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Abstract
Earlier we presented a method to decompose modal formulas
for processes with the internal action τ ; congruence formats for
branching and η-bisimilarity were derived on the basis of this de-
composition method. The idea is that a congruence format for a se-
mantics must ensure that formulas in the modal characterisation of
this semantics are always decomposed into formulas in this modal
characterisation. Here the decomposition method is enhanced to
deal with modal characterisations that contain a modality 〈ε〉〈a〉ϕ,
to derive congruence formats for delay and weak bisimilarity.

1. Introduction
In [2] a method was developed to generate congruence for-
mats for (concrete) process semantics from their modal char-
acterisation. It crosses the borders between process alge-
bra, structural operational semantics, process semantics, and
modal logic. Cornerstone is the work in [18] to decompose
formulas from Hennessy-Milner logic [17] with respect to
a structural operational semantics in the De Simone format
[21]. It was extended to the ntyft format [15] without looka-
head in [2], and to the tyft format [16] in [8].

An equivalence is a congruence for a term algebra if the
equivalence class of any term f(p1, . . . , pn) is determined
by the equivalence classes of p1, . . . , pn. Being a congru-
ence is an important property, e.g. to fit a process semantics
into an axiomatic framework. Syntactic formats for struc-
tural operational semantics have been developed for several
process semantics, to ensure that such a semantics is a con-
gruence; notably for unrooted and rooted weak bisimilarity
in [1] and for unrooted and rooted delay bisimilarity in [14].

Key idea in [2] is that a congruence format for a pro-
cess semantics must ensure that the formulas in a modal
characterisation of this semantics are always decomposed
into formulas that are again in this modal characterisation.
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This yielded liberal and elegant congruence formats for all
known concrete process semantics in a convenient way. In
[9] this method was extended to weak process semantics,
which take into account the internal action τ . As a result,
congruence formats for rooted branching and η-bisimilarity
were derived. Two predicates ℵ and Λ on arguments of func-
tion symbols are used: ℵ marks processes that can execute
immediately, and Λ processes that have started executing.
Formats for unrooted branching and η-bisimilarity are ob-
tained by imposing one restriction on top of the format for
the corresponding rooted semantics: Λ holds universally.

The framework from [9] covers only a small part of the
spectrum of weak semantics [12]. In particular, it does not
readily extend to delay and weak bisimilarity [19, 20]. The
reason is that in these semantics, in contrast to branching and
η-bisimilarity, a process q that mimics an a-transition from a
process p, does not need to be related to p at the moment that
q performs the a-transition. This implies that in the modal
characterisation of delay and weak bisimilarity, a modality
〈a〉ϕ stating that an a-transition to a process where ϕ holds,
is always preceded by a modality 〈ε〉 allowing any number
of τ -transitions. As a consequence, devising congruence for-
mats for delay and weak bisimilarity is notoriously difficult,
see e.g. [1, 14]. Here we show how this technical obstacle
can be overcome by the semantic notion delay resistance,
which ensures that modalities 〈ε〉〈a〉ϕ are decomposed into
formulas that again have this form. Thus congruence formats
can be derived for semantics with a modal characterisation
containing such modalities. We derive congruence formats
for rooted delay and weak bisimilarity. Congruence formats
for the unrooted counterparts of these semantics are again
obtained by the extra requirement that Λ is universal.

We moreover provide syntactic restrictions which imply
delay resistance, leading to the first entirely syntactic con-
gruence formats for rooted delay and weak bisimilarity. The
congruence formats we obtain are more liberal and elegant
than existing congruence formats for these semantics. In par-
ticular, in [1] it is stated that the RWB format put forward
in that paper has a “horrible definition”, and that “negative
rules seem incompatible with weak process equivalences.”
Here we show how negative premises can be included in
congruence formats for rooted delay and weak bisimilarity.
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2. Preliminaries
2.1 Equivalences on labelled transition systems
A labelled transition system (LTS) is a pair (P,→), with P a
set of processes and→ ⊆ P× (A∪ {τ})× P, where τ is an
internal action andA a set of concrete actions not containing
τ . We use p, q to denote processes, α, β, γ for elements of
A ∪ {τ}, and a, b for elements of A. We write p α−→ q for
(p, α, q) ∈ → and p 6α−→ for ¬(∃q ∈ P : p

α−→ q). The
transitive-reflexive closure of τ−→ is denoted by ε

=⇒.
Processes can be distinguished by a wide range of seman-

tics, based on e.g. branching structure or decorated execution
sequences. Weak semantics, classified in [12], abstract away
from τ ’s to different degrees. Here we focus on the two weak
semantics that are employed most often: delay bisimilarity
[19] and weak bisimilarity [20].

Definition 1 Let B ⊆ P× P be a symmetric relation.

• B is a delay bisimulation if pBq and p α−→ p′ implies
that either α = τ and p′B q, or q ε

=⇒ α−→ q′′ for some q′′

with p′Bq′′. Processes p, q are delay bisimilar, denoted
p↔d q, if there exists a delay bisimulation B with pBq.
• B is a weak bisimulation if pBq and p α−→ p′ implies that

either α = τ and p′B q, or q ε
=⇒ α−→ ε

=⇒ q′′ for some q′′

with p′Bq′′. Processes p, q are weakly bisimilar, denoted
p↔w q, if there exists a weak bisimulation B with pBq.

↔d and ↔w are equivalence relations. However, they are
not congruences for most process algebras. Rooted variants
of these semantics, which require for the pair of initial states
that a τ -transition needs to be matched by at least one τ -
transition, are congruences for basic process algebras, no-
tably for the alternative composition operator.

Definition 2 Let R ⊆ P× P be a symmetric relation.

• R is a rooted delay bisimulation if pRq and p α−→ p′

implies that q ε
=⇒ α−→ q′ for some q′ with p′↔d q

′.
Processes p, q are rooted delay bisimilar, p↔rd q, if
there exists a rooted delay bisimulation R with pRq.
• R is a rooted weak bisimulation if pRq and p

α−→ p′

implies that q ε
=⇒ α−→ ε

=⇒q′ for some q′ with p′↔w q
′.

Processes p, q are rooted weakly bisimilar, p↔rw q, if
there exists a rooted weak bisimulation R with pRq.

Example 1 Processes p0 and p1 in the LTS below are rooted
delay bisimilar but not η-bisimilar. In an η-bisimulation the
transition p0

b−→ 0 cannot be mimicked by p1; the only
candidate p1

τ−→ q
b−→ 0 fails because q cannot be related

to p0, while this would be required for an η-bisimulation.

b
a

a
b

q
τ

p0 p1

0

τ

2.2 Modal logic
Hennessy-Milner logic [17] is extended with the modal con-
nective 〈ε〉ϕ, expressing that a process can perform zero or
more τ -transitions to a state where ϕ holds.

Definition 3 [12] The class O of modal formulas is defined
as follows, where I ranges over all index sets:

O ϕ ::=
∧
i∈Iϕi | ¬ϕ | 〈α〉ϕ | 〈ε〉ϕ .

p |= ϕ denotes that p satisfies ϕ. By definition, p |= 〈α〉ϕ if
p

α−→ p′ for some p′ with p′ |= ϕ, and p |= 〈ε〉ϕ if p ε
=⇒ p′

for some p′ with p′ |= ϕ. We use abbreviations > for the
empty conjunction and ϕ1 ∧ ϕ2 for

∧
i∈{1,2} ϕi. We write

ϕ ≡ ϕ′ if p |= ϕ⇔ p |= ϕ′ for any process p in any LTS.
A modal characterisation of an equivalence on processes

consists of a class C of modal formulas such that two pro-
cesses are equivalent if and only if they satisfy the same for-
mulas in C. Hennessy-Milner logic is a modal characterisa-
tion of bisimilarity. We now introduce modal characterisa-
tions for (unrooted and rooted) delay and weak bisimilarity.

Definition 4 Let a range over A and α over A ∪ {τ}. The
subclasses Oe and Ore of O, for e ∈ {d,w}, are defined by:

Od ϕ ::=
∧
i∈Iϕi | ¬ϕ | 〈ε〉ϕ | 〈ε〉〈a〉ϕ

Ord ϕ ::=
∧
i∈Iϕi | ¬ϕ | 〈ε〉〈α〉ϕ̂ | ϕ̂ (ϕ̂ ∈ Od)

Ow ϕ ::=
∧
i∈Iϕi | ¬ϕ | 〈ε〉ϕ | 〈ε〉〈a〉〈ε〉ϕ

Orw ϕ ::=
∧
i∈Iϕi | ¬ϕ | 〈ε〉〈α〉〈ε〉ϕ̂ | ϕ̂ (ϕ̂ ∈ Ow).

For L ⊆ O, we write p ∼L q if p and q satisfy the same
formulas in L. The class L≡ denotes the closure of L under
≡. Trivially, p ∼L q ⇔ p ∼L≡ q.

Theorem 1 p↔e q ⇔ p ∼Oe q and p↔re q ⇔ p ∼Ore q,
for all p, q ∈ P, where e ∈ {d,w}.

2.3 Structural operational semantics
A signature is a set Σ of function symbols f with arity
ar(f). Let V be an infinite set of variables x, y, z, with
|Σ|, |A| ≤ |V |. A syntactic object is closed if it does not
contain any variables. The set T(Σ) of terms over Σ and V
is defined as usual; t, u, v, w denote terms and var(t) is the
set of variables that occur in term t. A term is univariate if
it is without multiple occurrences of the same variable. A
substitution σ is a partial function from V to T(Σ). A closed
substitution is a total function from V to closed terms.

Structural operational semantics provides process alge-
bras and specification languages with an interpretation. It
generates an LTS, in which processes are the closed terms
over a (single-sorted, first-order) signature, and transitions
between processes may be supplied with labels. The tran-
sitions are obtained from a transition system specification,
which consists of a set of proof rules called transition rules.
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Definition 5 A (positive or negative) literal is an expression
t

α−→ u or t 6α−→. A (transition) rule is of the form H
λ with

H a set of literals called the premises, and λ a literal called
the conclusion; the term at the left-hand side of λ is called
the source. H+ denotes the positive premises and Hs− the
stable negative premises in H: those t 6α−→ for which also
t 6τ−→ is inH . A rule ∅λ is also written λ. A rule is standard if
it has a positive conclusion. A transition system specification
(TSS) consists of a signature Σ and a set R of rules over Σ.
A TSS is standard if all its rules are.

Definition 6 Let P = (Σ, R) be a TSS. An irredundant
proof from P of a rule H

λ is a well-founded tree with the
nodes labelled by literals and some of the leaves marked
“hypothesis”, such that the root has label λ, H is the set of
labels of the hypotheses, and if µ is the label of a node that
is not a hypothesis and K is the set of labels of the children
of this node then K

µ is a substitution instance of a rule in R.

The proof of H
λ is called irredundant [2] because H must

equal (instead of include) the set of labels of the hypotheses.
Irredundancy is crucial for the preservation under provability
of our congruence formats. Namely, in a ‘redundant’ proof
one can freely add any premises to the derived rule.

Literals t α−→ u and t 6α−→ are said to deny each other.

Definition 7 [13] Let P = (Σ, R) be standard TSS. A well-
supported proof from P of a closed literal λ is a well-
founded tree with the nodes labelled by closed literals, such
that the root is labelled by λ, and if µ is the label of a node
and K is the set of labels of the children of this node, then:
either µ is positive and K

µ is a closed substitution instance
of a rule in R; or µ is negative and for each set N of closed
negative literals with N

ν irredundantly provable from P and
ν a closed positive literal that denies µ, a literal in K denies
one inN . P `ws λ denotes that a well-supported proof from
P of λ exists. A standard TSS P is complete if for each p
and α, either P `ws p 6

α−→ or P `ws p
α−→ p′ for some p′.

In [13] it was shown that `ws is consistent, in the sense
that no standard TSS admits well-supported proofs of two
literals that deny each other. A complete TSS specifies an
LTS, consisting of the ws-provable closed positive literals.

2.4 Syntactic restrictions on transition rules
We present terminology for syntactic restrictions on rules
from [2, 15, 16]. An ntytt rule is a rule in which the right-
hand sides of positive premises are variables that are all
distinct, and that do not occur in the source. An ntytt rule
is an ntyxt rule if its source is a variable, an ntyft rule if its
source contains exactly one function symbol and no multiple
occurrences of variables, and an nxytt rule if the left-hand
sides of its premises are variables. An xynft rule is ntyft and
the left-hand sides of its positive premises are variables.

A variable in a rule is free if it occurs neither in the source
nor in right-hand sides of premises. A rule has lookahead
if some variable occurs in the right-hand side of a premise
and in the left-hand side of a premise. A decent rule has no
lookahead and no free variables. A TSS in ready simulation
format consists of ntyft and ntyxt rules without lookahead.

2.5 Patience rules
Let Γ be a unary predicate on arguments of function sym-
bols. If Γ(f, i), then argument i of f is Γ-liquid; otherwise
it is Γ-frozen. An occurrence of x in t is Γ-liquid if t = x
or t = f(t1, . . . , tar(f)) and the occurrence is Γ-liquid in ti
with Γ(f, i); otherwise the occurrence is Γ-frozen.

Sect. 2.8 presents a method for decomposing modal for-
mulas that gives a special treatment to arguments of function
symbols that are deemed patient; we will use a predicate Γ
to mark the arguments that get this special treatment.

Definition 8 [1, 5] A standard ntyft rule is a patience rule
for argument i of f if it is of the form

xi
τ−→ y

f(x1, . . . , xar(f))
τ−→ f(x1, . . . , xi−1, y, xi+1, . . . , xar(f))

Given a predicate Γ, the rule above is a Γ-patience rule
if Γ(f, i). A TSS is Γ-patient if it contains all Γ-patience
rules. A standard ntytt rule is Γ-patient if it is irredundantly
provable from the Γ-patience rules; else it is Γ-impatient.

Typically, in process algebra, there are patience rules for
both arguments of the merge operator and for the first argu-
ment of sequential composition, as they can contain running
processes, but not for the arguments of alternative composi-
tion or for the second argument of sequential composition.

2.6 Ruloids
To decompose modal formulas, we use a result from [2],
where for any standard TSS P in ready simulation format
a collection of decent nxytt rules, called P -ruloids, is con-
structed. We explain this construction at a rather superficial
level; the precise transformation can be found in [2].

First P is converted to a standard TSS P † in decent
ntyft format. In this conversion from [16], free variables
in a rule are replaced by arbitrary closed terms, and if the
source is of the form x, then this variable is replaced by a
term f(x1, . . . , xar(f)) for each function symbol f in the
signature of P , where the variables x1, . . . , xar(f) are fresh.

Next, using a construction from [6], left-hand sides of
positive premises are reduced to variables. Roughly the idea
is, given a premise f(t1, . . . , tn)

α−→ y in a rule r, and
another rule H

f(x1,...,xn)
α−→t

, to transform r by replacing the
aforementioned premise by H , y by t, and the xi by the ti;
this is repeated (transfinitely) until all positive premises with
a non-variable term as left-hand side have disappeared. This
yields an intermediate standard TSS P ‡ in xynft format, of
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which all the rules are irredundantly provable from P . In
fact, the rules of P ‡ are exactly the xynft rules irredundantly
provable from P †. The motivation for this transformation
step is that for TSSs in xynft format the semantic phrase “for
each set N of closed negative literals with N

ν irredundantly
provable from P ” in the second clause of Def. 7 of a well-
supported proof can be replaced by a syntactic phrase: “for
each closed substitution instance N

ν of a rule in R”.
Finally, non-standard rules with a negative conclusion

t 6α−→ are introduced. The motivation is that instead of the
notion of well-founded provability of Def. 7, we want a more
constructive notion like Def. 6, by making it possible that a
negative premise is matched with a negative conclusion. A
non-standard rule H

f(x1,...,xn) 6
α−→

is obtained by picking one

premise from each xynft rule in P ‡ with a conclusion of the
form f(x1, . . . , xn)

α−→ t, and including the denial of each
of the selected premises as a premise in H .

The resulting TSS, which is in decent ntyft format, is de-
noted by P+. The above construction implies that if P is
Γ-patient, then so is P+. In [2] it was established, for all
closed literals µ, that P `ws µ if and only if µ is irredun-
dantly provable from P+. By definition, the P -ruloids are
the (decent) nxytt rules irredundantly provable from P+.

There is a well-supported proof from a TSS P of a tran-
sition ρ(t)

a−→ q if and only if there is a derivation of this
transition that uses at the root a P -ruloid with source t. This
result underlies the decomposition method in Sect. 2.8.

Proposition 1 [2] Let P = (Σ, R) be a standard TSS in
ready simulation format, t ∈ T(Σ) and ρ : V → T(Σ) a
closed substitution. Then P `ws ρ(t)

α−→ q if and only if
there are a P -ruloid H

t
α−→u

and a closed substitution ρ′ such
that P `ws ρ

′(µ) for all µ ∈ H , ρ′(t) = ρ(t) and ρ′(u) = q.

2.7 Linear proofs
Definition 9 An irredundant proof of a rule H

λ is called
linear if no two hypotheses in the proof tree of Def 6 are
labelled with the same positive premise.

Clearly, each ntytt rule provable from a TSS is a substitution
instance of an ntytt rule that has a linear proof. In Def. 7
it does not make any difference whether in clause 2 we
quantify over rules N

ν that are provable (as in [13, 2, 8]),
irredundantly provable (as in [9]), or linearly provable.

In Sect. 2.6 a non-standard TSS P+ is constructed out of
a given TSS P in ready simulation format, via the interme-
diate stages P † and P ‡. Here P ‡ consists of all xynft rules
irredundantly provable from P †. With P̂ ‡ we denote the TSS
consisting of all xynft rules linearly provable from P †. The
TSS P+ is obtained by augmenting P ‡ with non-standard
rules; with P̂+ we denote the corresponding augmentation
of P̂ ‡. For the construction of the non-standard rules in
the augmentation, it makes no difference whether we start
from P ‡ or P̂ ‡, since the difference disappears when ab-
stracting from the right-hand sides of positive literals. Thus,

P̂+ ⊆ P+ and each rule in P+ is a substitution instance of
a rule in P̂+. Hence, an ntytt rule is irredundantly provably
from P̂+ iff it is irredundantly provable from P+.

A linear P -ruloid has a linear proof from P̂+. Clearly,
each P -ruloid is a substitution instance of a linear P -ruloid.
So Prop. 1 still holds if we only consider linear ruloids.

2.8 Decomposition of modal formulas
In [9] it was shown how one can decompose formulas from
O. To each term t and formula ϕ ∈ O, a set t−1(ϕ) of
decomposition mappings ψ : V → O is assigned. Each
ψ ∈ t−1(ϕ) guarantees that for any closed substitution ρ,
ρ(t) |= ϕ if ρ(x) |= ψ(x) for all x ∈ var(t). Vice versa,
whenever ρ(t) |= ϕ, there is a decomposition mapping
ψ ∈ t−1(ϕ) with ρ(x) |= ψ(x) for all x ∈ var(t).

Definition 10 [9] Let P = (Σ, R) be a Γ-patient standard
TSS in ready simulation format. We define ·−1 : T(Σ) ×
O→ P(V → O) as the function that for each t ∈ T(Σ) and
ϕ ∈ O returns the set t−1(ϕ) ∈ P(V→O) of decomposition
mappings ψ : V→O generated by following five conditions.
In the remainder of this definition, t is a univariate term.

1. ψ ∈ t−1(
∧
i∈I ϕi) iff there are ψi ∈ t−1(ϕi) for each

i ∈ I such that ψ(x) =
∧
i∈I ψi(x) for all x ∈ V .

2. ψ ∈ t−1(¬ϕ) iff there is a function h : t−1(ϕ)→ var(t)
such that ψ(x) equals either

∧
χ∈h−1(x) ¬χ(x) if x ∈

var(t), or > if x /∈ var(t).
3. ψ ∈ t−1(〈α〉ϕ) iff there is a P -ruloid H

t
α−→u

and a
χ ∈ u−1(ϕ) such that ψ(x) equals either

χ(x) ∧
∧

x
β−→y∈H

〈β〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉>

if x ∈ var(t), or > if x /∈ var(t).
4. ψ ∈ t−1(〈ε〉ϕ) iff one of the following holds.

(a) There is a χ ∈ t−1(ϕ) such that ψ(x) equals either
〈ε〉χ(x) if x occurs Γ-liquid in t, or χ(x) otherwise.

(b) There is a Γ-impatient P -ruloid H

t
τ−→u

and a χ ∈
u−1(〈ε〉ϕ) such that ψ(x) equals either

〈ε〉
(
χ(x) ∧

∧
x
β−→y∈H

〈β〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉>
)

if x occurs Γ-liquid in t, or

χ(x) ∧
∧

x
β−→y∈H

〈β〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉>

if x occurs Γ-frozen in t, or > if x /∈ var(t).
5. ψ ∈ σ(t)−1(ϕ) for a non-injective substitution σ :

var(t) → V iff there is a χ ∈ t−1(ϕ) such that
ψ(x) =

∧
z∈σ−1(x) χ(z) for all x ∈ V .
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Theorem 2 [9] Let P = (Σ, R) be a Γ-patient complete
standard TSS in ready simulation format. For any term t ∈
T(Σ), closed substitution ρ, and ϕ ∈ O:
ρ(t) |= ϕ ⇔ ∃ψ ∈ t−1(ϕ) ∀x ∈ var(t) : ρ(x) |= ψ(x) .

3. Delay resistant TSSs
In the next section the decomposition method from Sec. 2.8
is applied to obtain congruence formats for (rooted) delay
and weak bisimilarity. However, Def. 10 needs to be refined
in the case t−1(〈ε〉ϕ), because in the modal logics for delay
and weak bisimilarity, occurrences of subformulas 〈β〉ϕ′ are
always preceded by 〈ε〉, while in Def. 10 this is not always
the case. The refinement of Def. 10, which is presented in
Def. 15, is only valid for so-called delay resistant TSSs.

Def. 14 of delay resistance is inspired by a requirement
in the RDB and RWB cool formats, see [14, Def. 15(3)]. It
is crafted in such a way that Prop. 2 holds: if for a premise
x

β−→ y in a ruloid r = H

t
α−→u

the execution of β is delayed
by a τ -step, i.e. for some σ we have σ(x)

τ−→ β−→ σ(y),
then the conclusion σ(t)

α−→ σ(u) of the σ-instance of r is
unaffected, or merely delayed by a τ -step as well.

Example 2 Consider the rooted delay bisimilar processes p0
and p1 from Ex. 1. The ruloid r may apply when substituting
p0 for x and b for β, given that p0

b−→ 0. If instead of
p0 we substitute p1 for x, to safeguard congruence, it is
necessary that the (possibly delayed) conclusion of r can still
be derived, even though we only have p1

τ−→ q
b−→ 0.

In Def. 12 we allow two possible implementations of this
idea. Each premise x

β−→y of r is either delayable (Def. 11),
in which case σ(x)

τ−→ β−→σ(y) induces σ(t)
τ−→ α−→σ(u)

by two ruloids that can be used in place of r; or τ -pollable,
meaning that r remains valid if this premise is replaced by
x

τ−→ z for a fresh variable z, so that the premise σ(x)
τ−→

σ(z) takes over the role of σ(x)
β−→ σ(y). Def. 12 and

Prop. 2 allow only finitely many delayable positive premises,
but infinitely many τ -pollable ones.

Definition 11 A premise w
β−→ y of an ntytt rule r = H

t
α−→u

is delayable in a TSS P if there are ntytt rules H1

t
τ−→v

and
H2

v
α−→u

, linearly provable from P , withH1 ⊆ (H\{w β−→y})

∪ {w τ−→ z} and H2 ⊆ (H \ {w β−→ y}) ∪ {z β−→ y} for
some term v and fresh variable z.

Suppose that H

t
α−→u

in Def. 11 is a ruloid, so that w is a
variable x. The intuition behind this definition is that the
argument x of t may not be able to perform a β-transition
to a term y immediately, but only after a τ -transition to z.
The ruloid H1

t
τ−→v

then allows t to postpone its α-transition to
u, by first performing a τ -transition to v. The ruloid H2

v
α−→u

guarantees that the postponed β-transition from z to y still
gives rise to an α-transition from v to u.

Linearity is needed to make sure that in the construction
of ruloids, distinct delayable positive premises are never
collapsed to a single non-delayable premise.

Def. 12 requires that each positive premise is delayable
(i.e., in the finite set Hd), τ -pollable, or redundant.

Definition 12 An ntytt rule H

t
α−→u

is positive delay resistant
w.r.t. a TSS P if there exists a finite set Hd ⊆ H+ of
delayable positive premises such that for each set M ⊆
H+ \Hd there is a rule rM = HM

t
α−→u

, linearly provable from

P , where HM ⊆ (H \M) ∪Mτ with Mτ = {w τ−→ zy |
(w

β−→ y) ∈M, zy fresh}.

The intuition behind Def. 13 is closely related to Def. 11. If a
ruloid H

t
α−→u

has a premise x 6γ−→, we want it not to apply in

case σ(x)
τ−→ γ−→, even if σ(x) 6γ−→. We therefore require

that for each premise x 6γ−→ there must also be a premise
x 6τ−→. We make an exception for redundant premises x 6γ−→.

Definition 13 A rule H

t
α−→u

is negative delay resistant w.r.t.

a TSS P if there is a rule H′

t
α−→u

, linearly provable from P ,
with H ′ ⊆ H+ ∪Hs−.

Definition 14 An ntytt rule H

t
α−→u

is delay resistant w.r.t. a
TSS P if it is positive delay resistant as well as negative
delay resistant. A standard TSS P in ready simulation format
is delay resistant if all its linear ruloids with a positive
conclusion are delay resistant w.r.t. P̂+.

The following proposition is key to the notion of delay re-
sistance. It will allow us to adapt the definition of modal
decomposition for delay resistant TSSs, so that it becomes
applicable for generating congruence formats for weak se-
mantics, like delay and weak bisimilarity, with a modal char-
acterisation in which 〈β〉ϕ is always preceded by 〈ε〉.

Proposition 2 Let P be a delay resistant standard TSS in
ready simulation format. Let H

t
α−→u

be a P -ruloid and ρ a
closed substitution with P `ws ρ(x)

ε
=⇒ β−→ ρ(y) for each

premise x
β−→ y in H+ and P `ws ρ(x) 6γ−→ for each

premise x 6γ−→ in Hs−. Then P `ws ρ(t)
ε

=⇒ α−→ ρ(u).

For delay resistant TSSs case 4b of Def. 10, t−1(〈ε〉ϕ),
needs to be adapted, to ensure that in the modal logics
for delay and weak bisimilarity, occurrences of subformulas
〈β〉ϕ′′ are always preceded by 〈ε〉. Moreover, case 4a is
provided with the restriction that ϕ is not of the form 〈α〉ϕ′.
Else decompositions of formulas 〈ε〉〈α〉ϕ′ in Od would be
defined in terms of formulas χ ∈ t−1(〈α〉ϕ′), while 〈α〉ϕ′
is not in Od. Instead, if ϕ is of the form 〈α〉ϕ′, cases 3 and 4
of Def. 10 are combined, as can be seen in case 4b(ii) below.

Definition 15 Let P be a delay resistant Γ-patient standard
TSS in ready simulation format. We define ·−1dr : T(Σ) ×
O → P(V → O) exactly as ·−1 in Def. 10, except for case
4: t−1dr (〈ε〉ϕ) (with t univariate).
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4. ψ ∈ t−1dr (〈ε〉ϕ) iff one of the following holds.
(a) ϕ is not of the form 〈α〉ϕ′, and there is a χ ∈ t−1dr (ϕ)

such that ψ(x) equals either 〈ε〉χ(x) if x occurs Γ-
liquid in t, or χ(x) otherwise.

(b) (i) There is a Γ-impatient P -ruloid H

t
τ−→u

and a χ ∈
u−1dr (〈ε〉ϕ),

(ii) or ϕ is of the form 〈α〉ϕ′, and there is a P -ruloid
H

t
α−→u

and a χ ∈ u−1dr (ϕ′),

such that ψ(x) equals either

〈ε〉
(
χ(x) ∧

∧
x
β−→y∈H+

〈ε〉〈β〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉>
)

if x occurs Γ-liquid in t, or

χ(x) ∧
∧

x
β−→y∈H+

〈ε〉〈β〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉>

if x occurs Γ-frozen in t, or > if x /∈ var(t).
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The counterpart of Thm. 2 for delay resistant TSSs is:

Theorem 3 Let P = (Σ, R) be a delay resistant Γ-patient
complete standard TSS in ready simulation format. For any
t ∈ T(Σ), closed substitution ρ, and ϕ ∈O:

ρ(t) |= ϕ ⇔ ∃ψ ∈ t−1dr (ϕ) ∀x ∈ var(t) : ρ(x) |= ψ(x) .

4. Congruence results
A behavioural equivalence ∼ is a congruence for a function
symbol f if pi ∼ qi for all i ∈ {1, . . . , ar(f)} implies
that f(p1, . . . , par(f)) ∼ f(q1, . . . , qar(f)). We apply the
decomposition method from the previous section to derive
congruence formats for delay bisimulation and rooted delay
bisimulation semantics. The idea behind the construction
of these formats is that a formula from the characterising
logic of the equivalence under consideration must always
be decomposed into formulas from this same logic. The
delay bisimulation format guarantees that a formula from
Od is always decomposed into formulas from O≡d (Prop. 4).
Likewise, the rooted delay bisimulation format guarantees
that a formula from Ord is always decomposed into formulas
from O≡rd (Prop. 5). This implies the desired congruence
results (Thm. 4 resp. Thm. 5). These results are transposed
to (rooted) weak bisimilarity by adding one condition to the
congruence format for (rooted) delay bisimilarity.

4.1 Congruence format for rooted delay bisimilarity
We recall the notion of a rooted branching bisimulation safe
rule, which underlies the rooted branching bisimulation for-
mat from [9]. The congruence format for rooted delay bisim-
ilarity is obtained by additionally requiring delay resistance.

We assume two predicates on arguments of function sym-
bols from [5, 9]. The predicate Λ marks arguments that con-
tain processes that have started executing (but may currently

be unable to execute). The predicate ℵmarks arguments that
contain processes that can execute immediately. For exam-
ple, in process algebra, Λ and ℵ hold for the arguments of the
merge t1‖t2, and for the first argument of sequential compo-
sition t1·t2; they can contain processes that started to execute
in the past, and these processes can continue their execution
immediately. On the other hand, Λ and ℵ typically do not
hold for the second argument of sequential composition; it
contains a process that did not yet start to execute, and can-
not execute immediately (in absence of the empty process).
Λ does not hold and ℵ holds for the arguments of alternative
composition t1 + t2; they contain processes that did not yet
start to execute, but that can start executing immediately.

Definition 16 [9] An ntytt rule r = H

t
α−→u

is rooted branch-
ing bisimulation safe w.r.t. ℵ and Λ if it satisfies the follow-
ing conditions. Let x ∈ var(t).

1. Right-hand sides of positive premises occur only Λ-
liquid in u.

2. If x occurs only Λ-liquid in t, then x occurs only Λ-liquid
in r.

3. If x occurs only ℵ-frozen in t, then x occurs only ℵ-
frozen in H .

4. If x has exactly one ℵ-liquid occurrence in t, which is
also Λ-liquid, then x has at most one ℵ-liquid occurrence
in H , which must be in a positive premise. If moreover
this premise is labelled τ , then r must be ℵ∩Λ-patient.

Definition 17 A standard TSS P is in rooted delay bisim-
ulation format if it is in ready simulation format and delay
resistant, and, for some ℵ and Λ, it is ℵ∩Λ-patient and all its
rules are rooted branching bisimulation safe w.r.t. ℵ and Λ.

This TSS is in delay bisimulation format if Λ is universal.

Proposition 3 [9] Let P be a standard TSS in ready simula-
tion format, in which each transition rule is rooted branch-
ing bisimulation safe w.r.t. ℵ and Λ. Then each P -ruloid is
rooted branching bisimulation safe w.r.t. ℵ and Λ.

4.2 Congruence for rooted delay bisimilarity
Consider a standard TSS that is in rooted delay bisimulation
format, w.r.t. some ℵ and Λ. Def. 15 yields decomposition
mappings ψ ∈ t−1dr(ϕ), with Γ = ℵ∩Λ. If ϕ ∈ Od, then
ψ(x) ∈ O≡d if x occurs only Λ-liquid in t. (That is why in the
delay bisimulation format, Λ must be universal.) If ϕ ∈ Ord,
then ψ(x) ∈ O≡rd for all variables x. These preservation
results induce the promised congruence results for delay
bisimilarity and rooted delay bisimilarity, respectively.

Proposition 4 Let P be a delay resistant, ℵ∩Λ-patient stan-
dard TSS in ready simulation format, in which each rule is
rooted branching bisimulation safe w.r.t. ℵ and Λ. For any
term t and variable x that occurs only Λ-liquid in t:

ϕ ∈ Od ⇒ ∀ψ ∈ t−1dr (ϕ) : ψ(x) ∈ O≡d .
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Proposition 5 Let P be a delay resistant, ℵ∩Λ-patient stan-
dard TSS in ready simulation format, in which each rule is
branching delay bisimulation safe w.r.t. ℵ and Λ. For any
term t and variable x:

ϕ ∈ Ord ⇒ ∀ψ ∈ t−1dr (ϕ) : ψ(x) ∈ O≡rd .

Theorem 4 If P is a complete TSS in delay bisimulation
format, then ↔d is a congruence for P .

Proof By Def. 17 each rule of P is rooted branching bisim-
ulation safe w.r.t some ℵ and the universal predicate Λ, and
P is delay resistant, ℵ∩Λ-patient and in ready simulation
format. Let ρ, ρ′ be closed substitutions and t a term with
ρ(x)↔d ρ

′(x) for all x ∈ var(t).
Let ρ(t) |= ϕ ∈ Od. By Thm. 3, taking Γ = ℵ∩Λ, there

is a ψ ∈ t−1dr (ϕ) with ρ(x) |= ψ(x) for all x ∈ var(t).
Since x occurs Λ-liquid in t (because Λ is universal), by
Prop. 4, ψ(x) ∈ O≡d for all x ∈ var(t). By Thm. 1,
ρ(x)↔d ρ

′(x) implies ρ(x) ∼O≡d ρ′(x) for all x ∈ var(t).
So ρ′(x) |= ψ(x) for all x ∈ var(t). Therefore, by Thm. 3,
ρ′(t) |= ϕ. Likewise, ρ′(t) |= ϕ ∈ Od implies ρ(t) |= ϕ. So
ρ(t) ∼Od ρ

′(t). Hence, by Thm. 1, ρ(t)↔d ρ
′(t).

Theorem 5 If P is a complete TSS in rooted delay bisimu-
lation format, then ↔rd is a congruence for P .

The proof of Thm. 5 is similar to the one of Thm. 4, except
that Prop. 5 is applied instead of Prop. 4; therefore x need not
occur Λ-liquid in t, so that universality of Λ can be dropped.

4.3 Rooted weak bisimilarity as a congruence
We now proceed to derive a congruence format for rooted
weak bisimilarity. It is obtained from the congruence format
from [9] for rooted η-bisimilarity by additionally requiring
delay resistance. The format for rooted η-bisimilarity in turn
is obtained by strengthening condition 1 in the definition of
rooted branching bisimulation safeness.

Definition 18 [9] An ntytt rule H

t
α−→u

is rooted η-bisimu-
lation safe w.r.t. ℵ and Λ if it satisfies conditions 2–4 of
Def. 16, together with:

1′. Right-hand sides of positive premises occur only ℵ∩Λ-
liquid in u.

Definition 19 A standard TSS is in rooted weak bisimula-
tion format if it is in ready simulation format and delay resis-
tant, and, for some ℵ and Λ, it is ℵ∩Λ-patient and contains
only rules that are rooted η-bisimulation safe w.r.t. ℵ and Λ.

This TSS is in weak bisimulation format if Λ is universal.

Proposition 6 [9] Let P be a TSS in ready simulation for-
mat, in which each rule is rooted η-bisimulation safe w.r.t.
ℵ and Λ. Then each P -ruloid is rooted η-bisimulation safe
w.r.t. ℵ and Λ.

Proposition 7 Let P be a delay resistant, ℵ∩Λ-patient stan-
dard TSS in ready simulation format, in which each rule is
rooted η-bisimulation safe w.r.t. ℵ and Λ. For any term t and
variable x that occurs only Λ-liquid in t:

ϕ ∈ Ow ⇒ ∀ψ ∈ t−1dr (ϕ) : ψ(x) ∈ O≡w .

Proposition 8 Let P be a delay resistant, ℵ∩Λ-patient stan-
dard TSS in ready simulation format, in which each rule is
rooted η-bisimulation safe w.r.t. ℵ and Λ. For any term t and
variable x:

ϕ ∈ Orw ⇒ ∀ψ ∈ t−1dr (ϕ) : ψ(x) ∈ O≡rw .

Theorem 6 If P is a complete TSS in weak bisimulation
format, then ↔w is a congruence for P .

Theorem 7 If P is a complete TSS in rooted weak bisimu-
lation format, then ↔rw is a congruence for P .

4.4 Counterexamples
In [9] it was shown that none of the syntactic requirements
of the rooted branching bisimulation format in Def. 16 can
be omitted, and that the presence of ℵ∩Λ-patience rules is
crucial. Here we present examples to show that none of the
requirements that make up delay resistance is redundant.

All TSSs in this section are standard, complete, in ready-
simulation format and ℵ∩Λ-patient, and their rules are
rooted η-bisimulation safe.

Example 3 Let f be a unary function with an ℵ-liquid, Λ-
frozen argument, defined by x 6a−→

f(x)
b−→0

. This rule is positive

delay resistant, but not negative delay resistant.
p0, p1, q, 0 are constants with p0

τ−→ p0, p0
a−→ 0,

p1
τ−→ q and q a−→ 0. Note that p0↔rd p1. However, f(p0)

exhibits no transitions, while f(p1)
b−→ 0. So f(p0) 6↔rd

f(p1). Hence ↔rd is not a congruence.

Example 4 Let f be a unary function with an ℵ-liquid, Λ-
frozen argument, defined by x

a−→y
f(x)

b−→0
. This TSS is negative

delay resistant, but not positive delay resistant.
Consider the LTS from Ex. 3. We have f(p0)

b−→ 0,
while f(p1) does not exhibit any transitions. So f(p0) 6↔rd

f(p1). Hence ↔rd is not a congruence.

The following example shows that the requirement that Hd

is finite in Def. 12 of positive delay resistance is essential.

Example 5 A = {ak | k ∈ Z>0} ∪ {b}. Binary functions
fk for k ∈ Z>0, with both arguments ℵ-liquid and only the
second argument Λ-liquid, are defined by

x1
τ−→ y

fk(x1, x2)
τ−→ f`(x1, y)

(for all ` > k)

x2
τ−→ y

fk(x1, x2)
τ−→ fk(x1, y)

{x1
a`−→ y` | ` > k} ∪ {x2

ak−→ yk}
fk(x1, x2)

b−→ 0

7



ω1, ω2, ω3 are constants with ω2
ak−→ 0 and ω3

ak−→ 0 for
all k ≥ 1, ω1

τ−→ ω3 and ω2
τ−→ ω3. Clearly, ω1↔rd ω2.

The last rule is not delay resistant. With regard to Def. 12 it
violates the requirement that Hd needs to be chosen finite.

Prop. 2 is violated: although ω1
ε

=⇒ a`−→ for ` ≥ 1, there
is no sequence fk(ω1, ω1)

ε
=⇒ b−→ for any k ≥ 1. Since

fk(ω2, ω2)
b−→ 0 for all k ≥ 1, ↔rd is not a congruence.

5. Semi-syntactic criteria for delay resistance
Delay resistance of a TSS P means that each P -ruloid has to
satisfy a property, and a non-trivial TSS has infinitely many
ruloids. We now introduce requirements on the rules of P
that imply delay resistance. This yields semi-syntactic con-
gruence formats. They are not purely syntactic, as one of the
conditions requires the existence of linearly provable rules.

Definition 20 A rule H

t
α−→u

is negative-stable if for every
premise w 6α−→ in H, also w 6τ−→ is in H.

The difference with Def. 13 is that here the requirement also
applies to redundant premises w 6α−→.

Definition 21 An ntytt rule is manifestly delay resistant
w.r.t. a TSS P if it is negative-stable, as well as positive
delay resistant w.r.t. P where the rules rM from Def. 12 and
H1

t
τ−→v

from Def. 11 are, up to bijective renaming of variables,
rules of P, rather than just linearly provable from P.

Theorem 8 Let P be a standard TSS in decent ntyft format,
in which each rule is manifestly delay resistant w.r.t. P . Then
P is delay resistant.

6. Delay resistance w.r.t. Λ
The notion “delay resistant w.r.t. Λ” relaxes the notion of de-
lay resistance: the conditions of Defs. 11, 12 and 13 need to
be checked only for (sets of) premises that contain a variable
that occurs only Λ-frozen in the source. This relaxation is
possible if the following condition is added to our formats.
Definition 22 Given a standard ntytt rule r = H

t
α−→u

, we
define the following syntactic condition:

5. If x has exactly one occurrence in t, which is Λ-liquid,
and an ℵ-liquid occurrence in H , then these are the only
two occurrences of x in r.

Proposition 9 Let P be a standard TSS in ready simulation
format, in which each rule is rooted branching bisimulation
safe and satisfies condition 5 of Def. 22 w.r.t. ℵ and Λ. Then
any P -ruloid satisfies condition 5 of Def. 22 w.r.t. ℵ and Λ.

Theorem 9 Let P be a standard TSS in ready simulation
format, in which each transition rule is rooted branching
bisimulation safe and satisfies condition 5 of Def. 22 w.r.t. ℵ
and Λ. Let moreover P be ℵ∩Λ-patient and delay resistant
w.r.t. Λ. Then P is delay resistant.1

1 Using a notion of manifest delay resistance w.r.t. Λ and P , Thms. 8 and 9
can be combined in the obvious way.

Hence, by adding condition 5 of Def. 22, the delay and weak
bisimulation formats do not require delay resistance at all,
since with Λ universal there are no Λ-frozen occurrences.

7. Syntactic criteria for delay resistance
We show how delay resistance can be replaced by additional
syntactic requirements.

Definition 23 A standard TSS P = (Σ, R) is in syntactic
rooted delay bisimulation format if, for some ℵ and Λ and
predicates ∆α ⊆ ℵ∩Λ where α ranges over A ∪ {τ}:
1. P is in decent nxytt format and ℵ∩Λ-patient.
2. Each rule in R is rooted branching bisimulation safe and

negative-stable, satisfies condition 5 of Def. 22 w.r.t. ℵ
and Λ, and has finitely many positive premises.

3. If R contains H]{xi
β−→y}

f(x1,...,xar(f))
α−→u

where ¬Λ(f, i), then:

(a) β = α;

(b) R contains H′∪{xi
τ−→y}

f(x1,...,xar(f))
τ−→u

for some H ′ ⊆ H; and

(c) y has exactly one, ∆α-liquid occurrence in u.

4. R contains xi
α−→y

f(x1,...,xi,...,xar(f))
α−→f(x1,...,y,...,xar(f))

for all

∆α(f, i).

P is in syntactic rooted weak bisimulation format if its rules
moreover satisfy condition 1′ of Def. 22.

Theorem 10 If a standard TSS is in syntactic rooted delay
bisimulation format, then it is delay resistant.

Proof Consider a rule H]{xi
β−→y}

f(x1,...,xn)
α−→u

of P with ¬Λ(f, i).
By condition 3a of Def. 23, β = α. And by condition 3c
of Def. 23, y has exactly one, ∆α-liquid occurrence in u.
By the combination of Thms. 8 and 9, it suffices to show
that, for some term v and fresh variable z, there is a rule

H1

f(x1,...,xn)
τ−→v

in R with H1 ⊆ H ∪ {xi
τ−→ z} and a rule

H2

v
α−→u

linearly provable from P with H2 ⊆ H ∪ {z
β−→ y}.

Let v be obtained by substituting z for y in u. The first of
these rules exists by condition 3b of Def. 23, substituting z
for y. The second is the rule z

β−→y
v
α−→u

, which can be derived by
condition 4 of Def. 23. Here we use that β = α and y has
exactly one, ∆α-liquid occurrence in u.

The introduction of predicates ∆α ⊆ ℵ∩Λ is of practical
importance. If in Def. 23 one would replace the occurrences
of ∆α by ℵ∩Λ, then for instance the encapsulation operator
∂H , which blocks all actions in the set H , would violate
condition 4 of Def. 23. Namely, the argument of ∂H is ℵ∩Λ-
liquid, but there is no rule x

a−→y
∂H(x)

a−→∂H(y)
if a ∈ H . Actually,

in many applications ∆α can be empty, as a rule that tests an
ℵ-liquid, Λ-frozen argument of the source in practice tends
to have a single y as right-hand side of the conclusion, so
that condition 3c of Def. 23 is trivially satisfied; a notable
example is the rule x1

α−→y
x1+x2

α−→y
for alternative composition.
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Corollary 1 If a complete standard TSS P is in syntactic
rooted delay (resp. weak) bisimulation format, then ↔rd

(resp. ↔rw ) is a congruence for P .

8. Applications
We revisit some applications of our congruence formats that
were considered in [9]: the basic process algebra BPAεδτ ,
extended with binary Kleene star as an example where the
predicates ∆α from Def. 23 are non-empty, and initial pri-
ority which includes negative premises. We also consider a
deadlock test outside the syntactic rooted delay bisimulation
format. In all these cases our formats yield congruence re-
sults for ↔rd and ↔rw , while they are outside the con-
gruence formats for these semantics from [1, 14] (which are
within the positive GSOS format [3]). The TSSs in this sec-
tion are ℵ∩Λ-patient and in decent xynft format.

Basic process algebra BPAεδτ consists of: actions from an
alphabet Act ∪{τ}; empty process ε; deadlock δ; alternative
composition t1 + t2; sequential composition t1 · t2. Let `
range over Act ∪ {τ} and α over Act ∪ {τ,

√
}. Rules are:

`
`−→ ε ε

√
−→ δ

x1
α−→ y

x1 + x2
α−→ y

x2
α−→ y

x1 + x2
α−→ y

x1
`−→ y

x1 · x2
`−→ y · x2

x1
√
−→ y1 x2

α−→ y2

x1 · x2
α−→ y2

To show that ↔rd and ↔rw are congruences, we argue
that this TSS satisfies the conditions of Def. 23. In [9] it
was shown that it is in rooted η-bisimulation format, with ℵ
and Λ defined as follows. Since the arguments of alternative
and sequential composition can all execute immediately, ℵ
holds for all these arguments. Since only the first argument
of sequential composition can contain running processes,
it is the only argument for which Λ holds. With regard to
condition 2 of Def. 23, we need to check that the rules satisfy
condition 5 of Def. 22: only the two rules for sequential
composition contain a Λ-liquid occurrence of a variable, x1,
in their source; and in both cases x1 has only one other
occurrence in the rule, in the left-hand side of a premise.
Condition 3 of Def. 23 needs to be verified with regard to
the two rules for alternative composition and the second rule
for sequential composition, since in these rules a Λ-frozen
argument of the source is tested in a premise. Condition 3
is satisfied for these rules, where we can take ∆γ = ∅ for
all γ. Hence condition 4 is trivially satisfied. Concluding, by
Cor. 1 ↔rd and ↔rw are congruences for BPAεδτ .

Binary Kleene star t1
∗t2 repeatedly executes t1 until it

executes t2. This operational behaviour is captured by the
following rules, which are added to the rules for BPAεδτ .

x1
`−→ y

x1∗x2
`−→ y·(x1∗x2)

x2
α−→ y

x1∗x2
α−→ y

Again, to show that ↔rd and ↔rw are congruences, we ar-
gue that the resulting TSS satisfies the conditions of Def. 23.

In [9] it was shown that it is in rooted η-bisimulation for-
mat, if we take the arguments of binary Kleene star to be
Λ-frozen and ℵ-liquid. Since these arguments are Λ-frozen,
condition condition 5 of Def. 22 is trivially satisfied. Con-
ditions 3(a,b) of Def. 23 are satisfied by both rules, and the
second rule for binary Kleene star trivially satisfies condi-
tion 3(c). In view of this condition with regard to the first
rule for binary Kleene star, we mark the first argument of se-
quential composition by ∆` for all ` ∈ Act ∪ {τ}. No other
arguments are marked by the ∆γ . Condition 4 of Def. 23 is
satisfied with respect to the ∆γ . (For this last condition it is
essential that the first argument of sequential composition is
not marked by ∆√.) Concluding, by Cor. 1 ↔rd and ↔rw

are congruences for BPAεδτ with binary Kleene star.

Initial priority Assume an ordering on actions. θ(t) ex-
ecutes the transitions of t, except that an initial transition
t

`−→ t1 only gives rise to an initial transition θ(t) `−→ t1 if

there does not exist an initial transition t `′−→ t2 with ` < `′.

x
`−→ y x 6`

′
−→ for all `′ > `

θ(x)
`−→ y

x
√
−→ y

θ(x)
√
−→ y

The argument of initial priority is Λ-frozen and ℵ-liquid. In
[9] it was observed that this TSS is in rooted η-bisimulation
format, irrespective of the ordering on actions. If τ is greater
than all actions in Act , then both rules are negative-stable,
because instances of the first rule with a premise x 6a−→ for
some a ∈ Act are guaranteed to also contain x 6τ−→. In fact
it is sufficient to require ∀` : (∃`′ : `′ > `)⇒ τ > `.

To show that ↔rd and ↔rw are congruences, we argue
that the TSS satisfies the conditions of Def. 23. Condition
5 of Def. 22 is trivially satisfied by the rules for initial
priority, because its argument is Λ-frozen. Condition 3 of
Def. 23 is satisfied by both rules for initial priority, where
we can take ∆γ = ∅ for all γ. In particular, condition 3(b)
is satisfied by the first rule for initial priority, because this
rule with ` = τ contains no negative premises. Since the
∆γ are empty, condition 4 of Def. 23 is trivially satisfied.
Concluding, if τ is greater than all actions in Act , ↔rd and
↔rw are congruences for BPAεδτ with initial priority.

If τ is smaller than some a in Act , then ↔rd and ↔rw

are not congruences for BPAεδτ with initial priority. For
example, τ ·a↔rd (τ ·a)+a. However, θ(τ ·a)

τ−→ a cannot
be mimicked by θ((τ · a) + a), as the latter term can only
perform an a-transition to ε. So θ(τ · a) 6↔rw θ((τ · a) + a).

Deadlock testing Finally we give an example outside the
format from Def. 23, but within the more general format of
Thm. 5. The operator f tests if its argument is a deadlock.

x
α−→ y

f(x)
no−→ δ

x 6α−→ y for all α

f(x)
yes−→ δ

The argument of f is Λ-frozen and ℵ-liquid. Clearly the first
rule violates condition 3 of Def. 23.
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The TSS is in rooted η-bisimulation format. For both
rules, we can take Hd := ∅, while r∅ is the rule itself. Fur-
thermore, for the first rule, r{x α−→y} is x

τ−→y
f(x)

no−→δ
. By Thm. 8

this suffices to conclude that the TSS is delay resistant.
Hence, by Thms. 5 and 7 ↔rd and ↔rw are congruences
for BPAεδτ extended with f .

9. Conclusions
In [14, 9] a method was presented to generalise any congru-
ence format within ntyft format into a two-tiered variant. The
two-tiered versions of the congruence formats we presented
generalise the formats in [1, 14]. Ulidowski [22, 23, 24] pro-
posed congruence formats for weak semantics with a differ-
ent treatment of divergence; these formats cover the (non-
initial) priority operator, for which ↔rw is not a congru-
ence. The TSSs of BPAεδτ , binary Kleene star and deadlock
testing in Sect. 8 are however outside those formats.

This research shows that it is worthwhile to study the in-
terplay of structural operational semantics and modal logic.
The modal characterisation of a process semantics turns
out to be fundamental for its congruence properties. Admit-
tedly, the whole story is quite technical and intricate. Partly
this is because we build on a rich body of earlier work in
the realm of structural operational semantics: the notions
of well-supported proofs and complete TSSs from [13] (or
actually [11] in logic programming); the ntyft format from
[15, 4]; the transformation to ruloids, which for the main
part goes back to [6]; and the work on modal decomposi-
tion and congruence formats from [2] and [9]. Moreover, the
proofs underlying the technical developments, which have
been omitted from this extended abstract, are quite intricate.
They are included in the full version of this paper [7].

However, the bulk of this work can be reused in the con-
text of other weak process semantics. This is witnessed by
the fact that the congruence results for rooted delay and weak
bisimilarity are obtained in an almost identical fashion, and
build upon the congruence proof for rooted branching bisim-
ilarity in [9]. The door is now open to derive congruence
formats for a wide range of weak semantics. Further work is
needed to cover the entire spectrum in [12]. Specifically, it
would be interesting to extend the framework to divergence-
sensitive semantics. For future research, it would also be in-
teresting to see whether the bridge between modal logic and
congruence formats could be employed in the realm of log-
ics and semantics for e.g. probabilities and security. As a first
step in this direction, in [10] the decomposition method for
Hennessy-Milner logic was lifted to probabilistic systems.
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