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Earlier we presented a method to decompose modal formulas for processes with the internal action
τ , and congruence formats for branching and η-bisimilarity were derived on the basis of this decom-
position method. The idea is that a congruence format for a semantics must ensure that the formulas
in the modal characterisation of this semantics are always decomposed into formulas that are again
in this modal characterisation. In this follow-up paper the decomposition method is enhanced to deal
with modal characterisations that contain a modality 〈ε〉〈a〉ϕ , to derive congruence formats for delay
and weak bisimilarity.

1 Introduction

In [2] a method was developed to generate congruence formats for (concrete) process semantics from
their modal characterisation. It crosses the borders between process algebra, structural operational se-
mantics, process semantics, and modal logic. Cornerstone is the work in [23] to decompose formulas
from Hennessy-Milner logic [21] with respect to a structural operational semantics in the De Simone
format [27]. It was extended to the ntyft format [19] without lookahead in [2], and to the tyft format [20]
in [11].

An equivalence is a congruence for a given process algebra or programming language if the equiv-
alence class of a term f (p1, . . . , pn) is determined by the function f and the equivalence classes of its
arguments p1, . . . , pn. Being a congruence is an important property, for instance to fit a process semantics
into an axiomatic framework. A wide range of syntactic formats for structural operational semantics have
been developed for several process semantics, to ensure that such a semantics is a congruence; notably
for unrooted and rooted weak bisimilarity in [1] and for unrooted and rooted delay bisimilarity in [17].
These formats are contained in the positive GSOS format [3]. They include so-called patience rules for
arguments i of function symbols f , which imply that any term f (p1, . . . , pn) inherits the τ-transitions of
its argument pi.

Key idea in [2] is that a congruence format for a process semantics must ensure that the formulas
in a modal characterisation of this semantics are always decomposed into formulas that are again in this
modal characterisation. This yielded congruence formats for all known concrete (i.e., τ-free) process
semantics in a convenient way. Moreover, the resulting congruence formats are more elegant and ex-
pressive than existing congruence formats for individual process semantics. In [12] this method was
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extended to weak process semantics, which take into account the internal action τ . As a result, congru-
ence formats for rooted branching and η-bisimilarity were derived. These formats use two predicates ℵ

and Λ on arguments of function symbols: ℵ marks processes that can execute immediately, and Λ marks
processes that have started executing (but may currently be unable to execute). Formats for unrooted
branching and η-bisimilarity were obtained by imposing one extra restriction on top of the format for
the corresponding rooted semantics: Λ holds universally.

The framework from [12] covers only a small part of the spectrum of weak semantics from [15].
In particular, it does not readily extend to delay and weak bisimilarity [24, 25]. The reason is that in
the definition of these semantics, in contrast to branching and η-bisimilarity, a process q that mimics
an a-transition from a process p, does not need to be related to p at the moment that q performs the a-
transition. This implies that in the modal characterisation of delay and weak bisimilarity, a modality 〈a〉ϕ
stating that an a-transition to a process where ϕ holds, is always preceded by a modality 〈ε〉 allowing any
number of τ-transitions. As a consequence, devising congruence formats for delay and weak bisimilarity
has been notoriously difficult, see e.g. [1, 17]. Here we show how this technical obstacle can be overcome
by means of the semantic notion of delay resistance, which generalises earlier notions from [1, 17].
This notion ensures that modalities 〈ε〉〈a〉ϕ are decomposed into formulas that again have this form.
Thus congruence formats can be derived for semantics with a modal characterisation containing such
modalities. We derive congruence formats for rooted delay and weak bisimilarity. The congruence
formats for the unrooted counterparts of these semantics are again obtained by the extra requirement that
Λ must be universal. We moreover provide syntactic restrictions which imply delay resistance, leading
to the first entirely syntactic congruence formats for rooted delay and weak bisimilarity.

In [17] a general method is presented to generalise any congruence format F , contained in the GSOS
format, into a two-tiered version of F . Two-tiered formats distinguish so-called “principal” function
symbols and “abbreviations”. The latter can be regarded as syntactic sugar, adding nothing that could
not be expressed with principal function symbols. The original format F is essentially the restriction
of its two-tiered version that allows principal function symbols only. As shown in [17], the general
formats of [1, 17] can be obtained as the two-tiered versions of the simplified formats from [1, 17].
In [12] this two-tiered approach was generalised from GSOS to decent ntyft format. Consequently,
the two-tiered versions of the congruence formats presented in the current paper are again congruence
formats for rooted/unrooted delay/weak bisimilarity. These two-tiered versions of our formats (or more
precisely, of the intersection of our formats with the decent ntyft format) generalise the full formats
of [1, 17]. Ulidowski [28, 29, 30] proposed congruence formats for weak semantics with a different
treatment of divergence, which interestingly allow the inclusion of the priority operator; (divergence-
insensitive) rooted weak bisimilarity is not a congruence for this operator. The TSSs of BPAεδτ , binary
Kleene star and deadlock testing in Sect. 6 are however outside those formats.

This research line shows that it is worthwhile to study the interplay of structural operational semantics
and modal logic. The modal characterisation of a process semantics turns out to be fundamental for its
congruence properties. Although some rather heavy technical machinery is needed to set the scene,
especially the derivation of so-called ruloids and the decomposition method for modal formulas, the bulk
of this work can be reused for the development of congruence formats for other weak process semantics.
This is witnessed by the fact that the congruence results for rooted delay and weak bisimilarity are
obtained in an almost identical fashion, and build upon the congruence proofs for rooted branching
bisimilarity in [12]. Furthermore, the congruence formats that we obtain here are more liberal and more
elegant than existing congruence formats for these semantics. In particular, in [1] it is stated that the RWB
format put forward in that paper has a “horrible definition”. In [1] it is moreover stated that “negative
rules seem incompatible with weak process equivalences.” Here we show how negative premises can be
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included in congruence formats for rooted delay and weak bisimilarity.
The paper is structured as follows. Sect. 2 contains technical preliminaries. Sect. 3 introduces the

notion of delay resistance and explains how the decomposition method of modal formulas from [12]
needs to be adapted. Sect. 4 presents the congruence formats for rooted delay and weak bisimilarity and
the proofs of these congruence results. Sect. 5 shows that it is sufficient to check delay resistance for a
limited set of variables (to be precise, the Λ-frozen arguments of a source), and how the semantic notion
of delay resistance can be captured by means of syntactic criteria. Sect. 6 provides applications of our
congruence formats. Sect. 7 concludes the paper.

2 Preliminaries

This section recalls the basic notions of labelled transition systems and weak semantics (Sect. 2.1), and
presents modal characterisations of the semantic equivalences that are studied in this paper (Sect. 2.2).
Then follows a brief introduction to structural operational semantics and the notion of a well-supported
proof (Sect. 2.3). Next we recall some syntactic restrictions on transition rules (Sect. 2.4). Then we
present the notion of patience rules (Sect. 2.5), and a basic result from [2], Prop. 1, regarding ruloids
(Sect. 2.6). Sect. 2.7 shows that in Prop. 1 we may restrict attention to ruloids with so-called linear
proofs. Finally, we recall from [12] a method for decomposition of modal formulas (Sect. 2.8).

2.1 Equivalences on labelled transition systems

A labelled transition system (LTS) is a pair (P,→), with P a set of processes and→⊆ P×(A∪{τ})×P,
where τ is an internal action and A a set of concrete actions not containing τ . We use p,q to denote
processes, α,β ,γ for elements of A∪{τ}, and a,b for elements of A. We write p α−→ q for (p,α,q)∈→
and p 6α−→ for ¬(∃q ∈ P : p α−→ q). Furthermore, ε

=⇒ denotes the transitive-reflexive closure of τ−→.
Processes can be distinguished from each other by a wide range of semantics, based on e.g. branching

structure or decorated versions of execution sequences. Van Glabbeek [15] classified so-called weak
semantics, which take into account the internal action τ . Here we focus on two such equivalences which,
to different degrees, abstract away from internal actions: delay bisimilarity [24] and weak bisimilarity
[25]. They are the two weak semantics that are employed most widely in the literature.

Definition 1 Let B⊆ P×P be a symmetric relation.

• B is a delay bisimulation if pBq and p α−→ p′ implies that either α = τ and p′Bq, or q ε
=⇒ α−→ q′′

for some q′′ with p′Bq′′.
Processes p,q are delay bisimilar, denoted p↔d q, if there exists a delay bisimulation B with pBq.

• B is a weak bisimulation if pBq and p α−→ p′ implies that either α=τ and p′Bq, or q ε
=⇒ α−→ ε

=⇒q′′

for some q′′ with p′Bq′′.
Processes p,q are weakly bisimilar, denoted p↔w q, if there exists a weak bisimulation B with
pBq.

The notions of delay and weak bisimilarity were originally both introduced by Milner under the name
“observation equivalence”. Clearly, delay bisimilarity is included in weak bisimilarity.

It is well-known that delay and weak bisimilarity constitute equivalence relations [24, 25]. However,
these two semantics are not congruences for most process algebras from the literature, meaning that the
equivalence class of a process f (p1, . . . , pn), with f an n-ary function symbol, is not always determined
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by the equivalence classes of its arguments, i.e. the processes p1, . . . , pn. Rooted counterparts of these
equivalences were introduced, which require for the pair of initial states that a τ-transition needs to be
matched by at least one τ-transition. Unlike the unrooted versions they are congruences for basic process
algebras, notably for the alternative composition operator.

Definition 2 Let R⊆ P×P be a symmetric relation.

• R is a rooted delay bisimulation if pRq and p α−→ p′ implies that q ε
=⇒ α−→ q′ for some q′ with

p′↔d q′.

Processes p,q are rooted delay bisimilar, denoted p↔rd q, if there exists a rooted delay bisimula-
tion R with pRq.

• R is a rooted weak bisimulation if pRq and p α−→ p′ implies that q ε
=⇒ α−→ ε

=⇒q′ for some q′ with
p′↔w q′.

Processes p,q are rooted weakly bisimilar, denoted p↔rw q, if there exists a rooted weak bisimu-
lation R with pRq.

Example 1 The processes p0 and p1 in the following LTS are rooted delay bisimilar but not η-bisimilar.
The idea is that in an η-bisimulation the transition p0

b−→ 0 cannot be mimicked by p1; the only candidate
p1

τ−→ q b−→ 0 fails because q cannot be related to p0, while this would be required for an η-bisimulation.

b
a

a
b

qτp0 p1

0

τ

The processes p0 and p1 in the following LTS are rooted weakly bisimilar but not delay bisimilar. The
idea is that in a delay bisimulation the transition p0

a−→ 0 cannot be mimicked by p1; the only can-
didate p1

a−→ q τ−→ 0 fails because q cannot be related to 0, while this would be required for a delay
bisimulation.

p0

q

a

0

p1
a

bτ

a

Our main aim is to develop congruence formats for both the rooted and the unrooted versions of the
two weak semantics defined in this section. These congruence formats will impose syntactic restrictions
on the transition rules (see Sect. 2.3) that are used to generate the underlying LTS. The congruence
formats will be determined using the characterising modal logics for these two weak semantics, which
are presented in the next section.
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2.2 Modal logic

Behavioural equivalences can be characterised in terms of the observations that an experimenter could
make during a session with a process. Modal logic captures such observations, with the aim to formulate
properties of processes in an LTS. Following [15], we extend Hennessy-Milner logic [21] with the modal
connective 〈ε〉ϕ , expressing that a process can perform zero or more τ-transitions to a process where ϕ

holds.

Definition 3 The class O of modal formulas is defined as follows, where I ranges over all index sets:

O ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈α〉ϕ | 〈ε〉ϕ .

p |= ϕ denotes that p satisfies ϕ . By definition, p |= 〈α〉ϕ if p α−→ p′ for some p′ with p′ |= ϕ , and
p |= 〈ε〉ϕ if p ε

=⇒ p′ for some p′ with p′ |= ϕ . We use abbreviations > for the empty conjunction and
ϕ1∧ϕ2 for

∧
i∈{1,2}ϕi. We write ϕ ≡ ϕ ′ if p |= ϕ ⇔ p |= ϕ ′ for any process p in any LTS.

A modal characterisation of an equivalence on processes consists of a class C of modal formulas such
that two processes are equivalent if and only if they satisfy the same formulas in C. Hennessy-Milner
logic is a modal characterisation of bisimilarity. We now introduce modal characterisations for (unrooted
and rooted) delay and weak bisimilarity.

Definition 4 The subclasses Oe and Ore of O, for e ∈ {d,w}, are defined as follows:

Od ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈ε〉ϕ | 〈ε〉〈a〉ϕ
Ord ϕ ::=

∧
i∈Iϕi | ¬ϕ | 〈ε〉〈α〉ϕ̂ | ϕ̂ (ϕ̂ ∈Od)

Ow ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈ε〉ϕ | 〈ε〉〈a〉〈ε〉ϕ
Orw ϕ ::=

∧
i∈Iϕi | ¬ϕ | 〈ε〉〈α〉〈ε〉ϕ̂ | ϕ̂ (ϕ̂ ∈Ow).

In these definitions, a ranges over A and α over A∪{τ}. The classes O≡e and O≡re denote the closures of
Oe, respectively Ore, under ≡.

The last clause in the definition of Ore guarantees that Oe ⊂ Ore, which will be needed in the proof
of Prop. 5. If this clause were omitted, it would still follow that O≡e ⊂ O≡re, using structural induction
together with 〈ε〉ϕ ≡ ϕ ∨〈ε〉〈τ〉ϕ (for e = d) or 〈ε〉ϕ ≡ ϕ ∨〈ε〉〈τ〉〈ε〉ϕ (for e = w).

For L⊆O, we write p∼L q if p and q satisfy the same formulas in L. Note that, trivially, p∼Oe q⇔
p∼O≡e q and p∼Ore q⇔ p∼O≡re

q.

Theorem 1 p↔e q⇔ p∼Oe q and p↔re q⇔ p∼Ore q, for all p,q ∈ P, where e ∈ {d,w}.

The first statement is a restatement of standard results from [21, 24, 25, 15]; the second statement is
an easy corollary, obtained in the same vein. Moreover, a proof for the case e = w is presented in
Appendix A. The proof for the case e = d is similar.

2.3 Structural operational semantics

A signature is a set Σ of function symbols f with arity ar( f ). Let V be an infinite set of variables, with
typical elements x,y,z; we always take |Σ|, |A| ≤ |V |. A syntactic object is closed if it does not contain
any variables. The set T(Σ) of terms over Σ and V is defined as usual; t,u,v,w denote terms and var(t)
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is the set of variables that occur in term t. A term is univariate if it is without multiple occurrences of
the same variable. A substitution σ is a partial function from V to T(Σ). A closed substitution is a total
function from V to closed terms. The domain of substitutions is extended to T(Σ) as usual.

Structural operational semantics [26] provides process algebras and specification languages with an
interpretation. It generates an LTS, in which processes are the closed terms over a (single-sorted, first-
order) signature, and transitions between processes may be supplied with labels. The transitions between
processes are obtained from a transition system specification, which consists of a set of proof rules called
transition rules.

Definition 5 A (positive or negative) literal is an expression t α−→ u or t 6α−→. A (transition) rule is of
the form H

λ
with H a set of literals called the premises, and λ a literal called the conclusion; the term at

the left-hand side of λ is called the source of the rule. Given a transition rule H
λ

, write H+ for the set of
positive premises in H, and Hs− for the set of stable negative premises in H: those premises t 6α−→ for
which also the premise t 6 τ−→ is in H. With rhs(H) we denote the set of right-hand sides of the premises
in H+. A rule /0

λ
is also written λ . A rule is standard if it has a positive conclusion, and positive if

moreover it has only positive premises. A transition system specification (TSS), written (Σ,R), consists
of a signature Σ and a collection R of transition rules over Σ. A TSS is standard or positive if all its rules
are.

The following definition tells when a literal is provable from a TSS. It generalises the standard definition
(see e.g. [20]) by allowing the derivation of transition rules. The derivation of a literal λ corresponds to
the derivation of the transition rule H

λ
with H = /0. The case H 6= /0 corresponds to the derivation of λ

under the assumptions H.

Definition 6 Let P = (Σ,R) be a TSS. An irredundant proof from P of a transition rule H
λ

is a well-
founded tree with the nodes labelled by literals and some of the leaves marked “hypothesis”, such that
the root has label λ , H is the set of labels of the hypotheses, and if µ is the label of a node that is not
a hypothesis and K is the set of labels of the children of this node then K

µ
is a substitution instance of a

transition rule in R.

The proof of H
λ

is called irredundant [2] because H must equal (instead of include) the set of labels of
the hypotheses. Irredundancy will be crucial for the preservation under provability of our congruence
formats; see Sect. 4.2. Namely, in a ‘redundant’ proof one can freely add premises to the derived rule, so
also a premise that violates a syntactic restriction of the congruence format under consideration.

A TSS is meant to specify an LTS in which the transitions are closed positive literals. A standard TSS
with only positive premises specifies an LTS in a straightforward way, but it is not so easy to associate
an LTS to a TSS with negative premises. From [16] we adopt the notion of a well-supported proof of a
closed literal. Literals t α−→ u and t 6α−→ are said to deny each other.

Definition 7 Let P = (Σ,R) be standard TSS. A well-supported proof from P of a closed literal λ is a
well-founded tree with the nodes labelled by closed literals, such that the root is labelled by λ , and if µ

is the label of a node and K is the set of labels of the children of this node, then:

1. either µ is positive and K
µ

is a closed substitution instance of a transition rule in R;

2. or µ is negative and for each set N of closed negative literals with N
ν

irredundantly provable from
P and ν a closed positive literal that denies µ , a literal in K denies one in N.
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P `ws λ denotes that a well-supported proof from P of λ exists. A standard TSS P is complete if for each
p and α , either P `ws p 6α−→ or P `ws p α−→ p′ for some p′.

In [16] it was shown that `ws is consistent, in the sense that no standard TSS admits well-supported
proofs of two literals that deny each other. A complete TSS specifies an LTS, consisting of the ws-
provable closed positive literals.

2.4 Syntactic restrictions on transition rules

In this section we present terminology for syntactic restrictions on rules, originating from [2, 19, 20],
where congruence formats are presented for a range of concrete semantics (which do not take into account
the internal action τ).

Definition 8 An ntytt rule is a transition rule in which the right-hand sides of positive premises are
variables that are all distinct, and that do not occur in the source. An ntytt rule is an ntyxt rule if its
source is a variable, an ntyft rule if its source contains exactly one function symbol and no multiple
occurrences of variables, an nxytt rule if the left-hand sides of its premises are variables, and an xyntt
rule if the left-hand sides of its positive premises are variables. An xynft rule is both ntyft and xyntt.

Definition 9 A variable in a transition rule is free if it occurs neither in the source nor in right-hand sides
of premises. A transition rule has lookahead if some variable occurs in the right-hand side of a premise
and in the left-hand side of a premise. A transition rule is decent if it has no lookahead and does not
contain free variables.

Each combination of syntactic restrictions on transition rules induces a corresponding syntactic format
for TSSs of the same name. For instance, a TSS is in decent ntyft format if it contains decent ntyft rules
only.

The following lemma, on the preservation of decency under irredundant provability, was proved in
[2].

Lemma 1 Let P be a TSS in decent ntytt format. Then any ntytt rule irredundantly provable from P is
decent.

We define two more syntactic formats for TSSs. The ntyft/ntyxt and ready simulation formats [19, 2]
were originally introduced to guarantee congruence for bisimilarity and ready simulation.

Definition 10 A TSS is in ntyft/ntyxt format if it consists of ntyft and ntyxt rules, and in ready simulation
format if moreover its transition rules have no lookahead.

2.5 Patience rules

We introduce some terminology for predicates on arguments of function symbols from [1, 2].

Definition 11 Let Γ be a unary predicate on {( f , i) | 1 ≤ i ≤ ar( f ), f ∈ Σ}. If Γ( f , i), then argument
i of f is Γ-liquid; otherwise it is Γ-frozen. An occurrence of x in t is Γ-liquid if either t = x, or t =
f (t1, . . . , tar( f )) and the occurrence is Γ-liquid in ti for a liquid argument i of f ; otherwise the occurrence
is Γ-frozen.
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Note that an occurrence of a variable x in a term t ∈ T(Σ) is Γ-frozen if and only if t contains a subterm
f (t1, . . . , tar( f )) such that the occurrence of x is in ti for a Γ-frozen argument i of f .

In Sect. 2.8 we will present a method for decomposing modal formulas that gives a special treat-
ment to arguments of function symbols that are deemed patient; we will use a predicate Γ to mark the
arguments that get this special treatment.

Definition 12 [1, 6] A standard ntyft rule is a patience rule for argument i of f if it is of the form

xi
τ−→ y

f (x1, . . . ,xar( f ))
τ−→ f (x1, . . . ,xi−1,y,xi+1, . . . ,xar( f ))

Given a predicate Γ, the rule above is called a Γ-patience rule, if Γ( f , i). A TSS is Γ-patient if it contains
all Γ-patience rules. A standard ntytt rule is Γ-patient if it is irredundantly provable from the Γ-patience
rules; else it is called Γ-impatient.

A patience rule for an argument i of a function symbol f expresses that terms f (p1, . . . , pn) can mimic the
τ-transitions of argument pi. Typically, in process algebra, there are patience rules for both arguments
of the merge operator and for the first argument of sequential composition, as they can contain running
processes, but not for the arguments of alternative composition or for the second argument of sequential
composition.

2.6 Ruloids

To decompose modal formulas, we use a result from [2], where for any standard TSS P in ready simula-
tion format a collection of decent nxytt rules, called P-ruloids, is constructed. We explain this construc-
tion at a rather superficial level; the precise transformation can be found in [2].

First P is converted to a standard TSS P† in decent ntyft format. In this conversion from [20], free
variables in a rule are replaced by all closed terms (generating a different rule for each substitution), and
if the source is of the form x, then this variable is replaced by a term f (x1, . . . ,xar( f )) for each function
symbol f in the signature of P, where the variables x1, . . . ,xar( f ) are fresh.

Next, using a construction from [7], left-hand sides of positive premises are reduced to variables.
Roughly the idea is, given a premise f (t1, . . . , tn)

α−→ y in a rule r, and another rule H
f (x1,...,xn)

α−→t
, to

transform r by replacing the aforementioned premise by H, y by t, and the xi by the ti; this is repeated
(transfinitely) until all positive premises with a non-variable term as left-hand side have disappeared.
This yields an intermediate standard TSS P‡ in xynft format, of which all the rules are irredundantly
provable from P. In fact, the rules of P‡ are exactly the xynft rules irredundantly provable from P†. The
motivation for this transformation step is that for TSSs in xynft format the semantic phrase “for each set
N of closed negative literals with N

ν
irredundantly provable from P” in the second clause of Def. 7 of a

well-supported proof can be replaced by a syntactic phrase: “for each closed substitution instance N
ν

of a
rule in R”.

In the final transformation step, non-standard rules with a negative conclusion t 6α−→ are introduced.
The motivation is that instead of the notion of well-founded provability of Def. 7, we want a more
constructive notion like Def. 6, by making it possible that a negative premise is matched with a negative
conclusion. A non-standard rule H

f (x1,...,xn) 6
α−→

is obtained by picking one premise from each xynft rule

in P‡ with a conclusion of the form f (x1, . . . ,xn)
α−→ t, and including the denial of each of the selected

premises as a premise in H.
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The resulting TSS, which is in decent ntyft format, is denoted by P+. The above construction implies
that if P is Γ-patient, then so is P+. In [2] it was established, for all closed literals µ , that P `ws µ if
and only if µ is irredundantly provable from P+. By definition, the P-ruloids are the (decent) nxytt rules
irredundantly provable from P+.

The following correspondence result from [2] between a TSS and its ruloids is crucial for the sound-
ness of the decomposition method presented in Sect. 2.8. It says that there is a well-supported proof
from P of a transition ρ(t) a−→ q, with ρ a closed substitution, if and only if there is a derivation of this
transition that uses at the root a P-ruloid with source t.

Proposition 1 Let P = (Σ,R) be a standard TSS in ready simulation format, t ∈ T(Σ) and ρ : V → T(Σ)
a closed substitution. Then P `ws ρ(t) α−→ q if and only if there are a P-ruloid H

t α−→u
and a closed

substitution ρ ′ such that P `ws ρ ′(µ) for all µ ∈ H, ρ ′(t) = ρ(t) and ρ ′(u) = q.

2.7 Linear proofs

Definition 13 An irredundant proof of a transition rule H
λ

is called linear if no two hypotheses in the
proof tree of Def 6 are labelled with the same positive premise.

Example 2 From the TSS with rules

x a−→ y

f (x) b−→ x

x a−→ y

f (x) c−→ x

x b−→ y x c−→ z

g(x) d−→ x

the ntytt rule x a−→y

g( f (x)) d−→x
is irredundantly provable, but not with a linear proof. However, the ntytt rule

x a−→y x a−→z

g( f (x)) d−→x
has a linear proof.

Clearly, each ntytt rule provable from a TSS is a substitution instance of an ntytt rule that has a linear
proof. In Def. 7 it does not make any difference whether in clause 2 we quantify over rules N

ν
that are

provable (as in [16, 2, 11]), irredundantly provable (as in [12]), or linearly provable.

Lemma 2 If a rule H
λ

is linearly provable from a TSS P, then so is σ(H)
σ(λ ) for any substitution σ .

If a rule H
λ

as well as rules Hµ

µ
for each literal µ ∈H are linearly provable, with the Hµ pairwise

disjoint, then so is the rule
⋃

µ∈H Hµ

λ
.

Proof: Directly from the definition, and by composition of linear proofs. 2

In Sect. 2.6 a non-standard TSS P+ is constructed out of a given TSS P in ready simulation format,
via the intermediate stages P† and P‡. Here P‡ consists of all xynft rules irredundantly provable from
P†. With P̂‡ we denote the TSS consisting of all xynft rules linearly provable from P†. The TSS P+ is
obtained by augmenting P‡ with non-standard rules; with P̂+ we denote the corresponding augmentation
of P̂‡. For the construction of the non-standard rules in the augmentation, it makes no difference whether
we start from P‡ or P̂‡, since the difference disappears when abstracting from the right-hand sides of
positive literals. Thus, P̂+ ⊆ P+ and each rule in P+ is a substitution instance of a rule in P̂+. Hence, an
ntytt rule is irredundantly provably from P̂+ iff it is irredundantly provable from P+.

Definition 14 A P-ruloid is called linear if it has a linear proof from P̂+.
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Clearly, each P-ruloid is a substitution instance of a linear P-ruloid. Consequently, Prop. 1 still holds if
we only consider linear ruloids.

An essential part of our forthcoming congruence formats (cf. Def. 22) is a semantic requirement—
“delay resistance”, Def. 19—on linear P-ruloids. To make the formats more easily applicable, we will
show (in Thm. 8) that delay resistance is implied by a requirement on the rules of P. That result would
fail if delay resistance were required for all P-ruloids. In the appendix it is indicated where linearity is
used; see the remark after the proof of Lem. 12 as well as Ex. 9.

2.8 Decomposition of modal formulas

In [12] it was shown how one can decompose formulas from O. To each term t and formula ϕ ∈ O
a set t−1(ϕ) of decomposition mappings ψ : V → O is assigned. Each of these mappings ψ ∈ t−1(ϕ)
guarantees that for any closed substitution ρ , ρ(t) |= ϕ if ρ(x) |= ψ(x) for all x ∈ var(t). Vice versa,
whenever ρ(t) |= ϕ , there is a decomposition mapping ψ ∈ t−1(ϕ) with ρ(x) |= ψ(x) for all x ∈ var(t).
This is formalised in Thm. 2.

Definition 15 [12] Let P=(Σ,R) be a Γ-patient standard TSS in ready simulation format. We define ·−1 :
T(Σ)×O→ P(V →O) as the function that for each t ∈ T(Σ) and ϕ ∈O returns the set t−1(ϕ) ∈ P(V→
O) of decomposition mappings ψ : V→O generated by following five conditions. In the remainder of
this definition, t denotes a univariate term, i.e. without multiple occurrences of the same variable.

1. ψ ∈ t−1(
∧

i∈I ϕi) iff there are ψi ∈ t−1(ϕi) for each i ∈ I such that

ψ(x) =
∧
i∈I

ψi(x) for all x ∈V

2. ψ ∈ t−1(¬ϕ) iff there is a function h : t−1(ϕ)→ var(t) such that

ψ(x) =


∧

χ∈h−1(x)

¬χ(x) if x ∈ var(t)

> if x /∈ var(t)

3. ψ ∈ t−1(〈α〉ϕ) iff there is a P-ruloid H
t α−→u

and a χ ∈ u−1(ϕ) such that

ψ(x) =


χ(x) ∧

∧
x

β−→y∈H

〈β 〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉> if x ∈ var(t)

> if x /∈ var(t)

4. ψ ∈ t−1(〈ε〉ϕ) iff one of the following holds:

(a) either there is a χ ∈ t−1(ϕ) such that

ψ(x) =
{
〈ε〉χ(x) if x occurs Γ-liquid in t
χ(x) otherwise
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(b) or there is a Γ-impatient P-ruloid H
t τ−→u

and a χ ∈ u−1(〈ε〉ϕ) such that

ψ(x) =



〈ε〉

χ(x) ∧
∧

x
β−→y∈H

〈β 〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉>

 if x occurs
Γ-liquid in t

χ(x)∧
∧

x
β−→y∈H

〈β 〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉> if x occurs
Γ-frozen in t

> if x /∈ var(t)

5. ψ ∈ σ(t)−1(ϕ) for a non-injective substitution σ : var(t)→V iff there is a χ ∈ t−1(ϕ) such that

ψ(x) =
∧

z∈σ−1(x)

χ(z) for all x ∈V.

Theorem 2 [12] Let P = (Σ,R) be a Γ-patient complete standard TSS in ready simulation format. For
any term t ∈ T(Σ), closed substitution ρ , and ϕ ∈O:

ρ(t) |= ϕ ⇔ ∃ψ ∈ t−1(ϕ) ∀x ∈ var(t) : ρ(x) |= ψ(x) .

3 Delay resistant TSSs

In the next section we will apply the decomposition method from Def. 15 and Thm. 2 to obtain con-
gruence formats for (rooted) delay and weak bisimilarity. However, compared to branching and η-
bisimilarity, which was the focus of [12], Def. 15 needs to be refined in the case t−1(〈ε〉ϕ). This is
because in the modal logics for delay and weak bisimilarity, occurrences of subformulas 〈β 〉ϕ ′ are al-
ways preceded by 〈ε〉, while in Def. 15 this is not always the case. The refinement of Def. 15, which is
presented in Def. 20, is only valid for so-called delay resistant TSSs.

Def. 19 of delay resistance is inspired by a requirement in the RDB and RWB cool formats, see [17,

Def. 15(3)]. It is crafted in such a way that Prop. 2 holds: if for a premise x
β−→ y in a ruloid r = H

t α−→u
the

execution of β is delayed by a τ-step, i.e. for some substitution σ we merely have σ(x) τ−→ β−→ σ(y),
we want that the conclusion σ(t) α−→ σ(u) of the σ -instance of r is unaffected, or merely delayed by a
τ-step as well.

Example 3 Consider the rooted delay bisimilar processes p0 and p1 from the first LTS in Ex. 1. The
ruloid r may apply when substituting p0 for x and b for β , given that p0

b−→ 0. If instead of p0 we substi-
tute p1 for x, to safeguard the congruence property it is necessary that the (possibly delayed) conclusion
of r can still be derived, even though we only have p1

τ−→ q b−→ 0.

In Def. 17 we allow two possible implementations of this idea. Each premise x
β−→y of r is either

delayable (Def. 16), in which case σ(x) τ−→ β−→ σ(y) induces σ(t) τ−→ α−→ σ(u) by two ruloids that can
be used in place of r; or τ-pollable, meaning that r remains valid if this premise is replaced by x τ−→ z

for a fresh variable z, so that the premise σ(x) τ−→ σ(z) takes over the role of σ(x)
β−→ σ(y).

Def. 17 and Prop. 2 allow only finitely many delayable positive premises, but infinitely many τ-
pollable ones.
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Definition 16 A premise w
β−→ y of an ntytt rule r = H

t α−→u
is delayable in a TSS P if there are ntytt

rules H1

t τ−→v
and H2

v α−→u
, linearly provable from P, with H1 ⊆ (H \ {w β−→ y})∪ {w τ−→ z} and H2 ⊆

(H \{w β−→ y})∪{z β−→ y} for some term v and fresh variable z.

Suppose that H
t α−→u

in Def. 16 is a ruloid, so that w is a variable x. The intuition behind this definition is
that the argument x of t may not be able to perform a β -transition to a term y immediately, but only after
a τ-transition to z. The ruloid H1

t τ−→v
then allows t to postpone its α-transition to u, by first performing a

τ-transition to v. The ruloid H2

v α−→u
guarantees that the postponed β -transition from z to y still gives rise

to an α-transition from v to u.
Linearity is needed to make sure that in the construction of ruloids, distinct delayable positive

premises are never collapsed to a single non-delayable premise.
Def. 17 requires that each positive premise is either delayable (i.e., in the finite set Hd), or τ-pollable,

or redundant. Recall from Def. 5 the notation H+ for the positive premises in H.

Definition 17 An ntytt rule H
t α−→u

is positive delay resistant w.r.t. a TSS P if there exists a finite set

Hd ⊆ H+ of delayable positive premises such that for each set M ⊆ H+ \Hd there is a rule rM = HM

t α−→u
,

linearly provable from P, where HM ⊆ (H\M)∪Mτ with Mτ ={w
τ−→ zy | (w

β−→ y)∈M, zy fresh}.

The intuition behind Def. 18 is closely related to Def. 16. If a ruloid H
t α−→u

has a premise x 6 γ−→, we want

it not to apply even if σ(x) merely has a delayed γ-transition σ(x) τ−→ γ−→. We therefore require that for
each premise x 6 γ−→ there must also be a premise x 6 τ−→. However, we make an exception for redundant
premises x 6 γ−→. Recall from Def. 5 the notation Hs− for the stable negative premises in H.

Definition 18 A rule H
t α−→u

is negative delay resistant w.r.t. a TSS P if there is a rule H ′

t α−→u
, linearly

provable from P, with H ′ ⊆ H+∪Hs−.

Definition 19 An ntytt rule H
t α−→u

is delay resistant w.r.t. a TSS P if it is positive delay resistant as well
as negative delay resistant. A standard TSS P in ready simulation format is delay resistant if all its linear
ruloids with a positive conclusion are delay resistant w.r.t. P̂+.

The following proposition is key to the notion of delay resistance. It will allow us to adapt the definition
of modal decomposition for delay resistant TSSs, so that it becomes applicable for generating congruence
formats for weak semantics, like delay and weak bisimilarity, with a modal characterisation in which a
modality 〈β 〉ϕ is always preceded by 〈ε〉.

Proposition 2 Let P be a delay resistant standard TSS in ready simulation format. Let H
t α−→u

be a P-

ruloid and ρ a closed substitution such that P `ws ρ(x) ε
=⇒ β−→ ρ(y) for each premise x

β−→ y in H+ and
P `ws ρ(x) 6 γ−→ for each premise x 6 γ−→ in Hs−. Then P `ws ρ(t) ε

=⇒ α−→ ρ(u).

Proof: We prove the lemma for linear P-ruloids H
t α−→u

; as each ruloid is a substitution instance of a linear
ruloid, the result for general ruloids then follows.

We apply induction on the sum, over all premises x
β−→ y in H+, of the (smallest possible) number of

τ-transitions in the sequence ρ(x) ε
=⇒. We note that the cases where this sum is infinite are in the proof

immediately reduced to cases where this sum is finite.
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Induction base: If the sum is zero, P `ws ρ(x)
β−→ρ(y) for each x

β−→ y in H+. By Def. 18 there
exists a P-ruloid H ′

t α−→u
with H ′ ⊆ H+ ∪Hs−. By assumption, P `ws ρ(x) 6 γ−→ for each x 6 γ−→ in H ′. So

Prop. 1 yields P `ws ρ(t) α−→ ρ(u).
Induction step: Suppose the sum is positive. Take a finite set Hd ⊆H+ of delayable positive premises

with the property ensured by Def. 17.

First we deal with the case that P 6`ws ρ(x)
β−→ρ(y) for some x

β−→ y in H+ \Hd . Let M consist of

those x
β−→ y in H+ \Hd for which P `ws ρ(x) τ−→ qy for some term qy. Let ρ ′ be the closed substitu-

tion with ρ ′(zy) = qy for all right-hand sides y of such premises (where zy is the right-hand side of the
corresponding premise in Mτ ), and ρ ′ coincides with ρ on all other variables. Then ρ ′(t) = ρ(t) and
ρ ′(u) = ρ(u). Let HM

t α−→u
be the linear P-ruloid that exists by Def. 17, with HM ⊆ (H\M)∪Mτ . Then

P `ws ρ ′(x) 6 γ−→ for each x 6 γ−→ in Hs−
M ⊆ Hs−. Moreover, we argue that P `ws ρ ′(x) ε

=⇒ β−→ ρ ′(y) for

each premise x
β−→ y in H+

M . For each x
β−→ y in H+ \M this is clear, because then ρ ′(x) = ρ(x) and

ρ ′(y) = ρ(y). Furthermore, the definition of ρ ′ induces P `ws ρ ′(x) = ρ(x) τ−→ ρ ′(y) for each x τ−→ y
in Mτ . We apply induction with regard to the P-ruloid HM

t α−→u
and the closed substitution ρ ′. Note that

P `ws ρ ′(x) = ρ(x)
β−→ ρ(y) = ρ ′(y) for each x

β−→ y in H+ \ (Hd ∪M), because the definition of M
induces P `ws ρ(x) 6 τ−→. Also the premises x τ−→ y in Mτ do not contribute to the number of τ-transitions

ρ ′(x) ε
=⇒ on which we apply induction. Hence only premises x

β−→ y in Hd contribute to this num-
ber. As Hd is finite, this number is finite too. Since M is supposed to be non-empty, this number (for

HM

t α−→u
and ρ ′) is strictly smaller than for H

t α−→u
and ρ . An application of the induction hypothesis yields

P `ws ρ(t) = ρ ′(t) α−→ ρ ′(u) = ρ(u).
What remains is the case that P `ws ρ(x)

β−→ρ(y) for all x
β−→ y in H+ \Hd . Then P 6`ws ρ(x0)

β−→
ρ(y0) for some x0

β−→ y0 in Hd . Let P `ws ρ(x0)
τ−→ p ε

=⇒ β0−→ ρ(y0), where the closed term p is

chosen so that ε
=⇒ is as short as possible. Let H0 = H\{x0

β0−→ y0}. Since x0
β0−→ y0 is a delayable

premise of H
t α−→u

, by Def. 16 there are linear P-ruloids H1

t τ−→v
and H2

v α−→u
with H1 ⊆ H0 ∪{x0

τ−→ z0} and

H2 ⊆H0∪{z0
β0−→ y0}, for some term v and fresh variable z0. Let ρ ′(z0) = p and ρ ′ coincides with ρ on

all other variables. Since z0 does not occur in H0, clearly P`ws ρ ′(x) ε
=⇒ β−→ ρ ′(y) for each x

β−→ y in H+
0

and P `ws ρ ′(x) 6 γ−→ for each x 6 γ−→ in Hs−
0 . Moreover, P `ws ρ ′(x0)

τ−→ ρ ′(z0). Compared with H
t α−→u

and

ρ , in the case of H1

t τ−→v
and ρ ′ the number of τ-transitions involved in the sequences ε

=⇒ has decreased.

(As Hd is finite, these numbers are finite too.) So by induction, P `ws ρ ′(t) ε
=⇒ τ−→ ρ ′(v). Furthermore,

P `ws ρ ′(z0)
ε

=⇒ β0−→ ρ ′(y0). Again, compared with H
t α−→u

and ρ , in the case of H2

v α−→u
and ρ ′ the number of

τ-transitions involved in the sequences ε
=⇒ has decreased. So by induction, P `ws ρ ′(v) ε

=⇒ α−→ ρ ′(u).
Since z0 /∈ var(t)∪ var(u), we conclude that P `ws ρ(t)=ρ ′(t) ε

=⇒ ρ ′(v) ε
=⇒ α−→ ρ ′(u)=ρ(u). 2

As said before, for delay resistant TSSs case 4b of Def. 15, t−1(〈ε〉ϕ), needs to be adapted, to ensure
that in the modal logics for delay and weak bisimilarity, occurrences of subformulas 〈β 〉ϕ ′′ are always
preceded by 〈ε〉. Moreover, case 4a is provided with the restriction that ϕ is not of the form 〈α〉ϕ ′.
Else decompositions of formulas 〈ε〉〈α〉ϕ ′ in Od would be defined in terms of formulas χ ∈ t−1(〈α〉ϕ ′),
while 〈α〉ϕ ′ is not in Od . Instead, if ϕ is of the form 〈α〉ϕ ′, cases 3 and 4 of Def. 15 are combined, as
can be seen in case 4b(iii) below.
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Definition 20 Let P be a delay resistant Γ-patient standard TSS in ready simulation format. We define
·−1
dr : T(Σ)×O→ P(V →O) exactly as ·−1 in Def. 15, except for case 4: t−1

dr (〈ε〉ϕ) (with t univariate).

4. ψ ∈ t−1
dr (〈ε〉ϕ) iff one of the following holds:

(a) either ϕ is not of the form 〈α〉ϕ ′, and there is a χ ∈ t−1
dr (ϕ) such that

ψ(x) =
{
〈ε〉χ(x) if x occurs Γ-liquid in t
χ(x) otherwise

(b) or
(i) ϕ is not of the form 〈τ〉ϕ ′, and there is a Γ-impatient P-ruloid H

t τ−→u
and a χ ∈ u−1

dr (〈ε〉ϕ),
(ii) ϕ is of the form 〈τ〉ϕ ′, and there is a Γ-impatient P-ruloid H

t τ−→u
and a χ ∈ u−1

dr (〈ε〉ϕ ′),
(iii) or ϕ is of the form 〈α〉ϕ ′, and there is a P-ruloid H

t α−→u
and a χ ∈ u−1

dr (ϕ
′), such that

ψ(x) =



〈ε〉

χ(x) ∧
∧

x
β−→y∈H+

〈ε〉〈β 〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉>

 if x occurs
Γ-liquid in t

χ(x) ∧
∧

x
β−→y∈H+

〈ε〉〈β 〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉> if x occurs
Γ-frozen in t

> if x /∈ var(t).

The following three lemmas, from [12], state basic properties of formulas ψ(x). We repeat them here to
confirm that they also apply to Def. 20.

Lemma 3 Let ψ ∈ t−1
dr (ϕ), for some term t and formula ϕ . If x /∈ var(t), then ψ(x)≡>.

Proof: This can be derived in a straightforward fashion, by induction on the construction of ψ . 2

The following lemma states that ·−1
dr is invariant under α-conversion up to ≡.

Lemma 4 Let ψ ∈ σ(t)−1
dr (ϕ) for σ : V → V a bijective renaming of variables. Then there is a ψ ′ ∈

t−1
dr (ϕ) satisfying ψ ′(x)≡ ψ(σ(x)) for all x ∈V .

Proof: Again by induction on the construction of ψ . 2

Lemma 5 Let ψ ∈ t−1
dr (〈ε〉ϕ) for some term t and formula ϕ . If x occurs only Γ-liquid in t, then

ψ(x)≡ 〈ε〉ψ(x).

Proof: Let x occur only Γ-liquid in t. In case t is univariate, it follows immediately from Def. 20 that
ψ(x) ≡ 〈ε〉ϕ ′ for some formula ϕ ′. So for general terms t, ψ(x) ≡

∧
i∈I〈ε〉ϕi. This implies ψ(x) ≡

〈ε〉ψ(x). 2

The following theorem is the counterpart of Thm. 2 for delay resistant TSSs.

Theorem 3 Let P = (Σ,R) be a delay resistant Γ-patient complete standard TSS in ready simulation
format. For any t ∈T(Σ), closed substitution ρ , and ϕ ∈O:

ρ(t) |= ϕ ⇔ ∃ψ ∈ t−1
dr (ϕ) ∀x ∈ var(t) : ρ(x) |= ψ(x) .
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Proof: By simultaneous induction on the structure of ϕ—where a formula 〈ε〉ϕ ′ counts as constructed
before 〈ε〉〈τ〉ϕ ′—and the construction of ψ . We only treat the case where t is univariate; the case where
t is not univariate is identical to the proof of Thm. 2 in [12]. The proof is by a case distinction on the
syntactic structure of ϕ . We only treat the case ϕ = 〈ε〉ϕ ′ here, because all other cases are identical to
the proof of Thm. 2.

(⇒) First we address the case that ϕ ′ is not of the form 〈τ〉ϕ ′′. We prove by induction on n:

if P `ws pi
τ−→ pi+1 for all i∈{0, . . . ,n−1}, with ρ(t) = p0 and pn |= ϕ ′,

then there is a ψ ∈ t−1
dr (〈ε〉ϕ ′) with ρ(x) |= ψ(x) for all x ∈ var(t).

n = 0 Since ρ(t) = p0 |= ϕ ′, by induction on formula size, there is a χ ∈ t−1
dr (ϕ ′) with ρ(x) |= χ(x) for

all x ∈ var(t). We distinguish two cases.

CASE 1: ϕ ′ is not of the form 〈α〉ϕ ′′. Define ψ ∈ t−1
dr (〈ε〉ϕ ′) as in Def. 20.4a, using χ . Then clearly

ρ(x) |= ψ(x) for all x ∈ var(t).

CASE 2: ϕ ′ is of the form 〈α〉ϕ ′′. By Def. 15.3 there is a P-ruloid H
t α−→u

and a ξ ∈ u−1
dr (ϕ

′′) such that

χ(x) =


ξ (x) ∧

∧
x

β−→y∈H

〈β 〉ξ (y) ∧
∧

x 6γ−→∈H

¬〈γ〉> if x ∈ var(t)

> if x /∈ var(t)

Such a formula remains valid for ρ(x) if the conjuncts 〈β 〉χ(y) are weakened to 〈ε〉〈β 〉χ(y), if
some conjuncts ¬〈γ〉> are dropped (namely the ones for which x 6 γ−→ /∈ Hs−), and if the entire
formula is prefixed by 〈ε〉. Hence there is a ψ ∈ t−1

dr (〈ε〉ϕ ′), defined according to Def. 20.4b(iii),
such that ρ(x) |= ψ(x) for all x ∈ var(t).

n > 0 Since P `ws ρ(t) τ−→ p1, by Prop. 1 there is a P-ruloid H
t τ−→u

and a closed substitution ρ ′ with
P `ws ρ ′(µ) for all µ ∈ H, ρ ′(t) = ρ(t), i.e. ρ ′(x) = ρ(x) for all x∈ var(t), and ρ ′(u)= p1. Since
P `ws ρ ′(u)= p1

τ−→ ·· · τ−→ pn |= ϕ ′, by induction on n there is a χ ∈ u−1
dr (〈ε〉ϕ ′) with ρ ′(z) |=

χ(z) for each z ∈ var(u). Moreover, by Lem. 3, ρ ′(z) |= χ(z) ≡ > for each z /∈ var(u). We
distinguish two cases.

CASE 1: H
t τ−→u

is Γ-impatient. Define ψ ∈ t−1
dr (〈ε〉ϕ ′) as in Def. 20.4b(i), using H

t τ−→u
and χ . Let x ∈

var(t). For each x
β−→ y ∈ H, P `ws ρ ′(x)

β−→ ρ ′(y) and ρ ′(y) |= χ(y), so ρ ′(x) |= 〈β 〉χ(y), and
thus certainly ρ ′(x) |= 〈ε〉〈β 〉χ(y). Moreover, for each x 6 γ−→∈ Hs− ⊆ H, P `ws ρ ′(x) 6 γ−→, so the
consistency of `ws yields P 6`ws ρ ′(x)

γ−→ q for all q, and thus ρ ′(x) |= ¬〈γ〉>. Hence ρ(x) =
ρ ′(x) |= ψ(x). (In case the occurrence of x in t is Γ-liquid, note that p |= ξ implies p |= 〈ε〉ξ .)

CASE 2: H
t τ−→u

is Γ-patient. Using that t is univariate, H must be of the form {x0
τ−→ y0}, with u=

t[y0/x0], and the unique occurrence of y0 in u being Γ-liquid. Let σ : V →V be the bijection
that swaps x0 and y0, so that u = σ(t). According to Lem. 4, there is a χ ′ ∈ t−1

dr (〈ε〉ϕ ′) satis-
fying χ ′(x) ≡ χ(σ(x)) for all x∈V . For each x ∈ var(t)\{x0}, ρ(x) = ρ ′(x) |= χ(x) ≡ χ ′(x),
so ρ(x) |= χ ′(x). Furthermore, P `ws ρ ′(x0)

τ−→ ρ ′(y0) |= χ(y0). By Lem. 5, χ(y0)≡〈ε〉χ(y0).
Hence ρ(x0) = ρ ′(x0) |= χ(y0)≡ χ ′(x0), so ρ(x0) |= χ ′(x0).

Next we address the case ϕ ′ = 〈τ〉ϕ ′′. We prove by induction on n:

if P `ws pi
τ−→ pi+1 for all i∈{0, . . . ,n}, with ρ(t) = p0 and pn+1 |= ϕ ′′,

then there is a ψ ∈ t−1
dr (〈ε〉〈τ〉ϕ ′′) with ρ(x) |= ψ(x) for all x ∈ var(t).
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n = 0 Since P `ws ρ(t) τ−→ p1 with p1 |= ϕ ′′, by Prop. 1 there is a P-ruloid H
t τ−→u

and a closed substitu-
tion ρ ′ with P `ws ρ ′(µ) for µ ∈H, ρ ′(t)=ρ(t), i.e. ρ ′(x)=ρ(x) for all x∈var(t), and ρ ′(u)= p1.
Since ρ ′(u) |= ϕ ′′, by induction on formula construction there is a χ ∈ u−1

dr (ϕ
′′) with ρ ′(z) |= χ(z)

for each z∈ var(u). Moreover, by Lem. 3, ρ ′(z) |= χ(z)≡> for each z /∈ var(u).
Define ψ ∈ t−1

dr (〈ε〉〈τ〉ϕ ′′) as in Def. 20.4b(iii), using H
t τ−→u

and χ . Let x ∈ var(t). For each

x
β−→ y ∈ H, P `ws ρ ′(x)

β−→ ρ ′(y) |= χ(y), so ρ ′(x) |= 〈β 〉χ(y), and thus ρ ′(x) |= 〈ε〉〈β 〉χ(y).
Moreover, for each x 6 γ−→∈ Hs− ⊆ H, P `ws ρ ′(x) 6 γ−→, so the consistency of `ws yields P 6`ws

ρ ′(x)
γ−→ q for all q, and thus ρ ′(x) |= ¬〈γ〉>. Hence ρ(x) = ρ ′(x) |= ψ(x).

n > 0 Since P `ws ρ(t) τ−→ p1, by Prop. 1 there is a P-ruloid H
t τ−→u

and a closed substitution ρ ′ with
P `ws ρ ′(µ) for all µ ∈ H, ρ ′(t) = ρ(t), i.e. ρ ′(x) = ρ(x) for all x∈ var(t), and ρ ′(u) = p1. We
distinguish two cases.

CASE 1: H
t τ−→u

is Γ-impatient. Since ρ ′(u) |= 〈ε〉ϕ ′′, by induction on formula construction there is a

χ ∈ u−1
dr (〈ε〉ϕ ′′) with ρ ′(z) |= χ(z) for each z∈var(u). Moreover, by Lem. 3, ρ ′(z) |= χ(z)≡> for

each z /∈ var(u). Define ψ ∈ t−1
dr (〈ε〉〈τ〉ϕ ′′) as in Def. 20.4b(ii), using H

t τ−→u
and χ . Let x ∈ var(t).

That ρ(x) = ρ ′(x) |= ψ(x) follows exactly as in the case n = 0 above.

CASE 2: H
t τ−→u

is Γ-patient. Since P `ws ρ ′(u)= p1
τ−→ ·· · τ−→ pn+1 |= ϕ ′′, by induction on n there is a

χ ∈ u−1
dr (〈ε〉〈τ〉ϕ ′′) with ρ ′(z) |= χ(z) for each z ∈ var(u). Using that t is univariate, H must be

of the form {x0
τ−→ y0}, with u= t[y0/x0], and the unique occurrence of y0 in u being Γ-liquid.

Let σ : V →V be the bijection that swaps x0 and y0, so that u = σ(t). According to Lem. 4,
there is a χ ′ ∈ t−1

dr (〈ε〉〈τ〉ϕ ′′) satisfying χ ′(x) ≡ χ(σ(x)) for all x∈V . For each x ∈ var(t)\{x0},
ρ(x) = ρ ′(x) |= χ(x) ≡ χ ′(x), so ρ(x) |= χ ′(x). Furthermore, P `ws ρ ′(x0)

τ−→ ρ ′(y0) |= χ(y0).
By Lem. 5, χ(y0)≡〈ε〉χ(y0). Hence ρ(x0) = ρ ′(x0) |= χ(y0)≡ χ ′(x0), so ρ(x0) |= χ ′(x0).

(⇐) Let ψ ∈ t−1
dr (〈ε〉ϕ ′) with ρ(x) |= ψ(x) for all x ∈ var(t). The case where ψ is defined according

to Def. 20.4a is identical to the treatment of this case in the proof of Thm. 2. We focus on the case where
ψ is defined according to Def. 20.4b. Then there are either (case 4b(i)) a Γ-impatient P-ruloid H

t τ−→u
and

a χ ∈ u−1
dr (〈ε〉ϕ ′), or (case 4b(ii) with ϕ ′ = 〈ε〉ϕ ′′) a Γ-impatient P-ruloid H

t τ−→u
and a χ ∈ u−1

dr (〈ε〉ϕ ′′),
or (case 4b(iii) with ϕ ′ = 〈α〉ϕ ′′) a P-ruloid H

t α−→u
and a χ ∈ u−1

dr (ϕ
′′), such that ψ is defined by

ψ(x) =


〈ε〉ψ ′(x) if x occurs Γ-liquid in t

ψ ′(x) if x occurs Γ-frozen in t

> if x /∈ var(t)

where
ψ
′(x) = χ(x) ∧

∧
x

β−→y∈H+

〈ε〉〈β 〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉> .

So for each x that occurs Γ-liquid in t, ρ(x) |= 〈ε〉ψ ′(x), i.e. for some px we have P `ws ρ(x) ε
=⇒ px |=

ψ ′(x). Moreover, ρ(x) |= ψ ′(x) for each x that occurs Γ-frozen in t. Define ρ ′(x) = px if x occurs
Γ-liquid in t, and ρ ′(x) = ρ(x) otherwise. Since P is Γ-patient, P `ws ρ(t) ε

=⇒ ρ ′(t). Furthermore,

ρ ′(x) |= ψ ′(x) for all x ∈ var(t) implies: ρ ′(x) |= χ(x) for all x ∈ var(t); for each x
β−→ y ∈ H+ we

have ρ ′(x) |= 〈ε〉〈β 〉χ(y), i.e. P `ws ρ ′(x) ε
=⇒ β−→ py |= χ(y) for some py; and for each x 6 γ−→∈Hs− we
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have P 6`ws ρ ′(x)
γ−→ q for all q, so P `ws ρ ′(x) 6 γ−→ by the completeness of P. Define ρ ′′(x) = ρ ′(x)

and ρ ′′(y) = py for all x∈ var(t) and x
β−→ y ∈ H. Then ρ ′′(z) |= χ(z) for all z∈ var(u). Moreover,

P `ws ρ ′′(x) ε
=⇒ β−→ ρ ′′(y) for each premise x

β−→ y in H+, whereas P `ws ρ ′′(x) 6 γ−→ for each premise
x 6 γ−→ in Hs−.

CASE 4b(i): Prop. 2 yields P `ws ρ ′′(t) ε
=⇒ τ−→ ρ ′′(u). By induction on the construction of ψ , ρ ′′(u) |=

〈ε〉ϕ ′. Since P `ws ρ(t) ε
=⇒ ρ ′(t) and ρ ′(t) = ρ ′′(t), it follows that ρ(t) |= 〈ε〉ϕ ′.

CASE 4b(ii): Prop. 2 yields P `ws ρ ′′(t) ε
=⇒ τ−→ ρ ′′(u). By induction on formula structure, ρ ′′(u) |=

〈ε〉ϕ ′′. Since P `ws ρ(t) ε
=⇒ ρ ′(t) and ρ ′(t) = ρ ′′(t), it follows that ρ(t) |= 〈ε〉〈τ〉ϕ ′′.

CASE 4b(iii): Prop. 2 yields P `ws ρ ′′(t) ε
=⇒ α−→ ρ ′′(u). By induction on formula structure, ρ ′′(u) |= ϕ ′′.

Since P `ws ρ(t) ε
=⇒ ρ ′(t) and ρ ′(t) = ρ ′′(t), it follows that ρ(t) |= 〈ε〉〈α〉ϕ ′′. 2

4 Rooted delay and weak bisimilarity as a congruence

A behavioural equivalence ∼ is a congruence for a function symbol f defined on an LTS if pi ∼ qi

for all i ∈ {1, . . . ,ar( f )} implies that f (p1, . . . , par( f )) ∼ f (q1, . . . ,qar( f )). We call ∼ a congruence for
a TSS (Σ,R), if it is a congruence for all function symbols from the signature Σ with respect to the
LTS generated by (Σ,R). This is the case if for any open term t ∈ T(Σ) and any closed substitutions
ρ,ρ ′ : V → T we have that

∀x ∈ var(t) : ρ(x)∼ ρ
′(x) ⇒ ρ(t)∼ ρ

′(t) .

A congruence format for ∼ is a list of syntactic restrictions on TSSs, such that ∼ is guaranteed to be a
congruence for any TSS satisfying these restrictions.

We proceed to apply the decomposition method from the previous section to derive congruence
formats for delay bisimulation and rooted delay bisimulation semantics. The idea behind the construction
of these congruence formats is that it must be guaranteed that a formula from the characterising logic of
the equivalence under consideration is always decomposed into formulas from this same logic. We prove
that the delay bisimulation format guarantees that a formula from Od is always decomposed into formulas
from O≡d (see Prop. 4). Likewise, the rooted delay bisimulation format guarantees that a formula from
Ord is always decomposed into formulas from O≡rd (see Prop. 5). This implies the desired congruence
results (see Thm. 4 and Thm. 5, respectively).

At the end of this section it is sketched how these results can be transposed to (rooted) weak bisimi-
larity, by adding one condition to the congruence format for (rooted) delay bisimilarity.

4.1 Congruence format for rooted delay bisimilarity

We recall the notion of a rooted branching bisimulation safe rule, which underlies the rooted branch-
ing bisimulation format from [12]. The congruence format for rooted delay bisimilarity is obtained by
additionally requiring delay resistance.

We assume two predicates on arguments of function symbols from [6, 12]. The predicate Λ marks
arguments that contain processes that have started executing (but may currently be unable to execute).
The predicate ℵ marks arguments that contain processes that can execute immediately. For example,
in process algebra, Λ and ℵ hold for the arguments of the merge t1‖t2, and for the first argument of
sequential composition t1 · t2; they can contain processes that started to execute in the past, and these
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processes can continue their execution immediately. On the other hand, Λ and ℵ typically do not hold
for the second argument of sequential composition; it contains a process that did not yet start to execute,
and cannot execute immediately (in absence of the empty process). Λ does not hold and ℵ holds for the
arguments of alternative composition t1 + t2; they contain processes that did not yet start to execute, but
that can start executing immediately.

Definition 21 [12] A standard ntytt rule r = H
t α−→u

is rooted branching bisimulation safe w.r.t. ℵ and Λ

if it satisfies the following conditions. Let x ∈ var(t).

1. Right-hand sides of positive premises occur only Λ-liquid in u.

2. If x occurs only Λ-liquid in t, then x occurs only Λ-liquid in r.

3. If x occurs only ℵ-frozen in t, then x occurs only ℵ-frozen in H.

4. If x has exactly one ℵ-liquid occurrence in t, which is also Λ-liquid, then x has at most one ℵ-
liquid occurrence in H, which must be in a positive premise. If moreover this premise is labelled
τ , then r must be ℵ∩Λ-patient.

Definition 22 A standard TSS P is in rooted delay bisimulation format if it is in ready simulation format
and delay resistant, and, for some ℵ and Λ, it is ℵ∩Λ-patient and all its transition rules are rooted
branching bisimulation safe w.r.t. ℵ and Λ.

This TSS is in delay bisimulation format if moreover Λ is universal.

Remark 1 If a standard TSS P is in rooted delay bisimulation format, then there are smallest predicates
ℵ0 and Λ0 such that P is in rooted delay bisimulation format w.r.t. ℵ0 and Λ0. Namely the Λ0-liquid
arguments are generated by conditions 1 and 2 of Def. 21; they are the smallest collection of argu-
ments such that these two requirements are satisfied. Likewise the ℵ0-liquid arguments are generated
by condition 3, which can be read as “If x occurs ℵ-liquid in H, then the unique occurrence of x in t is
ℵ-liquid.” For any standard TSS P in ready simulation format, ℵ0 and Λ0 are determined in this way,
and whether P is in rooted delay bisimulation format then depends solely on whether it is delay resistant
and ℵ0∩Λ0-patient, and condition 4 of Def. 21 is satisfied by all rules in P.

4.2 Preservation of syntactic restrictions

In the definition of modal decomposition, we did not use the rules from the original delay resistant stan-
dard TSS P, but the P-ruloids. Therefore we must verify that if P is in rooted delay bisimulation format,
then the P-ruloids are rooted branching bisimulation safe (Prop. 3). In the proof of this preservation
result, rules with a negative conclusion play an important role. For this reason, the notion of rooted
branching bisimulation safety is extended to non-standard rules.

Definition 23 [12] An ntytt rule r = H
t 6α−→

is rooted branching bisimulation safe w.r.t. ℵ and Λ if it
satisfies conditions 2 and 3 of Def. 21.

Proposition 3 [12] Let P be a standard TSS in ready simulation format, in which each transition rule is
rooted branching bisimulation safe w.r.t. ℵ and Λ. Then each P-ruloid is rooted branching bisimulation
safe w.r.t. ℵ and Λ.

The following lemma is a crucial step in the proof of Prop. 3.
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Lemma 6 [12] Let P be a TSS in decent ntyft format, in which each transition rule is rooted branching
bisimulation safe w.r.t. ℵ and Λ. Then any ntytt rule irredundantly provable from P is rooted branching
bisimulation safe w.r.t. ℵ and Λ.

4.3 Preservation of modal characterisations

Consider a standard TSS that is in rooted delay bisimulation format, w.r.t. some ℵ and Λ. Def. 20 yields
decomposition mappings ψ ∈ t−1

dr (ϕ), with Γ = ℵ∩Λ. In this section we will first prove that if ϕ ∈ Od ,
then ψ(x) ∈ O≡d if x occurs only Λ-liquid in t. (That is why in the delay bisimulation format, Λ must
be universal.) Next we will prove that if ϕ ∈ Ord , then ψ(x) ∈ O≡rd for all variables x. From these
preservation results we will, in Sect. 4.4, deduce the promised congruence results for delay bisimilarity
and rooted delay bisimilarity, respectively.

Proposition 4 Let P be a delay resistant, ℵ∩Λ-patient standard TSS in ready simulation format, in
which each transition rule is rooted branching bisimulation safe w.r.t. ℵ and Λ. For any term t and
variable x that occurs only Λ-liquid in t:

ϕ ∈Od ⇒ ∀ψ ∈ t−1
dr (ϕ) : ψ(x) ∈O≡d .

Proof: We apply simultaneous induction on the structure of ϕ ∈ Od and the construction of ψ . Let
ψ ∈ t−1

dr (ϕ), and let x occur only Λ-liquid in t. First we treat the case where t is univariate. If x /∈ var(t),
then by Lem. 3, ψ(x)≡>∈O≡d . So suppose x has exactly one, Λ-liquid occurrence in t.

We need to consider the four possible syntactic forms of ϕ in the BNF grammar of Od in Def. 4.

• ϕ =
∧

i∈I ϕi with ϕi ∈ Od for each i ∈ I. By Def. 15.1, ψ(x) =
∧

i∈I ψi(x) with ψi ∈ t−1
dr (ϕi) for

each i ∈ I. By induction on formula structure, ψi(x) ∈O≡d for each i ∈ I, so ψ(x) ∈O≡d .

• ϕ = ¬ϕ ′ with ϕ ′ ∈ Od . By Def. 15.2, there is a function h : t−1
dr (ϕ ′)→ var(t) such that ψ(x) =∧

χ∈h−1(x)¬χ(x). By induction on formula structure, χ(x)∈O≡d for each χ ∈ h−1(x), so ψ(x)∈O≡d .

• ϕ = 〈ε〉ϕ ′ with ϕ ′∈Od (which implies that ϕ ′ is not of the form 〈a〉ϕ ′′). According to Def. 20.4,
we can distinguish two cases.

CASE 1: ψ(x) is defined on the basis of Def. 20.4a. Then either ψ(x) = 〈ε〉χ(x) or ψ(x) = χ(x)
for some χ ∈ t−1

dr (ϕ ′). By induction on formula structure, χ(x) ∈O≡d . So ψ(x) ∈O≡d .

CASE 2: ψ(x) is defined on the basis of Def. 20.4b, employing an ℵ∩Λ-impatient P-ruloid H
t τ−→u

and a χ ∈ u−1
dr (〈ε〉ϕ ′). The rest of this case proceeds exactly as the next case below.

• ϕ = 〈ε〉〈a〉ϕ ′ with ϕ ′ ∈ Od . Then ψ(x) is defined on the basis of Def. 20.4(b), employing either
an ℵ∩Λ-impatient P-ruloid H

t τ−→u
and a χ ∈ u−1

dr (〈ε〉〈a〉ϕ ′), or a P-ruloid H
t a−→u

and a χ ∈ u−1
dr (ϕ

′).

By Prop. 3 we can assume that H
t τ−→u

or H
t a−→u

is rooted branching bisimulation safe w.r.t. ℵ and Λ.
Since the occurrence of x in t is Λ-liquid, by condition 2 of Def. 21, x occurs only Λ-liquid in u.
Moreover, by condition 1 of Def. 21, variables in rhs(H) occur only Λ-liquid in u. So by induction

on the construction of ψ or on formula size, χ(x) ∈O≡d , and χ(y) ∈O≡d for each x
β−→ y ∈H. We

distinguish two cases.

CASE 1: The occurrence of x in t is ℵ-frozen. By condition 3 of Def. 21, x does not occur in H.
Hence ψ(x) = χ(x) ∈O≡d .
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CASE 2: The occurrence of x in t is ℵ-liquid. Since moreover the occurrence of x in t is Λ-liquid,
by condition 4 of Def. 21, x is the left-hand side of at most one premise in H, which is posi-
tive. And since H

t τ−→u
or H

t a−→u
is ℵ∩Λ-impatient, this positive premise does not carry the label

τ . Hence ψ(x) = 〈ε〉χ(x) or ψ(x) = 〈ε〉(χ(x)∧〈ε〉〈b〉χ(y)) with b ∈ A and x b−→ y ∈ H. In
either case, ψ(x) ∈O≡d .

Finally, we treat the case where t is not univariate. Then t = σ(u) for some univariate term u and non-
injective mapping σ : var(u)→V . By Def. 15.5, ψ(x) =

∧
z∈σ−1(x) χ(z) for some χ ∈ u−1

dr (ϕ). Since u is
univariate, and for each z ∈ σ−1(x) the occurrence in u is Λ-liquid, χ(z) ∈O≡d for all z ∈ σ−1(x). Hence
ψ(x) ∈O≡d . 2

Proposition 5 Let P be a delay resistant, ℵ∩Λ-patient standard TSS in ready simulation format, in
which each transition rule is rooted branching bisimulation safe w.r.t. ℵ and Λ. For any term t and
variable x:

ϕ ∈Ord ⇒ ∀ψ ∈ t−1
dr (ϕ) : ψ(x) ∈O≡rd .

Proof: We apply simultaneous induction on the structure of ϕ ∈ Ord and the construction of ψ . Let
ψ ∈ t−1

dr (ϕ). We restrict attention to the case where t is univariate; the general case then follows just as
at the end of the proof of Prop. 4. If x /∈ var(t), then by Lem. 3, ψ(x) ≡ > ∈ O≡rd . So suppose x occurs
once in t.

• The cases ϕ =
∧

i∈I ϕi and ϕ = ¬ϕ ′ proceed as in the proof of Prop. 4, replacing Od by Ord .

• ϕ = 〈ε〉〈α〉ϕ ′ with ϕ ′ ∈Od . According to Def. 20.4(b),

ψ(x) =


〈ε〉

χ(x) ∧
∧

x
β−→y∈H+

〈ε〉〈β 〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉>

 if x occurs
ℵ∩Λ-liquid in t

χ(x) ∧
∧

x
β−→y∈H+

〈ε〉〈β 〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉> if x occurs
ℵ∩Λ-frozen in t

where there is a P-ruloid H
t α−→u

with χ ∈ u−1
dr (ϕ

′), or there is an ℵ∩Λ-impatient P-ruloid H
t τ−→u

with

χ ∈u−1
dr (ξ ). Here ξ = 〈ε〉〈α〉ϕ ′ if α 6= τ and ξ = 〈ε〉ϕ ′ if α = τ . In either case ξ ∈Od .

If Hs− contains a negative premise with left-hand side x, then by the definition of Hs−, it also
contains x 6 τ−→. Clearly p |=¬〈τ〉> ∧ ¬〈γ〉> if and only if p |=¬〈τ〉> ∧ ¬〈ε〉〈γ〉>, and moreover
p |= ¬〈τ〉> if and only if p |= ¬〈ε〉〈τ〉>, for any process p and action γ . This implies that the
conjuncts

∧
x 6γ−→∈Hs− ¬〈γ〉> in ψ(x) can be replaced by∧

x 6γ−→∈Hs−

¬〈ε〉〈γ〉> .

By induction on the construction of ψ or on formula size, χ(x) ∈O≡rd . By Prop. 3 we can assume
that H

t τ−→u
or H

t α−→u
is rooted branching bisimulation safe w.r.t. ℵ and Λ; so by condition 1 of Def. 21,

variables in rhs(H) occur only Λ-liquid in u. Hence, by Prop. 4, χ(y) ∈O≡d for each x
β−→ y ∈ H.

In case the occurrence of x in t is ℵ∩Λ-frozen, this immediately yields ψ(x) ∈O≡rd .
So suppose the occurrence of x in t is ℵ∩Λ-liquid. By condition 2 of Def. 21, x occurs only
Λ-liquid in u, so by Prop. 4, χ(x) ∈ O≡d . And by condition 4 of Def. 21, x is the left-hand side



W.J. Fokkink & R.J. van Glabbeek 21

of at most one premise in H, which is positive. So either ψ(x) = 〈ε〉χ(x), or ψ(x) = 〈ε〉(χ(x)∧
〈ε〉〈β 〉χ(y)) with x

β−→ y∈H. In the first case, and in the second case with β 6= τ , this immediately
yields ψ(x) ∈O≡d ⊂O≡rd .
Consider the second case with β = τ . By condition 4 of Def. 21, H

t α−→u
or H

t τ−→u
is ℵ∩Λ-patient.

So clearly this P-ruloid it is of the form x τ−→y
C[x] τ−→C[y]

. Since t is univariate, it follows that x /∈ var(u).

Hence, by Lem. 3, χ(x)≡>. Thus ψ(x)≡ 〈ε〉〈β 〉χ(y) ∈O≡rd .

• ϕ ∈ Od . The cases ϕ =
∧

i∈I ϕi and ϕ = ¬ϕ ′ proceed as in the proof of Prop. 4, replacing O≡d
by O≡rd , and the case ϕ = 〈ε〉〈a〉ϕ ′ was already treated above. The remaining case is ϕ = 〈ε〉ϕ ′′
with ϕ ′′ ∈ Od not of the form 〈α〉ϕ ′. If the occurrence of x in t is Λ-liquid, then by Prop. 4,
ψ(x) ∈O≡d ⊂O≡rd . So we can assume that this occurrence is Λ-frozen. According to Def. 20.4 we
can distinguish two cases.

CASE 1: ψ(x) is defined on the basis of case 4a. Then ψ(x) = χ(x) for some χ ∈ t−1
dr (ϕ ′′). By

induction on formula structure, ψ(x) = χ(x) ∈O≡rd .
CASE 2: ψ(x) is defined on the basis of case 4b, employing an ℵ∩Λ-impatient P-ruloid H

t τ−→u
and

a χ ∈ u−1
dr (〈ε〉ϕ ′′). Then

ψ(x) = χ(x) ∧
∧

x
β−→y∈H+

〈ε〉〈β 〉χ(y) ∧
∧

x 6γ−→∈Hs−

¬〈γ〉> .

By induction on the construction of ψ , χ(x) ∈ O≡rd . By Prop. 3 we can assume that H
t τ−→u

is
rooted branching bisimulation safe w.r.t. ℵ and Λ; so by condition 1 of Def. 21, variables in

rhs(H) occur only Λ-liquid in u. Hence, by Prop. 4, χ(y) ∈ O≡d for each x
β−→ y ∈ H. And

similar as in the previous case ϕ = 〈ε〉〈α〉ϕ ′ with ϕ ′ ∈ Od we can argue that the conjuncts
¬〈γ〉> in ψ(x) can be replaced by ¬〈ε〉〈γ〉>. Hence ψ(x) ∈O≡rd . 2

4.4 Congruence for rooted delay bisimilarity

Now we are in a position to prove the promised congruence results for ↔d and ↔rd .

Theorem 4 Let P be a complete standard TSS in delay bisimulation format. Then ↔d is a congruence
for P.

Proof: By Def. 22 each rule of P is rooted branching bisimulation safe w.r.t some ℵ and the universal
predicate Λ, and P is delay resistant, ℵ∩Λ-patient and in ready simulation format.

Let ρ,ρ ′ be closed substitutions and t a term. Suppose that ρ(x)↔d ρ ′(x) for all x ∈ var(t); we need
to prove that then ρ(t)↔d ρ ′(t).

Let ρ(t) |= ϕ ∈ Od . By Thm. 3, taking Γ = ℵ∩Λ, there is a ψ ∈ t−1
dr (ϕ) with ρ(x) |= ψ(x) for all

x∈ var(t). Since x occurs Λ-liquid in t (because Λ is universal), by Prop. 4, ψ(x)∈O≡d for all x∈ var(t).
By Thm. 1, ρ(x)↔d ρ ′(x) implies ρ(x)∼O≡d ρ ′(x) for all x ∈ var(t). So ρ ′(x) |= ψ(x) for all x ∈ var(t).
Therefore, by Thm. 3, ρ ′(t) |= ϕ . Likewise, ρ ′(t) |= ϕ ∈ Od implies ρ(t) |= ϕ . So ρ(t) ∼Od ρ ′(t).
Hence, by Thm. 1, ρ(t)↔d ρ ′(t). 2

We can follow the same approach to prove that the rooted delay bisimulation format guarantees that↔rd
is a congruence.
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Theorem 5 Let P be a complete standard TSS in rooted delay bisimulation format. Then ↔rd is a
congruence for P.

The proof of Thm. 5 is similar to the one of Thm. 4, except that Prop. 5 is applied instead of Prop. 4;
therefore x need not occur Λ-liquid in t, which is why universality of Λ can be dropped.

4.5 Rooted weak bisimilarity as a congruence

We now proceed to derive a congruence format for rooted weak bisimilarity. It is obtained from the
congruence format from [12] for rooted η-bisimilarity by additionally requiring delay resistance. The
format for rooted η-bisimilarity in turn is obtained by strengthening condition 1 in the definition of
rooted branching bisimulation safeness.

Definition 24 [12] An ntytt rule r = H
t α−→u

is rooted η-bisimulation safe w.r.t. ℵ and Λ if it satisfies
conditions 2–4 of Def. 21, together with:

1′. Right-hand sides of positive premises occur only ℵ∩Λ-liquid in u.

Definition 25 A standard TSS is in rooted weak bisimulation format if it is in ready simulation format
and delay resistant, and, for some ℵ and Λ, it is ℵ∩Λ-patient and contains only rules that are rooted
η-bisimulation safe w.r.t. ℵ and Λ.

This TSS is in weak bisimulation format if moreover Λ is universal.

The proofs that these formats guarantee that [rooted] weak bisimilarity is a congruence are largely iden-
tical to the proofs for the [rooted] delay bisimulation format. We will therefore only explain where these
proofs differ.

For non-standard ntytt rules, the notion of rooted η-bisimulation safeness coincides with the notion
of rooted branching bisimulation safeness (see Def. 23).

Proposition 6 [12] Let P be a TSS in ready simulation format, in which each transition rule is rooted
η-bisimulation safe w.r.t. ℵ and Λ. Then each P-ruloid is rooted η-bisimulation safe w.r.t. ℵ and Λ.

The proof of the following proposition is very similar to the proof of the corresponding Prop. 4 for the
rooted delay bisimulation format.

Proposition 7 Let P be a delay resistant, ℵ∩Λ-patient standard TSS in ready simulation format, in
which each transition rule is rooted η-bisimulation safe w.r.t. ℵ and Λ. For any term t and variable x that
occurs only Λ-liquid in t:

ϕ ∈Ow ⇒ ∀ψ ∈ t−1
dr (ϕ) : ψ(x) ∈O≡w .

In the case ϕ = 〈ε〉〈a〉〈ε〉ϕ ′ with ϕ ′ ∈ Ow the proof of Prop. 7 slightly deviates from the case ϕ =
〈ε〉〈a〉ϕ ′ with ϕ ′ ∈ Od in the proof of Prop. 4. At the end of the latter case, in CASE 2 where the
occurrence of x in univariate term t is ℵ-liquid, it may be that ψ(x) = 〈ε〉(χ(x)∧ 〈ε〉〈b〉χ(y)) with
x b−→ y ∈ H. The additional observation we make in the proof of Prop. 7 is that owing to the stronger
condition 1′, y only occurs ℵ∩Λ-liquid in u. So according to Lem. 5 with Γ = ℵ∩Λ, χ(y) ≡ 〈ε〉χ(y).
Hence, ψ(x)≡ 〈ε〉(χ(x)∧〈ε〉〈b〉〈ε〉χ(y)) ∈O≡w .

The same difference with the proof of Prop. 4 appears in the case ϕ = 〈ε〉ϕ ′ with ϕ ′ ∈Ow, CASE 2.
For the rest, the proofs proceed in exactly the same way.

The proof of the following proposition is very similar to the proof of the corresponding Prop. 5 for
the rooted delay bisimulation format.
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Proposition 8 Let P be a delay resistant, ℵ∩Λ-patient standard TSS in ready simulation format, in
which each transition rule is rooted η-bisimulation safe w.r.t. ℵ and Λ. For any term t and variable x:

ϕ ∈Orw ⇒ ∀ψ ∈ t−1
dr (ϕ) : ψ(x) ∈O≡rw .

Again the only real difference with the proof of Prop. 5 is that we need to exploit the stronger condition
1′ of Def. 24: for each P-ruloid H

t α−→u
, each y ∈ rhs(H) can occur only ℵ∩Λ-liquid in u; so by Lem. 5

with Γ = ℵ∩Λ, χ ∈ u−1
dr (〈ε〉ϕ) implies χ(y)≡〈ε〉χ(y). Moreover, we need to observe that ¬〈ε〉〈γ〉>≡

¬〈ε〉〈γ〉〈ε〉>∈Orw.
The proofs of the following congruence theorems for weak bisimilarity are almost identical to the

proofs of the corresponding congruence theorems for delay bisimilarity.

Theorem 6 Let P be a complete standard TSS in weak bisimulation format. Then ↔w is a congruence
for P.

Theorem 7 Let P be a complete standard TSS in rooted weak bisimulation format. Then ↔rw is a
congruence for P.

4.6 Counterexamples

In [12] it was shown that none of the syntactic requirements of the rooted branching bisimulation format
in Def. 21 can be omitted, and that the presence of ℵ∩Λ-patience rules is crucial. Here we present a
sequence of examples to show that none of the requirements that make up delay resistance is redundant
to guarantee that rooted delay bisimilarity is a congruence.

All TSSs in this section are standard, complete, in ready-simulation format and ℵ∩Λ-patient, and
their rules are rooted branching bisimulation safe.

Example 4 Let f be a unary function symbol with an ℵ-liquid, Λ-frozen argument, defined by the rule

x 6 a−→

f (x) b−→ 0

This rule is positive delay resistant, but fails to be negative delay resistant.
Consider the LTS consisting of the transitions p0

τ−→ p0, p0
a−→ 0, p1

τ−→ q and q a−→ 0. Note
that p0↔rd p1. However, f (p0) exhibits no transitions, while f (p1)

b−→ 0. So f (p0) 6↔rd f (p1). Hence
rooted delay bisimilarity is not a congruence.

Example 5 Let f be a unary function symbol with an ℵ-liquid, Λ-frozen argument, defined by the rule

x a−→ y

f (x) b−→ 0

This TSS is negative delay resistant, but not positive delay resistant.
Consider the LTS from Ex. 4. We have f (p0)

b−→ 0, while the process f (p1) does not exhibit any
transitions. So f (p0) 6↔rd f (p1). Hence rooted delay bisimilarity is not a congruence.

The following example shows that the requirement that Hd is finite in Def. 17 of positive delay resistance
is essential.
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Example 6 Let A = {ak | k ∈ Z>0}∪{b}, and let there be binary function symbols fk for all k ∈ Z>0, of
which both arguments are ℵ-liquid and only the second argument is Λ-liquid. They are defined by the
rules

x1
τ−→ y

fk(x1,x2)
τ−→ f`(x1,y)

(for all ` > k)
x2

τ−→ y

fk(x1,x2)
τ−→ fk(x1,y)

{x1
a`−→ y` | ` > k}∪{x2

ak−→ yk}

fk(x1,x2)
b−→ 0

where ω1, ω2 and ω3 are constants with ω2
ak−→ 0 and ω3

ak−→ 0 for all k ≥ 1, and ω1
τ−→ ω3 and

ω2
τ−→ ω3. Clearly, ω1↔rd ω2.

With the exception of the rule with infinitely many premises, its rules are delay resistant. That one
rule is negative delay resistant, and all its premises are delayable. With regard to Def. 17 it only violates
the requirement that Hd needs to be chosen finite. As a result Prop. 2 is violated. Namely, although there
are sequences ω1

ε
=⇒ a`−→ for all ` ≥ 1, there is no sequence fk(ω1,ω1)

ε
=⇒ b−→ for any k ≥ 1. On the

other hand, fk(ω2,ω2)
b−→ 0 for all k ≥ 1. So rooted delay bisimilarity is not a congruence.

The following example shows that the strengthening of condition 1 to condition 1′ in Def. 24 is essential
for the rooted weak bisimulation format.

Example 7 Let f be a unary function symbol with an ℵ∩Λ-liquid argument, and g a unary function
symbol with an ℵ-frozen, Λ-liquid argument. They are defined by the rules

x a−→ y

f (x) a−→ g(y)

x τ−→ y

f (x) τ−→ f (y) g(x) a−→ x

This TSS violates condition 1′ of Def. 24 (due to the first rule). On the other hand, it is in rooted delay
bisimulation format w.r.t. ℵ and Λ, and thereby delay resistant.

Consider the following LTS, which was already depicted in Sect. 2.1: p0
a−→ q, p0

a−→ 0, p1
a−→ q,

q τ−→ 0 and q b−→ 0. We have p0↔rw p1 (but p0 6↔rd p1). The LTS rooted in f (p0) and f (p1) is as
follows.

g(0)

q

g(q)
a

f (p0) f (p1)

a

0

aa

τ b

a

f (p0) 6↔rw f (p1) because the transition f (p0)
a−→ g(0) cannot be mimicked by f (p1). Hence rooted

weak bisimilarity is not a congruence.
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5 Checking for delay resistance

On top of the congruence formats for (rooted) delay and weak bisimilarity we have imposed delay resis-
tance, a non-syntactic restriction that is based on concepts from [1, 17]. To show that a TSS P is delay
resistant one has to establish a property for each P-ruloid, and a non-trivial TSS has infinitely many of
them. This section introduces tools that lighten the burden of checking that a TSS is delay resistant. In
particular, syntactic criteria are proposed which imply that a TSS is delay resistant.

5.1 Delay resistance w.r.t. Λ

We introduce the notion “delay resistant w.r.t. Λ”, in which the conditions of Defs. 16, 17 and 18 need to
be checked only for premises containing a variable that occurs only Λ-frozen in the source. We show that
delay resistance w.r.t. Λ, together with the ℵ∩Λ-patience rules, conditions 3 and 4 of Def. 21, and one
additional condition (see Def. 27) imply delay resistance. So in the context of our congruence formats,
when incorporating the additional condition, delay resistance w.r.t. Λ is sufficient to check that a TSS is
delay resistant. Moreover, it follows that the delay and weak bisimulation formats do not require delay
resistance at all, since with Λ universal there are no Λ-frozen occurrences.

Definition 26 Given a predicate Λ on the arguments of function symbols, a premise w
β−→ y or w 6β−→

of a transition rule H
t α−→u

is called Λ-liquid if all variables in w occur Λ-liquid in t. Let HΛ be the set of
Λ-liquid premises in H.

An ntytt rule H
t α−→u

is positive delay resistant w.r.t. Λ and a TSS P if there exists a finite set Hd ⊆ H+

of delayable positive premises such that for each set M ⊆ H+\(Hd ∪HΛ) there is a rule rM = HM

t α−→u
,

linearly provable from P, where HM ⊆ (H\M)∪Mτ .
A rule H

t α−→u
is negative delay resistant w.r.t. Λ and P if there is a rule H ′

t α−→u
, linearly provable from P,

with H ′ ⊆ H+∪Hs−∪HΛ.
An ntytt rule H

t α−→u
is delay resistant w.r.t. Λ and P if it is positive delay resistant as well as negative

delay resistant w.r.t. Λ and P. A standard TSS P in ready simulation format is delay resistant w.r.t. Λ if
all its linear ruloids with a positive conclusion are delay resistant w.r.t. Λ and P̂+.

By taking Λ := /0 we retrieve the notion of delay resistance from Def. 19.
The syntactic condition in the following definition prevents that a running process x is tested twice.

Definition 27 Given a standard ntytt rule r = H
t α−→u

, we define the following syntactic condition:

5. If x has exactly one occurrence in t, which is Λ-liquid, and an ℵ-liquid occurrence in H, then these
are the only two occurrences of x in r.

For non-standard rules we take this condition to be vacuously satisfied.
In line with Prop. 3, it can be proved that condition 5 is preserved by the construction of ruloids.

Lemma 7 Let P be a TSS in decent ntyft format, in which each transition rule is rooted branching
bisimulation safe and satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ. Then any ntytt rule irredundantly
provable from P satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ.

Proof: Let an ntytt rule H
t α−→u

be irredundantly provable from P, by means of a proof π . We prove, using
structural induction with respect to π , that this rule satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ.
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Induction basis: Suppose π has only one node, marked “hypothesis”. Then H
t α−→u

equals t α−→u
t α−→u

(so t and u
are distinct variables). This rule satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ.

Induction step: Let r ∈ R be the rule and σ the substitution used at the bottom of π . By assumption, r is
decent, ntyft, and rooted branching bisimulation safe w.r.t. ℵ and Λ. Let

{vk
βk−→ yk | k ∈ K}∪{w` 6

γ`−→| ` ∈ L}

be the set of premises of r, and
f (x1, . . . ,xar( f ))

α−→ v

the conclusion of r. Then σ( f (x1, . . . ,xar( f ))) = t and σ(v) = u. Moreover, rules rk = Hk

σ(vk)
βk−→σ(yk)

for each k ∈ K and r` = H`

σ(w`) 6
γ`−→

for each ` ∈ L are irredundantly provable from P by means of strict

subproofs of π , where H =
⋃

k∈K Hk∪
⋃

`∈L H`.
As r is decent, var(vk) ⊆ {x1, . . . ,xar( f )}, so var(σ(vk)) ⊆ var(t) for each k ∈ K. Likewise,

var(σ(w`))⊆ var(t) for each ` ∈ L. From rhs(H)∩ var(t) = /0 it follows that rhs(Hk)∩ var(σ(vk)) = /0
for each k ∈ K, and rhs(H`)∩ var(σ(w`)) = /0 for each ` ∈ L. So for each k ∈ K and ` ∈ L, the rules rk
and r` are ntytt rules. By Lem. 1, they are decent. By Lem. 6 they are rooted branching bisimulation safe
w.r.t. ℵ and Λ. And by induction, they satisfy condition 5 of Def. 27 w.r.t. ℵ and Λ.

Suppose that x has exactly one occurrence in t, which is Λ-liquid, and an ℵ-liquid occurrence in H.
Then there is an i0 ∈ {1, . . . ,ar( f )} with Λ( f , i0) such that x has exactly one occurrence in σ(xi0), which
is Λ-liquid; moreover, x /∈ var(σ(xi)) for each i 6= i0. And x occurs ℵ-liquid in the left-hand side of a
premise in Hm for some m ∈ K ∪L. Since rm is rooted branching bisimulation safe w.r.t. ℵ and Λ, by
condition 3 of Def. 21 or Def. 23, x must occur ℵ-liquid in σ(vm) or σ(wm). By the decency of r, this
implies that xi0 occurs ℵ-liquid in vm or wm. Since r is rooted branching bisimulation safe w.r.t. ℵ and Λ,
and Λ( f , i0), by condition 5 of Def. 27, this is the only occurrence of xi0 in the vk or w` for each k ∈K and
` ∈ L, and xi0 /∈ var(v). Moreover, either by condition 3 (if ¬ℵ( f , i0)) or condition 4 (if ℵ( f , i0), using
that Λ( f , i0)) of Def. 21, m ∈ K. And by condition 2 of Def. 21, the occurrence of xi0 in vm is Λ-liquid.
It follows that x has exactly one occurrence in σ(vm), which is Λ-liquid, and that x does not occur in
σ(vk) for each k ∈ K\{m} and σ(w`) for each ` ∈ L. So x does not occur in rk for each k ∈ K\{m} and
r` for each ` ∈ L, in view of the decency of these rules, and the fact that x cannot occur in rhs(H). That
is, x does not occur in Hk and σ(yk) for each k ∈ K\{m}, and H` for each ` ∈ L. And since rm satisfies
condition 5 of Def. 27, while x occurs ℵ-liquid in Hm and has exactly one occurrence in σ(vm), which is
Λ-liquid, x has only one occurrence in Hm, and x /∈ var(σ(ym)). Concluding, x has only one occurrence
in H; and since xi0 /∈ var(v), x /∈ var(σ(xi)) for each i 6= i0, and x /∈ var(σ(yk)) for each k ∈ K, it follows
that x /∈ var(σ(v)). 2

Corollary 1 Let P be a standard TSS in ready simulation format, in which each rule is rooted branching
bisimulation safe and satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ. Then any P-ruloid satisfies condition
5 of Def. 27 w.r.t. ℵ and Λ.

Proof: We recall from Sect. 2.6, that the standard TSS P can be transformed into a TSS P+ in decent
ntyft format; the P-ruloids are those decent nxytt rules that are irredundantly provable from P+.

As the rules of P are rooted branching bisimulation safe and satisfying condition 5 of Def. 27 w.r.t.
ℵ and Λ, then so are the rules in P+. Namely, as described in Sect. 2.6, the rules in P+ are constructed
in three steps. The first step (the conversion of P to decent ntyft format) clearly preserves the rooted
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branching bisimulation format, as well as condition 5. The second step (the construction to reduce
left-hand sides of positive premises to variables) yields an intermediate TSS, all of whose rules are
irredundantly provable from P, and thus is covered by Lem. 6 for rooted branching bisimulation safety,
and by Lem. 7 for condition 5. The the final step adds rules with negative conclusions to the TSS; as
pointed out in the proof of Prop. 3 (in [12]), these added rules are also rooted branching bisimulation
safe. Trivially, they satisfy condition 5.

Since the rules in P+ are rooted branching bisimulation safe and satisfy condition 5 w.r.t. ℵ and Λ,
by Lem. 7, each P-ruloid satisfies condition 5 w.r.t. ℵ and Λ. 2

The next lemma is the crucial step in showing that delay resistance w.r.t. Λ, together with the ℵ∩Λ-
patience rules, conditions 3 and 4 of Def. 21, and condition 5 of Def. 27, implies delay resistance.

Lemma 8 Let P be an ℵ∩Λ-patient TSS, and let r = H
t α−→u

be an xyntt rule with t univariate, linearly
provable from P, that is rooted branching bisimulation safe and satisfies condition 5 of Def. 27 w.r.t. ℵ

and Λ. If r is delay resistant w.r.t. Λ and P, then it is delay resistant w.r.t. P.

Proof: To show that r is positive delay resistant w.r.t. P it suffices to show that HΛ ∩H+ is finite, and
that all premises in HΛ∩H+ are delayable. To show that r is negative delay resistant w.r.t. P it suffices
to show that HΛ does not contain negative premises at all.

By definition, for each premise x
β−→ y or x 6β−→ in HΛ, x occurs Λ-liquid in t. By condition 3 of

Def. 21, the (unique) occurrence of x in t is also ℵ-liquid. By condition 4 of Def. 21, HΛ contains only
one premise with left-hand side x, which must be positive. So HΛ contains no negative premises. And
since var(t) is finite, it follows that HΛ∩H+ is finite too.

Let H = H0]{x
β−→ y} where x occurs ℵ∩Λ-liquid in t. We need to show that there exist xyntt rules

H1

t τ−→v
and H2

v α−→u
, linearly provable from P, with H1 ⊆ H0∪{x

τ−→ z} and H2 ⊆ H0∪{z
β−→ y} for some

term v and fresh variable z. By condition 5 of Def. 27, x does not occur in u or H0. Let v be obtained
from t by substituting a fresh variable z for x. Then H2

v α−→u
is a substitution instance of H

t α−→u
, and hence

linearly provable from P, using Lem. 2. As x τ−→z
t τ−→v

is ℵ∩Λ-patient, it is also linearly provable from P. 2

The following lemmas ensure that to verify delay resistance of a TSS P, it suffices to check delay resis-
tance w.r.t. P for linear P-ruloids with a univariate source.

Lemma 9 Let P be a TSS in ntyft format. Any ntytt rule linearly provable from P is the instance under
a substitution σ : V → V of a rule, linearly provable from P, with a univariate source t. Moreover,
dom(σ) = var(t).

Proof: Straightforward by induction on the linear proof of the rule. 2

Lemma 10 Let r= H
t α−→u

be an ntytt rule, and σ : var(t)→V .

If r is delay resistant w.r.t. a TSS P, then so is the rule σ(r)= σ(H)

σ(t) α−→σ(u)
.

Proof: Let r be delay resistant w.r.t. P. Since r is negative delay resistant w.r.t. P, there exists a rule
H ′

t α−→u
, linearly provable from P, with H ′ ⊆ H+ ∪Hs−. By Lem. 2, the rule σ(H ′)

σ(t) α−→σ(u)
is also linearly

provable from P, and σ(H ′)⊆ σ(H)+∪σ(H)s−. It follows that σ(r) is negative delay resistant w.r.t. P.
As σ does not affect rhs(H), σ is injective on H+. Let Hd ⊆ H+ be the finite set of delayable

premises that exists by Def. 17. Take σ(H)d := σ(Hd). Then any subset of σ(H)+ \σ(H)d can be
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written as σ(M) with M ⊆ H \Hd . By Def. 17 there exists a rule rM = HM

t α−→u
, linearly provable from P,

where HM ⊆ (H\M)∪Mτ . Hence the rule σ(rM) = σ(HM)

σ(t) α−→σ(u)
, where σ(HM)⊆ (σ(H)\σ(M))∪σ(M)τ ,

is linearly provable from P by Lem. 2.
It remains to show that the premises in σ(Hd) are delayable. This follows immediately from the

delayability of the premises in Hd , by applying σ . 2

The next proposition states that delay resistance w.r.t. Λ, together with the presence of the ℵ∩Λ-patience
rules, rooted branching bisimulation safeness and condition 5 of Def. 27, is sufficient to guarantee delay
resistance.

Proposition 9 Let P be a standard TSS in ready simulation format, in which each transition rule is
rooted branching bisimulation safe and satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ. Let moreover P
be ℵ∩Λ-patient and delay resistant w.r.t. Λ. Then P is delay resistant.

Proof: Let r = H
t α−→u

be a linear P-ruloid, i.e. an nxytt rule, linearly provable from the TSS P̂+ con-

structed in Sec. 2.6. We need to show that r is delay resistant. Since P is ℵ∩Λ-patient, so is P̂+. Using
Lemmas 9 and 10 (and that P̂+ is in ntyft format) we may restrict attention to the case that t is univariate.
By Prop. 3, r is rooted branching bisimulation safe w.r.t. ℵ and Λ, and by Cor. 1 it moreover satisfies
condition 5 of Def. 27 w.r.t. ℵ and Λ. By assumption, r is delay resistant w.r.t. Λ and P. The result now
follows from Lem. 8. 2

If Λ is universal, all premises are Λ-liquid. Hence in the presence of condition 5 of Def. 27, the require-
ment of delay resistance can be dropped from the delay and weak bisimulation formats.

Definition 28 A standard TSS P is in syntactic delay bisimulation format if it is in ready simulation
format, and, for some ℵ and the universal predicate Λ, it is ℵ∩Λ-patient and all its transition rules are
rooted branching bisimulation safe and satisfy condition 5 of Def. 27 w.r.t. ℵ and Λ.

The syntactic weak bisimulation format is defined likewise, but using condition 1′ of Def. 24 instead
of condition 1 of Def. 21.

Corollary 2 Let P be a complete standard TSS in syntactic delay bisimulation format. Then ↔d (as
well as ↔rd ) is a congruence for P.

Let P be a complete standard TSS in syntactic weak bisimulation format. Then↔w (as well as↔rw )
is a congruence for P.

The following example from [17] shows that in the above corollary (as well as in Prop. 9), condition 5
of Def. 27 cannot be omitted.

Example 8 The operator s of [18, Sec. 10(4)] allows a process (its argument) to proceed normally, but
in addition can report that the process is ready to perform a visible action, without actually doing it. It
supposes an alphabet A := L ]{Can do ‘a’ | a ∈L } for some nonempty set L , and its rules are

x α−→ y

s(x) α−→ s(y)
(α ∈ A∪{τ}) x a−→ y

s(x)
Can do ‘a’
−−−−→ s(x)

(a ∈L )

Consider the TSS that consists of these two rules together with the transitions from the first LTS in Ex. 1,
defining the rooted delay bisimilar processes p0 and p1. This TSS is in syntactic delay bisimulation
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format, except that it violates condition 5 of Def. 27: by the first rule for s the argument of s is Λ-liquid,
so in the second rule x occurs Λ-liquid in the source, ℵ-liquid in the premise, and also in the target.

On this TSS ↔d and ↔w are not congruences, for p0↔d p1 whereas s(p0) 6↔w s(p1). Namely, only
s(p0) can report “can do ‘b’” and then do a (as depicted in [18, Fig. 7]). Thus condition 5 cannot be
skipped from the syntactic delay and weak bisimulation formats.

5.2 Semi-syntactic criteria for delay resistance

We now introduce requirements on the rules of a TSS P that imply delay resistance of P. This yields what
could be called semi-syntactic congruence formats. They are not purely syntactic, because one of the
conditions (in Def. 29) requires the existence of certain linearly provable rules; however, all conditions
need to be checked for rules in P only (rather than for P-ruloids).

Definition 29 A premise w
β−→ y of an ntytt rule r = H

t α−→u
is manifestly delayable in a TSS P = (Σ,R)

if, for some term v and fresh variable z, there is a transition rule H1

t τ−→v
in R, as well as an ntytt rule H2

v α−→u

linearly provable from P, with H1 ⊆ (H\{w β−→ y})∪{w τ−→ z} and H2 ⊆ (H\{w β−→ y})∪{z β−→ y}.

Here R denotes the set R of transition rules up to a bijective renaming of variables. The difference with
Def. 16 is that here the rule H1

t τ−→v
needs to be in R, rather than merely being linearly provable from P. So

clearly each manifestly delayable premise is delayable.

Definition 30 A transition rule H
t α−→u

is manifestly negative delay resistant, or more briefly negative-

stable, if for every premise w 6α−→ in H, also w 6 τ−→ is in H. A TSS is negative-stable if all its rules
are.

The difference with Def. 18 is that here the requirement also applies to redundant premises w 6α−→.
Clearly each negative-stable rule is negative delay resistant w.r.t. any TSS.

Definition 31 An ntytt rule H
t α−→u

is manifestly delay resistant w.r.t. [a predicate Λ and] a TSS P = (Σ,R)

if it is negative-stable and there exists a finite set Hd ⊆ H+ of manifestly delayable positive premises,
such that for each set M ⊆ H+\(Hd [∪HΛ]) there is a rule rM = HM

t α−→u
in R, where HM ⊆ (H\M)∪Mτ .

Again, the rule rM needs to be in R, rather than merely being linearly provable from P. The material
in this section and in the appendix comes in two flavours: incorporating a predicate Λ on arguments of
function symbols, or omitting it. The latter is equivalent to taking Λ = /0. Notationally, we will capture
both by putting the optional material, pertaining to Λ, between square brackets.

Clearly, a manifestly delay resistant rule w.r.t. [Λ and] P is delay resistant w.r.t. [Λ and] P (cf. Def. 19
[or Def. 26]).

Definition 32 A standard TSS P in decent ntyft format is manifestly delay resistant [w.r.t. Λ] if all its
transition rules are manifestly delay resistant w.r.t. [Λ and] P. A standard TSS P in ready simulation
format is manifestly delay resistant [w.r.t. Λ] if its conversion P† to decent ntyft format (see Sec. 2.6) is
manifestly delay resistant [w.r.t. Λ].

Note that in contrast to the notion of a delay resistant TSS from Def. 19, here the property is only required
for the rules of P, instead of all linear P-ruloids. The following theorem, whose proof is presented in
Appendix B, provides a semi-syntactic version of all our congruence formats.
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Theorem 8 Any manifestly delay resistant standard TSS in ready simulation format is delay resistant.

The following variant of this theorem, whose proof is also presented in Appendix B, mixes in the insights
of Sec. 5.1, and provides semi-syntactic versions of our congruence formats that are normally easier to
apply.

Theorem 9 Let P be a standard TSS in ready simulation format, in which each transition rule is rooted
branching bisimulation safe and satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ. Let moreover P be
ℵ∩Λ-patient and manifestly delay resistant w.r.t. Λ. Then P is delay resistant.

Definition 33 A standard TSS P is in manifest rooted delay bisimulation format if it is in ready simula-
tion format, and, for some ℵ and Λ, it is ℵ∩Λ-patient and manifestly delay resistant w.r.t. Λ, and it only
contains transition rules that are rooted branching bisimulation safe and satisfy condition 5 of Def. 27
w.r.t. ℵ and Λ.

The manifest rooted weak bisimulation format is defined likewise, but using condition 1′ of Def. 24
instead of condition 1 of Def. 21.

Corollary 3 Let P be a complete standard TSS in manifest rooted delay bisimulation format. Then ↔rd
is a congruence for P.

Let P be a complete standard TSS in manifest rooted weak bisimulation format. Then ↔rw is a
congruence for P.

For most applications, to check delay resistance it suffices to check the following, simpler property.

Definition 34 A standard ntytt rule is simply Λ-delay resistant in a TSS P if it is negative-stable and has
finitely many positive premises, all of which are either manifestly delayable in P or Λ-liquid. A standard
TSS in decent ntyft format is simply Λ-delay resistant if all its transition rules are.

Clearly, a simply Λ-delay resistant transition rule r = H
t α−→u

is manifestly delay resistant w.r.t. Λ, by taking
Hd := H+ \HΛ and r /0 := r.

5.3 Syntactic criteria for delay resistance

We show how delay resistance can be replaced by additional syntactic requirements. Def. 22 is adapted
as follows. On the one hand the requirement that the TSS is delay resistant is dropped. On the other
hand, rules must satisfy condition 5 of Def. 27, and the TSS must be in nxytt format and negative-
stable. And there are additional syntactic restrictions if a Λ-frozen argument of the source is tested
in the premises (condition 3). Furthermore, there is a syntactic requirement with regard to predicates
∆α ⊆ℵ∩Λ (condition 4).

Definition 35 A standard TSS P=(Σ,R) is in syntactic rooted delay bisimulation format if, for some ℵ

and Λ and predicates ∆α ⊆ℵ∩Λ where α ranges over A∪{τ}:

1. P is in decent nxytt format and ℵ∩Λ-patient.

2. Each rule in R is rooted branching bisimulation safe and negative-stable, satisfies condition 5 of
Def. 27 w.r.t. ℵ and Λ, and has finitely many positive premises.

3. If R contains a rule H]{xi
β−→y}

f (x1,...,xar( f ))
α−→u

where ¬Λ( f , i), then:
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(a) β = α;

(b) R contains a rule H ′∪{xi
τ−→y}

f (x1,...,xar( f ))
τ−→u

with H ′ ⊆ H; and

(c) y has exactly one, ∆α -liquid occurrence in u.

4. If ∆α( f , i), then R contains xi
α−→y

f (x1,...,xi,...,xar( f ))
α−→ f (x1,...,y,...,xar( f ))

.

P is in syntactic rooted weak bisimulation format if its rules moreover satisfy condition 1′ of Def. 27.

The introduction of predicates ∆α ⊆ℵ∩Λ is of practical importance. If in Def. 35 one would replace the
occurrences of ∆α by ℵ∩Λ, then for instance the encapsulation operator ∂H , which blocks all actions in
the set H, would violate condition 4 of Def. 35. Namely, the argument of ∂H is ℵ∩Λ-liquid, but there is
no rule x a−→y

∂H(x)
a−→∂H(y)

if a ∈ H.
Actually, in many applications ∆α can be empty, as a rule that tests an ℵ-liquid, Λ-frozen argument

of the source in practice tends to have a single y as right-hand side of the conclusion, so that condition

3c of Def. 35 is trivially satisfied; a notable example is the rule x1
α−→y

x1+x2
α−→y

for alternative composition.

Proposition 10 Let P be a TSS in syntactic rooted delay bisimulation format. Then it is in manifest
rooted delay bisimulation format.

Proof: Let ℵ, Λ and ∆γ for all γ ∈ A∪ {τ} be such that P satisfies the restrictions in Def. 35. It

suffices to show that P is simply Λ-delay resistant. Consider a rule H]{xi
β−→y}

f (x1,...,xn)
α−→u

of P with ¬Λ( f , i). By

condition 3a of Def. 35, β = α . And by condition 3c of Def. 35, y has exactly one, ∆α -liquid occurrence

in u. It suffices to show that xi
β−→ y is manifestly delayable in P. So, for some term v and fresh

variable z, there must be a rule H1

f (x1,...,xn)
τ−→v

in R, as well as a rule H2

v α−→u
linearly provable from P, with

H1 ⊆ H ∪{xi
τ−→ z} and H2 ⊆ H ∪{z β−→ y}. Let v be obtained by substituting z for y in u. The first

of these rules exists by condition 3b of Def. 35, substituting z for y. The second is the rule z
β−→y

v α−→u
, which

can be derived by condition 4 of Def. 35. Here we use that β = α and y has exactly one, ∆α -liquid
occurrence in u. 2

Prop. 10, together with Cor. 3, gives rise to the following corollary.

Corollary 4 Let the complete standard TSS P be in syntactic rooted delay bisimulation format. Then
↔rd is a congruence for P.

Let the complete standard TSS P be in syntactic rooted weak bisimulation format. Then ↔rw is a
congruence for P.

6 Applications

In this section we revisit some applications of our congruence formats that were already considered
in [12]: the basic process algebra BPAεδτ , extended with binary Kleene star as an example where the
predicates ∆α from Def. 35 are non-empty, and initial priority because it includes negative premises.
We also consider a deadlock test that is outside the syntactic rooted delay bisimulation format. In all
these cases our formats provide congruence results for rooted delay and weak bisimilarity, while they are
outside the congruence formats for rooted delay and weak bisimilarity from [1, 17].

The TSSs in this section are all ℵ∩Λ-patient and in decent xynft format.
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6.1 Basic process algebra

Consider the basic process algebra BPAεδτ , consisting of: constants from an alphabet Act∪ {τ}; the
empty process ε; the deadlock δ ; alternative composition t1 + t2; and sequential composition t1 · t2. Let `
range over Act∪{τ} and α over Act∪{τ,

√
}. The transition rules are:

`
`−→ ε ε

√
−→ δ

x1
α−→ y

x1 + x2
α−→ y

x2
α−→ y

x1 + x2
α−→ y

x1
`−→ y

x1 · x2
`−→ y · x2

x1

√
−→ y1 x2

α−→ y2

x1 · x2
α−→ y2

To show that ↔rd and ↔rw are congruences, we argue that this TSS satisfies the conditions of Def. 35.
In [12] it was shown that it is in rooted η-bisimulation format, with ℵ and Λ defined as follows. Since the
arguments of alternative and sequential composition can all execute immediately, ℵ holds for all these
arguments. Since only the first argument of sequential composition can contain running processes, it is
the only argument for which Λ holds. Since the TSS is positive, it surely is negative-stable. With regard
to condition 2 of Def. 35, we still need to check that the rules satisfy condition 5 of Def. 27: only the two
rules for sequential composition contain a Λ-liquid occurrence of a variable, x1, in their source; and in
both cases x1 has only one other occurrence in the rule, in the left-hand side of a premise. Condition 3 of
Def. 35 needs to be verified with regard to the two rules for alternative composition and the second rule
for sequential composition, since in these rules a Λ-frozen argument of the source is tested in a premise.
It is not hard to see that condition 3 is satisfied for these rules, where we can take ∆γ = /0 for all γ . Hence
condition 4 of Def. 35 is trivially satisfied.

Concluding, by Cor. 4 rooted delay and weak bisimilarity are congruences for BPAεδτ .

6.2 Binary Kleene star

The binary Kleene star t1∗t2 [22] repeatedly executes t1 until it executes t2. This operational behaviour
is captured by the following rules, which are added to the rules for BPAεδτ .

x1
`−→ y

x1∗x2
`−→ y · (x1∗x2)

x2
α−→ y

x1∗x2
α−→ y

Again, to show that ↔rd and ↔rw are congruences, we argue that the resulting TSS satisfies the condi-
tions of Def. 35. In [12] it was shown that it is in rooted η-bisimulation format, if we take the arguments
of the binary Kleene star to be Λ-frozen (they do not contain running processes) and ℵ-liquid (they can
start executing immediately). Since the arguments of the binary Kleene star are Λ-frozen, condition con-
dition 5 of Def. 27 is trivially satisfied. Condition 3 of Def. 35 needs to be verified for the two rules for
binary Kleene star. It is easy to see that conditions 3(a,b) are satisfied by both rules, and that the second
rule for binary Kleene star trivially satisfies condition 3(c). In view of the latter condition with regard to
the first rule for binary Kleene star, we mark the first argument of sequential composition by ∆` for all
` ∈ Act∪{τ}. No other arguments are marked by the ∆γ . It is easy to see that condition 4 of Def. 35 is
satisfied with respect to the ∆γ . (Note that for this last condition it is essential that the first argument of
sequential composition is not marked by ∆√.)

Concluding, by Cor. 4 rooted delay and weak bisimilarity are congruences for BPAεδτ with the binary
Kleene star.
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6.3 Initial priority

Initial priority is a unary function that assumes an ordering on atomic actions. The term θ(t) executes the

transitions of t, with the restriction that an initial transition t `−→ t1 only gives rise to an initial transition

θ(t) `−→ t1 if there does not exist an initial transition t `′−→ t2 with ` < `′. This intuition is captured by
the first rule for the initial priority operator below, which is added to the rules for BPAεδτ .

x `−→ y x 6`
′
−→ for all `′ > `

θ(x) `−→ y

x
√
−→ y

θ(x)
√
−→ y

We take the argument of initial priority to be Λ-frozen (it does not contain running processes) and ℵ-
liquid (it can start executing immediately). In [12] it was observed that the resulting TSS is in rooted
η-bisimulation format, irrespective of the ordering on atomic actions.

If we take τ to be greater than all atomic actions in Act, then both rules are negative-stable, because
instances of the first rule for initial priority with a premise x 6 a−→ for some a ∈ Act are guaranteed to also
contain the premise x 6 τ−→. In fact it is sufficient to require ∀` : (∃`′ : `′ > `)⇒ τ > `.

To show that↔rd and↔rw are congruences, we argue that the TSS satisfies the conditions of Def. 35.
Condition 5 of Def. 27 is trivially satisfied by the rules for initial priority, because its argument is Λ-
frozen. Condition 3 of Def. 35 needs to verified with regard to the two rules for initial priority, since in
these rules the Λ-frozen argument of the source is tested in a premise. It is not hard to see that condition
3 is satisfied for these rules, where we can take ∆γ = /0 for all γ . In particular, condition 3(b) is satisfied
by the first rule for initial priority, because this rule with `= τ contains no negative premises. Since the
∆γ are empty, condition 4 of Def. 35 is trivially satisfied.

Concluding, if τ is greater than all atomic actions in Act, rooted delay and weak bisimilarity are
congruences for BPAεδτ with initial priority.

We note that if τ is smaller than some atomic action a in Act, then rooted delay and weak bisimilarity
are not congruences for BPAεδτ with initial priority. For example, consider τ · a and (τ · a)+ a. These
process terms are rooted delay bisimilar. However, the transition θ(τ ·a) τ−→ a cannot be mimicked by
θ((τ · a)+ a), as the latter term can only perform an a-transition to ε . So these terms are not rooted
weakly bisimilar.

6.4 Deadlock testing

Finally we give an example that is outside the format from Def. 35, but that is covered by the more
general format induced by Thm. 8. Let yes,no∈ Act. The unary operator f , defined by the following two
rules, tests whether its argument is a deadlock.

x α−→ y

f (x) no−→ δ

x 6α−→ y for all α

f (x)
yes−→ δ

The argument of f is Λ-frozen and ℵ-liquid. Clearly the first rule violates condition 3 of Def. 35.
The TSS is complete, in rooted η-bisimulation format and manifestly delay resistant. In particular,

for both rules, Hd := /0, while r /0 is the rule itself. Furthermore, for the first rule, r{x α−→y} is x τ−→y
f (x) no−→δ

.
So according to Thm. 8 the TSS is delay resistant. Hence, by Thms. 5 and 7, rooted delay and weak
bisimilarity are congruences for BPAεδτ with deadlock testing.
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7 Conclusions

We have extended the method from [12] for modal decomposition and the derivation of congruence
formats so that it applies to delay and weak bisimilarity. This research line gives a deeper insight into
the link between modal logic and structural operational semantics, and provides a framework for the
derivation of congruence formats for the spectrum of weak semantics from [15].

Admittedly, the whole story is quite technical and intricate. Partly this is because we build on a
rich body of earlier work in the realm of structural operational semantics: the notions of well-supported
proofs and complete TSSs from [16] (or actually [14] in logic programming); the ntyft format from
[4, 19]; the transformation to ruloids, which for the main part goes back to [7]; and the work on modal
decomposition and congruence formats from [2] and [12].

In spite of these technicalities, we have arrived at a relatively simple framework for the derivation
of congruence formats for weak semantics. Namely, for this one only needs to: (1) provide a modal
characterisation of the weak semantics under consideration; (2) study the class of modal formulas that
result from decomposing this modal characterisation, and formulate syntactic restrictions on TSSs to
bring this class of modal formulas within the original modal characterisation; and (3) check that these
syntactic restrictions are preserved under the transformation to ruloids. As shown in Sect. 4.5, steps (2)
and (3) are very similar in structure for delay and weak bisimilarity. And as said, the end results are
congruence formats that are more general and at the same time more elegant than existing congruence
formats for these semantics in the literature.

Our intention is to carve out congruence formats for all weak semantics in the spectrum from [15]
that have reasonable congruence properties. The work presented in this paper constitutes an essential
step in this direction, as the majority (103 out of 155) of the weak semantics in this spectrum have a
modal characterisation that contains modalities 〈ε〉〈a〉ϕ . However, further work is needed to cover the
entire spectrum in [15]. In the follow-up paper [10] another significant step in this direction is made by
extending the current framework to stability-respecting and divergence-preserving semantics.

In [9] the framework for concrete semantics was extended with lookahead; an open question is to do
the same for weak semantics. For future research it would also be interesting to see whether the bridge
between modal logic and congruence formats could be employed in the realm of logics and semantics
for e.g. probabilities and security. As a first step in this direction, in [13, 5] the decomposition method
for Hennessy-Milner logic was lifted to probabilistic systems.
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A Modal Characterisations

We first prove the first part of Thm. 1, which states that Ow is a modal characterisation of weak bisimi-
larity. We need to prove, given an LTS (P,→), that p↔w q⇔ p∼Ow q for all p,q ∈ P.

Proof: (⇒) Suppose p↔w q, and p |= ϕ for some ϕ ∈Ow. We prove q |= ϕ , by structural induction on
ϕ . The reverse implication (q |= ϕ implies p |= ϕ) follows by symmetry.

• ϕ =
∧

i∈I ϕi. Then p |= ϕi for i ∈ I. By induction q |= ϕi for i ∈ I, so q |=
∧

i∈I ϕi.

• ϕ = ¬ϕ ′. Then p 6|= ϕ ′. By induction q 6|= ϕ ′, so q |= ¬ϕ ′.

• ϕ = 〈ε〉ϕ ′. Then p ε
=⇒ p′ |= ϕ ′ for some term p′. Since p↔w q, according to Def. 1, q ε

=⇒ q′ for
some q′ with p′↔w q′. Since p′ |= ϕ ′, by induction, q′ |= ϕ ′. Hence q |= 〈ε〉ϕ ′.

• ϕ = 〈ε〉〈a〉〈ε〉ϕ ′, with a∈ A. Then p ε
=⇒ a−→ ε

=⇒ p′ |= ϕ ′ for some term p′. Since p↔w q, accord-
ing to Def. 1, q ε

=⇒ a−→ ε
=⇒ q′ for some q′ with p′↔w q′. Since p′ |= ϕ ′, by induction, q′ |= ϕ ′.

Hence q |= 〈ε〉〈a〉〈ε〉ϕ ′.
We conclude that p∼Ow q.

(⇐) We prove that∼Ow is a weak bisimulation. The relation is clearly symmetric. Let p∼Ow q. Suppose
p α−→ p′. If α = τ and p′ ∼Ow q, then the first condition of Def. 1 is fulfilled. So we can assume that
either (i) α 6= τ or (ii) p′ 6∼Ow q. Let

Q′ := {q′ ∈ P | q ε
=⇒ α−→ ε

=⇒ q′∧ p′ 6∼Ow q′} .

For each q′ ∈ Q′, let ψq′ be a formula in Ow such that p′ |= ψq′ and q′ 6|= ψq′ . We define

ψ =
∧

q′∈Q′
ψq′ .

Clearly, ψ ∈Ow and p′ |= ψ . Moreover, q′ |= ψ for no q′ ∈ Q′. We distinguish two cases.

1. α 6= τ . Since p |= 〈ε〉〈α〉〈ε〉ψ ∈Ow and p∼Ow q, also q |= 〈ε〉〈α〉〈ε〉ψ . Hence q ε
=⇒ α−→ ε

=⇒ q′

with q′ |= ψ . It follows that q′ /∈ Q′ and thus p′ ∼Ow q′.

2. α = τ and p′ 6∼Ow q. Let ϕ̃ ∈Ow such that p′ |= ϕ̃ and p,q 6|= ϕ̃ . Since p |= 〈ε〉(ϕ̃ ∧ψ) ∈Ow and
p∼Ow q, also q |= 〈ε〉(ϕ̃ ∧ψ). So q ε

=⇒ q′ with q′ |= ϕ̃ ∧ψ . It follows that q′ /∈ Q′. As q 6|= ϕ̃ we
have q′ 6= q and thus q ε

=⇒ τ−→ ε
=⇒ q′. Hence p′ ∼Ow q′.

Both cases imply that the second condition of Def. 1 is fulfilled. We therefore conclude that ∼Ow is a
weak bisimulation. 2

Using the first part of Thm. 1, which was proved above, it is not hard to derive the second part of Thm. 1,
i.e. that Orw is a modal characterisation of rooted weak bisimilarity.

Proof: (⇒) Suppose p↔rw q, and p |= ϕ for some ϕ ∈ Orw. We prove q |= ϕ , by structural induction
on ϕ . The reverse implication (q |= ϕ implies p |= ϕ) follows by symmetry.

• The cases ϕ =
∧

i∈I ϕi and ϕ = ¬ϕ ′ go exactly as in the previous proof.

• ϕ = 〈ε〉〈α〉〈ε〉ϕ̂ , with ϕ̂ ∈ Ow. Then p ε
=⇒ α−→ ε

=⇒ p′ |= ϕ̂ for some term p′. Since p↔rw q,
according to Def. 2, q ε

=⇒ α−→ ε
=⇒ q′ for some q′ with p′↔w q′. Since p′ |= ϕ ′, by the previous

result, q′ |= ϕ ′. Hence q |= 〈ε〉〈a〉〈ε〉ϕ ′.
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• ϕ ∈Ow. Since p↔rw q implies p↔w q, the previously result yields q |= ϕ .

We conclude that p∼Orw q.

(⇐) We prove that ∼Orw is a rooted weak bisimulation. The relation is clearly symmetric. Let p∼Orw q.
Suppose p α−→ p′. Let

Q′ := {q′ ∈ P | q ε
=⇒ α−→ ε

=⇒ q′∧ p′ 6∼Ow q′} .

For each q′ ∈ Q′, let ψq′ be a formula in Ow such that p′ |= ψq′ and q′ 6|= ψq′ . We define

ψ =
∧

q′∈Q′
ψq′ .

Clearly, ψ ∈Ow and p′ |= ψ . Moreover, q′ |= ψ for no q′ ∈ Q′.
Since p |= 〈ε〉〈α〉〈ε〉ψ ∈ Orw and p ∼Orw q, also q |= 〈ε〉〈α〉〈ε〉ψ . Hence q ε

=⇒ α−→ ε
=⇒ q′ with

q′ |= ψ . It follows that q′ /∈ Q′ and thus p′ ∼Ow q′. By the previous result this implies p′↔w q′.
Hence the condition of Def. 2 is fulfilled. We therefore conclude that ∼Orw is a rooted weak bisimu-

lation. 2

The validity of the modal characterisation of (rooted) delay bisimilarity can be proved in a similar fash-
ion.

B Manifest delay resistance

This appendix contains the proofs of Thms. 8 and 9.

B.1 τ-Pollable rules

As a major step towards Thms. 8 and 9, we would like to show that if all rules in a TSS P are delay
resistant w.r.t. [Λ and] P, then so are all ntytt rules that are linearly provable from P. However, we can
prove this only if we assume all rules in P to have an additional property, which we call τ-pollability w.r.t.
[Λ and] P. In Sec. 3 we introduced the concept of a τ-pollable premise in a rule r: a positive premise
that could be replaced by a similar premise with label τ and a fresh right-hand side. Below, a rule will be
called τ-pollable if all its premises [with the exception of Λ-liquid ones] can be replaced in this manner;
however, for standard rules this possibly comes at the expense of changing the label of the conclusion of
r to τ , and its target to some term w, possibly containing the fresh right-hand sides mentioned above. It
turns out that in a manifestly delay resistant TSS all rules are τ-pollable.

Definition 36 An ntytt rule H
t 6α−→

, resp. H
t α−→u

, is τ-pollable w.r.t. [a predicate Λ and] a TSS P if for each

set M ⊆ H+[\HΛ] there is a rule HM

t 6α−→
, resp. HM

t α−→u
or HM

t τ−→w
for some term w, linearly provable from P,

where HM ⊆ (H\M)∪Mτ .

We recall that Mτ was defined in Def 17; it is obtained from M by replacing the transition labels by τ ,
and the right-hand sides by fresh variables, not occurring in H

t 6α−→
, resp. H

t α−→u
. Those variables may occur

in w, however.
Again, we introduce a “manifest” version of this concept, where the required rule needs to be in R,

rather than merely being linearly provable from P; we consider this notion only for a TSS as a whole.
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Definition 37 A TSS P = (Σ,R) in ntytt format is called manifestly τ-pollable [w.r.t. Λ] if for each rule
H

t 6α−→
or H

t α−→u
in R, and for each set M ⊆ H+[\HΛ], R also contains a rule HM

t 6α−→
, resp. HM

t α−→u
or HM

t τ−→w
for

some w, where HM ⊆ (H\M)∪Mτ .

Clearly, in a manifestly τ-pollable TSS P, each rule is τ-pollable w.r.t. P.

Lemma 11 Any manifestly delay resistant [w.r.t. Λ] standard TSS P = (Σ,R) in decent ntyft format is
manifestly τ-pollable [w.r.t. Λ].

Proof: Consider a rule H
t α−→u

in R and an M ⊆H+[\HΛ]. We apply induction on |M|, taking into account
that M may be infinite. The induction base M = /0 is trivial. In the induction step, M 6= /0. Pick a finite set
Hd of manifestly delayable positive premises with the property formulated in Def. 31. First we deal with
the case that M 6⊆Hd . Let M1 :=M\Hd . By Def. 31 there is a rule H1

t α−→u
in R with H1⊆ (H\M1)∪(M1)τ .

Let M2 := M∩Hd ∩H+
1 . As Hd is finite, so is M2. Since M2 ⊆H+

1 [\HΛ
1 ] and |M2|< |M|, by induction R

contains a rule H2

t α−→u
or H2

t τ−→w
for some term w, where H2 ⊆ (H1\M2)∪ (M2)τ ⊆ (H\M)∪Mτ .

Next assume that M ⊆ Hd . As Hd is finite, so is M. Pick a v
β−→ y in M. Since it is a manifestly

delayable premise of r, there exists a rule H1

t τ−→w
in R, for some term w and fresh variable z, with H1 ⊆

(H\{v β−→ y})∪{v τ−→ z}. Let M1 := M∩ (H+
1 \{v

τ−→ z}). Since M1 ⊆ H+
1 [\HΛ

1 ] and |M1|< |M|, by
induction R contains a rule H2

t τ−→w
for some term w, where H2 ⊆ (H1\M1)∪ (M1)τ ⊆ (H\M)∪Mτ . (Here

we use that there is a v τ−→ zy in Mτ , and that we can choose zy := z.) 2

B.2 Lifting manifest delay resistance from P to P̂‡

We extend the predicate “positive delay resistant” to non-standard rules by declaring it vacuously true.

Lemma 12 Let P be a TSS in decent ntytt format, in which each transition rule is positive delay resistant
as well as τ-pollable w.r.t. P. Then any ntytt rule linearly provable from P is positive delay resistant as
well as τ-pollable w.r.t. P.

Proof: Let an ntytt rule r = H
t 6α−→

[resp. H
t α−→u

] be linearly provable from P, by means of a proof π . We
will prove, by structural induction on π , that this rule is positive delay resistant as well as τ-pollable w.r.t.
P.

Induction basis: Suppose π has only one node, marked “hypothesis”. Then rule r has the form t 6α−→
t 6α−→

[resp. t α−→y
t α−→y

]. The non-standard rule is trivially τ-pollable, by lack of positive premises. The standard

rule satisfies the requirements of Defs. 17 and 16 by taking Hd =H/0 :={t α−→ y}, H1 :={t τ−→ z}, v := z

and H2 :={z α−→ y}. Furthermore, the requirement of Def. 36 is satisfied through the rule t τ−→y
t τ−→y

.

Induction step: Let r′ = K
t ′ 6α−→

[resp. K
t ′ α−→u′

] be the rule and σ the substitution used at the bottom of π—by

assumption, r′ is decent, ntytt and positive delay resistant as well as τ-pollable w.r.t. P. Then σ(t ′) = t
[and σ(u′) = u]. Moreover, rules rµ =

Hµ

σ(µ) for each µ ∈K are linearly provable from P by means of
strict subproofs of π , where H =

⋃
µ∈K Hµ , and the sets Hµ are pairwise disjoint.

For each µ ∈ K, let tµ be the left-hand side of µ . As r′ is decent, var(tµ)⊆ var(t ′), so var(σ(tµ))⊆
var(σ(t ′)) = var(t). From rhs(H)∩ var(t) = /0 it follows that rhs(Hµ)∩ var(σ(tµ)) = /0. So rµ is an
ntytt rule. By induction, rµ is positive delay resistant as well as τ-pollable w.r.t. P.
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To show that r is τ-pollable, pick any set M ⊆H+. It can be written as M =
⋃

µ∈K Mµ with Mµ ⊆H+
µ

for all µ ∈K. For each negative premise µ ∈ K, as rµ is τ-pollable, a rule
HM

µ

σ(µ) , with HM
µ ⊆ (Hµ\Mµ)∪

(Mµ)τ , is linearly provable from P. For each positive µ ∈ K, say of the form tµ

γµ−→ yµ , as rµ is τ-

pollable, a rule
HM

µ

σ(tµ )
γµ−→σ(yµ )

or
HM

µ

σ(tµ )
τ−→wµ

, with HM
µ ⊆ (Hµ\Mµ)∪ (Mµ)τ , is linearly provable from P. In

the construction of the sets (Mµ)τ (see Def. 17), we make sure that the fresh right-hand sides zy are all
different. Let MK be the set of literals µ from K+ for which only the second of these two possibilities
applies. Since r′ is τ-pollable, there is a rule KM

t ′ 6α−→
[resp. KM

t ′ α−→u′
or KM

t ′ τ−→w′
], linearly provable from P, with

KM⊆ (K\MK)∪MK
τ . Lem. 2 yields a linear proof from P, which uses this rule and σ at the bottom, of a

rule HM

t 6α−→
[resp. HM

t α−→u
or HM

t τ−→w
] with HM ⊆

⋃
µ∈K HM

µ = (H\M)∪Mτ , as required by Def. 36.

It remains to show that r is positive delay resistant. So assume r = H
t α−→u

and r′= K
t ′ α−→u′

. Let Kd ⊆K+

and Hd
µ ⊆ H+

µ for each µ ∈ K be the finite sets of delayable positive premises of r′ resp. rµ , which exist
by Def. 17. Take Hd :=

⋃
µ∈Kd Hd

µ . Pick any set M ⊆ H+ \Hd . It can be written as M =
⋃

µ∈K Mµ

with Mµ ⊆ H+
µ for each µ ∈K; moreover, Mµ ⊆ H+

µ \Hd
µ for each µ ∈Kd . For each negative premise

µ ∈ K, as rµ is τ-pollable, a rule
HM

µ

σ(µ) with HM
µ ⊆ (Hµ \Mµ)∪ (Mµ)τ is linearly provable from P. For

each µ ∈ K+, say of the form tµ

γµ−→ yµ , as rµ is τ-pollable, a rule
HM

µ

σ(tµ )
γµ−→σ(yµ )

or
HM

µ

σ(tµ )
τ−→wµ

with

HM
µ ⊆ (Hµ\Mµ)∪ (Mµ)τ is linearly provable from P. In the construction of the sets (Mµ)τ we make sure

that the fresh right-hand sides zy are all different. In the special case that µ ∈Kd we have Mµ ⊆H+
µ \Hd

µ ,
so that the positive delay resistance of rµ guarantees that the first of these two possibilities applies. Let
MK be the set of µ ∈ K+ for which only the second possibility applies. Then MK ⊆ K+ \Kd . Since
r′ is positive delay resistant, there is a rule KM

t ′ α−→u′
, linearly provable from P, with KM ⊆ (K\MK)∪MK

τ .

Lem. 2 yields a linear proof from P, which uses this rule and σ at the bottom, of a rule HM

t α−→u
with

HM ⊆
⋃

µ∈K HM
µ = (H\M)∪Mτ , as required by Def. 17.

It remains to show that any literal in Hd , say of the form w
β−→ y, is a delayable premise of r. By the

definition of Hd , w
β−→ y is in Hd

µ0
for some µ0 ∈ Kd ; say µ0 is of the form t0

γ−→ y0. Since w
β−→ y is

a delayable premise of rµ0 , there are rules
H1

µ0

σ(t0)
τ−→v

and
H2

µ0

v
γ−→σ(y0)

, linearly provable from P, with H1
µ0
⊆

(Hµ0\{w
β−→ y})∪{w τ−→ z} and H2

µ0
⊆ (Hµ0\{w

β−→ y})∪{z β−→ y} for some term v and fresh variable

z. Likewise, since t0
γ−→ y0 is a delayable premise of r′, there are rules K1

t ′ τ−→v′
and K2

v′ α−→u′
, linearly provable

from P, with K1 ⊆ (K\{t0
γ−→ y0})∪{t0

τ−→ z′} and K2 ⊆ (K\{t0
γ−→ y0})∪{z′

γ−→ y0} for some term
v′ and fresh variable z′. Without limitation of generality, we pick z′ so that it does not occur in π . Let
σ ′(z′) = v and σ ′ coincides with σ on all other variables. Let L1 and L2 denote

⋃
µ∈K1\{t0

τ−→z′}Hµ ∪H1
µ0

resp.
⋃

µ∈K2\{z′
γ−→y0}

Hµ ∪H2
µ0

. Lem. 2 yields linear proofs from P, which use K1

t ′ τ−→v′
and K2

v′ α−→u′
and σ ′

at the bottom, of the rules L1

t τ−→σ ′(v′)
and L2

σ ′(v′) α−→u
. Moreover, L1 ⊆ (H\{w β−→ y})∪ {w τ−→ z} and

L2 ⊆ (H\{w β−→ y})∪{z β−→ y}. 2

Only in the above proof, together with its forthcoming variant proving Lem. 15, does it make a difference
that linear provability is used instead of irredundant provability. It allows us to infer that the sets Hµ are
pairwise disjoint. Without that, the last sentence in the proof would fail. See also Ex. 9.
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Lemma 13 Let P be a negative-stable standard TSS in decent ntytt format. Then any ntytt rule irredun-
dantly provable from P is negative-stable.

Proof: Let an ntytt rule r = H
t α−→u

be irredundantly provable from P, by means of a proof π . We will
prove, by structural induction on π , that r is negative-stable.

Induction basis: If π has only one node, marked “hypothesis”, then H
t α−→u

equals t α−→u
t α−→u

, which trivially is
negative-stable.

Induction step: Let r′= K
t ′ α−→u′

be the rule and σ the substitution used at the bottom of π—by assumption,
r′ is decent, ntytt and negative-stable; so K = K+∪Ks−. Then σ(t ′) = t and σ(u′) = u′. Moreover, rules
rµ =

Hµ

σ(µ) for each µ ∈K+ are irredundantly provable from P by means of strict subproofs of π , where
H =

⋃
µ∈K+ Hµ ∪σ(Ks−).

For each µ ∈K+, let tµ be the left-hand side of µ . As r′ is decent, var(tµ)⊆ var(t ′), so var(σ(tµ))⊆
var(σ(t ′)) = var(t). From rhs(H)∩ var(t) = /0 it follows that rhs(Hµ)∩ var(σ(tµ)) = /0. So rµ is an
ntytt rule. By induction, rµ is negative-stable. From this it follows that r is negative-stable. 2

Proposition 11 Let P be a standard TSS in ready simulation format. If P is manifestly delay resistant,
then so is the standard TSS P̂‡ in xynft format constructed in Secs. 2.6–2.7.

Proof: Let P be manifestly delay resistant. By Def. 32, the conversion P† of P to decent ntyft format,
defined in Sec. 2.6, is manifestly delay resistant. By Lem. 11 it is also manifestly τ-pollable. Hence
all its rules are τ-pollable w.r.t. P†, and manifestly delay resistant w.r.t. P†—thus negative-stable and
positive delay resistant w.r.t. P†.

The TSS P̂‡ contains all xynft rules linearly provable from P†. By Lem. 13 those rules are negative-
stable. By Lem. 12 they are positive delay resistant and τ-pollable w.r.t. P†. The definitions of positive
delay resistant and τ-pollability of rules from P̂‡ w.r.t. P† require the existence of certain xynft rules that
are linearly provable from P†. By definition, these are rules of P̂‡. Hence P̂‡ is manifestly delay resistant,
as well as manifestly τ-pollable. 2

B.3 Eliminating the Λ-restriction

Prop. 11 above is a crucial step (or “halfway marker”) in the proof of Thm. 8. In this section we take
a similar step (Prop. 12) towards the proof of Thm. 9. It requires P to be merely manifestly delay
resistant w.r.t. Λ, rather than outright manifestly delay resistant. On the other hand, it assumes the extra
antecedents of Thm. 9. The conclusion of Prop. 12 is that P is manifestly delay resistant. This allows us
to dispense with Λ in the second half of the proof of Thm. 9, which therefore will equal the second half
of the proof of Thm. 8.

Our initial proof strategy was to extend Lem. 12—similar to Lem. 11—by replacing “w.r.t. P” by
“w.r.t. [Λ and] P” both in the antecedent and in the conclusion. Then Lemmas 8–10 would suffice to
establish Prop. 12, eliminating Λ. This strategy failed, however. It turns out we have to integrate the
proof of Lem. 8 into the proof of the modified Lem. 12, and eliminate Λ while lifting positive delay
resistance and τ-pollability from the rules of P to the linearly provable xynft rules. This yields the
forthcoming Lem. 15.

The following lemma is a variant of Prop. 1, needed in the proof of Lem. 15. We write P `lin r to say
that a rule r is linearly provable from a TSS P.
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Lemma 14 Let P = (Σ,R) be a TSS in decent ntyft format, t, t ′ ∈ T(Σ) and σ a substitution. If P `lin r
with r = H

σ(t) 6α−→
[resp. H

σ(t) α−→t ′
] an xyntt rule, then there are a decent xyntt rule r′ = G

t 6α−→
[resp. G

t α−→u
]

with P `lin r′ and a substitution σ ′ with σ ′(t) = σ(t) [and σ ′(u) = t ′] such that H can be written as⊎
ν∈G Hν with P `lin

Hν

σ ′(ν) for all ν ∈ G. Moreover, any proof π of r from P has subproofs πν of Hν

σ ′(ν) ;
and if neither t is a variable nor π a 1-node proof, the πν are strict subproofs of π .

Proof: First, suppose t is a variable. By default, the decent xyntt rule t 6α−→
t 6α−→

[resp. t α−→y
t α−→y

] is linearly

provable from P. Let σ ′ be a substitution with σ ′(t) = σ(t) [and σ ′(y) = t ′]. Clearly, P `lin
H

σ ′(t 6α−→)

[resp. P `lin
H

σ ′(t α−→y)
], taking πν := π .

Next, suppose t = f (t1, . . . , tar( f )). We apply structural induction on the proof π of r from P.

Induction basis: If π has only one node, marked “hypothesis”, using that r is an xyntt rule, r = t 6α−→
t 6α−→

.
Take r′ := r, σ ′ := σ , Hν := H and πν := π .

Induction step: Let r′′ ∈ R be the decent ntyft rule and ρ the substitution used at the bottom of π ,

where r′′ is of the form {vk
γk−→yk|k∈K}∪{w` 6

δ`−→|`∈L}
f (x1,...,xar( f )) 6

α−→
[resp. {vk

γk−→yk|k∈K}∪{w` 6
δ`−→|`∈L}

f (x1,...,xar( f ))
α−→v

]. Then ρ(xi) = σ(ti) for

i = 1, . . . ,ar( f ), [ρ(v) = t ′,] and rules Hk

ρ(vk)
γk−→ρ(yk)

for k ∈ K and H`

ρ(w`) 6
δ`−→

for ` ∈ L are linearly provable

from P by means of strict subproofs of π , where H =
⊎

k∈K Hk ∪
⊎

`∈L H`. Since r′′ is decent, var(vk)
for k ∈ K and var(w`) for ` ∈ L are included in {x1, . . . ,xar( f )}. Let ρ0 be a substitution with ρ0(xi) = ti
for i = 1, . . . ,ar( f ). As ρ(xi) = σ(ti) = σ(ρ0(xi)) for i = 1, . . . ,ar( f ), we have ρ(vk) = σ(ρ0(vk))
for k ∈ K and ρ(w`) = σ(ρ0(w`)) for ` ∈ L. So Hk

σ(ρ0(vk))
γk−→ρ(yk)

for k ∈ K and H`

σ(ρ0(w`)) 6
δ`−→

for ` ∈ L

are linearly provable from P by means of strict subproofs πk and π` of π . According to the induction
hypothesis, for k ∈ K there are a decent xyntt rule Gk

ρ0(vk)
γk−→uk

and a substitution σ ′k with P `lin
Gk

ρ0(vk)
γk−→uk

,

σ ′k(ρ0(vk)) = σ(ρ0(vk)) and σ ′k(uk) = ρ(yk), such that Hk can be written as
⊎

ν∈Gk
Hν with P `lin

Hν

σ ′k(ν)

for all ν ∈ Gk. Moreover, πk has subproofs πν of Hν

σ ′k(ν)
. Likewise, for ` ∈ L there are a decent xyntt rule

G`

ρ0(w`) 6
δ`−→

and a substitution σ ′` with P `lin
G`

ρ0(w`) 6
δ`−→

and σ ′`(ρ0(w`)) = σ(ρ0(w`)), such that H` can be

written as
⊎

ν∈G`
Hν with P `lin

Hν

σ ′`(ν)
for all ν ∈G`. Moreover, π` has subproofs πν of Hν

σ ′`(ν)
. As observed

in [2], using that |Σ|, |A| ≤ |V |, we can choose the sets of variables in the right-hand sides of the positive
premises in the Gk (for k ∈ K) and G` (for ` ∈ L) pairwise disjoint, and disjoint from var(t). This allows
us to define a substitution σ ′ with:

• σ ′(z) = σ(z) for z ∈ var(t);

• σ ′(z) = σ ′k(z) for right-hand sides z of positive premises in Gk for k ∈ K;

• σ ′(z) = σ ′`(z) for right-hand sides z of positive premises in G` for ` ∈ L.

Let G denote
⋃

k∈K Gk ∪
⋃

`∈L G`. Moreover, let ρ1 be a substitution with ρ1(xi) = ti for i = 1, . . . ,ar( f )
and ρ1(yk) = uk for k ∈ K. We verify that the rule G

t 6α−→
[resp. G

t α−→ρ1(v)
] together with the substitution σ ′

satisfy the desired properties.
As var(vk) ⊆ {x1, . . . ,xar( f )}, it follows that var(ρ0(vk)) ⊆ var(t). Since σ ′ and σ agree on var(t),

σ ′(ρ0(vk)) = σ(ρ0(vk)) = σ ′k(ρ0(vk)) for k ∈ K. Thus, by the decency of Gk

ρ0(vk)
γk−→uk

, σ ′ and σ ′k agree

on all variables occurring in this rule for k ∈ K. Likewise, σ ′ and σ ′` agree on all variables occurring in
G`

ρ0(w`) 6
δ`−→

for ` ∈ L.
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1. ρ1 and ρ0 agree on var(vk) ⊆ {x1, . . . ,xar( f )}, so ρ1(vk) = ρ0(vk) for k∈K. Likewise, ρ1(w`)

= ρ0(w`) for `∈L. Since P `lin r′′, we have P `lin ρ1(r′′) =
{ρ0(vk)

γk−→uk|k∈K}∪{ρ0(w`) 6
δ`−→|`∈L}

t 6α−→
[resp.

{ρ0(vk)
γk−→uk|k∈K}∪{ρ0(w`) 6

δ`−→|`∈L}
t α−→ρ1(v)

].

Furthermore, P `lin
Gk

ρ0(vk)
γk−→uk

for k ∈ K and P `lin
G`

ρ0(w`) 6
δ`−→

for ` ∈ L. As G =
⋃

k∈K Gk∪
⋃

`∈L G`,

it follows that P `lin
G

t 6α−→
[resp. P `lin

G
t α−→ρ1(v)

].

2. The right-hand sides of the positive premises in any Gk or G` are distinct variables. By construc-
tion, these sets of variables (one for every k ∈ K and ` ∈ L) are pairwise disjoint, and disjoint from
var(t). Hence G

t 6α−→
[resp. G

t α−→ρ1(v)
] is an ntytt rule. Since the positive premises in G originate from

Gk (for k ∈ K) and G` (for ` ∈ L), their left-hand sides are variables. This makes the rule an xyntt
rule. The rule is decent by Lem. 1.

3. Since σ ′ and σ agree on var(t), σ ′(t) = σ(t).

4. [σ ′(ρ1(xi)) = σ ′(ti) = σ(ti) = ρ(xi) for i = 1, . . . ,ar( f ). Moreover, since σ ′ and σ ′k agree on
var(uk), σ ′(ρ1(yk)) = σ ′(uk) = σ ′k(uk) = ρ(yk) for k ∈ K. As var(v)⊆ {x1, . . . ,xar( f )}∪{yk | k ∈
K}, it follows that σ ′(ρ1(v)) = ρ(v) = t ′.]

5. H =
⊎

k∈K Hk∪
⊎

`∈L H` =
⊎

k∈K
⊎

ν∈Gk
Hν ∪

⊎
`∈L
⊎

ν∈G`
Hν =

⊎
ν∈G Hν .

6. P `lin
Hν

σ ′(ν) for all ν ∈G, using that σ ′(ν)=σ ′k(ν) when ν ∈Gk and σ ′(ν)=σ ′`(ν) when ν ∈G`.

7. For ν ∈G the proof π has strict subproofs πν of Hν

σ ′(ν) . 2

With this result in hand, we obtain the following variant of Lem. 12.

Lemma 15 Let P be an ℵ∩Λ-patient TSS in decent ntyft format, in which each transition rule is rooted
branching bisimulation safe and satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ, and is positive delay
resistant as well as τ-pollable w.r.t. Λ and P. Then any xyntt rule linearly provable from P is positive
delay resistant as well as τ-pollable w.r.t. P.

Note the absence of the disclaimer “w.r.t. Λ” in the conclusion of the lemma.

Proof: This proof expands the proof of Lem. 12; we only explain the non-trivial differences. The first
difference is that we apply structural induction on the skeleton of a proof π , rather than on π itself. Here
the skeleton is the tree labelled with the rules that are applied in each node, but not with the substitutions
used, or the resulting literals. This allows us to apply the induction hypothesis on proofs π ′ whose
skeleton is a proper subtree of the skeleton of the proof π currently under investigation, even when π ′

itself is not a subtree of π .
In the proof of Lem. 12 we constructed, for each proof π of an (ntytt) rule r = H

t α−→u
, a finite set

Hd⊆H+ of delayable premises of r. Here, we do this so that if π† is a strict subproof of π , proving an
(xyntt) rule r† = H†

ν
(so that H† ⊆ H) with H† ∩Hd 6= /0, then ν is positive and any µ ∈ H† ∩Hd is a

delayable premise also of r†. (*)
When starting with an xyntt rule r = H

t 6α−→
[resp. H

t α−→u
], linearly provable from P by means of a proof

π , we first deal with the case that t is univariate. The general case is dealt with at the end of this proof.
Following the proof of Lem. 12, in the induction step r′= K

t ′ 6α−→
[resp. K

t ′ α−→u′
] is positive delay resistant

and τ-pollable w.r.t. Λ and P, whereas the rµ =
Hµ

σ(µ) for µ ∈K are positive delay resistant and τ-pollable
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w.r.t. P; they also satisfy (*) for subproofs of π . By Lem. 6, r is rooted branching bisimulation safe w.r.t.
ℵ and Λ.

To show that r is τ-pollable, proceed as in the proof of Lem. 12, until the appearance of the set
MK . In case MK ⊆ K+ \KΛ we proceed exactly as in the proof of Lem. 12, using that r′ is τ-pollable

w.r.t. Λ and P. So now assume that µ ∈ MK ∩KΛ. Consider a premise λ = (x
β−→ y) in Mµ . By the

decency of r (cf. Lem. 1), x ∈ var(t). Using that t is univariate, there is exactly one variable x0 ∈ var(t ′)
with x ∈ var(σ(x0)). By the decency of rµ (cf. Lem. 1), x ∈ var(σ(tµ)), and using the decency of r′ this
implies that x0 ∈ var(tµ). Given that µ ∈KΛ, the occurrence of x0 in t ′ must be Λ-liquid. By Lem. 14, the
proof πµ must have a subproof π ′ of a rule H ′

σ(x0) 6
γ−→

or H ′

σ(x0)
γ−→u′′

with (x
β−→ y)∈H ′ ⊆Hµ . By induction,

this rule is τ-pollable w.r.t. P, so for M′ := Mµ ∩H ′ there is a rule
H ′M′

σ(x0) 6
α−→

, resp.
H ′M′

σ(x0)
α−→u′′

or
H ′M′

σ(x0)
τ−→w

for some term w, linearly provable from P, where H ′M′ ⊆ (H ′\M′)∪M′τ . Call the premise λ innocent if

in fact there is a rule
H ′M′

σ(x0) 6
α−→

, resp.
H ′M′

σ(x0)
α−→u′′

. If all premises in Mµ are innocent, given the construction

of rules required by Def. 36, there is no reason for µ to be in MK . So there must be a guilty premise
λ = (x

β−→ y) in Mµ such that a rule
H ′M′

σ(x0)
τ−→w

for some term w is linearly provable from P. Since x

occurs ℵ-liquid in a premise of H, its unique occurrence in t must also be ℵ-liquid, using condition 3 of
Def. 21. This implies that the unique occurrence of x0 in t ′ is ℵ∩Λ-liquid. Hence an ℵ∩Λ-patient rule
x0

τ−→z0

t ′ τ−→w′
, where w′ is t ′ with x0 replaced by z0, is linearly provable from P. Let σ ′(z0) = w and σ ′ coincides

with σ on all other variables. Lem. 2 yields a linear proof, which uses x0
τ−→z0

t ′ τ−→w′
and σ ′ at the bottom, of

the rule
H ′M′

t τ−→σ ′(w′)
, where H ′M′ ⊆ (H ′\M′)∪M′τ ⊆ (Hµ\Mµ)∪ (Mµ)τ ⊆ (H\M)∪Mτ , as required.

To show that r is positive delay resistant, and satisfies (*), assume that r has the form r = H
t α−→u

, and

r′ = K
t ′ α−→u′

. As in the proof of Lem. 12, let Kd ⊆ K and, for each µ ∈ K, let Hd
µ ⊆ H+

µ be the finite

sets of positive premises that exist by Def. 17. This time, take Hd :=
⋃

µ∈Kd∪(KΛ)+ Hd
µ . The requirement

of Def. 17 is established exactly as in the proof of Lem. 12, but substituting Kd ∪ (KΛ)+ for Kd . By
construction (and induction) it follows that r satisfies (*) w.r.t. π .

It remains to show that any literal in Hd , say of the form x
β−→ y, is a delayable premise of r. There

is a µ0 of the form t0
γ−→ y0 in Kd ∪KΛ with x

β−→ y in Hd
µ0

. The case that µ0 ∈ Kd proceeds exactly
as in the proof of Lem. 12. So let µ0 ∈ KΛ. By the decency of r (cf. Lem. 1), x ∈ var(t). Using that
t is univariate, there is exactly one variable x0 ∈ var(t ′) with x ∈ var(σ(x0)). By the decency of rµ0

(cf. Lem. 1), x ∈ var(σ(tµ0)), and using the decency of r′ this implies that x0 ∈ var(tµ0). Given that
µ0 ∈ KΛ, the occurrence of x0 in t ′ must be Λ-liquid.

By Lem. 14 there is a decent xyntt rule r′′ = G
t ′ α−→u′′

with P `lin r′′, and a substitution σ ′ with σ ′(t ′) =

σ(t ′) = t and σ ′(u′′) = σ(u′) = u, such that H can be written as
⊎

ν∈G Hν with P `lin
Hν

σ ′(ν) for all ν ∈ G.

Moreover, proofs πν of Hν

σ ′(ν) from P occur as strict subproofs of π . Let ν0 be the unique literal in G

be such that x
β−→ y occurs in Hν0 . By (*), ν0 is positive—so has the form x0

δ−→ y′0—and x
β−→ y is a

delayable premise of
Hν0

σ ′(ν0)
. Hence, there are rules

H1
ν0

σ ′(x0)
τ−→v

and
H2

ν0

v δ−→σ(y′0)
, linearly provable from P, with

H1
ν0
⊆ (Hν0\{x

β−→ y})∪{x τ−→ z} and H2
ν0
⊆ (Hν0\{x

β−→ y})∪{z β−→ y} for some term v and fresh
variable z.

Since x occurs ℵ-liquid in a premise of H, its unique occurrence in t must also be ℵ-liquid, using
condition 3 of Def. 21. This implies that the unique occurrence of x0 in t ′ is ℵ∩Λ-liquid. Hence an ℵ∩Λ-
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patient rule x0
τ−→z0

t ′ τ−→w′
, where w′ is t ′ with x0 replaced by z0, is linearly provable from P. Let σ ′′(z0) = v and

σ ′′ coincides with σ on all other variables. As z0 is chosen fresh, σ ′′(x0) = σ ′(x0), σ ′′(t ′) = σ ′(t ′) = t

and σ ′′(u′) = σ ′(u′) = u. Lem. 2 yields a linear proof, which uses x0
τ−→z0

t ′ τ−→w′
and σ ′′ at the bottom, of the

rule
H1

ν0

t τ−→σ ′′(w′)
, with H1

ν0
⊆ (Hν0\{x

β−→y})∪{x τ−→z} ⊆ H\{x β−→y})∪{x τ−→ z}.
By Lem. 7, the rule r′′ satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ. So the occurrences of x0 in t ′

and in ν0 are the only two occurrences of x0 in r′′. Replacing these occurrences of x0 in r′′ by z0 produces

a rule r′′′ with source w′ and a premise z0
δ−→ y′0. Let L denote

⋃
ν∈G\{ν0}Hν ∪H2

ν0
. Lem. 2 yields a linear

proof, which uses r′′′ and σ ′′ at the bottom, of the rule L
σ ′′(w′) α−→u

, with L⊆ (H\{x β−→ y})∪{x τ−→ z}.

We have now finished the case that t is univariate. Suppose an xyntt rule r‡ = H‡

t‡ 6α−→
[resp. H‡

t‡ α−→u‡
],

with t‡ not univariate, is linearly provable from P by means of a proof π‡. By Lem. 9 there is an xyntt
rule r = H

t 6α−→
[resp. H

t α−→u
] with t univariate, such that r‡ = ρ(r), using a substitution ρ : dom(t)→ V .

From the (trivial) proof of Lem. 9 we learn that r has a proof π that has the same skeleton as π; in fact,
π‡ = ρ(π). Hence, the induction hypothesis applies to strict subproofs of π just as much as to strict
subproofs of π‡.

We have shown above that r is positive delay resistant as well as τ-pollable w.r.t. P, and also satisfies
(*) w.r.t. the proof π . Now Lem. 10 says that also r‡ is positive delay resistant w.r.t. P. In the very same
way one shows that r‡ is τ-pollable w.r.t. P. Requirement (*) w.r.t. π says that if a premise from Hd

occurs in a rule r† obtained by a subproof π† of π , then this premise is a delayable premise of r† as well.
Any subproof of π‡ can be obtained as ρ(π†) with π† a subproof of π; the rule proven by ρ(π†) is ρ(r†).
Again, ρ renames variables occurring in the source of r†, but leaves other variables occurring in r† alone.
Hence Lem. 10 applies to conclude that also r‡ satisfies (*) w.r.t. π‡. 2

The following example shows the essentiality of limiting Lem. 12 and Lem. 15 to linearly provable rules.
In this example two delayable positive premises in a linear ruloid are collapsed to a single premise that
is not delayable in the resulting non-linear ruloid.

Example 9 Let f ,g be unary, kb,kc binary, and h a ternary function symbol. Let A = {a,b,c,d}, and
consider the TSS with the following rules:

x a−→ y

f (x) b−→ x

x a−→ y

f (x) c−→ x

x τ−→ y

f (x) τ−→ kb(x,y)

x τ−→ y

f (x) τ−→ kc(x,y)

x b−→ y x c−→ z

g(x) d−→ x

x τ−→ y

g(x) τ−→ h(x,y,x)

x τ−→ y

g(x) τ−→ h(x,x,y)

x2
a−→ y

kb(x1,x2)
b−→ x1

x2
τ−→ y

kb(x1,x2)
τ−→ kb(x1,y)

x2
a−→ y

kc(x1,x2)
c−→ x1

x2
τ−→ y

kc(x1,x2)
τ−→ kc(x1,y)

x2
b−→ y x3

c−→ z

h(x1,x2,x3)
d−→ x1
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x2
τ−→ y

h(x1,x2,x3)
τ−→ h(x1,y,x3)

x3
τ−→ y

h(x1,x2,x3)
τ−→ h(x1,x2,y)

This TSS is positive and in xynft format. The argument of f and of g are taken to be ℵ-liquid and
Λ-frozen. The first argument of kb, kc and h are ℵ-frozen and Λ-frozen, while their other arguments
are ℵ-liquid and Λ-liquid. The TSS is ℵ∩Λ-patient, since there are patience rules for the latter four
arguments. The rules are moreover rooted η-bisimulation safe and satisfy condition 5 of Def. 27 w.r.t. ℵ

and Λ.
The TSS is manifestly delay resistant w.r.t. Λ. To prove this, we only need to consider the rules

for f and g. That the premise of the first rule for f is manifestly delay resistant follows by the rules
x τ−→z

f (x) τ−→kb(x,z)
and z a−→y

kb(x,z) b−→x
. Likewise for the second rule for f . That the premise of the third rule for f

is manifestly delay resistant follows by the rules x τ−→z
f (x) τ−→kb(x,z)

and z τ−→y
kb(x,z) τ−→kb(x,y)

. Likewise for the fourth

rule for f . Furthermore, that the first premise of the first rule for g is manifestly delay resistant follows by

the rules x τ−→z
g(x) τ−→h(x,z,x)

and z b−→y x c−→y′

h(x,z,x) d−→x
. Likewise for the second premise of this rule. That the premise of

the second rule for g is manifestly delay resistant follows by x τ−→z
g(x) τ−→h(x,z,x)

and z τ−→y

h(x,z,x) d−→h(x,y,x)
. Likewise

for the third rule for g. Finally, that the TSS is manifestly delay resistant (without taking into account Λ)
now follows easily by employing the four patience rules in the TSS.

The non-linear ruloid x a−→y

g( f (x)) d−→x
is obtained by substituting y for z in the linear ruloid x a−→y x a−→z

g( f (x)) d−→x
.

We argue that this non-linear ruloid is not delay resistant. Its premise x a−→ y is not τ-pollable, as clearly
x τ−→z

g( f (x)) d−→x
is not a ruloid. Suppose, toward a contradiction, that it is delayable. This would mean there

exist ruloids x τ−→z
g( f (x)) τ−→v

and z a−→y

v d−→x
for some term v and fresh variable z. The first of these two ruloids

allows four possibilities for v: h( f (x), t(x,z), f (x)) or h( f (x), f (x), t(x,z)) where t(x,z) equals either

kb(x,z) or kc(x,z). However, for none of these four possibilities does there exist a ruloid z a−→y

v d−→x
.

Proposition 12 Let P be a standard TSS in ready simulation format, in which each transition rule is
rooted branching bisimulation safe and satisfies condition 5 of Def. 27 w.r.t. ℵ and Λ. Let moreover
P be ℵ∩Λ-patient and manifestly delay resistant w.r.t. Λ. Then the standard TSS P̂‡ in xynft format,
constructed in Secs. 2.6–2.7, is manifestly delay resistant.

Proof: By Def. 32, the conversion P† of P to decent ntyft format, defined in Sec. 2.6, is manifestly
delay resistant w.r.t. Λ. By Lem. 11 it is also manifestly τ-pollable w.r.t. Λ. Hence the rules of P† are
negative-stable and positive delay resistant w.r.t. Λ and P†, as well as τ-pollable w.r.t. Λ and P†. Clearly,
P† is ℵ∩Λ-patient, and all of its rules are rooted branching bisimulation safe and satisfy condition 5 of
Def. 27 w.r.t. ℵ and Λ (as already observed in the proof of Cor. 1).

The TSS P̂‡ contains all xynft rules linearly provable from P†. By Lem. 13 those rules are negative-
stable, and by Lem. 15 they are positive delay resistant and τ-pollable w.r.t. P†. The definitions of
positive delay resistant and τ-pollability of rules from P̂‡ w.r.t. P† require the existence of certain xynft
rules that are linearly provable from P†. By definition, these are rules of P̂‡. Hence P̂‡ is manifestly
delay resistant, as well as manifestly τ-pollable. 2
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B.4 Transfer of τ-pollability to non-standard rules

Lemma 16 Let P be a standard TSS in ready simulation format. If the TSS P̂‡ is manifestly τ-pollable
and negative-stable, then its augmentation P̂+ with non-standard rules is manifestly τ-pollable.

Proof: Let H
t 6α−→

be a rule of P̂+, and let M ⊆H+. It suffices to show that also HM

t 6α−→
is a rule of P̂+, where

HM := (H\M)∪Mτ . Let P̂‡�(t α−→) denote the set of rules of P̂‡ with a conclusion of the form t α−→ u
for some u. By the construction of P̂+ there exists a surjective function f from P̂‡�(t α−→) to H such that
each rule r ∈ P̂‡�(t α−→) contains a premise that denies the premise f (r). It suffices to find a surjective
function fM from P̂‡�(t α−→) to HM such that each rule r ∈ P̂‡�(t α−→) contains a premise that denies the

premise fM(r). In case f (r) ∈ (H \M), we take fM(r) := f (r). In case f (r) = (w
β−→ y) ∈M, we take

fM(r) := (w τ−→ zy)∈Mτ . As r must contain the premise w 6β−→, it also contains the premise w 6 τ−→, using
that P̂‡ is negative-stable. This premise denies fM(r). Surjectivity is guaranteed by construction. 2

B.5 Lifting delay resistance to ruloids

Lemma 17 Let P be a standard TSS in ready simulation format, such that the TSS P̂‡ is manifestly
τ-pollable. If the TSS P̂+ contains rules H

t 6α−→
and Hτ

t 6τ−→
, then it also contains a rule H ′

t 6α−→
, with H ′ ⊆

(H∪Hτ)+∪ (H∪Hτ)s−.

Proof: Suppose P̂+ contains rules H
t 6α−→

and Hτ

t 6τ−→
. Then there exists a surjective function f from

P̂‡�(t α−→)∪ P̂‡�(t τ−→) to H ∪Hτ such that each rule r ∈ dom( f ) contains a premise that denies the
premise f (r). It suffices to construct a function h from P̂‡�(t α−→) to (H∪Hτ)+ ∪ (H∪Hτ)s− such that
each rule r ∈ dom(h) contains a premise that denies the premise h(r).

Let r = K
t α−→u

∈ P̂‡�(t α−→). Let M be the collection premises v
β−→ y in K for which v 6 τ−→ does not

occur in H ∪Hτ . Since P̂‡ is manifestly τ-pollable, there must be a rule rM = KM

t α−→u
or KM

t τ−→w
in P̂‡ with

KM ⊆ (K\M)∪Mτ . So a premise µ ∈ KM denies the premise f (rM) ∈ H ∪Hτ . Given the definition of
M, this premise µ cannot occur in Mτ . Hence µ ∈ K \M and f (rM) ∈ (H∪Hτ)+ ∪ (H∪Hτ)s−. Define
h(r) := f (rM). 2

Lemma 18 Let P be a standard TSS in ready simulation format, such that the TSS P̂‡ is manifestly
τ-pollable and negative-stable.

(1) For any linear P-ruloid H
t α−→u

there is a linear P-ruloid H ′

t α−→u
with H ′ ⊆ H+∪Hs−.

(2) For any linear P-ruloids H
t 6α−→

and Hτ

t 6τ−→
, with t not a variable, there is a linear P-ruloid H ′

t 6α−→
with

H ′⊆ (H∪Hτ)+∪ (H∪Hτ)s−.

Proof: We prove the claims by simultaneous structural induction on the linear proofs of the ruloids from
P̂+.

First consider the case that t is a variable x. Then any standard P-ruloid with source t must have the

form x α−→y
x α−→y

; it trivially satisfies (1).

Now let t /∈ V . First let π be a linear proof of H
t α−→u

. Let the decent ntyft rule r in P̂+ (and hence in
P̂‡) of the form

{tk
βk−→ yk | k ∈ K}∪{t` 6

γ`−→| ` ∈ L}∪{x j 6
γ j−→| j ∈ J}

f (x1, . . . ,xar( f ))
α−→ v
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and the substitution σ be used at the bottom of π . Here we require σ(t`) /∈V for all ` ∈ L and σ(x j) ∈V ;
so we have split the negative premises in two sets, depending on whether after application of σ their left-
hand sides are variables. We have σ( f (x1, . . . ,xar( f )))= t and σ(v)=u. Moreover, rules rk =

Hk

σ(tk)
βk−→σ(yk)

for each k∈K and r`= H`

σ(t`) 6
γ`−→

for each `∈L are linearly provable from P̂+ by means of strict subproofs

πk and π` of π , where H =
⋃

k∈K Hk ∪
⋃

`∈L H` ∪{σ(x j) 6
γ j−→ | j∈ J}. Here we use that P̂+ is in ntyft

format. Using that P̂‡ is negative-stable, {σ(x j) 6
γ j−→ | j∈ J} ⊆ Hs−; moreover, for each `∈L there is a

unique `′∈L with t`′ = t` and γ`′ = τ; we write Hτ
` := H`′ .

As r is decent, var(tk) ⊆ {x1, . . . ,xar( f )}, so var(σ(tk)) ⊆ var(t) for each k ∈ K. Likewise,
var(σ(t`)) ⊆ var(t) for each ` ∈ L. From rhs(H)∩ var(t) = /0 it follows that rhs(Hk)∩ var(σ(tk)) = /0
for each k∈K, and rhs(H`)∩ var(σ(t`)) = /0 for each `∈L. So for each k∈K and `∈L, the rules rk and
r` are nxytt rules. By Lem. 1, they are decent, and thus ruloids.

By induction there is a P-ruloid H ′k

σ(tk)
βk−→σ(yk)

with H ′k ⊆ H+
k ∪Hs−

k , for each k∈K. Likewise, there

is a P-ruloid H ′`
σ(t`) 6

γ`−→
with H ′`⊆ (H`∪Hτ

` )
+ ∪ (H`∪Hτ

` )
s−, for each `∈L. By composition of proofs, we

obtain a linear ruloid H ′

t α−→u
with H ′ =

⋃
k∈K H ′k∪

⋃
`∈L H ′`∪{σ(x j) 6

γ j−→ | j∈ J} ⊆ H+∪Hs−.
Secondly, let π be a linear proof of H

t 6α−→
, and πτ a linear proof of Hτ

t 6τ−→
. Let the decent ntyft rule r in

P̂+ (and hence in P̂‡) of the form

{tk
βk−→ yk | k ∈ K}∪{t` 6

γ`−→| ` ∈ L}∪{x j 6
γ j−→| j ∈ J}

f (x1, . . . ,xar( f )) 6
α−→

and the substitution σ be used at the bottom of π , again with σ(t`) /∈V for `∈L and σ(x j)∈V for j∈ J.
Likewise, let the decent ntyft rule rτ in P̂+ of the form

{tk
βk−→ yk | k ∈ Kτ}∪{t` 6

γ`−→| ` ∈ Lτ}∪{x j 6
γ j−→| j ∈ Jτ}

f (x1, . . . ,xar( f )) 6
τ−→

and the substitution σ τ be used at the bottom of πτ , with σ τ(t`) /∈V for `∈L and σ τ(x j)∈V for j∈ J.
Note that σ(xi)=σ τ(xi) for i=1, . . . ,ar( f ). By choosing the right-hand sides of premises in rτ different
from the ones in r, we may assume, w.l.o.g., that σ τ = σ .

Exactly as above, P-ruloids rk =
Hk

σ(tk)
βk−→σ(yk)

for each k∈K∪Kτ and r`= H`

σ(t`) 6
γ`−→

for each `∈L∪Lτ

are linearly provable from P̂+ by means of strict subproofs πk and π` of π or πτ , where H =
⋃

k∈K Hk ∪⋃
`∈L H`∪{σ(x j) 6

γ j−→ | j∈ J} and Hτ =
⋃

k∈Kτ Hk∪
⋃

`∈Lτ H`∪{σ(x j) 6
γ j−→ | j∈ Jτ}.

By Lem. 17 there is a rule in P̂+ of the form

{tk
βk−→ yk | k ∈ K′}∪{t` 6

γ`−→| ` ∈ L′}∪{x j 6
γ j−→| j ∈ J′}

f (x1, . . . ,xar( f )) 6
α−→

with K′ ⊆ K ∪Kτ , L′ ⊆ L∪Lτ and J′ ⊆ J ∪ Jτ , and such that (1) for any ` ∈ L′ there is an `′ ∈ L∪Lτ

with t`′ = t` and γ`′ = τ , and (2) for any j ∈ J′ there is an j′ ∈ J∪ Jτ with t j′ = t j and γ j′ = τ; making an
arbitrary choice for `′ in case of ambiguity, let Hτ

` := H`′ .

By induction there is a P-ruloid H ′k

σ(tk)
βk−→σ(yk)

with H ′k ⊆ H+
k ∪Hs−

k , for each k∈K′. Likewise, there

is a P-ruloid H ′`
σ(t`) 6

γ`−→
with H ′`⊆ (H`∪Hτ

` )
+∪ (H`∪Hτ

` )
s−, for each `∈L′. By composition of proofs, we
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obtain a linear ruloid H ′

t 6α−→
with H ′ =

⋃
k∈K′ H

′
k∪
⋃

`∈L′ H
′
`∪{σ(x j) 6

γ j−→ | j∈J′} ⊆ (H∪Hτ)+∪ (H∪Hτ)s−.
2

Proof of Thm. 8. Let P be a manifestly delay resistant standard TSS in ready simulation format. By
Prop. 11, the TSS P̂‡, constructed in Sec. 2.6, is manifestly delay resistant, and thus negative-stable. By
Lem. 11, it is manifestly τ-pollable.

By Lem. 16 the TSS P̂+ is manifestly τ-pollable. So by definition the rules of P̂+ are positive delay
resistant as well as τ-pollable w.r.t. P̂+. By Lem. 12, each nxytt rule linearly provable from P̂+, i.e. each
linear P-ruloid, is positive delay resistant w.r.t. P̂+. By Lem. 18 all linear P-ruloids are negative delay
resistant w.r.t. P̂+. Thus P is delay resistant. 2

Proof of Thm. 9. Let P be a TSS meeting the conditions of Thm. 9. By Prop. 12, the TSS P̂‡ is manifestly
delay resistant. From here, the argument proceeds as above. 2
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