deadlock occurs in an encapsulated merge if not all components are terminated, and the ones which are not are all 

waiting for an opportunity to communicate. From this one learns that deadlock, as in aaa8, should not be interpreted 
as a violent crash of the system, but as an eternal sleep. 

ExAMPLE. Specify X by X =aX. Then 1'(aJ(X) remains active forever (it performs a-steps), but no actions can be 
observed. This is called livelock. 

In order to distinguish deadlock from livelock one can assume that processes are noisy. The noise starts at the 

beginning of a process, and ends if the process terminates or starts waiting. If a component in an encapsulated merge 
has to wait for a suitable communication it becomes silent until the communication is enabled, but as long as at least 

one component is making progress (visibly or invisibly) noise is being made. Only if all components are waiting (or 
terminated), the process becomes silent. This guarantees that no further action is possible and it will remain silent for

ever. In such a semantics, deadlock is observable (silence is), but livelock is not (one can never know that from some 
moment on no visible action will be performed). In bisimulation semantics, as employed in this paper, processes are 

not assumed to be noisy, and no distinction between deadlock and livelock is made. This can be expressed algebrai

cally by the rule: 

deadlock= live lock 
x =ix 
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In this rule livelock is expressed as T(;J(x), with x satisfying x =ix, and deadlock as T8. Note that livelock can not be 
expressed as a process x satisfying x =Tx, since also Ta satisfies x =Tx. Furthermore deadlock can not be expressed 
by 8, since in a·(b + 8) no deadlock occurs. 

Equating deadlock and livelock amounts to stating that in a process invisible infinite paths without any exits may ?e 
discarded (leaving T8 in place). In combination with fairness this means that any invisible infinite path may be dis
carded, regardless whether it is improbable or not. This is expressed by Koomen's Fair Abstraction Rule: 

KFAR 
x=1x y 

The rule deadlock=livelock can be obtained from KFAR by substitutingy=8. KFAR- can be obtained by substitut
ingy=ry +z. 

8. CONSISTENCY & LIVENESS 

For pEGJwritep ..P, ifp ~qfornoaEA, and qEGJ. A theory Tis said to be consistent if T f-p =q implies: 

(i) p ~ y if and only if q ~ v' 
(ii) p ~ p' ..P, if and only if q ~ q' ..P, 

for any pair of closed recursion free process expressions p and q. This notion was called 'trace consistency' in BERGS· 
TRA, KLoP and OLDEROG [6]. A theory T with T f- T = T+To for instance is inconsistent. Depending on whether or 
not one wants to assume fairness and/ or deadlock =live lock there are several ways to define consistency in terms of 
recursive process expressions as well. The main possibilities are discussed in VAN GLABBEEK [8]. In order to leave all 
options open, in this paper consistency is defined in terms of recursion free process expressions only. In this paper 
process theories are required to be consistent, so that deadlock behaviour can be dealt with properly. 

The notions of safety and liveness are frequently used in the literature. Roughly, safety means that something bad can
not happen, while liveness means that something good will eventually happen. Use r"' as an abbreviation of 
T(iJ( <x Ix =ix>). If termination is considered to be something good then T f- T = T+r"' should be regarded as a 
violation of liveness (by the theory T). In [8] this concept has been formalised. 

9. A TERM MODEL FORACP,+PR+RDP+CA+KFAR. 

A bisimulation is a binary relation R on '!P, satisfying: 
ifpRq andp ~p', then 3q':q ~q' andp'Rq'(aEA,). 
ifpRq and q ~q', then 3p':p ~p' andp'Rq'(aEA,). 
if pRq then: p ~v' if and only if q ~ y(a EA,). 

p and q E §' are bisimilar, notation p tt q, if there exists a bisimulation R on GJ with pRq. 

PROPOSITION 2. tt is a congruence on GJ. 
PROPOSITION 3. Any theory for which §'I., is a model is consistent and respects liveness. 
PROPOSITION 4. qp;.,, is a model of ACP,+PR+RDP+CA+KFAR. 
PROPOSITION 5. ACP, +PR is a complete axiomatisation of§'/., for closed recursion free process expressions. 
PROPOSITION 6. GJ/.., is isomorphic to the graph model GN, ;.,,.,. of BAETEN, BERGSTRA & KLoP [2]. 

PROOFS. Omitted. 

The notion of bisimulation originates from PARK (12]. Bisimilarity is similar to the notion of observation congruence 
of MILNER [11] and rooted T8-bisimilarity of BAETEN, BERGSTRA & KLoP [2]. If the relations p ..!!..:,.q and p ..!!..:,. y were 
defined without the T-laws of table 3, the corresponding version of bisimilarity would be strong congruence, or 8-
bisimilarity; if they were defined, using an extra rule x 4 x, it would be observation equivalence or T8-bisimilarity. 
In (11] and [2] observation equivalence or T8-bisimilarity appears as a natural equivalence, with the unpleasant pro
perty of not being a congruence. Then a context requirement or rootedness condition is proposed to make it into a 
congruence. This is not necessary in the present approach: bisimilarity turned out to be a congruence in a natural 
way. 

The model GJ/.., can be used to prove that the Recursive Definition Principle holds in the graph model of [2]. RDP 
holds trivially in§'/.,,: <x IE>f;; is the x-component of a solution of E in qj'/.,,. From the last proposition it follows 
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that it holds in the graph model also. Details are omitted here. 
As demonstrated already in BAETBN, BBllGSTRA & Kl.OP (2), AIP does not hold in GK/.,,, and hence not in OJ/.,,· 

Let I a• be the process (<.x l.x =.xa +a>).,. e (ff;.,, and a"' = (<.x I .x =a.x >).,. e' OJ/:. Then . 
n>O 

AIP ~~a• = ~ a•+a"' but not~ a• ti ~ a•+a"'. 
n>O n>O n>O n>O 

Hence it seems worthwhile to look for another model of ACP,, in which AIP is valid. However, such an attempt can 
only succeed at the expense of RDP, CA or KFAR. 

10. THE INCONSISTENCY OF BPA' + RDP + AIP + CA + KFAR 

In this section it will be proved that the combination of RDP, AIP, CA, and KFAR is inconsistent on top of 
ACP,+PR. Since the operators II, IL I and aH are not involved in this proof, the result can be formulated more shar
ply. Let BPA' be the subtheory of ACP,+PR consisting of the axioms A, T, TI, and PR of table 2. Assume that the 
alphabet A contains at least two different actions a and b. 

THEOREM I. BPA' + RDP+AIP+CA + K.FAR 1-,,. = ,,.+ro. 

PROOF. Declare the following recursive specifications: 

Xk=aXk+i+bk (k>O) Y=bY Z=az+,,. 

Now the theorem follows from the following 6 lemmas: 

I. 
II. 
III. 
IV. 
v. 
VI. 

,,.!bl(X1) = Z 
,,.!•l(Z) =,,. 
,,.{a.bl(X1) = ,,. 
'f'(aj(X1) = 'f'(a)(X1)+ Y 
'f'(b)(Y) = or8 
'1'(a,b)(X1) = ,,.+'!'8 

an application of AIP 
an application of K.F AR, even of K.F AR -
from I and II, using CA 
an application of AIP, using T2 
an application of K.F AR; this time of deadlock =livelock 
from IV and V, using CA and III. D 

To illustrate the proof, the process graphs of Xi. ,,.(bJ(X1). Z, ,,.(a)(X1) and 'f'(a)(X1)+ Y are presented in figure 3. In 
[2,4,5,8] it can be found how process graphs can be obtained from closed process expressions. 

In the proof of theorem I, the equation of deadlock and livelock plays a crucial role. If K.F AR is replaced by the 
weaker proof rule KF AR - , only expressing fairness, the inconsistency disappears: 

PROPOSITION 7. BPA" +RDP+AIP+CA+KFAR- is consistent. 
PROOF. See VAN GLABBEEK (8). 

However this theory has another disadvantage, it violates liveness: 

PROPOSITION 8. BPA'+RDP+AIP+CA+K.FAR- r,,. = ,,.+r". 
PROOF. As above, but without using Lemma V, it can be proved that,,. = ,,.+,,.(bJ(Y), where 'f'(b}(Y) can be written as 
,,... (see section 8). 

Furthermore in (8] it is shown that if in BPA' +RDP+AIP+CA+KFAR either RDP or AIP or CA or KFAR is 
dropped, a consistent theory that respects liveness remains. So in theorem I all ingredients are really needed. 

11. BOUNDED NONDETER.MINISM AND 11lll VALIDITY OF Afp-

Let B be a new building block that can be added to ACP,. It consists of the unary predicates B. (boundedness) for 
neN, and the rules and axioms presented in the fourth block of table 2. B.(.x) states that the nondeterminism 
displayed by .x before its nth visible step is bounded. This means that for any sequence a of length < n of visible 
actions there are only finitely many different processes to which .x can evolve by performing a. 

Define the predicates ....+ on 'ff/.,, by: P ....+ Q if there arepeP and qeQ withp ...+ q. Now the predicates 

B. can be defined on rf/.,,, by: B.(P) if {Qerf/., I P ...+ Q} is finite for any ueA* with length <n. PeOJ/.,,, is 

bounded (P displays only bounded nondeterminism) if {Qerf/.,, I P ....+ Q} is finite for any aeA•. Of course P is 
bounded if and only if for all neN B.(P). 



a 

a~ 

PROPOSITION 9. '!Pit: • B. 
PROOF. Omitted. 
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1: b 

it(b} 
t(a} • t = t+t8 

fig. 3 

A process expression p e'!i' is (syntactically) bounded if { q e'!i' I p ~ q} is finite for any oeA •. Note that (q)t> ei[J/.,, 
is bounded does not imply that qe'!i' is bounded. 

LEMMA. If p e'if' is bounded and p ~ q, then also q e'if' is bounded. 
LEMMA. If P e'if' I"' is bounded, then there is a p eP bounded 
PROOFS. Omitted. 

Since AIP is not valid in the model 'if'/"' and even inconsistent in combination with RDP, CA and K.F AR, a restricted 
version AIP- is proposed in table 2, formulated with the help of the predicates B •. Now it remains to be proven that 
'if'/.,,,• AIP-. 

The proof below can be viewed as a reconstruction of the proof of BAETEN, BERGSTRA & Kl.OP (2], that a more res
trictive version of AIP- holds in the graph model GK, I"' M, which is isomorphic to 'if' I"'. It makes use of the lemmas 
above. As a corollary it follows that all rules of table 2 are satisfied by 'if' I"', and that 
ACP,+PR+B+RDP+AIP- +CA+K.FAR is consistent and respects liveness. 

THEOREM 2. 'if'/.., • AIP-. 

PROOF. Let P,Q e'if'/,,,, B.(Q) for n eN and 'v'n el\I: 'IT.(P) = w.(Q). It has to be proved that P = Q. Take p eP and 
qeQ, such that q is bounded. Then 'v'neN: w.(p) tt 'IT.(q). It suffices to prove thatp <::± q, i.e. that there is a bisimula
tion R on 'iJ' with pRq. 
CLAIM: R can be defined by: pRq if 'v'n: w.(p) tt 'IT.(q) and q is bounded. 

Suppose pRq and p .!!.o,p' (with a eA,). Then puts. = { q' e'!J' I q .!!.o,q• & 'ITn(p')<::±w.(q')}, and remark that 
I. So ~ S 1 ;;;) S2 ;;;) ... ,since 'ITn + 1(p')<::±'ITn+1 (q') implies w.(p')<::±'ITn(q'). 
II. s. =fa 0, for neN, since 'ITn+1(p)<::±'ITn+1(q). 
III. s. is finite, for n el\I, since q is bounded. 

oo oo a 
From these observations it follows that n i:;0 s. =fa 0. Choose q' e .':;o s., then q ~q' and p' Rq'. 

Suppose pRq and q .!!.o,q' (with aeA,). Then puts. = {p' e'if' I p .!!.o,p• & w.(p•)<::±w.(q')}, and remark that 
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So;;) ... and Sn =/=- 0 for n EN (as above). 

Now, for n EN, choose Pn ESn. By the first part of this proof, there are qn E'!i' with q ~qn and PnRqn. But 
since q is bounded, there must be a process q• in the sequence q0,ql>q2, •.. occurring infinitely many times. Let 
I = {n EN lpnRq'} and choose iEJ. It suffices to prove that p;Rq'. Let n EN, then an m El exists with m>n. 
So '1Tn(pm)''cl'1Tn(q'), since Pm ESm ~ Sn· Furthermore PmRq' and p;Rq', SO '1Tn(p;)t±'1Tn(q')~'1Tn(pm)~'1Tn(q'). This 
holds for any n EN, thus p;Rq'. 

IfpRq then:p ~v <=> "'1(p) ~v = '1T1(q) ~v = q ~v
Thus R is a bisimulation and the theorem is proved. D 

12. CONCLUSION 

In this paper a model g>;.., of ACP, has been constructed, satisfying RDP, CA and KFAR, but not satisfying AIP. It 
has been shown that the price of changing this model in such a way that AIP holds is rather high: 

either RDP has to be dropped, in which case a lot of interesting processes can not be defined anymore, 
or CA has to be dropped, which makes the model very unnatural, 
or KF AR has to be dropped entirely, which makes for instance protocol verification with channels that can 
make errors almost impossible, 
or KF AR has to be replaced by KF AR - , in which case only safety properties of protocols can be verified, and 
no liveness properties. 

Therefore another strategy has been pursued: to find a restricted version of AIP, valid in the model g>;,,,,, whose com
putational possibilities approximate those of AIP as close as possible. This was first done in BAETEN, BERGSTRA & 
KLoP [2]. In table 2 of the present paper, a simpler and less restrictive version of AIP, called AIP-, is proposed, not 
containing guarded recursive specifications as a parameter. For this reason the predicates Bn were introduced. 
Finally AIP- is proved valid in 'ff;,,,, which guarantees the consistency of the resulting theory 
ACPT+PR+B+RDP+AIP- +CA+KFAR. 

REFERENCES 
[l] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP, Conditional axioms and a!fJ calculus in process algebra, report CS

R8502, Centrum voor Wiskunde en Informatica, Amsterdam !985, to appear in: Proc. IFIP Conference on For
mal Description of Programming Concepts, Gl. Avemaes 1986, (M. Wirsing, ed.), North-Holland. 

[2] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP, On the consistency of Koomen's Fair Abstraction Rule, report CS
R8511, Centrum voor Wiskunde en Informatica, Amsterdam 1985, to appear in Theoretical Computer Science. 

[3] J.W. DE BAKKER & J.I. ZUCKER, Processes and the denotational semantics of concurrency, Information & Control 
54 (1/2), pp. 70-120, 1982. 

(4] J.A. BERGSTRA & J.W. Kl.OP, Algebra of communicating processes, Proc. of the CW! Syrop. Math. & Comp. Sci., 
eds. J.W. de Bakker, M. Hazewinkel & J.K. Lenstra, Amsterdam 1986. 

[5] J.A. BERGSTRA & J.W. Kl.OP, Algebra of communicating processes with abstraction, Theoretical Computer Science 
37(1), pp. 77-121, 1985. 

(6] J.A. BERGSTRA, J.W. Kl.OP & E.-R. OLDEROG, Failures without chaos: a new process semantics with fair abstraction, 
report CS-R8625, Centrum voor Wiskunde en Informatica, Amsterdam 1986, to appear in: Proc. IFIP Conference 
on Formal Description of Programming Concepts, Gl. Avernaes 1986, (M. Wirsing, ed.), North-Holland. 

[7] S.D. BROOKES, C.A.R. HOARE & W. ROSCOE, A theory of communicating sequential processes, Journal ACM 31(3), 
pp. 560-599, 1984. 

(8] R.J. VAN GLABBEEK, Bounded nondeterminism and the approximation induction principle in process algebra, report 
CS-R8634, Centrum voor Wiskunde en Informatica, Amsterdam 1986. 

(9] G.J. MILNE, CIRCAL and the representation of communication, concurrency, and time, Transactions on Program
ming Languages and Systems (ACM) 7(2), pp. 270-298, 1985. 

[ 10] R. MILNER, A calculus for communicating systems, Springer LN CS 92, 1980. 
(11] R. MILNER, Lectures on a calculus for communicating systems, Seminar on Concurrency, Springer LNCS 197, pp. 

197-220, 1985. 
(12] D.M.R. PARK, Concurrency and automata on infinite sequences, Proc. 5th GI Conference, Springer LNCS 104, 

1981. 
(13] W. REISIG, Petri Nets, An Introduction, EATCS Monographs on Theoretical Computer Science, Springer-Ver!ag 

1985. 
(14] M. REM, Partially ordered computations, with applications to VLSI design, Proc. 4th Advanced Course on Founda

tions of Computer Science, part 2, eds. J.W. de Bakker & J. van Leeuwen, Tract 159, Mathematisch Centrum, 
Amsterdam 1983. 


