
Precongruence Formats with Lookahead
through Modal Decomposition

Wan Fokkink Rob van Glabbeek
Vrije Universiteit Amsterdam, The Netherlands Data61, CSIRO, Sydney, Australia

University of New South Wales, Sydney, Australia

Abstract—BLOOM, FOKKINK & VAN GLABBEEK (2004) pre-
sented a method to decompose formulas from Hennessy-Milner
logic with regard to a structural operational semantics speci-
fication. A term in the corresponding process algebra satisfies
a Hennessy-Milner formula if and only if its subterms satisfy
certain formulas, obtained by decomposing the original formula.
They used this decomposition method to derive congruence
formats in the realm of structural operational semantics. In
this paper it is shown how this framework can be extended to
specifications that include bounded lookahead in their premises.
This extension is used in the derivation of a congruence format
for the partial trace preorder.

I. INTRODUCTION

Structural operational semantics [23] provides specification
languages with an interpretation. A transition system spec-
ification (TSS), consisting of an algebraic signature and a
set of transition rules of the form premises

conclusion , generates a
labelled transition system consisting of transitions between the
closed terms over the signature. Transition rules may contain
lookahead, meaning that the right-hand side of a premise may
occur in the left-hand side of a premise. Lookahead appears
for example in the structural operational semantics of a process
algebra for process creation [1], an axiomatisation of the
process algebra ACPτ [16], timed LOTOS [21], the stochastic
timed process algebra EMPA [2], a probabilistic bisimulation
tester [8], and the synchronous programming language Esterel
[22]. It also plays an important role in parsing algorithms for
e.g. Java [9]. The usefulness of lookahead in formal semantics
in the context of agent systems is advocated in [19].

Hennessy-Milner logic (HML) [18] is a dynamic logic to
specify properties of a labelled transition system. Larsen [20]
showed how to decompose formulas from HML with respect
to a TSS in the De Simone format [24]. In [12] this decom-
position method was extended to the tyft/tyxt format [17],
which allows lookahead. As a step towards this end they used
a transformation from [10] to derive so-called “P -ruloids”
from a TSS P : transition rules in which the left-hand sides of
premises are single variables. A rule has bounded lookahead
if all chains of forward dependencies between its premises
are finite. In [12] each ruloid with unbounded lookahead is
replaced by an equivalent ruloid with bounded lookahead, by
endowing each infinite forward chain with an ordinal count-
down. This step is needed because HML, even with infinite
conjunctions, cannot capture unbounded lookahead.

An equivalence is a congruence for a given process algebra
if it is preserved by all functions in the signature. This is an

important property, notably to fit a semantics into an axiomatic
framework. Different syntactic formats have been developed
for TSSs, to guarantee this property for specific semantics,
i.e. for specific behavioural equivalences or preorders. Most
of these congruence formats, notably the De Simone format,
GSOS [4] and the ready simulation format [14], disallow
lookahead.

In [5] the decomposition method for HML is exploited
to derive congruence formats, in the context of structural
operational semantics, for a wide range of semantics. It takes
the ready simulation format as starting point, so the obtained
congruence formats are limited to transition rules that have no
lookahead. With regard to their congruence format for partial
trace semantics, the open question was posed whether the
method can be extended to allow some form of lookahead.
Doing this is the aim of the current paper.

The key idea in the decomposition method from [5] is that
a congruence format F for a semantics must ensure that the
formulas in a modal characterisation of this semantics are
always decomposed into formulas that are again in this modal
characterisation. To obtain such a property one needs that if
all rules of a TSS P are in F-format, then so are are all P -
ruloids that are needed in the decomposition methods from
[12]. However, the ruloids produced by the transformation
from unbounded to bounded lookahead in [12] violate most
congruence formats, including the partial trace format from
[5]. (This is no surprise, as a partial trace format cannot allow
unbounded lookahead; see Ex. 1.)

Lookahead is intrinsically difficult because it establishes an
indirect, transitive relation between variables in (proofs using)
transition rules. We introduce the notion of a “general” P -
ruloid, which intuitively means that different occurrences of
the same variable in the rule are linked to each other through
its proof; i.e., after renaming some but not all occurrences
of a variable x to another variable y, the resulting rule is no
longer provable (by means of that proof). We show that the
decomposition method from [12] can be restricted to general
ruloids. Next we show that general ruloids preserve bounded
lookahead. This opens the door to deriving congruence formats
that allow bounded lookahead.

As a concrete example we extend the partial trace format
from [5] with bounded lookahead. We prove that the resulting
partial trace format is preserved by general ruloids, which
implies that it is a congruence format for the partial trace
preorder. This answers the open question from [5].

Concluding, this paper develops machinery to cope with
bounded lookahead in the context of structural operational se-
mantics and modal logic, and applies it to obtain a congruence
format for the partial trace preorder. We conjecture that the
same machinery also makes it possible to develop congruence
formats that allow bounded lookahead for the decorated trace
and ready simulation equivalences, which would provide a
positive answer to another open question in [5].

II. PRELIMINARIES

This section presents the basic notions of partial trace
semantics, HML and structural operational semantics, as well
as the decomposition method from [12].

A. Hennessy-Milner logic

A labelled transition system (LTS) is a pair (P,→) with P a
set of processes and → ⊆ P×A×P a transition relation, for
a set A of actions. We call each (p, a, q) ∈ → a transition, and
write it as p a−→ q. A sequence a1 · · · an ∈ A∗ is a (partial)
trace of a p ∈ P if p a1−→ · · · an−→ p′ for some p′ ∈ P. We
write p vT q if the set of partial traces of p is included in
that of q.

Properties of processes can be formulated in modal logic.
Hennessy-Milner logic (HML) [18] characterises the bisimu-
lation equivalence relation on processes. The set O of HML
formulas is defined by the BNF grammar ϕ ::=

∧
i∈I ϕi |

〈a〉ϕ | ¬ϕ where a ranges over A and I is any index set.
The satisfaction relation |= ⊆ P × O is defined as usual. In
particular, p |= 〈a〉ϕ iff p a−→ p′ and p′ |= ϕ for some p′ ∈ P.
We use ϕ1 ∧ ϕ2 and > as abbreviations of

∧
i∈{1,2} ϕi and∧

i∈∅ ϕi, respectively. We write ϕ≡ϕ′ if p |=ϕ⇔ p |=ϕ′ for
each process p in each LTS.

The set OT of partial trace observations is defined by the
BNF grammar ϕ ::= > | 〈a〉ϕ where a ranges over A. Given
an LTS (P,→), let OT (p) denote {ϕ ∈ OT | p |= ϕ}. The
class O≡T denotes the closure of OT under ≡.

Proposition 1 ([15]) p vT q ⇔ OT (p) ⊆ OT (q).

B. Transition system specifications

V is an infinite set of variables with |V | ≥ |A|. Let var(S)
denote the set of variables that occur in a syntactic object S.
We say that S is closed if var(S) = ∅. A signature is a set
Σ of function symbols f 6∈ V , with |Σ| ≤ |V |, equipped with
an arity function ar : Σ → N. The set T(Σ) of terms over a
signature Σ is defined recursively by: V ⊆ T(Σ), and if f ∈ Σ
and t1, . . . , tar(f) ∈ T(Σ) then f(t1, . . . , tar(f)) ∈ T(Σ). Let
T(Σ) denote the set of closed terms over Σ.

A Σ-substitution σ is a function from V to T(Σ). Let σ(S)
denote the syntactic object obtained from S by replacing each
occurrence of all x ∈ V in S by σ(x). A Σ-substitution σ is
closed if σ(x) ∈ T(Σ) for all x ∈ V .

A Σ-literal (or transition) is an expression t
a−→ t′ with

t, t′ ∈ T(Σ) and a ∈ A. A transition rule is of the form H
α

with H a set of Σ-literals (the premises of the rule) and α
a Σ-literal (the conclusion). The left- and right-hand side of

α are called the source and target of the rule. A transition
system specification (TSS) is a pair (Σ, R) with R a collection
of transition rules over Σ. The purpose of a TSS (Σ, R) is
to specify an LTS (T(Σ),→) with as processes the closed
terms over Σ and as transition relation a set of closed literals
→ ⊆ T(Σ)×A× T(Σ).

Let P = (Σ, R) be a TSS. An irredundant proof from P
of a transition rule H

α is a well-founded, upwardly branching
tree whose nodes are labelled by Σ-literals, and some of the
leaves are marked “hypothesis”, such that: the root is labelled
by α, H is the set of labels of the hypotheses, and if β is the
label of a node q which is not a hypothesis and K is the set of
labels of the nodes directly above q, then K

β is a substitution
instance of a transition rule in R. Note that if a leaf in a proof
from P is not marked as hypothesis, then it is a substitution
instance of a rule without premises in R. A proof from P of
K
α is an irredundant proof from P of H

α with H ⊆ K.
The proof of H

α is called irredundant because H must
equal (instead of include) the set of labels of the hypotheses.
Rules that are derived with an irredundant proof may inherit
certain syntactic structure from the transition rules in the
TSS from which they are derived; in standard proofs this
syntactic structure is usually lost, because arbitrary literals can
be added as premises of derived rules. Irredundancy of proofs
is essential in applications of our decomposition method to
derive congruence formats for TSSs [5].

C. Syntactic restrictions on transition rules

We present some definitions for transition rules; the majority
stems from [17]. A rule is univariate if its source does not
contain multiple occurrences of the same variable. A tytt rule
is a transition rule in which the right-hand sides of premises are
distinct variables that do not occur in the source. A univariate
tytt rule is tyxt if its source is a variable, and tyft if its source
contains exactly one function symbol. A tytt rule is xytt if the
left-hand sides of its premises are variables. An xyft rule is a
tyft rule that is also an xytt rule.

The dependency graph of a rule with premises {ti
ai−→ t′i |

i ∈ I} is a directed graph with as edges {〈x, y〉 | x ∈
var(ti) and y∈var(t′i) for some i∈I}. A rule is well-founded
if each backward chain of edges in its dependency graph is
finite. A rule has lookahead if there is a variable in the right-
hand side of a premise that also occurs in the left-hand side
of a premise; the lookahead is bounded if each forward chain
of edges in the dependency graph is finite.

A variable in a rule is free if it occurs in neither the source
nor the right-hand sides of premises of this rule. A rule is pure
if it is well-founded and does not contain free variables.

Each combination of syntactic restrictions on transition rules
induces a corresponding syntactic format of the same name
for TSSs. For example, a TSS is in pure tyft/tyxt format iff it
contains only pure tyft and tyxt rules.

D. Partial trace format

A preorder is a precongruence if, for all functions f in
the signature, pi v qi for all i = 1, . . . , ar(f) implies

2

f(p1, . . . , par(f)) v f(q1, . . . , qar(f)). Likewise, an equiva-
lence is a congruence if it is preserved by all functions in
the signature. Here we extend the precongruence format for
the partial trace preorder from [5] with bounded lookahead,
answering an open question from [5].

Let Λ be a predicate on {(f, i) | f ∈ Σ, 1 ≤ i ≤ ar(f)};
intuitively it marks those arguments of function symbols that
may contain processes that have started running. For example,
the first argument of the sequential composition operator from
process algebra is typically marked by Λ, but the second
argument of this operator generally is not (cf. the process
algebra APC in Sect. II-E). If Λ(f, i), then the argument i
of f is called Λ-liquid; else it is Λ-frozen. An occurrence of
a variable x in a term t ∈ T(Σ) is at a Λ-liquid position if
either t = x, or t = f(t1, . . . , tar(f)) and the occurrence of x
is Λ-liquid in ti for some liquid argument i of f . A variable
in a tytt rule over Σ is Λ-floating if either it occurs as the
right-hand side of a premise, or it occurs exactly once in the
source, at a Λ-liquid position.

Definition 1 Let Λ be a predicate on the arguments of func-
tion symbols. A tytt rule is Λ-partial trace safe if:
• it has bounded lookahead, and
• each Λ-floating variable has at most one occurrence in

total in the left-hand sides of the premises and in the
target; this occurrence must be at a Λ-liquid position.

A TSS is in partial trace format if it is in tyft/tyxt format and
its rules are Λ-partial trace safe with respect to some Λ.

This format extends the partial trace format from [5] in
allowing bounded lookahead. By abuse of terminology we
reuse the format name from [5] for our more liberal format.

Remark 1 If a TSS is in partial trace format, then there is a
smallest predicate Λ for which all its rules are Λ-partial trace
safe; it is generated by the second condition above.

This paper develops the machinery to prove that the partial
trace preorder induced by a TSS in partial trace format is a
precongruence (see Cor. 2). The next example shows that the
partial trace format cannot allow unbounded lookahead.

Example 1 Let p a−→ ri, q
a−→ ri, ri+1

a−→ ri for all i ∈
Z≥0, and q a−→ q. Clearly q vT p, as the partial traces of both
processes are ai for all i ∈ Z≥0. Let the unary function symbol
f be defined by the xyft rule {xi

a−→xi+1|i∈Z≥0}

f(x0)
b−→0

. where 0 is a

constant. Then f(q) 6vT f(p), because f(q)
b−→ 0 while f(p)

cannot perform a b-transition.

The next example shows that the partial trace format cannot
allow multiple occurrences of a Λ-floating variable in left-hand
sides of premises.

Example 2 Let p a−→ p′, p a−→ p′′, p′ b−→ 0, and p′′ c−→ 0.
Moreover, let q a−→ q′, q′ b−→ 0, and q′

c−→ 0. Clearly
q vT p, as the completed traces of both processes are ab

and ac. Let the unary function symbol f be defined by the
xyft rule x

a−→y y
b−→z y

c−→z′

f(x)
d−→0

. Then f(q) 6vT f(p), because

f(q)
d−→ 0 while f(p) cannot perform a d-transition.

Since p vT q allows that p 6a−→ (i.e., p cannot perform
any a-transitions) while q

a−→ q′, clearly the partial trace
format cannot contain so-called negative premises t 6a−→; cf.
[5, Ex. 13—aliased 11.2]. (For partial trace equivalence, Λ-
frozen variables can be allowed to occur in negative premises;
see [5, Thm. 9—aliased 11.3].) Moreover, negative premises
do not combine well with lookahead; cf. [12, Ex. 7—aliased
3.15]. For these reasons the current paper focuses on so-called
positive TSSs that do not contain negative premises.

E. Application: Algebra for process creation

BAETEN & VAANDRAGER [1] defined a process algebra
APC for process creation. Its structural operational semantics
contains one transition rule with lookahead. From our con-
gruence format it follows immediately that the partial trace
preorder is a precongruence for APC. For simplicity only part
of its syntax and semantics is presented here; some auxiliary
operators needed for the axiomatisation and the so-called
encapsulation operator are omitted.

APC contains the following constants: actions a from a set
A, successful termination ε, and deadlock δ. The rules are:

a
a−→ ε ε

√
−→ δ

Let e range over A ∪ {
√
}. The two rules for the binary

alternative composition operator + are:

x1
e−→ y1

x1 + x2
e−→ y1

x2
e−→ y2

x1 + x2
e−→ y2

The asymmetric binary parallel composition |� assumes a
partially defined communication function | :A × A → A; it
passes through a termination signal

√
from the right side only.

x1
a−→ y1

x1 |� x2
a−→ y1 |� x2

x2
e−→ y2

x1 |� x2
e−→ x1 |� y2

x1
a−→ y1 x2

b−→ y2 a|b = c

x1 |� x2
c−→ y1 |� y2

The unary operator new creates a process that is put in parallel
with an existing process.

new(x)
√
−→ x · δ

x
a−→ y

new(x)
a−→ new(y)

The second and third rule rule for the binary sequential com-
position operator · below are unusual: they spawn a parallel
component. The last rule contains lookahead.

x1
a−→ y1

x1 · x2
a−→ y1 · x2

x1

√
−→ y1 x2

e−→ y2

x1 · x2
e−→ y1 |� y2

x1

√
−→ y1 y1

a−→ z1 x2
b−→ y2 a|b = c

x1 · x2
c−→ z1 |� y2

3

These are all tyft rules, because in each rule the source
contains a single function symbol and the variables in the
source and in the right-hand sides of the premises are all
distinct. Furthermore, these rules clearly all have bounded
lookahead. We take the arguments of |� and new and the first
argument of · to be Λ-liquid, and the arguments of + and the
second argument of · to be Λ-frozen. Each Λ-floating variable
has at most one occurrence in total in the left-hand sides of
the premises and in the target; this occurrence is in all cases
at a Λ-liquid position. Hence the TSS is in the partial trace
format. The transition rules for the omitted operators are also
in this format. So the partial trace preorder is a precongruence
with regard to APC.

F. Decomposition of HML formulas

In [12] it was shown how to decompose HML formulas
with respect to process terms, given a TSS in tyft/tyxt format.
The decomposition method uses a collection of pure xytt rules
extracted from this TSS, called ruloids. We require that there
is a proof of a transition p a−→ q, with p a closed substitution
instance of a term t, iff there exists a proof that uses at the
root a ruloid with source t.

Definition 2 A collection R of pure xytt rules is called a
suitable set of ruloids for a TSS P = (Σ, R) if for each
t ∈ T(Σ), p ∈ T(Σ) and closed substitution σ, the transition
σ(t)

a−→ p is provable from P iff there are a ruloid H

t
a−→u
∈ R

and a closed substitution σ′ where σ′(α) is provable from P
for all α ∈ H , σ′(t) = σ(t) and σ′(u) = p.

Let R be a collection of ruloids with bounded lookahead that
is suitable for a TSS P . The following definition from [12]
assigns to each term t ∈ T(Σ) and each observation ϕ ∈O a
collection t−1R (ϕ) of decomposition mappings ψ : V →O. A
closed substitution instance σ(t) satisfies ϕ iff for some ψ ∈
t−1R (ϕ), σ(x) satisfies the formula ψ(x) for all x ∈ var(t).

Definition 3 Let R be a collection of ruloids with bounded
lookahead, suitable for a TSS P = (Σ, R). Then ·−1R : T(Σ)→
(O→ P(V → O)) is defined by:
• ψ ∈ t−1R (〈a〉ϕ) iff there is a ruloid H

t
a−→u
∈ R and a

χ ∈ u−1R (ϕ) such that ψ : V → O is given by

ψ(x) =



∧
(x

b−→y)∈H

〈b〉ψ(y) ∧ χ(x) if x ∈ var(u)

∧
(x

b−→y)∈H

〈b〉ψ(y) if x 6∈ var(u).

• ψ ∈ t−1R (
∧
i∈I
ϕi) iff ψ(x) =

∧
i∈I

ψi(x) where ψi ∈ t−1R (ϕi)

for all i ∈ I .

• ψ ∈ t−1R (¬ϕ) iff there is a function h : t−1R (ϕ)→ var(t)

such that ψ : V → O is given by ψ(x) =
∧

χ∈h−1(x)

¬χ(x).

This recursive definition is well-founded because the ruloid
employed in the case t−1R (〈a〉ϕ) has bounded lookahead.

We note that, in contrast to the setting of [5] without
lookahead, x /∈ var(t) here does not imply ψ(x) ≡ >.

Example 3 Consider the TSS of xyft rules x
a−→y

f(x)
b−→g(y)

and

x
c−→y y

d−→z
g(x)

e−→0
. Let the suitable collection of ruloids R contain

y
a−→x

f(y)
b−→g(x)

and x
c−→y y

d−→z
g(x)

e−→0
.

We calculate a ψ ∈ f(y)−1R (〈b〉〈e〉>). For a start, the ruloid
y
a−→x

f(y)
b−→g(x)

yields ψ(y) = 〈a〉ψ(x) and ψ(x) = χ(x) for some

χ ∈ g(x)−1R (〈e〉>). For the calculation of χ we use the ruloid
x

c−→y y
d−→z

g(x)
e−→0

. This yields χ(x) = 〈c〉χ(y) and χ(y) = 〈d〉χ(z)

and χ(z) = >. Concluding, ψ(y) = 〈a〉〈c〉〈d〉>.
The syntactic overloading of y, i.e. its occurrence in both

the first and second ruloid, underlines the importance of the
separate case in the definition of ψ ∈ t−1R (〈a〉ϕ) in Def. 3,
for x /∈ var(u). Else we would get ψ(y) = 〈a〉ψ(x) ∧ χ(y),
yielding a spurious conjunct 〈d〉> for ψ(y).

We reformulate the decomposition result from [12].

Theorem 1 Let R be a collection of ruloids with bounded
lookahead, suitable for a TSS P = (Σ, R). Then for each
t ∈ T(Σ), σ : V → T(Σ) and ϕ ∈ O:

σ(t) |= ϕ ⇔ ∃ψ ∈ t−1R (ϕ)∀x ∈ var(t) : σ(x) |= ψ(x)

In [12] P was required to be in tyft/tyxt format, and a specific
collection R was constructed. However, the proof only uses
that R has the property of Def. 2. Moreover, the requirement
that P be in tyft/tyxt format was needed merely to ensure that
such an R can be found.

G. Construction of ruloids

We briefly sketch the extraction of ruloids from a TSS P
in tyft/tyxt format, as employed in [12]. First, employing a
conversion from [17], if the source of a rule is of the form
x then this variable is replaced by a term f(x1, . . . , xar(f))
for each f ∈ Σ. This yields an intermediate TSS P †

in tyft format, all of which rules are provable from P .
Next, using a construction from [10], the left-hand sides
of premises are reduced to variables. Roughly the idea is,
given a premise f(t1, . . . , tar(f))

a−→ y in a rule r, and
a rule H

f(x1,...,xar(f))
a−→t

, to transform r by replacing the
aforementioned premise by H , y by t, and the xi by the ti; this
is repeated (transfinitely) until all premises with a non-variable
left-hand side have disappeared. Each infinite sequence of
such substitutions converges to an infinite sequence of variable
replacements; these variables are unified. The result is a TSS
P ‡ in xyft format, all of whose rules are provable from P †

[10]. Next, the premises for which there is no backward
chain in the dependency graph to a variable in the source
are eliminated, by substituting closed terms for the variables
in such premises. The resulting TSS in pure xyft format is

4

denoted by P+; its rules are provable from P ‡ [10]. By [12,
Prop. 3—aliased 3.4] the pure xytt rules irredundantly provable
from P+ constitute a suitable collection of ruloids for P .

Example 4 Consider the process algebra APC from Sect.
II-E, with A = {a, b, c, d, e} and a communication function
that includes a|b = c and c|d = e. The following ruloid can
be derived using the third rule for parallel composition and
the third rule for sequential composition.

x1

√
−→ y1 y1

a−→ z1 x2
b−→ y2 x3

d−→ y3

(x1 · x2) |� x3
e−→ (z1 |� y2) |� y3

Using [10, Lem. 2.10], it follows that these ruloids are
provable from P . Hence another suitable collection of ruloids
is given by all pure xytt rules provable from P , or all pure xytt
rules irredundantly provable from P . In Sect. III we will define
P -general ruloids such that each pure xytt rule irredundantly
provable from P is a substitution instance of a P -general
ruloid with the same source. This implies that the collection
of P -general ruloids is suitable.

In [12] an additional step in the construction of ruloids
was made to ensure that they all have bounded lookahead.
Each ruloid with unbounded lookahead was replaced by an
equivalent ruloid with bounded lookahead, by endowing each
infinite forward chain with an ordinal count-down. However,
the ruloids produced by this step violate most congruence
formats. (A notable exception is the full tyft/tyxt format, as
a congruence format for bisimulation semantics; see [12, Cor.
1—aliased 4.1].) In particular, starting with a TSS in partial
trace format, this step produces ruloids in which Λ-floating
variables may have multiple occurrences in left-hand sides of
premises. This is no surprise, as in Ex. 1 it was shown that
the partial trace format must exclude unbounded lookahead. In
this paper we avoid this additional step by considering only
TSSs in tyft/tyxt format with bounded lookahead. We will
prove in Sect. IV that for such TSSs P , each P -general ruloid
has bounded lookahead.

III. STRUCTURED PROOFS AND GENERAL RULES

The following example shows that the second condition of
the partial trace format is not always preserved by irredundant
proofs of pure xytt rules.

Example 5 Consider the TSS with bounded lookahead con-
sisting of the xyft rules

{yi+1
a−→ yi | i ∈ Z≥0}

f(x)
b−→ g(x, y0) x

a−→ x

x
c−→ y

f(x)
d−→ f(y)

In view of the third rule, the argument of f is Λ-liquid. So by
the first rule, the arguments of g are Λ-liquid as well. Clearly
the TSS is in partial trace format.

Substituting z for x and for all yi in the first rule as well as
for x in the second rule, we can derive the rule

f(z)
b−→g(z,z)

.
The two occurrences of the Λ-floating variable z in the target
violate the partial trace format.

This counter-example is spurious: the derived rule is a substi-
tution instance of the rule

f(z)
b−→g(z,z′)

with z 6= z′, which
does adhere to the partial trace format. The latter rule can be
derived in a similar fashion, by substituting z′ (instead of z)
for all yi in the first rule as well as for x in the second rule.
The irredundant proof of

f(z)
b−→g(z,z)

is not “general”: there
is no need to replace the two arguments of g in the target by
the same variable. On the other hand, the same variable must
be substituted for all the yi, so that the premises of the first
rule can be derived by the second rule in the TSS.

We will show that a suitable collection of ruloids is formed
by the so-called “general” pure xytt rules, which are derived
by an irredundant proof in which terms σ(x) and σ(y) with
x 6= y only have variables in common if this is imposed by
the proof. For example, let the TSSs P1 and P2 both contain
the rule x

a−→y
f(x)

b−→y
, while P1 contains

g(x)
a−→x and P2 contains

g(x)
a−→y . The rule

f(g(z))
b−→z

is irredundantly provable from

both P1 and P2; however, this rule is P1-general but not P2-
general. In contrast, the rule

f(g(z))
b−→z′

is P2-general, but not
provable from P1.

In Sect. IV and V it will be shown that general rules do pre-
serve the partial trace format. To formally define the notion of
a general rule, we first provide an alternative characterisation
of (irredundant) provability, roughly following [10].

Definition 4 Let π = (B,α, ϕ) where:
• B is a set of transition rules which do not have any

variables in common,
• α is a literal of the form sπ

a−→ w with sπ ∈ T(Σ) and
w ∈ V such that var(α) ∩ var(B) = ∅ and w /∈ var(sπ),
and

• ϕ is an injective mapping from B to {α} ∪ {β | β a
premise of a rule in B}, such that

– concl(b) and ϕ(b) carry the same action for all b∈B,
and

– all chains b0, b1, b2, . . . in B with each ϕ(bi+1) a
premise of bi are finite.

In the sequel, the premises of π are α and the premises of
rules in B, and top(π) denotes the collection of premises of
π that are outside the image of ϕ.

A rule b0 ∈ B, or a premise of b0, is above a premise β if
there exists a chain b1, . . . , bn in B with ϕ(bi) a premise of
bi+1 for all 0 ≤ i < n and ϕ(bn) = β.
π is a proof structure if each rule in B is above α. It is a

proof structure over a TSS P = (Σ, R) if each rule in B is in
R modulo alpha-conversion (i.e., renaming of variables).

A substitution σ matches π if σ(sπ) = sπ and, for each
b ∈B, σ(concl(b)) = σ(ϕ(b)).

Proposition 2 A rule H
γ is provable from a TSS P iff

there exists a proof structure π = (B,α, ϕ) over P and a
substitution σ that matches π, such that σ(top(π)) ⊆ H and
σ(α) = γ. It is irredundantly provable if σ(top(π)) = H .

Proof Given a proof structure π = (B,α, ϕ) and a matching
substitution σ, an irredundant proof of σ(top(π)

α) is obtained

5

as the (multi)set of premises of π, each premise β labelled by
σ(β), ordered into a tree by the “above” relation; top(π) will
be the set of “hypotheses”.

Conversely, each irredundant proof π of a rule H

t
a−→u

can be
converted into a proof structure (B,α, ϕ) by replacing each
non-hypothesis node in π by an incarnation of the transition
rule applied in that node, where, using alpha-conversion, all
incarnations are given disjoint sets of variables. Take α :=
(t

a−→ w) for a fresh variable w. When the rules for each two
nodes have disjoint variable sets, the substitutions used in all
nodes can be united into one substitution matching the entire
proof structure.

One point of concern in the above construction is whether
there are enough variables to allocate a disjoint set of variables
to the rules for each node in π. As V is infinite, this constraint
is satisfied if the number of nodes in π is not larger than |V |,
which is the case if the branching degree of π, i.e. the number
of premises in each rule, is no larger than |V |. In [10] this
was achieved by means of a requirement on TSSs, namely
of being “small”. Here we just make sure that the set of all
literals is not larger than |V |. This is a simple consequence
of our requirements that |Σ| ≤ |V | and |A| ≤ |V | (cf. Lem.
6—aliased 6.4—in [5]).

A different proof of a small variation of this characterisation
can be found in [10].

Example 6 Consider the TSS in Ex. 5. As running example
in this section we introduce a proof structure that has the
following shape, where downward arrows depict ϕ.

· · ·

· · ·

x1
a−→ x1

y2
a−→ y1

x0
a−→ x0

y1
a−→ y0

f(x)
b−→ g(x, y0)

f(z)
b−→ w

One matching substitution σ1 maps w to g(z, z) and all other
variables to z. Another matching substitution σ2 maps w to
g(z, z′), x to z and all other variables to z′.

A variable x in a proof structure π is prime if there exists
a matching substitution σ for π with σ(x) a variable. The
relation ∼π relates those prime variables that are mapped to
the same term by each matching substitution for π.

Definition 5 Let π = (B,α, ϕ) be a proof structure. Let ∼π
be the least equivalence relation on T(Σ) satisfying:
• if b = H

t
a−→u
∈ B and ϕ(b) = (t′

a−→ u′) then t ∼π t′
and u′ ∼π u, and

• if f(t1, . . . , tk) ∼π f(u1, . . . , uk) then ti ∼π ui for all
i = 1, . . . , k.

A variable x ∈ var(π) is composite if x ∼π t with t 6∈ V ,
and prime otherwise.

Observation 1 A substitution σ matches π iff σ(sπ) = sπ
and σ(t) = σ(u) for all terms t, u ∈ T(Σ) with t ∼π u.

Example 7 For the proof structure in Ex. 6, xi ∼π yi and
xi ∼π yi+1 for all i∈Z≥0. Moreover, x∼πz and w∼πg(x, y0).
So the two equivalence classes of prime variables modulo ∼π
are {xi, yi | i ∈ Z≥0} and {x, z}.

A substitution is minimal for a proof structure if it is match-
ing and provides as little syntactic structure to (substitution
instances of) variables as possible, and induces as few identi-
fications of variables as possible.

Definition 6 A substitution ρ for a proof structure π is mini-
mal if:
• ρ(x) = x for each x ∈ var(sπ) and ρ(x) ∈ V for each

prime variable x ∈ var(π),
• ρ(x) = ρ(y) iff x ∼π y, for each pair of prime variables
x, y ∈ var(π), and

• ρ(t) = ρ(u) for each two terms t, u ∈ T(Σ) with t ∼π u.
A rule r is P -general if there exists a proof structure π =
(B,α, ϕ) over P and a substitution ρ that is minimal for π
such that r = ρ(top(π)

α). The pair (π, ρ) is called a structured
proof of r from P .

Example 8 The first matching substitution σ1 for the proof
structure in Ex. 6 is not minimal, because it maps the variables
in the two equivalence classes modulo ∼π to the same variable
z.

The second matching substitution σ2 for this proof structure
is minimal, meaning that the rule

f(z)
b−→g(z,z′)

is general with
regard to the TSS in Ex. 5.

The following proposition is a pivotal result for this paper.

Proposition 3 A rule is irredundantly provable from a TSS
P iff it is a substitution instance of a P -general rule with the
same source.

Proof ⇐ Let the rule r be a substitution instance of a rule
ρ(top(π)

sπ
a−→w

) with the same source, where π = (B, sπ
a−→ w,ϕ)

is a proof structure over P and ρ a minimal substitution
for π. Then r = σ(ρ(top(π)

sπ
a−→w

)) for some substitution σ. By
assumption, σ(ρ(sπ)) = ρ(sπ) = sπ . By Obs. 1 and the third
requirement on minimal substitutions, ρ matches π. Therefore,
also σ◦ρ matches π, so by Prop. 2 r is irredundantly provable
from P .
⇒ Let the rule r be irredundantly provable from P .

By Prop. 2 r = σ(top(π)

sπ
a−→w

) for some proof structure π =

(B, sπ
a−→ w,ϕ) and a matching substitution σ. We will

now construct a substitution ρ that is minimal for π, and a
substitution ν with σ = ν ◦ ρ. This immediately yields the
required result.

For each ∼π-equivalence class C of prime variables we pick
a yC ∈ C and take ρ(x) := yC for all x ∈ C—if possible we
choose yC ∈ var(sπ). This way the first two requirements of

6

a minimal substitution are met. In particular, if x, y∈ var(sπ)
with x ∼π y then σ(x) = x and σ(y) = y, which implies that
x and y are prime, and by Obs. 1 x= σ(x) = σ(y) = y; thus
ρ(x) = x. Moreover, take ν(yC) := σ(yC), so that σ(x) =
σ(yC) = ν(yC) = ν(ρ(x)) for all x ∈ C, using Obs. 1. The
substitution ν satisfies ν(z) = z for all other variables z.

With structural induction on σ(x) we proceed to define
ρ(x) for composite variables x ∈ var(π), such that σ(x) =
ν(ρ(x)). Simultaneously, with structural induction on σ(t)(=
σ(u)), we establish ρ(t) = ρ(u) for each pair of terms t, u
with t ∼π u.

Let t, u /∈ V be terms with t ∼π u. Let t = f(t1, . . . , tk)
and u=g(u1, . . . , um). By Obs. 1 σ(t) = σ(u), so f = g and
k = m. By Def. 5 ti ∼π ui, so by induction ρ(ti) = ρ(ui),
for all i = 1, . . . , k, and hence ρ(t) = ρ(u).

Now let x ∈ var(π) be composite; say x ∼π t for some
term t /∈ V . By Obs. 1 σ(x) = σ(t), so for each y ∈ var(t)
the term σ(y) is a proper subterm of σ(x). By induction,
ρ(y) has already been defined before we get to defining
ρ(x), and σ(y) = ν(ρ(y)). Hence ρ(t) is well-defined, and
σ(t) = ν(ρ(t)), so we can take ρ(x) := ρ(t), thereby obtaining
σ(x) = ν(ρ(x)). By the argument above, this definition is
independent of the choice of t.

Finally, if x ∼π y and one of these variables is composite,
then both are composite and x ∼π t ∼π y for some term
t /∈ V . Now ρ(x) = ρ(y) follows by transitivity.

Example 9 With regard to the TSS in Ex. 5, the irredundantly
provable rule

f(z)
b−→g(z,z)

is a substitution instance of the
general rule

f(z)
b−→g(z,z′)

.

Now we define a P -general ruloid as a P -general pure xytt
rule. It follows from Prop. 3 that each irredundantly provable
pure xytt rule is a substitution instance of a P -general ruloid
with the same source, so that the P -general ruloids form a
suitable collection of ruloids for P .

We now consider TSSs in univariate tytt format; these
syntactic restrictions are part of all congruence formats in the
literature. The following definition makes relations between
different occurrences of a variable z in a structured proof
explicit. The underlying idea of its first case is that syntactic
structure is inherited in an upward fashion at the left-hand side
of each branch of a proof, and in a downward fashion at the
right-hand side. The second case expresses that occurrences
of a variable x in a rule in the proof inherit syntactic structure
from the (unique) occurrence of x in the source or in a right-
hand side of a premise of this rule. The third case expresses
that if a variable x is free in a rule in the proof, then all
occurrences of x are syntactically linked to each other.

Definition 7 Let (π, ρ) with π = (B,α, ϕ) be a structured
proof from a TSS in univariate tytt format. An occurrence of
a variable z in this proof is represented by a triple θ = (b, ι, η)
with either b ∈ B or b = α, ι an occurrence (i.e. position) of a
variable x in b, and η an occurrence of z in ρ(x). Sometimes

we address such an occurrence as 〈b, ιt, η〉 where ιt is an
occurrence of a term t in b, and η an occurrence of z in ρ(t).

The relations→z and!z between the occurrences of z in
(π, ρ) are given by:
• if b = H

t
a−→u
∈ B and ϕ(b) = (t′

a−→ u′), writing b′ for
the rule (or α) containing the premise ϕ(b) and ιt, ιt′ ,
ιu and ιu′ for the indicated occurrences of t in b, t′ in
b′, u in b and u′ in b′, respectively, then 〈b′, ιt′ , η〉 →z

〈b, ιt, η〉 for any occurrence η of z in ρ(t′) = ρ(t), and
〈b, ιu, η†〉 →z 〈b′, ιu′ , η†〉 for any occurrence η† of z in
ρ(u) = ρ(u′);

• if b ∈ B and η is an occurrence of z in ρ(x) for some
x ∈ var(b), then (b, ι, η) →z (b, ι′, η) where ι is an
occurrence of x either in the source of b or in the right-
hand side of a premise of b, and ι′ is an occurrence of x
in the left-hand side of a premise or in the target of b;

• if η is an occurrence of z in ρ(x) with x ∈ var(b),
and either b = α, or b ∈ B and x occurs neither in the
source of b nor in the right-hand sides of its premises,
then (b, ι, η)!z (b, ι′, η) for ι and ι′ any two different
occurrences of x.

Let ∼z denote the smallest equivalence relation containing
→z ∪!z .

Example 10 Consider the structured proof from Ex. 6, after
applying the matching substitution σ2 to it.

· · ·

· · ·

z′
a−→ z′

z′
a−→ z′

z′
a−→ z′

z′
a−→ z′

f(z)
b−→ g(z, z′)

f(z)
b−→ g(z, z′)

The relations→z and→z′ are depicted by arrows. (The arrows
depicting ϕ have been omitted here.)

We partition the variable occurrences in a rule r into three
types: we speak of an incoming occurrence if it occurs in the
source of r, or in the right-hand side of a premise; an upwards
outgoing occurrence if it occurs in the left-hand side of a
premise; and a downwards outgoing occurrence if it occurs
in the target of r. This applies to rules ρ(b) associated to a
structured proof (π, ρ) with π = (B,α, ϕ) and b ∈ B; it also
applies to ρ(α) by considering this literal to be a premise. This
terminology is motivated by the following observation on the
above constructed graph of occurrences of a variable z in a
structured proof (π, ρ).

Observation 2 If (b, ι, η)→z (b′, ι′, η′) then either
• b′= b, ι is an incoming occurrence and ι′ an (upwards or

downwards) outgoing one, or
• ϕ(b′) is a premise of b, ι is an upwards outgoing

occurrence in b, and ι′ is an incoming occurrence in b′,
or

7

• ϕ(b) is a premise of b′, ι is a downwards outgoing
occurrence in b, and ι′ is an incoming occurrence in b′.

Example 11 Consider the arrows in the picture in Ex. 10 that
depict the relations→z and→z′ . The upward arrows are from
an upwards outgoing to an incoming occurrence of z or z′, the
downward arrows from a downwards outgoing to an incoming
occurrence of z or z′, the straight horizontal arrows from an
incoming to an upwards outgoing occurrence of z′, and the
diagonal and curved horizontal arrows from an incoming to a
downwards outgoing occurrence of z or z′.

Observation 3 For each outgoing occurrence θ of z in (π, ρ)
there is at most one incoming occurrence θ′ of z with θ →z θ

′.
There is none iff θ occurs in top(π). The occurrence θ′ is
Λ-liquid (for a given predicate Λ on arguments of function
symbols) iff θ is Λ-liquid.

This last statement is trivial, because θ and θ′ are the same
occurrences in a term ρ(t) occurring in b as well as in b′.

The remainder of this section is dedicated to a key propo-
sition that will be needed in the proofs in Sect. IV and V. It
states that for a structured proof π, if a variable z occurs in the
right-hand side of a premise in top(π) or exactly once in sπ ,
then it is related to all other occurrences of z in π through→z .
We start with some lemmas needed for the proof of Prop. 4.

Lemma 1 Each variable z occurring in a structured proof
(π, ρ) has the form ρ(x) for a prime variable x ∈ var(π).

Proof With structural induction on ρ(y) for any y ∈ var(π)
we show that each z ∈ var(ρ(y)) has the form z = ρ(x) for
a prime variable x ∈ var(π).
• In case y is prime, ρ(y) ∈ V by the first clause of Def.

6, so z = ρ(y) and we are done.
• Suppose that y is composite. So y ∼π t for some t /∈ V ,

and by the third clause of Def. 6, ρ(y) = ρ(t). Hence
z occurs in ρ(t), and therefore in ρ(y′) for a variable y′

occurring in t. Since ρ(y′) is a proper subterm of ρ(y),
by induction z = ρ(x) for a prime variable x ∈ var(π).

Lemma 2 Let θ = 〈b, ι, η〉 and θ′〈b′, ι′, η〉 be two occurrences
of a variable z in a structured proof (π, ρ) from a TSS P in
univariate tytt format, with ι an occurrence of a subterm t in
b, and ι′ an occurrence of a subterm u in b′, where t ∼π u.
Then θ ∼z θ′.

Proof We apply induction on the derivation of t ∼π u.
• The case that t ∼π u is obtained by the first clause of Def.

5 follows immediate from the definitions, in particular
using the first clause of Def. 7, but only when ι and ι′

are the indicated occurrences ιt and ιt′ (or ιu and ιu′) in
Def. 7. We also need to show that if a subterm t occurs
multiple times in π, the corresponding occurrences of z
in the occurrences of t are related by ∼z . Since t must
contain variables, and the sets of variables in different

rules b ∈ B (and α) in a proof structure π = (B,α, ϕ)
are pairwise disjoint, all occurrences of t lay in the same
rule b. The second and third clause of Def. 7 together
with the fact that P is in univariate tytt format guarantee
that all induced occurrences of z are ∼z-related.

• The case that t ∼π u is obtained by the second clause of
Def. 5 is trivial.

• The case that t ∼π u is obtained by reflexivity, symmetry
or transitivity is trivial too.

Lemma 3 For each two occurrences θ and θ′ of a variable
z in a structured proof (π, ρ) from a TSS in univariate tytt
format, we have θ ∼z θ′.

Proof Let π = (B,α, ϕ). By Lem. 1, for each variable z
occurring in (π, ρ) we can choose an occurrence of the form
(b, ι, η) with b ∈ B∪{α}, ι an occurrence of a prime variable
x in b, and η the occurrence of z in ρ(x) = z. Let (b′, ι′, η′)
be another occurrence of z in (π, ρ), with ι′ an occurrence
of a variable y′ in b′ and η′ an occurrence of z in ρ(y′).
With structural induction on ρ(y′) we show that (b, ι, η) ∼z
(b′, ι′, η′).
• Let y′ be prime. Then ρ(y′) ∈ V , so ρ(y′) = z = ρ(x).

By the second clause of Def. 6, x ∼π y′. The result now
follows from Lem. 2.

• Let y′ be composite. Then y′ ∼π t for some t /∈ V ,
so by the third clause of Def. 6, ρ(y′) = ρ(t). Hence
the occurrence η′ of z in ρ(y′) appears as an occurrence
η′′ of z in ρ(y′′) for a variable y′′ occurring in t. Let
b′′ be the rule containing t, ιt an occurrence of t in
b′′ and ι′′ the appropriate occurrence of y′′ within ιt.
Then (b′′, ι′′, η′′) = 〈b′′, ιt, η′〉 is an occurrence of z
in (π, ρ). Since ρ(y′′) is a proper subterm of ρ(y′), by
induction (b, ι, η) ∼z (b′′, ι′′, η′′). Furthermore, Lem. 2
yields 〈b′′, ιt, η′〉 ∼z 〈b′, ι′, η′〉 = (b′, ι′, η′).

In the following observations, which are also needed in the
proof of Prop. 4, (π, ρ) is a structured proof from a TSS P in
univariate tytt format with π = (B,α, ϕ).

Observation 4 For each incoming occurrence θ′ of z in (π, ρ)
there is at most one outgoing occurrence θ of z with θ →z θ

′.
There is none iff θ′ occurs in top(π).

Observation 5 For each outgoing occurrence θ′ = (b′, ι′, η′)
of z in (π, ρ) there is at most one incoming occurrence θ =
(b, ι, η) of z with θ →z θ

′, where it must be the case that
b′ = b 6= α.

Proposition 4 Let θ = (b, ι, η) be an occurrence of a variable
z in a structured proof (π, ρ) from a TSS P in univariate tytt
format, with ι either an incoming occurrence in top(π) or the
only occurrence of a variable x in sπ . Then θ →∗z θ′ for any
occurrence θ′ of z in (π, ρ), with ∗ reflexive and transitive
closure.

Proof By Lem. 3, θ ∼z θ′. By the definition of ∼z , θ =
θ0 ∼1

z θ1 ∼1
z · · · ∼1

z θk = θ′, where ∼1
z = →z ∪←z ∪!z .

8

Without loss of generality we assume that there are no repeated
occurrences of z in this sequence. By induction on i we show
that θi →z θi+1 for all i = 0, . . . , k−1.
• Let i = 0, and θ0 = (b, ι, η) with ι the only occurrence

of x in sπ . By Def. 7 there is no θ1 with θ1 →z θ0
or — using that ι is the only occurrence of x in α —
θ0!z θ1.

• Let i = 0 and θ0 = (b, ι, η) with ι occurring in top(π).
Since θ0 is an incoming occurrence, by Def. 7 there is
no θ1 with θ0 !z θ1. By Obs. 4 there is no θ1 with
θ1 →z θ0.

• Let i > 0 and θi be an incoming occurrence. By Def. 7
there is no θi+1 with θi !z θi+1. By Obs. 4 and our
convention that θi+1 6= θi−1, we cannot have θi ←z θi+1.

• Let i > 0 and θi be an outgoing occurrence. By Obs.
2 θi−1 must be a incoming occurrence, occurring in the
same rule. Hence by Def. 7 there is no θi+1 with θi!z

θi+1. By Obs. 5 and our convention that θi+1 6= θi−1,
we cannot have θi ←z θi+1.

Example 12 In Ex. 10, the occurrence of z in sπ is →∗z-
related to the three other occurrences of z in the structured
proof.

IV. PRESERVATION OF BOUNDED LOOKAHEAD

We show that for any TSS P in tyft/tyxt format with
bounded lookahead, all P -general rules have bounded looka-
head. Thus congruence formats that allow bounded lookahead
can be derived by means of the decomposition method from
[5].

Definition 8 For a proof structure π = (B,α, ϕ), let ≺π be
the least relation on var(π) such that:
• if x occurs in the left-hand side of a premise of π, and
y in its right-hand side, then x ≺π y, and

• if b = H

t
a−→u
∈ B and ϕ(b) = (t′

a−→ u′) with x ∈
var(t′) ∧ y ∈ var(t) or x ∈ var(u) ∧ y ∈ var(u′), then
x ≺π y.

Observation 6 Let (b, ι, η)→z (b′, ι′, η′) for two occurrences
of a variable z in a proof structure (π, ρ), with ι an occurrence
of an x ∈ var(π) in b, and ι′ of a y ∈ var(π) in b′. If b = b′

then x = y, and if b 6= b′ then x ≺π y.

Proposition 5 Let π = (B,α, ϕ) be a proof structure. If all
rules in B have bounded lookahead, then there is no infinite
chain x0 ≺π x1 ≺π x2 ≺π · · · .

Proof With structural induction on proof structures π, seen as
well-founded trees.

Given π = (B,α, ϕ), let b0 ∈ B be the unique rule with
ϕ(b0) = α. For each premise β of b0, let Bβ ⊆ B be the col-
lection of rules that are above β, and let πβ = (Bβ , β, ϕ�Bβ).
The structured proofs πβ are subproofs of π and by induction
do not contain infinite chains as above.

Suppose an infinite chain x0 ≺π x1 ≺π · · · occurred in π.
With the possible exception of x0, which could lay in α, this
entire chain can be divided up in connected segments, each
of which lays entirely in one of the πβs. Each segment has at
least two variables in it, and two adjacent segments—laying
in πβ and πγ , respectively—overlap in exactly one variable,
which must occur in the right-hand side of β as well as in the
left-hand side of γ. Here we use that the sets var(b) for b ∈ B
are pairwise disjoint. Using the induction hypothesis, all these
segments must be finite. Hence, there must be infinitely many.
Restricting the sequence x0 ≺π x1 ≺π x2 ≺π · · · to those
variables that lay in two adjacent segments yields an infinite
forward chain of variables in the dependency graph of b0,
contradicting the supposed absence of unbounded lookahead
in the rules of B.

Theorem 2 Let P be a TSS in univariate tytt format with
bounded lookahead. Then all P -general rules have bounded
lookahead.

Proof Let P be a TSS with bounded lookahead, and r a
P -general rule, say with structured proof (π, ρ). If r had
unbounded lookahead, then top(π) would contain premises
ti

ai−→ ui for i ∈ Z≥0 with var(ρ(ui)) ∩ var(ρ(ti+1)) 6= ∅
for all i ∈ Z≥0. Thus, for each i ∈ Z≥0, there would be a
yi ∈ var(ui), an xi+1 ∈ var(ti+1) and some z ∈ var(ρ(yi))∩
var(ρ(xi+1)). Let θi = (bi, ιi, ηi) be the occurrence of z in
(π, ρ) where bi is the topmost rule with premise ti

ai−→ ui, ιi
is the occurrence of yi in ui in bi, and ηi the occurrence of z
in ρ(yi). Likewise, ξi+1 = (bi+1, ι

′
i+1, η

′
i+1) is the occurrence

of z in (π, ρ) where ι′i+1 is the occurrence of xi+1 in ti+1

in bi+1, and η′i+1 the occurrence of z in ρ(xi+1). By Prop. 4
θi →∗z ξi+1. Now Obs. 6 gives yi ≺∗π xi+1. Since by definition
also xi ≺π yi for all i ∈ Z≥0, we have found an infinite chain
x0 ≺π x1 ≺π x2 ≺π . . . , which with Prop. 5 yields the
required contradiction.

The following example shows that the restriction in Thm. 2
to P -general rules is essential.

Example 13 Consider the rule x
a−→y

f(x)
b−→0

. By substituting z for

both x and y we derive z
a−→z

f(z)
b−→0

, which contains unbounded
lookahead.

Corollary 1 Thm. 1 applies to each TSS P in tyft/tyxt format
with bounded lookahead by choosing for R the collection of
all P -general ruloids.

V. PRESERVATION OF Λ-PARTIAL TRACE SAFENESS

We say that a rule is Λ-infinitary trace safe if each Λ-
floating variable has at most one occurrence in total in the left-
hand sides of the premises and in the target; this occurrence
must be at a Λ-liquid position.

Observation 7 Let P be a TSS in univariate tytt format
for which each rule is Λ-infinitary trace safe, and (π, ρ)

9

a structured proof of a rule r from P . For each Λ-liquid
incoming occurrence θ of z in (π, ρ) there is at most one
outgoing occurrence θ′ of z with θ →z θ

′; this occurrence
must be at a Λ-liquid position.

Theorem 3 Let P be a TSS in univariate tytt format for which
each rule is Λ-infinitary trace safe. Then each P -general rule
is Λ-infinitary trace safe.

Proof Let (π, ρ) be a structured proof from P of a P -general
rule r, where π = (B,α, ϕ) with α = (sπ

a−→ w). Let z be
a Λ-floating variable of r. Then z has a Λ-liquid occurrence
θ = (b, ι, η) in (π, ρ), with ι either an incoming occurrence in
top(π) or the only occurrence of a variable x in sπ .

Consider any occurrence of z in the left-hand sides of the
premises or the target of r. It corresponds with an occurrence
θ′ = (b′, ι′, η′) of z in either a left-hand side of a premise
in top(π) or the right-hand side of α (thus making ι′ the
occurrence of w). There is no θ′′ with θ′ →z θ

′′. This follows
from Obs. 3 if ι′ occurs in a left-hand side of top(π), or from
Def. 7 if it is the right-hand side of α.

By Prop. 4, θ = θ0 →z θ1 →z · · · →z θk = θ′. Obs. 2,
3 and 7 together imply that any occurrence θi of z in this
chain is Λ-liquid, and moreover that for each such θi the next
occurrence θi+1 (if it exists) is uniquely determined. Since
moreover θk 6→z it follows that θ′ is uniquely determined.
Thus there is at most one occurrence of z in the left-hand sides
of the premises of r or in the target of r, and this occurrence
is at a Λ-liquid position.

A tytt rule is Λ-partial trace safe iff it is Λ-infinitary trace safe
and has bounded lookahead. Thus, Thms. 2 and 3 together say
that if all rules of a TSS P in univariate tytt format are Λ-
partial trace safe, then so is each P -general rule.

VI. PRECONGRUENCE OF PARTIAL TRACE PREORDER

To prove that for each TSS in partial trace format the
induced partial trace preorder is a precongruence, it suffices
to show that each formula in OT decomposes into formulas
in O≡T .

The following lemma is needed in the proof of Prop. 6.
There it is only used in case x /∈ var(t), but within the proof
of the lemma we also need the case that x has one, Λ-liquid
occurrence in t.

Lemma 4 Let P be a TSS in partial trace format, where its
rules are Λ-partial trace safe. Let R denote the set of P -general
ruloids. For each term t, ϕ ∈ OT , ψ ∈ t−1R (ϕ), and variable x
that occurs at most once in t, at a Λ-liquid position, we have
ψ(x) ∈ O≡T .

Proof We apply induction on the structure of ϕ ∈ OT . Let
ψ ∈ t−1R (ϕ). The two possible syntactic forms of ϕ in the
BNF grammar of OT are considered. In case ϕ = >, i.e., ϕ =∧
i∈∅ ϕi, by the second clause of Def. 3, ψ(x) = > ∈ O≡T , and

we are done. In case ϕ = 〈a〉ϕ′, by the first clause of Def.
3, ψ(x) =

∧
(x

b−→y)∈H
〈b〉ψ(y)[∧χ(x)], for some P -general

ruloid r = H

t
a−→u

and χ ∈ u−1R (ϕ′), where the conjunct χ(x)

is present only if x ∈ var(u). By Thms. 2 and 3, r is Λ-partial
trace safe. Since by assumption x is Λ-floating in r, by Def.
1, x has at most one occurrence in total in the left-hand sides
of H and in u; this occurrence must be at a Λ-liquid position.
We apply a nested induction on the lookahead of x in H
(formally defined in [12, page 19—aliased 434]). Suppose first
that x occurs in the left-hand side of H , say x

c−→ z. Since
r is tytt, z does not occur in var(t). So by induction on the
lookahead of z, ψ(z) ∈ O≡T . Hence ψ(x) = 〈c〉ψ(z) ∈ O≡T .
Suppose now that x does not occur in the left-hand sides of
H . Since x occurs at most once in u, at a Λ-liquid position,
by induction on the structure of ϕ′, χ(x) ∈ O≡T . Hence either
ψ(x) = χ(x) ∈ O≡T or ψ(x) = > ∈ O≡T .

Proposition 6 Let P be a TSS in partial trace format and
R the set of P -general ruloids. For each term t, ϕ ∈ OT ,
ψ ∈ t−1R (ϕ) and variable x:

ψ(x) ≡
∧
i∈I

ψi with ψi ∈ O≡T for all i ∈ I.

Proof All rules in P are Λ-partial trace safe, for some Λ. We
apply induction on the structure of ϕ ∈ OT . Let ψ ∈ t−1R (ϕ).
We consider the two possible syntactic forms of ϕ in the BNF
grammar of OT . In case ϕ = >, by the second clause of
Def. 3, ψ(x) = >, and we are done. In case ϕ = 〈a〉ϕ′, by
the first clause of Def. 3, ψ(x) =

∧
(x

b−→y)∈H
〈b〉ψ(y)[∧χ(x)],

for some P -general ruloid r = H

t
a−→u

and χ ∈ u−1R (ϕ′), where
the conjunct χ(x) is present only if x ∈ var(u). By Thms.
2 and 3, r is Λ-partial trace safe. Since r is tytt, for each
(x

b−→ y) ∈ H , y does not occur in var(t). So by Lem. 4,
ψ(y) ∈ O≡T for each (x

b−→ y) ∈ H . Moreover, by induction,
χ(x) ≡

∧
i∈I χi with χi ∈ O≡T for all i ∈ I . Thus ψ(x) is

also of this required form.

Corollary 2 If a TSS is in partial trace format, then the partial
trace preorder it induces is a precongruence.

Proof Consider a TSS P in partial trace format. Let t be a
term and σ, σ′ closed substitutions with σ(x) vT σ′(x) for
all x ∈ var(t); we need to prove that σ(t) vT σ′(t). Suppose
that σ(t) |= ϕ ∈ OT . Let R denote the set of P -general
ruloids. By Thm. 1 in combination with Cor. 1 there is a
ψ ∈ t−1R (ϕ) with σ(x) |= ψ(x) for all x ∈ var(t). By Prop.
6, ψ(x) ≡

∧
i∈Ix ψi,x with ψi,x ∈ O≡T for all x ∈ var(t) and

i ∈ Ix. So σ(x) |= ψi,x for all x ∈ var(t) and i ∈ Ix. By Prop.
1, O≡T (σ(x)) ⊆ O≡T (σ′(x)) for all x ∈ var(t). This implies
σ′(x) |= ψi,x for all x ∈ var(t) and i ∈ Ix. So σ′(x) |= ψ(x)
for all x ∈ var(t). Therefore, by Thm. 1, σ′(t) |= ϕ. So
OT (σ(t)) ⊆ OT (σ′(t)). Hence, by Prop. 1, σ(t) vT σ′(t).

VII. CONCLUSION AND FUTURE WORK

We introduced the notion of a general rule, which has a
proof with minimal variable unifications. To this end we used
proof structures as alternatives for irredundant proofs, because
irredundant proofs abstract away from the variables that are

10

being unified. We moreover showed that if a TSS has bounded
lookahead, then the same holds for its general rules. This
means that the decomposition method of modal formulas from
[12] applies directly to TSSs with bounded lookahead, without
first having to turn unbounded into bounded lookahead by
means of ordinal count-downs. Both the notion of a general
rule and the preservation of bounded lookahead were crucial
in the derivation of a congruence format for the partial trace
preorder, using the decomposition method.

When restricting attention to TSSs whose rules have finitely
many premises, the restriction to bounded lookahead can be
dropped from the partial trace format. The reason is that
unbounded lookahead is eliminated when converting such a
TSS to pure xyft format. With this extension included, our
format extends the earlier congruence format for partial trace
semantics presented in BLOOM [3]. The latter can be seen as
the restriction of our format to TSSs in tyft format, allowing
only rules with finitely many premises, and requiring Λ to hold
universally. The binary Kleene star (see [5]) is an example of
an operator that falls in our format, and in that of [5], but
not in that of [3]. The application to APC in Sect. II-E falls
outside the formats of both [5] and [3].

As future work we want to extend the results to TSSs with
negative premises, and develop a congruence format for partial
trace equivalence that allows negative premises. Moreover,
we conjecture that the techniques and results introduced in
this paper make it possible to develop congruence formats
with lookahead for ready simulation and the decorated trace
semantics.

Some applications of lookahead mentioned in the intro-
duction require a richer format, which may be based on
the basic format given here. There is a rich body of work
extending existing congruence formats with features like time,
probabilities and binders. Recently [7] employed the modal
decomposition technique to obtain congruence formats for
probabilistic semantics. Our approach lays the groundwork to
extend those formats with lookahead.

In [13], [11], modal decomposition is used to derive congru-
ence for weak semantics. Extending this work with lookahead
could allow us to develop congruence formats that for example
cover the lookahead in the τ -rules from [6]. In [16, Sect.
8] a congruence format for weak bisimilarity with τ -rules
and lookahead is presented, but using a bisimulation-specific
method.

Acknowledgement Paulien de Wind observed that the trans-
formation from unbounded to bounded lookahead in [12]
violates the partial trace format.

REFERENCES

[1] J.C.M. BAETEN & F.W. VAANDRAGER (1992): An algebra for process
creation. Acta Inform. 29:303–334.

[2] M. BERNARDO (1997): Enriching EMPA with value passing: A symbolic
approach based on lookahead. In Proc. PAPM 1997, pp. 35–49.

[3] B. BLOOM (1994): When is partial trace equivalence adequate? Form.
Asp. Comput. 6:317–338.

[4] B. BLOOM, S. ISTRAIL & A.R. MEYER (1995): Bisimulation cant be
traced. J. ACM, 42:232–268.

[5] B. BLOOM, W.J. FOKKINK & R.J. VAN GLABBEEK (2004): Precon-
gruence formats for decorated trace semantics. ACM T. Comput. Log.
5:26–78.

[6] R.N. BOL & J.F. GROOTE (1996): The meaning of negative premises
in transition system specifications. J. ACM 43:863–914.

[7] V. CASTIGLIONI, D. GEBLER & S. TINI (2016): Modal decomposition
on nondeterministic probabilistic processes. In Proc. CONCUR 2016,
LIPIcs 59, Schloss Dagstuhl - Leibniz Center for Informatics, pp. 36:1–
36:15.

[8] P.R. D’ARGENIO & M.D. LEE (2012): Probabilistic transition system
specification: Congruence and full abstraction of bisimulation. In Proc.
FOSSACS 2012, LNCS 7213, Springer, pp. 452–466.

[9] A.J. DOS REIS (2012): Compiler Construction Using Java, JavaCC,
and Yacc, Wiley-IEEE.

[10] W.J. FOKKINK & R.J. VAN GLABBEEK (1996): Ntyft/ntyxt rules reduce
to ntree rules. Inform. Comput. 126:1–10.

[11] W.J. FOKKINK & R.J. VAN GLABBEEK (2016): Divide and congruence
II: Delay and weak bisimilarity. In Proc. LICS 2016, pp. 778–787,
ACM/IEEE.

[12] W.J. FOKKINK, R.J. VAN GLABBEEK & P. DE WIND (2006): Composi-
tionality of Hennessy-Milner logic by structural operational semantics.
Theor. Comput. Sci. 354:421–440.

[13] W.J. FOKKINK, R.J. VAN GLABBEEK & P. DE WIND (2012): Divide
and congruence: From decomposition of modal formulas to preservation
of branching and η-bisimilarity. Inform. Comput. 214:59–85.

[14] R.J. VAN GLABBEEK (1993): Full abstraction in structural operational
semantics (extended abstract). In Proc. AMAST 1993, pp. 77–84,
Springer.

[15] R.J. VAN GLABBEEK (2001): The linear time – branching time spectrum
I: The semantics of concrete, sequential processes. In J.A. Bergstra,
A. Ponse & S.A. Smolka, editors: Handbook of Process Algebra,
chapter 1, Elsevier, pp. 3–99.

[16] R.J. VAN GLABBEEK (2011): On cool congruence formats for weak
bisimulations. Theor. Comput. Sci. 412:3283-3302.

[17] J.F. GROOTE & F.W. VAANDRAGER (1992): Structured operational
semantics and bisimulation as a congruence. Inform. Comput. 100:202–
260.

[18] M. HENNESSY & R. MILNER (1985): Algebraic laws for non-
determinism and concurrency. J. ACM 32:137–161.

[19] K.V. HINDRIKS & M.B. VAN RIEMSDIJK (2007): Satisfying mainte-
nance goals. In Proc. DALT 2007, LNCS 4987, Springer, pp. 86–103.

[20] K.G. LARSEN (1986): Context-Dependent Bisimulation between Pro-
cesses. PhD thesis, University of Edinburgh.

[21] L. LÉONARD & G. LEDUC (1998): A formal definition of time in
LOTOS. Form. Asp. Comput. 10:248–266.

[22] M.R. MOUSAVI (2009): Causality in the semantics of Esterel: Revisited.
In Proc. SOS 2009, EPTCS 18, pp. 32–45.

[23] G.D. PLOTKIN (2004): A structural approach to operational semantics.
J. Log. Algebr. Progr. 60/61:17–139. Originally appeared in 1981.

[24] R. DE SIMONE (1985): Higher-level synchronising devices in MEIJE–
SCCS. Theor. Comput. Sci. 37:245–267.

11

	Introduction
	Preliminaries
	Hennessy-Milner logic
	Transition system specifications
	Syntactic restrictions on transition rules
	Partial trace format
	Application: Algebra for process creation
	Decomposition of HML formulas
	Construction of ruloids

	Structured proofs and general rules
	Preservation of bounded lookahead
	Preservation of partial trace safeness
	Precongruence of partial trace preorder
	Conclusion and future work
	References

