On Distributability of Petri Nets

(extended abstract¥

Rob van Glabbeék?, Ursula GoltZ? and Jens-Wolfhard Schicke-Uffmahn

! NICTA, Sydney, Australia
2 School of Computer Sc. and Engineering, University of New South §VSedney, Australia
3 Institute for Programming and Reactive Systems, TU Braunschwen&sy

rvg@cs.stanford.edu goltz@ips.cs.tu-bs.de drahflowv@gm x.de

Abstract. We formalise a general concept of distributed systems as sequential
components interacting asynchronously. We define a correspordssyaf Petri

nets, called LSGA nets, and precisely characterise those system sieriic
which can be implemented as LSGA nets up to branching ST-bisimilarity with
explicit divergence.

1 Introduction

The aim of this paper is to contribute to a fundamental unideding of the concept
of a distributed reactive system and the paradigms of symcius and asynchronous
interaction. We start by giving an intuitive characterisatof the basic features of dis-
tributed systems. In particular we assume that distribsiestiems consist of compo-
nents that reside on different locations, and that any sigoie one component to an-
other takes time to travel. Hence the only interaction merdma between components
is asynchronous communication.

Our aim is to characterise which system specifications magnpkemented as dis-
tributed systems. In many formalisms for system speciboatir design, synchronous
communication is provided as a basic notion; this happensxdample in process alge-
bras. Hence a particular challenge is that it may be negessarmulate synchronous
communication by asynchronous communication.

Trivially, any system specification may be implemented whstedly by locating
the whole system on one single component. Hence we needéspote additional re-
guirements. One option would be to specify locations fotesysactivities and then to
ask for implementations satisfying this distribution atilll greserving the behaviour of
the original specification. This is done (0 [1]. Here we persudifferent approach. We
add another requirement to our notion of a distributed systeamely that its compo-
nents only allow sequential behaviour. We then ask whetharlaitrary system specifi-
cation may be implemented as a distributed system congistisequential components
in an optimal way, that is without restricting the concugf the original specifica-
tion. This is a particular challenge when synchronous comaation interacts with
concurrency in the specification of the original system. Vilegive a precise charac-
terisation of the class of distributable systems, whiclwaams in particular under which
conditions synchronous communication may be implememeddistributed setting.

* This work was partially supported by the DFG (German Research Ftanjla

2 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

For our investigations we need a model which is expressigagmto represent con-
currency. It is also useful to have an explicit represeaitedif the distributed state space
of a distributed system, showing in particular the localtooinstates of components.
We choose Petri nets, which offer these possibilities aiatiadally allow finite repre-
sentations of infinite behaviours. We work within the classtauctural conflict net§4]
—a proper generalisation of the class of one-safe placaitran systems, where con-
flict and concurrency are clearly separated.

For comparing the behaviour of systems with their distedumplementation we
need a suitable equivalence notion. Since we think of opstesys interacting with
an environment, and since we do not want to restrict conoayrén applications, we
need an equivalence that respects branching time and cencyrto some degree.
Our implementations use transitions which are invisibléh® environment, and this
should be reflected in the equivalence by abstracting froch sansitions. However,
we do not want implementations to introduce divergencehénlight of these require-
ments we work with two semantic equivalenc8gep readiness equivaleniseone of
the weakest equivalences that captures branching timeuo@mcy and divergence to
some degree; wherebsanching ST-bisimilarity with explicit divergenéaly captures
branching time, divergence, and those aspects of conayrtbat can be represented
by concurrent actions overlapping in time. We obtain theesaharacterisation for both
notions of equivalence, and thus implicitly for all notianetween these extremes.

We model distributed systems consisting of sequential @orapts as an appropri-
ate class of Petri nets, call&&EGA netsThese are obtained by composing nets with
sequential behaviour by means of an asynchronous paratigbasition. We show that
this class corresponds exactly to a more abstract notionstrfillited systems, for-
malised aglistributed net$5].

We then consider distributability of system specificatiatsch are represented as
structural conflict nets. A néY is distributableif there exists a distributed implementa-
tion of N, that is a distributed net which is semantically equivalen¥tdn the imple-
mentation we allow unobservable transitions, and lalggliof transitions, so that single
actions of the original system may be implemented by ma@ttphnsitions. However,
the system specifications for which we search distributgglementations arelain
nets without these features.

We give a precise characterisation of distributable netsrims of a semi-structural
property. This characterisation provides a formal proaf the interplay between choice
and synchronous communication is a key issue for distriblitia

2 Basic Notions

We consider here general labelled place/transition nets avc weights. Arc weights
are not necessary for the results of the paper, but are iedliod the sake of generality.
We will employ the following notations for multisets.

Definition 1. Let X be a set.
— A multisetover X is a functiond: X — IN, i.e. A € IN~.
— = € X is anelement ofa multiset4 € IN™, notationz € A, iff A(z) > 0.
— For multisetsA and B over X we write A < Biff A(x) < B(z) forall z € X;

On Distributability of Petri Nets 3

A + B denotes the multiset oveé¥ with (A + B)(z) := A(z) + B(z),
A\ B denotes the multiset ove¢ with (A — B)(x) := max(A(x) — B(z),0), and
for k € IN the multisett - A is given by(k - A)(z) := k A().
— The function(): X — IN, given by()(x) := 0 for all z € X, is theemptymultiset.
— If Ais a multiset overX andY C X then A]Y denotes the multiset ovar
defined by(A [Y)(z) := A(x) forallz € Y.
i i = 5, ex A@).

— A multiset A over X isfiniteiff {z | x € A} is finite, i.e., iff | A] < co.

Two multisetsA: X —IN andB: Y —IN areextensionally equivaleriff A [(X\Y)=
B(Y\X)=0,andA [(XNY)=B [(XNY). In this paper we often do not distinguish
extensionally equivalent multisets. This enables usjfstance, to usd+ B even when
A and B have different underlying domains.

A multiset A with A(x) € {0, 1} for all = is identified with the sefx | A(x) = 1}.

Definition 2. Let Act be a set ofisible actionsandr ¢ Act be aninvisible action
A (labelleg Petri net(overAct U {7}) is atupleN = (S, T, F, My, ¢) where

— S andT are disjoint sets (gblacesandtransitiong,

— F:(SxTUT x S)— IN (theflow relationincludingarc weight$,
— My : S — IN (theinitial marking), and

— ¢ :T — Act U {7} (thelabelling function.

Petri nets are depicted by drawing the places as circlestanttdnsitions as boxes,
containing their label. Identities of places and transgiare displayed next to the net
element. When¥'(z,y) > 0 for x,y € S U T there is an arrowgc) from zx to vy,
labelled with thearc weightF'(x, y). Weights 1 are elided. When a Petri net represents
a concurrent system, a global state of this system is givamasking a multiset)M of
places, depicted by placiny (s) dots ¢oken$ in each place. The initial state is\/;.

To compress the graphical notation, we also allow univeysahtifiers of the form
Vx.¢(x) to appear in the drawing (cf. Figl 3). A quantifier replacesuo@nces ofr
in element identities with all concrete values for whigfx) holds, possibly creating
a set of elements instead of the depicted single one. An anhiwh only one end is
replicated by a given quantifier results in a fan of arcs, aneéch replicated element.

If both ends of an arc are affected by the same quantifier, amsareated between
pairs of elements corresponding to the samleut not between elements created due to
differing values ofr.

The behaviour of a Petri net is defined by the possible movesdas markings\/
and)’, which take place when a finite multis@tof transitiondires In that case, each
occurrence of a transitionin G consumed-(s, t) tokens from each place Naturally,
this can happen only i#/ makes all these tokens available in the first place. Next, each
t producesF'(t, s) tokens in each. Definition[4 formalises this notion of behaviour.

Definition 3. Let N = (S, T, F, My, /) be a Petrinetand € SUT.

The multisetSz, z* : SUT — IN are given by’ z(y) = F(y,z) andz®(y) = F(x,y)
forallye SUT.If x € T, the elements ofx andx*® are calledore- and postplaces
of x, respectively. These functions extend to multis€ts S UT — IN as usual, by

*X = erSuT X(z)-*randX*® := erSuT X(x) - x®.

4 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

Definition 4. Let N = (S, T, F, My, ¢) be a Petri net(y ¢ IN”, G non-empty and finite,
andM, M’ € IN®. G is astepfrom M to M’, written M [G)y M', iff °*G C M (G is
enabledandM’' = (M \ *°G) + G°.

Note that steps are (finite) multisets, thus allowing selfieurrency, i.e. the same tran-
sition can occur multiple times in a single step.

In our nets transitions are labelled wittttionsdrawn from a set Act) {r}. A
transitiont can be thought of as the occurrence of the action If /(¢) € Act, this oc-
currence can be observed and influenced by the environmernit,4¢) = 7, it cannot
andt is aninternal or silenttransition. Transitions whose occurrences cannot be distin-
guished by the environment carry the same label. In paaticsince the environment
cannot observe the occurrence of internal transitiond,ahaly are all labelled.

To simplify statements about behaviours of nets, we use sirbeeviations.

Definition 5. Let N = (S, T, F, MO,E_) be a Petri net.
We write My %5 My, fora € ActU {7}, when3t € T. a = £(t) A My [{t})n M>.

a1a2- -y

Furthermore, forajas - - - a,, € Act™ we write M, ——= 5 M5 when
M, =S y= B y=N - =N =N M

where=> 5 denotes the reflexive and transitive closure-6f .

Fora € Act U {7}, we write M, % v M, for My 55 MoV (=7 A My = Ms),
meaning that in case = 7 performing ar-transition is optional. We writd/; — v
for IM,. My 55 My, and M, =y for AM,. M, =55 Ms. Likewise M, [G) n
abbreviatesIM>. M, [G) y M>. We omit the subscripV if clear from context.

Definition 6. Let N = (S, T, F, My, ¢) be a Petri net.

— Amarking M € IN® is said to baeachable inN iff there is ac € Act* such that
My ==y M. The set of alreachable markings a¥ is denoted byM;) y.

— N isone-saféff M € [My)y = Ve e S.M(z) <1.

— Theconcurrency relation— C T2 is given byt — u < IM € [Mg). M [{t,u}).

— N is astructural conflict netff for all ¢, € T with t — v we have®t N *u = (.

We use the ternplain netsfor Petri nets wheré is injective and no transition has the
labelr, i.e. essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: etk finitely many places
and transitions. However, our work also applies to infingesrwith the properties that
°t # () for all transitionst € T', and any reachable marking (a) is finite, and (b) enables
only finitely many transitions. Henceforth, we call suchafetitary. Finitariness can
be ensured by requiring/y| < co AVt € T.*t D AVx € SUT. |z°| < <.

We use the following variant of readiness semantics [11ptogare behaviour.

Definition 7. Let N = (S, T, F, My, ¢) be a Petri nety € Act* andX C INA®",
(o, X) is astep ready paiof V iff

IM. My == M AM = AN X = {{(G) | M[G)}.

Here we extend the labelling functidrto finite multisets of transitions elementwise.
We write Z(N) for the set of all step ready pairs of.
Two Petri netsV; and N, arestep readiness equivalem; ~4 No, iff Z(N1)=%(N>).

On Distributability of Petri Nets 5

ST-bisimilaritywas proposed in [7] as a non-interleaved version of bisimilarity that
respects causality to the extent that it can be expressegtnmstof the possibility of
durational actions to overlap in time. It was extended totangpwith internal actions
in [15], based on the notion efeak bisimilarityof [10]. Here we apply the same idea,
but based omranching bisimilarity[8], which unlike weak bisimilarity fully respects
the branching structure of related systems.

An ST-markingf a netN = (S, T, F, My, ¢) is a pair(M, U)eIN° x T* of a normal
marking, together with a sequence of transitionerently firing Theinitial ST-marking
is M, := (My,¢). The elements of Act := {a*, a™" | a € Act, n > O} are called
visible action phasesindAct® := Act™ U {r}. ForU c T, we writet €™ U if tis
then' element ofU. Furthermord/ —" denoted’/ after removal of thex*" transition.

Definition 8. Let N = (S, T, F, MO, ¢) be a Petri net, labelled over Act {r}.
TheST—transmon relations—- for n € Acti between ST-markings are given by
(M,U) % — (M"U")iff IteT. L(t)=anNM[{t}) N\M'=M -t N\U" = Ut.
(M,U) L2— (M, U’)lﬁﬂte(”)UE()—a/\U’:U_”/\M’:M—i—t’.
(M,U) = (M, U"iff M = M'ANU'=U.

Now branching ST-bisimilarityis branching bisimilarity[8], applied to the labelled
transition system made up of ST-markings of nets and the&ikitions between them.

Definition 9. Two Petri nets\V; and N, are branching ST-bisimilaiff there exists a
relationR between the ST-markings af;, and N, such that, for alh € Actf:
1. Mo RMoo;
2. if My RM, andMy —L N, thenIM!, 97, such that
My = ML 25 oy, 91, RN, and 9y, RN ;
3. if M RM, and My —L MY, thenIMT, 91, such that
My = ml 2 o, omI RN, and9, RS

If a system has the potential to engage in an infinite sequehiceernal actions, one
speaks ofdivergence Branching bisimilaritywith explicit divergencd8], is a variant
of branching bisimilarity that fully respects the divergibehaviour of related systems.
Since here we only compare systems of which one admits nogdimee at all, the
definition simplifies to the requirement that the other systeay not diverge either. We
write N1 ~ bSTb Ny iff N1 and N, are branching ST-bisimilar with explicit divergence.

3 Distributed Systems

In this section, we stipulate what we understand by a digkil system, and subse-
guently formalise a model of distributed systems in termBetfi nets.

— A distributed system consists of components residing deréift locations.

— Components work concurrently.

— Interactions between components are only possible by éxplimmmunications.
— Communication between components is time consuming antthsynous.

Asynchronous communication is the only interaction me@ram a distributed system
for exchanging signals or information.

6 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

— The sending of a message happens always strictly befoexgot (there is a causal
relation between sending and receiving a message).

— A sending component sends without regarding the state oktteaver; in particu-
lar there is no need to synchronise with a receiving compiodter sending the
sender continues its behaviour independently of receititofmessage.

As explained in the introduction, we will add another regment to our notion of a
distributed system, namely that its components only allegquential behaviour.

Formally, we model distributed systems as nets consistimgimponent nets with
sequential behaviour and interfaces in terms of input anpudylaces.

Definition 10. Let N=(S, T, F, My, ¢) be aPetrinet], OC S, INO=0 andO*® = {.
1. (N, 1,0) is acomponent with interface, O).
2. (N, 1,0) is asequentiatomponent with interfacél, O) iff 3Q C .S\ (I U O) with
VieT |t Q|=1AtTQ]=1and|M, Q| =1.

An input place; € I of a componenf can be regarded as a mailbox®for a specific
type of messages. An output place O, on the other hand, is an address outside
whichC can send messages. Moving a token mi®like posting a letter. The condition
o® = () says that a message, once posted, cannot be retrieved bynipement.

A set of places likeg) above is called ay-invariant The requirements guarantee
that the number of tokens in these places remains congtahtsicasd. It follows that
no two transitions can ever fire concurrently (in one steppv@rsely, whenever a net is
sequential, in the sense that no two transitions can fire@step, it is easily converted
into a behaviourally equivalent net with the requir&dnvariant, namely by adding
a single marked place with a self-loop to all transitionsisTinodification preserves
virtually all semantic equivalences on Petri nets from ttegdture, includingwiy .-

Next we define an operator for combining components with @sywnous commu-
nication by fusing input and output places.

Definition 11. Let 8 be an index set.

Let ((Sk, Tk, Fr, Moy, L), Ix, Or) with k € R be components with interface such that
(S UT)N (S UTy) = (I UO) N (L;UO) forall k,1 € K with k # [(components
are disjoint except for interface places) and moredyen I, = () for all k&, € & with

k # 1 (mailboxes cannot be shared; the recipient of a messageagsunique).

Then theasynchronous parallel compositiafithese components is defined by

H_eﬁ((Sk,Tk,Fk,MOk,Kk),Ik,Ok) — ((S,T, F, My, ?),1,0)

ponentwise union of all netsj=J, . I» (we accept additional inputs from outside),
andO={J;.c s Or \ Uic I (once fused with an inpub, € Oy is no longer an output).

Observation 1. || is associative.

This follows directly from the associativity of the (mukgt union operator. O
We are now ready to define the class of nets representingnsysieasynchronously
communicating sequential components.

Definition 12. A Petri net/V is anLSGA netalocally sequential globally asynchronous
nel iff there exists an index set and sequential components with interfége % € &,
such that{ NV, I, O) = ||xcxCx for somel andO.

On Distributability of Petri Nets 7

Up to ~{y,—Or any reasonable equivalence preserving causality andHirgntme
but abstracting from internal activity—the same class of BS§ystems would have
been obtained if we had imposed, in Oefl 10, thad and(@ form a partition ofS and
that®7 = (). However, it is essential that our definition allows multiple siéions of a
component to read from the same input place.

In the remainder of this section we give a more abstract cheniaation of Petri nets
representing distributed systems, nameldiagibutedPetri nets, which we introduced
in [5]. This will be useful in Sectiohl4, where we investigaistributability using this
more semantic characterisation. We show below that theretexcharacterisation of
distributed systems as LSGA nets and this abstract chaisatien agree.

Following [1], to arrive at a class of nets representingritisted systems, we as-
sociatelocalities to the elements of a né¥Y = (S, T, F, My, ¢). We model this by a
function D : SUT — Loc, with Loc a set of possible locations. We refer to such a
function as aistributionof N. Since the identity of the locations is irrelevant for our
purposes, we can just as well abstract from Loc and reprd3dmt the equivalence
relation=p on S U T given byz =p y iff D(x) = D(y).

Following [5], we impose a fundamental restriction on disttibns, namely that
when two transitions can occur in one step, they cannot Heaaied. This reflects our
assumption that at a given location actions can only ocayuesatially.

In [5] we observed that Petri nets incorporate a notion othyonous interaction,
in that a transition can fire only by synchronously taking tbkens from all of its
preplaces. In general the behaviour of a net would changealfdif a transition would
take its input tokens one by one—in particular deadlocks beayptroduced. Therefore
we insist that in a distributed Petri net, a transition arldtalinput places reside on
the same location. There is no reason to require the samedautput places of a
transition, for the behaviour of a net would not change sicgmtly if transitions were
to deposit their output tokens one by ohe [5].

This leads to the following definition of a distributed Petei.

Definition 13 ([5]). A Petri netN = (S,T, F, My, ¢) is distributediff there exists a
distribution D such that

QD VseS, teT.set=1t=p s,

Q) Vt,bueT.t —u=1%p u.
N is essentially distributed (2) is weakened t&/t, u€T. t — uNl(t) # T =t #£p u.

A typical example of a net which is not distributed is showiirig.[1 on Pag€l9. Tran-
sitionst andwv are concurrently executable and hence should be placed eneditflo-
cations. However, both have preplaces in common witthich would enforce putting
all three transitions on the same location. In fact, disteld nets can be characterised
in the following semi-structural way.

Observation 2. A Petri net is distributed iff there is no sequertge. . ., t,, of transi-
tions withtg — ¢,, and®t;,_1 N *¢; 7£ () fori = 1,...,n. O

It turns out that the classes of LSGA nets and distributabls mssentially coincide.
Moreover, up toviy, these classes also coincide with the more liberal notion of es-
sentially distributed nets, permitting concurrency oemmal transitions at the same lo-
cation. We will make use of that in proving our main theorem.

8 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

Theorem 1. Any LSGA net is distributed, and for any essentially distributetd/Yie
there is an LSGA ne¥’ with N’ ~£y.,, N.

Proof. In the full version of this paper [6]. O
Observation 3. Every distributed Petri net is a structural conflict net. O
Corollary 1. Every LSGA net is a structural conflict net. O

4 Distributable Systems

We now consider Petri nets as specifications of concurrestésys and ask the question
which of those specifications can be implemented as disétbsystems. This question
can be formalised as

Which Petri nets are semantically equivalent to distrilounets?

Of course the answer depends on the choice of a suitable seraguivalence. Here

we will answer this question using the two equivalencesthiced in Sectiohl2. We

will give a precise characterisation of those nets for whi@hcan find semantically

equivalent distributed nets. For the negative part of thigracterisation, stating that
certain nets are not distributable, we will use step readimgjuivalence, which is one
of the simplest and least discriminating equivalences inage that abstracts from
internal actions, but preserves branching time, concayremd divergence to some
small degree. As explained in![5], giving up on any of these Hdtieese properties

would make any Petri net distributable, but in a rather @iand unsatisfactory way.
For the positive part, namely that all other nets are indestdloutable, we will use the

most discriminating equivalence for which our implemeiotaivorks, namely branch-

ing ST-bisimilarity with explicit divergence, which is fin¢ghan step readiness equiv-
alence. Hence we will obtain the strongest possible resaiftboth directions and it

turns out that the concept of distributability is fairly tei w.r.t. the choice of a suitable
equivalence: any equivalence notion between step readdgesslence and branching
ST-bisimilarity with explicit divergence will yield the sae characterisation.

Definition 14. A Petri netN is distributableup to an equivalence: iff there exists a
distributed netV’ with N/ ~ N.

Formally we give our characterisation of distributability classifying which finitary
plain structural conflict nets can be implemented as digtieidbnets, and hence as LSGA
nets. In such implementations, we use invisible transstidde study the concept “dis-
tributable” for plain nets only, but in order to get the lasgelass possible we allow
non-plain implementations, where a given transition maglé into multiple transi-
tions carrying the same label.

It is well known that sometimes a global protocol is necessaimplement syn-
chronous interaction present in system specificationsattiqular, this may be needed
for deciding choices in a coherent way, when these choiacgsreeagreement of mul-
tiple components. The simple net in Fig. 1 shows a typicabsion of this kind. Inde-

On Distributability of Petri Nets 9

pendent decisions of the two choices might lead p q
to a deadlock. As remarked in/[5], for this par-
ticular net there exists no satisfactory distributed
Implementation that fully respects the reactive
behaviour of the original system. Indeed such
M-structures, representing interference between
concurrency and choice, turn out to play a cru- Fig. 1. A fully marked M.
cial role for characterising distributability.

Definition 15. Let N = (S, T, F, My, ¢) be a Petri netlV has &ully reachable purév
iff 3t,u,v € T.%tN%u # DAuN®v £ QA*tN*v = OAIM € [My).*tUuU®v C M.

Note that Definitiod 16 implies that# u, u # v andt # v.

We now give an upper bound on the class of distributable netglbpting a result
from [5].

Theorem 2. Let NV be a plain structural conflict Petri net. IN has a fully reachable
pureM, thenN is not distributable up to step readiness equivalence.

Proof. In [B] this theorem was obtained for plain one-safe flethe proof applies
verbatim to plain structural conflict nets as well. O

Sincextyp, is finer thamr 4, this result holds also for distributability up e/, (and
any equivalence betweeny, and~{y,).

In the following, we establish that this upper bound is tigind hence a finitary
plain structural conflict net is distributable iff it has ndl{ reachable purdi. For this,
it is helpful to first introduce macros in Petri nets for resibility of transitions.

4.1 Petri nets with reversible transitions

A Petri net with reversible transitiongeneralises the notion of a Petri net; its se-
mantics is given by a translation to an ordinary Petri nedradhy interpreting the re-
versible transitions as syntactic sugar for certain ngjrfrants. It is defined as a tuple
(S,T, 02,1, F, My, ¢) with S a set of places]" a set of (reversible) transitions, labelled
by ¢: T — Act U {r}, 22 a set ofundo interfacesvith the relationt C 2 x T linking
interfaces to transitions\/, € IN® an initial marking, and

F' (S x T x {in, early, late, out, far} — N)

the flow relation. Fort € T" andtype € {in, early, late, out, far}, the multiset of places
ttypeENS IS given byttype(s) = F(S, t, type). Whens ettvre for type € {z’n, early, late},
the places is called apreplaceof ¢ of typeype whens € ¢%9P¢ for type € {out, far},

s is called apostplaceof ¢ of typetype For each undo interface € {2 and transitiont
with 1(w, t) there must be placasdo, (), reset, (t) andack,(¢) in S. A transition
with a nonempty set of interfaces is callexversible the other §tandard transitions
may have pre- and postplaces of typesndout only—for these transition&™ = *¢ and
tout =t*. In casef? = (), the net is just a normal Petri net.

*In [5] the theorem was claimed and proven only for plain nets with a fullghiablevisible
pureM; however, for plain nets the requirement of visibility is irrelevant.

10 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

A global state of a Petri net with reversible transitionsii®g by a marking/ €N
together with the state of each reversible transition ‘@otly in progress”. Each tran-
sition in the net can fire as usual. A reversible transitiammm@reover take back (some
of) its output tokens, and bendoneandreset When a transitiort fires, it consumes
> typec{in, carly, late} T (S: 1, type) tokens from each of its preplacesand produces
D typec{out, fary ' (8:1; type) tokens in each of its postplacesA reversible transition
t that has fired can start its reversal by consuming a token tnedho,, (¢) for one of its
interfacesv. Subsequently, it can take back one by one a token from its postplat
typefar. After it has retrieved all its output of type, the transition is undone, thereby
returningF (s, t, early) tokens in each of its preplace®f typeearly. Afterwards, by con-
suming a token frommeset,, (¢), for the same interface that started the undo-process,
the transition terminates its chain of activities by retognF'(s, t, iate) tokens in each
of its late preplaces:. At that occasion it also produces a tokemak,, (¢). Alternatively,
two tokens inundo,, (¢) andreset,, (¢) can annihilate each other without involving the
transitiont; this also produces a tokenaik,, (¢). The latter mechanism comes in action
when trying to undo a transition that has not yet fired.

Fig.[2 shows the translation of a reversible transitiomith ¢(¢) = a into a ordi-
nary net fragment. The arc weights on the green (or grey)anesnherited from the
untranslated net; the other arcs have weight 1.

(late) (in) (early)
O\ H/O undos, (¢)
a 4 (O reset,(t)

(far) Q/ t ack,(t)
(out)
Viet™ i Vi € tlate | e Vee et
Q\j-fire M reset,, O
0 Q(— a T

ack, (f)/

out
Voet Ve (w, t) /Q

t-elide, | 7T [e«——

f
Vf et

t - undone

take(f,t) ¢ -undo(f) took(f,t)

Fig. 2. A reversible transition and its macro expansion.

On Distributability of Petri Nets 11

4.2 The conflict replicating implementation

Now we establish that a finitary plain structural conflict tiett has no fully reachable
pureM is distributable. We do this by proposing tbenflict replicating implementation
of any such net, and show that this implementation is alwaysgsentially distributed,
and (b) equivalent to the original net. In order to get thergjest possible result, for
(b) we use branching ST-bisimilarity with explicit diveryze.

To define the conflict replicating implementation of a pet= (S, T, F, My, £) we
fix an arbitrary well-ordering< on its transitions. We lét, ¢, h, i, j, k, [range over these
ordered transitions, and write

— i#j iff i£jA%iN®j#D (transitions and; arein conflict), andz’ij iff i#jVi=j,

— i <#jiff i <jAi#j, andi <#jiff i <¥jVi=j.
Fig.[3 shows the conflict replicating implementatidh It is presented as a Petri net
Z(N) = (58", T", F', 2,1, M{, ¢") with reversible transitions. The sét of undo inter-
faces (not drawn) i$’, and forie (2 we havel(i, t) iff te(2;, where the sets of transitions
2; € N7 are specified in Fid.]3. The implementati@/V) inherits the places oV
(i.,e. 8" O 5), and we postulate that//[S = M,. Given this, Fig[B is not merely
an illustration ofZ (N)—it provides a complete and accurate description of it, thereby
defining the conflict replicating implementation of any netinterpreting this figure
it is important to realise that net elements are completelgmnined by their name
(identity), and exist only once, even if they show up muéigimes in the figure. For
instance, the placey,; with h=2 andj=5 (when using natural numbers for the transi-
tions inT) is the same as the plaegy,; with j=2 and/=5; it is a standard preplace of
execute;, (for all i <# 2), a standard postplace fetched’,, as well as a late preplace
of transfer;.

The Ble of the transitionsdlistribute,, for p € S'is to distribute a token ip to copies
p; of p in the localities of all transitiong € T" with p € *3. In casej is enabled inV,
the transitionnitialise; will become enabled i@ (V). These transitions put tokens in
the placepre? WhICh are preconditions for all transitioesecute’ , which model the
execution ofj at the location of. When two conflicting transitiond andj are both
enabled inV, the first stepsnitialise;, andinitialise; towards their execution ifi(/V)
can happen in parallel. To prevent them from executing hmtac;ute‘7 (of 5 atits own
location) is only possible aftetransfer which disablegxecute’.

The main idea behind the confllct replicating implementatiothat a transition
heT is primarily executed by a sequential component of its owbhwihen a conflicting
transitionj gets enabled, the sequential component implementintay “steal” the
possibility to executér from the home component @f, and keep the options to do
h andj open until one of them occurs. To prevénand; from stealing each other’s
Initiative, which would result in deadlock, a global asynirges built in by ordering
the transitions. Transitiof can steal the initiative frorh only whenh < j.

In casej is also in conflict with a transitioh, with j < [, the initiative to perform
j may subsequently be stolen hyin that case eithelr and!/ are in conflict too—then
[takes responsibility for the execution afas well—orh and! are concurrent—in
that caseh will not be enabled, due to the absence of fully reachable pgen V.
The absence of fully reachable puvs also guarantees that it cannot happen that two
concurrent transitiong andk both steal the initiative from an enabled transitian

12 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

70

distribute, | T

PJ<>

F(p,j) /®

initialise; | 7

() trans”-in

Thiti ®—<—> T transfer?

pre’ trans’-out
il

((i)f——®

execute§

fetch?-in ()
e >—>F(q’) T

fetch?;-out ()

undo, ()

q,c
fetch’

fetchedé T

\\

T

O pre]

reset; () U/ ﬁ ack;(t)

finalise’ | T

F(i,r)
r

vieT
Vpe*®j
Vh <# j
Vi <# j
Vk ># j
VI >#
Vq € *i
Ve e ¢°
Vrei®

vt € 02, = {initialise, | ¢ £ i} +

{transfer’ | b <# ¢ £ i}

Fig. 3. The conflict replicating implementation

On Distributability of Petri Nets 13

After the firing ofexecute;'. all tokens that were left behind in the process of care-
fully orchestrating this firing will have to be cleaned up pi@pare the net for the next
activity in the same neighbourhood. This is the reason feréversibility of the tran-
sitions preparing the firing aéxecute;. Hence there is an undo interface for each tran-
sitioni € T’, cleaning up the mess made in preparation of flangcute for somej.

2; is the multiset of all transitions that could possibly have contrlbuted to this. For
each of them its interfaceis activated, byexecutez- depositing a token imndo;(t).
When all preparatory transitions that have fired are undimhkens appear in the places
pc forall pe*i andc € p*. These are collected Hgtchi”;, after which allt € £2; get

a reset signal. Those that have fired and were undone are aesethose that never
fired performelide;(¢). In either case a token appearsaick;(t). These are collected
by finalise’, which finishes the execution éby depositing tokens in its postplaces.

Proposition 1. Z(N) is essentially distributed for every Petri n&t

Proof sketchWe take thecanonicaldistribution D of N, in which=p, is the equiva-
lence relation on places and transitigeneratedy Condition (1) of Definitio 113. We
need to show thab satisfies the weakened Condition 2. Any location that harbaurs a
external transmorexecutej for somei < j € T", also harboursitialise;-undo(pre?),
transfer undo(trans -out) for all h<#j, execute’; for all i <7# j,and, for all ># Js
transfer‘7 fire and|n|t|al|sel undo(trans;-in). In [IEI] we show that none of these tran-
sitions can happen concurrently Wﬂ*hecutej. [

Theorem 3. Let NV be a finitary plain structural conflict net without a fully reachable
pureM. ThenN is distributable up toxiy .

Proof. In the full version of this papef [6]. There we show tH&tV) ~:.,, N. Hence
Z(N) is a essentially distributed implementation/é6f Now apply Theorernll. O

Given the complexity of our construction, no techniquesvikma@o us were adequate
for performing this proof. We therefore had to develop an ehtinew method for
rigorously proving the equivalence of two Petri nets upg.,, one of which known
to be plain. This method is presented|ih [6].

Corollary 2. Let N be a finitary plain structural conflict net. TheM is distributable
iff it has no fully reachable pur#. O

5 Conclusion

In this paper, we have given a precise characterisatiorstilolitable Petri nets in terms
of a semi-structural property. Moreover, we have showndhanotion of distributabil-
ity corresponds to an intuitive notion of a distributed systby establishing that any
distributable net may be implemented as a network of asymdusly communicating
components.

In order to formalise what qualifies as a valid implementatige needed a suitable
equivalence relation. We have chosen step readiness &naegor showing the impos-
sibility part of our characterisation, since it is one of geplest and least discriminat-
iIng semantic equivalences imaginable that abstracts finb@nnal actions but preserves

14 R.J. van Glabbeek, U. Goltz and J.-W. Schicke-Uffmann

branching time, concurrency and divergence to some smglede For the positive
part, stating that all other nets are implementable, we max@duced a combination of
several well known rather discriminating equivalencesnely a divergence sensitive
version of branching bisimulation adapted to ST-semantlesice our characterisation
is rather robust against the chosen equivalence; it holéxcirfor all equivalences be-
tween these two notions. However, ST-equivalence (andension of it) preserves the
causal structure between action occurrences only as facas be expressed in terms
of the possibility of durational actions to overlap in tintdence a natural question
is whether we could have chosen an even stronger causatisytigse equivalence for
our implementability result, respecting e.g. pomset eqjaivce or history preserving
bisimulation. Our conflict replicating implementation daeot fully preserve the causal
behaviour of nets; we are convinced we have chosen the ssbpgssible equiva-
lence for which our implementation works. It is an open peobko find a class of nets
that can be implemented distributedly while preservingdjence, branching time and
causality in full. Another line of research is to investigathich Petri nets can be imple-
mented as distributed nets when relaxing the requiremeptesferving the branching
structure. If we allow linear time correct implementatiqnsing a step trace equiva-
lence), we conjecture that all Petri nets become distridatddowever, also in this case
it is problematic, in fact even impossible in our settingpteserve the causal structure,
as has been shown in [14]. A similar impossibility result baen obtained in the world
of ther-calculus in[12].

The interplay between choice and synchronous communicatsrahlieady been
investigated in quite a number of approaches in differearnworks. We refer to [5]
for a rather comprehensive overview and concentrate hereaamt and closely related
work.

The idea of modelling asynchronously communicating setiglecomponents by
sequential Petri nets interacting though buffer places hraady been considered in
[13]. There Wolfgang Reisig introduces a class of systemyasented as Petri nets,
where the relative speeds of different components are gteed to be irrelevant. His
class is a strict subset of our LSGA nets, requiring addailgnamongst others, that
all choices in sequential components are free, i.e. do muémtk upon the existence of
buffer tokens, and that places are output buffers of onlyaameponent. Another quite
similar approach was taken inl [3], where transition labet¢scdassified as being either
input or output. There, asynchrony is introduced by addeg buffer places during net
composition. This framework does not allow multiple selsder a single receiver.

Other notions of distributed and distributable Petri neesmoposed in [9)12]. In
these works, given a distribution of the transitions of g tiet net is distributable iff it
can be implemented by a net that is distributed w.r.t. thattibution. The requirement
that concurrent transitions may not be co-located is abges@n the fixed distribution,
there is no need for such a requirement. These papers difiar¢ach other, and from
ours, in what counts as a valid implementation. A comparedfayur criterion with that
of Hopkins [9] is provided in[[5].

In [5] we have obtained a characterisation similar to Corgl&rbut for a much
more restricted notion of distributed implementatigta(n distributability), disallow-
ing nontrivial transition labellings in distributed implentations. We also proved that
fully reachable puréMs are not implementable in a distributed way, even when using

On Distributability of Petri Nets 15

transition labels (Theoreh 2). However, we were not ablétmsthat this upper bound
on the class of distributable systems was tight. Our cus@nk implies the validity of
Conjecture 1 of([b]. While in[[5] we considered only one-spli@ce/transition systems,
the present paper employs a more general class of plaafibansystems, namely
structural conflict nets. This enables us to give a concieeacterisation of distributed
nets as systems of sequential components interacting wiaaie buffer places.

References

1.

2.

3.

10.
11.

12.

13.

14.

15.

E. Badouel, B. Caillaud & P. Darondeau (20@jstributing Finite Automata Through Petri
Net SynthesisFormal Aspects of Computing3(6), pp. 447-470.

E. Best & Ph. Darondeau (201 Betri Net Distributability In: Proceedings Ershov Infor-
matics Conference (PSI'11), Novosibirsk, RuskiCS, Springer. To appear.

D. El Hog-Benzina, S. Haddad & R. Hennicker (201B)ocess Refinement and Asyn-
chronous Composition with Modalities N. Sidorova & A. Serebrenik, editors: Proceedings
of the 2nd International Workshop @dbstractions for Petri Nets and Other Models of Con-
currency(APNOC’10), Braga, Portugal. Availablelattp://www.Isv.ens-cachan.
fr/Publis/PAPERS/PDF/EHH-apnoc10. pdf ;

R.J. van Glabbeek, U. Goltz & J.-W. Schicke (20J4h)stract Processes of Place/Transition
Systems Information Processing Letteid 1(13), pp. 626 — 633, ddi0.1016/j.ipl.
2011.03.013 .

R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2008 Synchronous and Asynchronous
Interaction in Distributed Systemsn E. Ochmanski & J. Tyszkiewicz, editorMathemat-
ical Foundations of Computer Science 2008ICS 5162, Springer, pp. 16-35, dbi.
1007/978-3-540-85238-4_2 . Full version available as Technical Report 2008-03,
TU-Braunschweighttp://arxiv.org/abs/0901.0048

R.J. van Glabbeek, Goltz U & J.-W. Schicke-Uffmann (20ﬂ|) Distributability of Petri
Nets Technical Report 2011-10, TU Braunschweig. Availablehtip://theory.
stanford.edu/ ~ rvg/abstracts.html#95 . Full version of this paper, to appear.
R.J. van Glabbeek & F.W. Vaandrager (19873tri net models for algebraic theories of
concurrency (extended abstracth: Proc.PARLE '87, LNCS 259, Springer, pp. 224-242.
R.J. van Glabbeek & W.P. Weijland (199Byanching Time and Abstraction in Bisimulation
SemanticsJournal of the ACMA3(3), pp. 555-600, ddi0.1145/233551.233556 :

R.P. Hopkins (1991)Distributable nets In: Advances in Petri Nets 1991 NCS 524,
Springer, pp. 161-187, d4i0.1007/BFb0019974

R. Milner (1989)Communication and Concurrenciprentice Hall, Englewood Cliffs.

E.-R. Olderog & C.A.R. Hoare (1988pecification-oriented semantics for communicating
processesActa Informatica23, pp. 9-66, doi:0.1007/BF00268075

K. Peters, J.-W. Schicke & U. Nestmann (20Bynchrony vs Causality in the Asynchronous
Pi-Calculus In B. Luttik & F. Valencia, editors: Proceedings 18th International \Ebodp
on Expressiveness in Concurren&yachen, Germany, 5th September 20&kctronic Pro-
ceedings in Theoretical Computer Sciefde pp. 89—103, dal0.4204/EPTCS.64.7

W. Reisig (1982)Deterministic Buffer Synchronization of Sequential Proceséet Infor-
matical8, pp. 115-134, ddi0.1007/BF00264434 .

J.-W. Schicke, K. Peters & U. Goltz (2018ynchrony vs. Causality in Asynchronous Petri
Nets In B. Luttik & F. Valencia, editors: Proceedings 18th International V8bdp onEx-
pressiveness in Concurren@achen, Germany, 5th September 20Elgctronic Proceed-
ings in Theoretical Computer Sciengé, pp. 119-131, ddi0.4204/EPTCS.64.9 .

W. Vogler (1993)Bisimulation and Action RefinemenTheor. Comput. Scil14(1), pp.
173-200, doit0.1016/0304-3975(93)90157-O

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://dx.doi.org/10.1007/978-3-540-85238-4_2
http://dx.doi.org/10.1007/978-3-540-85238-4_2
http://arxiv.org/abs/0901.0048
http://theory.stanford.edu/~rvg/abstracts.html#95
http://theory.stanford.edu/~rvg/abstracts.html#95
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/BFb0019974
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.4204/EPTCS.64.7
http://dx.doi.org/10.1007/BF00264434
http://dx.doi.org/10.4204/EPTCS.64.9
http://dx.doi.org/10.1016/0304-3975(93)90157-O

	On Distributability of Petri Nets

