
Divide and Congruence:

From Decomposition of Modalities

to Preservation of Branching Bisimulation

Wan Fokkink1,2, Rob van Glabbeek3,4, and Paulien de Wind1

1 Vrije Universiteit Amsterdam, Section Theoretical Computer Science, Amsterdam
2 CWI, Department of Software Engineering, Amsterdam

3 National ICT Australia, Sydney
4 University of New South Wales, School of Computer Science and Engineering,

Sydney
{wanf,pdwind}@cs.vu.nl, rvg@cs.stanford.edu

Abstract. We present a method for decomposing modal formulas for
processes with the internal action τ . To decide whether a process algebra
term satisfies a modal formula, one can check whether its subterms satisfy
formulas that are obtained by decomposing the original formula. The de-
composition uses the structural operational semantics that underlies the
process algebra. We use this decomposition method to derive congruence
formats for branching and rooted branching bisimulation equivalence.

1 Introduction

Structural operational semantics [20] provides process algebras and specification
languages with an interpretation. It generates a labelled transition system, in
which states are the closed terms over a (single-sorted, first-order) signature, and
transitions between states may be supplied with labels. The transitions between
states are obtained from a transition system specification, which consists of a
set of proof rules called transition rules.

Labelled transition systems can be distinguished from each other by a wide
range of behavioural equivalences, based on e.g. branching structure or decorated
versions of execution sequences. Van Glabbeek [11] classified equivalences for
processes that take into account the internal action τ . Here we focus on one such
equivalence, called branching bisimulation [14].

In general a behavioural equivalence induced by a transition system speci-
fication is not a congruence, i.e. the equivalence class of a term f(p1, . . . , pn)
need not be determined by the equivalence classes of its arguments p1, . . . , pn.
Being a congruence is an important property, for instance in order to fit the
equivalence into an axiomatic framework. Syntactic formats for transition rules
have been developed with respect to several behavioural equivalences, to ensure
that such an equivalence is a congruence. These formats help to avoid repetitive
congruence proofs. Several congruence formats were introduced for bisimulation,
such as the De Simone format [21], the GSOS format [4], the tyft/tyxt format

2 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

[16], and the ntyft/ntyxt format [15]. Bloom [2] introduced congruence formats
for weak and branching bisimulation and for rooted weak and branching bisimu-
lation. These formats include so-called patience rules for arguments i of function
symbols f , which imply that a term f(p1, . . . , pn) inherits the τ -transitions of
its argument pi. Furthermore, arguments of function symbols that contain run-
ning processes are marked, and this marking is used to restrict occurrences of
variables in transition rules.

Behavioural equivalences can be characterised in terms of the observations
that an experimenter could make during a session with a process. Modal logic
captures such observations. A modal characterisation of an equivalence consists
of a class C of modal formulas such that two processes are equivalent if and only
if they make true the same formulas in C. For instance, Hennessy-Milner logic
[17] is a modal characterisation of bisimulation.

Larsen and Liu [19] introduced a method for decomposing formulas from
Hennessy-Milner logic for concrete processes, with respect to terms from a pro-
cess algebra with a structural operational semantics in De Simone format. To
decide whether a process algebra term satisfies a modal formula, one can check
whether its subterms satisfy certain other formulas, obtained by decomposing
the original formula. This method was extended by Bloom, Fokkink & van

Glabbeek [3] to ntyft/ntyxt format without lookahead, and by Fokkink, van

Glabbeek & de Wind [9] to tyft/tyxt format. In [3], the decomposition method
was applied to obtain congruence formats for a range of behavioural equivalences.
The idea is that given an equivalence and its modal characterisation C, the con-
gruence format for this equivalence must ensure that decomposing a formula in
C always produces formulas in C.

Here we extend the work of [3] to processes with τ -transitions. We present
a method for decomposing formulas from modal logic for processes with τ -
transitions. In order to minimise the complexity inherent in the combination
of modal decomposition and the internal action τ , we apply the decomposition
method to so-called abstraction-free TSSs, where only the patience rules contain
the label τ in the conclusion. Furthermore, we use this decomposition method
to obtain congruence formats for branching and rooted branching bisimulation.
These formats include TSSs that are not abstraction-free, owing to the com-
positionality of the abstraction operator, which renames certain actions into τ .
Our formats use two predicates on arguments of function symbols, to mark both
running processes and processes that may have started running. Our congruence
formats are more liberal than the simply BB and RBB cool formats from [2]
and the RBB safe format from [7]. In Sect. 7 we will present a more in-depth
comparison with congruence formats from [2, 7, 13].

In a companion paper [10], we derive congruence formats for η- and rooted
η-bisimulation, with a reference to the current paper for the decomposition
method. Thus we drive home the point that, in contrast to the ad hoc con-
struction of congruence formats from the past, we can now systematically derive
expressive congruence formats from the modal characterisations of behavioural
equivalences.

Divide and Congruence 3

2 Preliminaries

2.1 Equivalences on labelled transition systems

A labelled transition system (LTS) is a pair (
�
,→) with

�
a set of processes and

→ ⊆
�
× (A∪ {τ})×

�
where τ is an internal action and A a set of actions not

containing τ . We use α, β, γ for elements of A ∪ {τ} and a, b for elements of A.
We write p

α
−→ q for (p, α, q) ∈ → and p 6

α
−→ for ¬∃q ∈

�
: p

α
−→ q. Furthermore,

ε
=⇒ denotes the transitive-reflexive closure of

τ
−→.

Definition 1 ([14]). A symmetric relation B ⊆
�
×

�
is a branching bisimula-

tion if pBq and p
α

−→ p′ implies that either α = τ and p′B q, or q
ε

=⇒ q′
α

−→ q′′

for some q′ and q′′ with pBq′ and p′Bq′′.
Processes p, q are branching bisimilar, denoted by p ↔b q, if there exists a

branching bisimulation B with pBq.

Branching bisimulation is not a congruence with respect to most process algebras
from the literature, meaning that the equivalence class of a term f(p1, . . . , pn)
is not always determined by the equivalence classes of its arguments p1, . . . , pn.
A rootedness condition remedies this imperfection.

Definition 2 ([14]). A symmetric relation R ⊆
�
×

�
is a rooted branching

bisimulation if pRq and p
α

−→ p′ implies that q
α

−→ q′ for some q′ with p′↔b q
′.

Processes p, q are rooted branching bisimilar, denoted by p ↔rb q, if there
exists a rooted branching bisimulation R with pRq.

2.2 Modal logic

Modal logic aims to formulate properties of processes in an LTS. Following [11],
we extend Hennessy-Milner logic [17] with the modal connectives 〈ε〉ϕ and 〈τ̂ 〉ϕ.

Definition 3. The class � of modal formulas is defined as follows, where I
ranges over all index sets:

� ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈α〉ϕ | 〈ε〉ϕ | 〈τ̂ 〉ϕ

p |= ϕ denotes that p satisfies ϕ. By definition, p |= 〈α〉ϕ if p
α

−→ p′ with p′ |= ϕ,
p |= 〈ε〉ϕ if p

ε
=⇒ p′ with p′ |= ϕ, and p |= 〈τ̂ 〉ϕ if either p |= ϕ or p

τ
−→ p′

with p′ |= ϕ. We use abbreviations > for the empty conjunction, ϕ1 ∧ ϕ2 for
∧

i∈{1,2} ϕi, ϕ〈α〉ϕ
′ for ϕ ∧ 〈α〉ϕ′, and ϕ〈τ̂ 〉ϕ′ for ϕ ∧ 〈τ̂ 〉ϕ′. We write ϕ ≡ ϕ′ if

p |= ϕ⇔ p |= ϕ′ for any process p in any LTS.

Definition 4. The subclasses � b and � rb of � are defined as follows:

� b ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈ε〉(ϕ〈τ̂ 〉ϕ′) | 〈ε〉(ϕ〈a〉ϕ′)

� rb ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈α〉ϕ̂ | ϕ̂ (ϕ̂ ∈ � b)

The classes � ≡
b and � ≡

rb are the closures of � b, respectively � rb, under ≡.

4 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

The last clause in the definition of � rb guarantees that � b ⊆ � rb, which will be
needed in the proof of Prop. 4. If this clause were omitted, it would still follow
that � ≡

b ⊆ � ≡
rb, using structural induction together with 〈ε〉ϕ ≡ ϕ∨〈τ〉〈ε〉ϕ and

〈τ̂ 〉ϕ ≡ ϕ ∨ 〈τ〉ϕ. Note that if ϕ ∈ � ≡
b , then 〈ε〉ϕ ≡ 〈ε〉(ϕ〈τ̂ 〉ϕ) ∈ � ≡

b .
For L ⊆ � , we write p ∼L q if p and q satisfy the same formulas in L. Note

that, trivially, p ∼ �
b
q ⇔ p ∼ � ≡

b
q and p ∼ �

rb
q ⇔ p ∼ � ≡

rb
q.

Theorem 1. p↔b q ⇔ p ∼ �
b
q and p↔rb q ⇔ p ∼ �

rb
q, for all p, q ∈

�
.

A proof of this theorem is presented in the appendix.

2.3 Structural operational semantics

Let V be an infinite set of variables, with typical elements x, y, z. A syntactic
object is closed if it does not contain any variables. A signature is a set Σ of
function symbols f with arity ar(f). We always take |Σ|, |A| ≤ |V |. The set

�
(Σ) of terms over Σ and V is defined as usual. t, u denote terms and p, q

closed terms. var (t) is the set of variables that occur in t. A substitution is a
partial function from V to

�
(Σ). A closed substitution σ is a total function from

V to closed terms.

Definition 5. A (positive or negative) literal is an expression t
α

−→ t′ or t 6
α
−→.

A (transition) rule is of the form H

t
α−→t′

with H a set of literals called the

premises. t
α

−→ t′ is the conclusion and t the source of the rule. A rule ∅
t

α−→t′

is also written t
α

−→ t′. A transition system specification (TSS), written (Σ,R),
consists of a signature Σ and a collection R of transition rules over Σ.

Definition 6. Let P = (Σ,R) be a TSS. An irredundant proof from P of a rule
H

t
α−→t′

is a well-founded tree with the nodes labelled by literals and some of the

leaves marked “hypothesis”, such that the root has label t
α

−→ t′, H is the set of
labels of the hypotheses, and if µ is the label of a node that is not a hypothesis
and K is the set of labels of the children of this node, then µ is positive and K

µ
is a substitution instance of a rule in R.

The proof of H

t
α−→t′

is called irredundant because H must equal (instead of in-

clude) the set of labels of the hypotheses. This irredundancy will be crucial for
the preservation of our congruence formats in Sect. 4.1 (see Prop. 2).

A TSS is meant to specify an LTS in which the transitions are closed positive
literals. A TSS with only positive premises specifies an LTS in a straightforward
way, but it is not so easy to associate an LTS to a TSS with negative premises.
From [12] we adopt the notion of a well-supported proof of a closed literal.
Literals t

α
−→ t′ and t 6

α
−→ are said to deny each other.

Definition 7. Let P = (Σ,R) be a TSS. A well-supported proof from P of a
closed literal µ is a well-founded tree with the nodes labelled by closed literals,
such that the root is labelled by µ, and if ν is the label of a node and K is the
set of labels of the children of this node, then:

Divide and Congruence 5

1. either ν is positive and K
ν is a closed substitution instance of a rule in R;

2. or ν is negative and for each set N of closed negative literals with N
κ irre-

dundantly provable from P and κ a closed positive literal denying ν, a literal
in K denies one in N .

P `ws µ denotes that a well-supported proof from P of µ exists. P is complete
if for each p and α, either P `ws p 6

α
−→ or P `ws p

α
−→ p′ for some p′.

A complete TSS specifies an LTS, consisting of the ws-provable closed positive
literals.

2.4 Notions regarding transition rules

In this section we present terminology for syntactic restrictions on rules, origi-
nating from [3, 15, 16].

Definition 8. An ntytt rule is a rule in which the right-hand sides of positive
premises are variables that are all distinct, and that do not occur in the source.
An ntytt rule is an ntyxt rule if its source is a variable, an ntyft rule if its source
contains exactly one function symbol and no multiple occurrences of variables,
and an nxytt rule if the left-hand sides of its premises are variables.

Definition 9. A variable in a rule is free if it occurs neither in the source nor
in right-hand sides of premises. A rule has lookahead if some variable occurs in
the right-hand side of a premise and in the left-hand side of a premise. A rule
is decent if it has no lookahead and does not contain free variables.

The ntyft/ntyxt and ready simulation formats [15, 3] were originally introduced
to guarantee congruence for bisimulation and ready simulation.

Definition 10. A TSS is in ntyft/ntyxt format if it consists of ntyft and ntyxt
rules, and in ready simulation format if moreover its rules do not have lookahead.

A predicate ℵ marks arguments of function symbols that contain running pro-
cesses (cf. [3]). Typically, in process algebra, ℵ holds for the arguments of the
merge ‖, but not for the arguments of alternative composition +.

Definition 11. Let ℵ be a unary predicate on {(f, i) | 1 ≤ i ≤ ar(f), f ∈ Σ}.
If ℵ(f, i), then argument i of f is liquid; otherwise it is frozen. An occurrence
of x in t is at an ℵ-liquid position (or ℵ-liquid for short), if either t = x, or
t = f(t1, . . . , tar(f)) and the occurrence is at an ℵ-liquid position in ti for a liquid
argument i of f ; otherwise the occurrence is at an ℵ-frozen position.

A patience rule for an argument i of a function symbol f expresses that term
f(p1, . . . , pn) inherits the τ -transitions of argument pi (cf. [2, 7]). We will require
the presence of patience rules for ℵ-liquid arguments.

6 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

Definition 12. An ntyft rule is a patience rule for f if it is of the form

xi
τ

−→ y

f(x1, . . . , xi, . . . , xar(f))
τ

−→ f(x1, . . . , xi−1, y, xi+1 . . . , xar(f))

It is an ℵ-patience rule if ℵ(f, i).

An ntytt rule is ℵ-patient if it is irredundantly provable from the ℵ-patience

rules. Such rules have the form t
τ−→y

C[t]
τ−→C[y]

with C[] an ℵ-liquid context, meaning

that the context symbol [] occurs at an ℵ-liquid position.

Definition 13. A TSS is abstraction-free with respect to ℵ if only ℵ-patience
rules have a conclusion of the form t

τ
−→ u.

In Section 4.2 we will obtain preservation results of modal formulas in � b and
� rb on abstraction-free TSSs. We will lift these to congruence results for ↔b

and ↔rb on general TSSs, using two facts: abstraction operators preserve ↔b

and ↔rb , and each TSS can be embedded in an abstraction-free TSS augmented
with an abstraction operator.

2.5 Ruloids

To decompose modal formulas, we use a result from [3], where for any TSS P
in ready simulation format a collection of decent nxytt rules, called P -ruloids,
is constructed. We explain this construction on a rather superficial level; the
precise transformation can be found in [3].

First P is converted to a TSS in decent ntyft format. In this conversion from
[16], free variables in a rule are replaced by closed terms, and if the source is
of the form x then this variable is replaced by a term f(x1, . . . , xn) for each
f ∈ Σ. Next, using a construction from [8], left-hand sides of positive premises
are reduced to variables. Roughly the idea is, given a premise f(t1, . . . , tn)

α
−→ y

in a rule r, and a rule H

f(x1,...,xn)
α−→t

, to transform r by replacing the aforemen-

tioned premise by H , y by t, and the xi by the ti; this is repeated (transfinitely)
until all positive premises with a non-variable left-hand side have disappeared.
In the final transformation step, rules with a negative conclusion t 6

α
−→ are intro-

duced. The motivation is that instead of the notion of well-founded provability
in Def. 7, we want a more constructive notion like Def. 6, by making it possible
that a negative premise is matched with a negative conclusion. A rule r with a
conclusion f(x1, . . . , xn) 6

α
−→ is obtained by picking one premise from each rule

with a conclusion f(x1, . . . , xn)
α

−→ t, and including the denial of each of the
selected premises as a premise of r. For this last transformation it is essential
that rules do not have lookahead.

The resulting TSS, which is in decent ntyft format, is denoted by P+. The
notion of irredundant provability is adapted in a straightforward fashion to ac-
commodate rules with a negative conclusion. In [3] it is established that P `ws µ

Divide and Congruence 7

if and only if µ is irredundantly provable from P+, for all closed literals µ. P -
ruloids are those decent nxytt rules that are irredundantly provable from P+.
The following correspondence result from [3] between a TSS and its ruloids plays
a crucial role in the decomposition method employed here. It says that there is a
well-supported proof from P of a transition p

a
−→ q, with p a closed substitution

instance of a term t, if and only if there is a proof of this transition that uses at
the root a P -ruloid with source t.

Proposition 1 ([3]). Let P be a TSS in ready simulation format.
Then P `ws σ(t)

α
−→ p if and only if there are a P -ruloid H

t
α−→u

and a σ′ with

P `ws σ
′(µ) for µ ∈ H, σ′(t) = σ(t) and σ′(u) = p.

It is not hard to see that the notion of abstraction-freeness is preserved by the
transformation to P -ruloids.

Lemma 1. If a TSS P is abstraction-free with respect to some ℵ, then all P -
ruloids with a conclusion of the form t

τ
−→ u are ℵ-patient.

3 Decomposition of Modal Formulas

In this section we show how one can decompose formulas from � . To each term
t and formula ϕ we assign a set t−1(ϕ) of decomposition mappings ψ : V → � .
Each of these mappings ψ ∈ t−1(ϕ) guarantees that σ(t) |= ϕ if σ(x) |= ψ(x) for
x ∈ var (t). Vice versa, whenever σ(t) |= ϕ, there is a decomposition mapping
ψ ∈ t−1(ϕ) with σ(x) |= ψ(x) for x ∈ var (t). This is formalised in Thm. 2.

In order to minimise the complexity inherent in the combination of modal
decomposition and the internal action τ , we apply the decomposition method to
abstraction-free TSSs. In Sect. 4, where we will develop congruence formats on
the basis of this decomposition method, we will be able to circumvent the restric-
tion to abstraction-free TSSs, owing to the compositionality of the abstraction
operator.

Definition 14. Let P be a TSS in ready simulation format, which contains
the ℵ-patience rules and is abstraction-free with respect to ℵ. We define ·−1 :

�
(Σ) × � → P(V → �) as follows. Let t denote a univariate term, i.e. without

multiple occurrences of the same variable.

1. ψ ∈ t−1(
∧

i∈I ϕi) iff for x ∈ V

ψ(x) =
∧

i∈I

ψi(x)

where ψi ∈ t−1(ϕi) for i ∈ I.
2. ψ ∈ t−1(¬ϕ) iff there is a function h : t−1(ϕ) → var(t) with

ψ(x) =
∧

χ∈h−1(x)

¬χ(x) for x ∈ V

8 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

3. ψ ∈ t−1(〈α〉ϕ) iff there is a P -ruloid H

t
α−→u

and a χ ∈ u−1(ϕ) with

ψ(x) =

χ(x) ∧
∧

x
β−→y∈H

〈β〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉> if x ∈ var (t)

> if x 6∈ var (t)

4. ψ ∈ t−1(〈ε〉ϕ) iff there is a χ ∈ t−1(ϕ) with

ψ(x) =

{

〈ε〉χ(x) if x occurs ℵ-liquid in t
χ(x) otherwise

5. ψ ∈ t−1(〈τ̂ 〉ϕ) iff one of the following holds:

(a) ψ ∈ t−1(ϕ), or
(b) there is an x0 ∈ V that occurs ℵ-liquid in t and a χ ∈ t−1(ϕ) such that

ψ(x) =

{

〈τ̂ 〉χ(x) if x = x0

χ(x) if x 6= x0

6. ψ ∈ ρ(t)−1(ϕ) for ρ : var(t) → V not injective iff there is a χ ∈ t−1(ϕ) with

ψ(x) =
∧

y∈ρ−1(x)

χ(y) for x ∈ V

It is not hard to see that if ψ ∈ t−1(ϕ), then ψ(x) ≡ > for x 6∈ var (t).
To explain the idea behind Def. 14, we expand on two of its cases. Consider

t−1(¬ϕ), and let σ be any closed substitution. We have σ(t) 6|= ϕ if and only if
there is no χ ∈ t−1(ϕ) such that σ(x) |= χ(x) for all x ∈ var (t). In other words,
for each χ ∈ t−1(ϕ), ψ(x) must contain a conjunct ¬χ(x), for some x ∈ var(t).

Consider t−1(〈α〉ϕ), and let σ be any closed substitution. The question is
under which conditions ψ(x) ∈ � on σ(x), for x ∈ var(t), there is a transition
σ(t)

α
−→ q with q |= ϕ. According to Prop. 1, there is such a transition if and only

if there is a closed substitution σ′ with σ′(t) = σ(t) and a P -ruloid H

t
α−→u

such

that (1) the premises in σ′(H) are satisfied and (2) σ′(u) |= ϕ. The first condition
is covered if for x ∈ var(t), ψ(x) contains conjuncts 〈β〉> for x

β
−→ y ∈ H and

conjuncts ¬〈γ〉> for x 6
γ
−→ ∈ H. By adding a conjunct χ(x), and replacing each

conjunct 〈β〉> by 〈β〉χ(y), for some χ ∈ u−1(ϕ), the second condition is covered
as well.

The following theorem will be the key to the forthcoming congruence results.

Theorem 2. Given a complete TSS P in ready simulation format, which con-
tains the ℵ-patience rules and is abstraction-free with respect to ℵ. For any term
t, closed substitution σ and ϕ ∈ � :

σ(t) |= ϕ ⇔ ∃ψ ∈ t−1(ϕ) ∀x ∈ var(t) : σ(x) |= ψ(x)

Proof. By structural induction on ϕ. First we treat the case where t is univariate.

Divide and Congruence 9

– ϕ =
∧

i∈I ϕi

σ(t) |=
∧

i∈I ϕi ⇔ ∀i ∈ I : σ(t) |= ϕi ⇔ ∀i ∈ I ∃ψi ∈ t−1(ϕi) ∀x ∈ var(t) :
σ(x) |= ψi(x) ⇔ ∃ψ ∈ t−1(

∧

i∈I ϕi) ∀x ∈ var (t) : σ(x) |= ψ(x).
– ϕ = ¬ϕ′

σ(t) |= ¬ϕ′ ⇔ σ(t) 6|= ϕ′ ⇔ ∃h : t−1(ϕ′) → var(t) ∀χ ∈ t−1(ϕ′) : σ(h(χ)) 6|=
χ(h(χ)) ⇔ ∃h : t−1(ϕ′) → var (t) ∀x ∈ var(t) : σ(x) |=

∧

χ∈h−1(x) ¬χ(x) ⇔

∃ψ ∈ t−1(¬ϕ′) ∀x ∈ var (t) : σ(x) |= ψ(x).
– ϕ = 〈α〉ϕ′

(⇒) Let σ(t) |= 〈α〉ϕ′. Then P `ws σ(t)
α

−→ p with p |= ϕ′. By Prop. 1 there
is a P -ruloid H

t
α−→u

and a σ′ with P `ws σ
′(µ) for µ ∈ H , σ′(t) = σ(t), i.e.

σ′(x) = σ(x) for x ∈ var (t), and σ′(u) = p. Since σ′(u) |= ϕ′, by induc-
tion there is a χ ∈ u−1(ϕ′) with σ′(z) |= χ(z) for z ∈ var(u). Furthermore,
σ′(z) |= χ(z) ≡ > for z 6∈ var(u). Define ψ ∈ t−1(〈α〉ϕ′) as in Def. 14.3, using

H

t
α−→u

and χ. Let x ∈ var(t). For x
β

−→ y ∈ H , P `ws σ
′(x)

β
−→ σ′(y) |= χ(y),

so σ′(x) |= 〈β〉χ(y). Moreover, for x 6
γ
−→ ∈ H , P `ws σ

′(x) 6
γ
−→, so the con-

sistency of `ws (see [12]) yields P 6`ws σ
′(x)

γ
−→ q for all closed terms q, and

thus σ′(x) |= ¬〈γ〉>. Hence σ(x) = σ′(x) |= ψ(x).

(⇐) Let ψ ∈ t−1(〈α〉ϕ′) with σ(x) |= ψ(x) for x ∈ var(t). There is a P -ruloid

{x
βi
−→ yi | i ∈ Ix, x ∈ var (t)} ∪ {x 6

γj

−→| j ∈ Jx, x ∈ var(t)}

t
α

−→ u

and a χ ∈ u−1(ϕ′) with ψ(x) = χ(x)∧
∧

i∈Ix
〈βi〉χ(yi)∧

∧

j∈Jx
¬〈γj〉> for x ∈

var (t). For x ∈ var (t), σ(x) |= ψ(x) yields, for i ∈ Ix, P `ws σ(x)
βi
−→ pi with

pi |= χ(yi) for some closed term pi; moreover, for j ∈ Jx, P 6`ws σ(x)
γj

−→ q
for all closed terms q, so by the completeness of P , P `ws σ(x) 6

γj

−→. Define
σ′(x) = σ(x) and σ′(yi) = pi for x ∈ var (t) and i ∈ Ix. Here we use
that the yi are all different and do not occur in t. Then σ′(z) |= χ(z) for
z ∈ var(u), since var(u) ⊆ {x, yi | x ∈ var (t), i ∈ Ix}. So by induction,

σ′(u) |= ϕ′. Moreover, for x ∈ var(t), P `ws σ
′(x)

βi
−→ σ′(yi) for i ∈ Ix,

and P `ws σ
′(x) 6

γj

−→ for j ∈ Jx, so by Prop. 1, P `ws σ
′(t)

α
−→ σ′(u). Hence

σ(t) = σ′(t) |= 〈α〉ϕ′.
– ϕ = 〈ε〉ϕ′

(⇒) We prove by induction on n: if P `ws pi
τ

−→ pi+1 for i ∈ {0, . . . , n− 1}
with σ(t) = p0 and pn |= ϕ′, then there is a ψ ∈ t−1(〈ε〉ϕ′) with σ(x) |= ψ(x)
for x ∈ var (t).

n = 0 Since σ(t) = p0 |= ϕ′, by induction on formula size, there is a χ ∈
t−1(ϕ′) with σ(x) |= χ(x) for x ∈ var (t). Define ψ ∈ t−1(〈ε〉ϕ′) as in
Def. 14.4, using χ. Then σ(x) |= ψ(x) for x ∈ var(t).

n > 0 Since P `ws σ(t)
τ

−→ p1, by Prop. 1 there is a P -ruloid H

t
τ−→u

and

a σ′ with P `ws σ
′(µ) for µ ∈ H , σ′(t) = σ(t), i.e. σ′(x) = σ(x) for

x ∈ var (t), and σ′(u) = p1. Since σ′(u) = p1
τ

−→ · · ·
τ

−→ pn |= 〈ε〉ϕ′,
by induction on n, there is a χ ∈ u−1(〈ε〉ϕ′) with σ′(y) |= χ(y) for
y ∈ var (u). Furthermore, σ′(y) |= χ(y) ≡ > for y 6∈ var(u). Since P

10 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

is abstraction-free, by Lem. 1, the P -ruloid H

t
τ−→u

must be ℵ-patient.

Thus H = {x0
τ

−→ y0}, where x0 occurs ℵ-liquid in t and, since t is
univariate, u = t[y0/x0]. Moreover, y0 6∈ var (t), so u is also univari-
ate. The occurrence of y0 in u is ℵ-liquid, so according to Def. 14.4,
χ(y0) is of the form 〈ε〉ϕ′′. Let ψ(x0) = χ(y0), ψ(y0) = χ(x0) ≡ >,
and ψ(z) = χ(z) otherwise. By alpha-conversion, χ ∈ u−1(〈ε〉ϕ′) implies
ψ ∈ t−1(〈ε〉ϕ′). For x ∈ var (t)\{x0}, σ(x) = σ′(x) |= χ(x) = ψ(x). Fur-
thermore, P `ws σ

′(x0)
τ

−→ σ′(y0) and σ′(y0) |= χ(y0) = ψ(x0); so since
ψ(x0) is of the form 〈ε〉ϕ′′, σ(x0) = σ′(x0) |= ψ(x0).

(⇐) Let ψ ∈ t−1(〈ε〉ϕ′) with σ(x) |= ψ(x) for x ∈ var (t). Then there is a
χ ∈ t−1(ϕ′) with ψ(x) = 〈ε〉χ(x) if x occurs ℵ-liquid in t and ψ(x) = χ(x)
otherwise. For each x that occurs ℵ-liquid in t, σ(x) |= ψ(x) = 〈ε〉χ(x), i.e.
σ(x)

ε
=⇒ px with px |= χ(x). Define σ′(x) = px if x occurs ℵ-liquid in t and

σ′(x) = σ(x) otherwise. Due to the presence of the ℵ-patience rules and
the fact that t is univariate, σ(t)

ε
=⇒ σ′(t). Furthermore, σ′(x) |= χ(x) for

x ∈ var (t), so by induction on formula size, σ′(t) |= ϕ′. Hence σ(t) |= 〈ε〉ϕ′.

– ϕ = 〈τ̂ 〉ϕ′

(⇒) Suppose σ(t) |= 〈τ̂ 〉ϕ′. Then either σ(t) |= ϕ′ or P `ws σ(t)
τ

−→ p |= ϕ′

for some closed term p. In the first case, by induction there is a ψ ∈ t−1(ϕ′)
such that σ(x) |= ψ(x) for x ∈ var(t); by Def. 14.5(a), ψ ∈ t−1(〈τ̂ 〉ϕ′),
and we are done. In the second case, by Prop. 1 there is a P -ruloid H

t
τ−→u

and a closed substitution σ′ with P `ws σ
′(µ) for µ ∈ H , σ′(t) = σ(t), i.e.

σ′(x) = σ(x) for x ∈ var (t), and σ′(u) = p. Since σ′(u) |= ϕ′, by induction
there is a χ ∈ u−1(ϕ′) such that σ′(y) |= χ(y) for y ∈ var (u). Furthermore,
σ′(y) |= χ(y) ≡ > for y 6∈ var (u). Since P is abstraction-free, by Lem. 1, the
P -ruloid H

t
τ−→u

must be ℵ-patient. Thus H = {x0
τ

−→ y0}, where x0 occurs

ℵ-liquid in t and, since t is univariate, u = t[y0/x0]. Moreover, y0 6∈ var(t),
so u is also univariate. Let ψ(x0) = 〈τ̂ 〉χ(y0), ψ(y0) = χ(x0) ≡ >, and
ψ(x) = χ(x) otherwise. By Def. 14.5(b) together with alpha-conversion, ψ ∈
t−1(〈τ̂ 〉ϕ′). For x ∈ var(t)\{x0}, σ(x) = σ′(x) |= χ(x) = ψ(x). Moreover,
since P `ws σ

′(x0)
τ

−→ σ′(y0) and σ′(y0) |= χ(y0), it follows that σ(x0) =
σ′(x0) |= 〈τ̂ 〉χ(y0) = ψ(x0).

(⇐) Suppose ψ ∈ t−1(〈τ̂ 〉ϕ′) with σ(x) |= ψ(x) for all x ∈ var (t). If
ψ ∈ t−1(ϕ′), then by induction σ(t) |= ϕ′, so σ(t) |= 〈τ̂ 〉ϕ′, and we are
done. Suppose that for some χ ∈ t−1(ϕ′) and some x0 that occurs ℵ-liquid
in t, ψ(x) = χ(x) for x 6= x0 and ψ(x0) = 〈τ̂ 〉χ(x0). Then σ(x) |= χ(x)
for x ∈ var (t)\{x0}. Furthermore, σ(x0) |= ψ(x0) = 〈τ̂ 〉χ(x0), so either
σ(x0) |= χ(x0) or σ(x0)

τ
−→ p |= χ(x0) for some closed term p. In the first

case, by induction σ(t) |= ϕ′, so σ(t) |= 〈τ̂ 〉ϕ′, and we are done. In the
second case, define σ′(x) = σ(x) for x ∈ var (t) and σ′(y0) = p. Since

P `ws σ
′(x0)

τ
−→ σ′(y0), and x0

τ−→y0

t
τ−→t[y0/x0]

is an ℵ-patient P -ruloid, by Prop. 1,

P `ws σ
′(t)

τ
−→ σ′(t[y0/x0]). Furthermore, by induction σ′(t[y0/x0]) |= ϕ′.

Hence σ(t) = σ′(t) |= 〈τ̂ 〉ϕ′.

Divide and Congruence 11

Finally, suppose t is not univariate. Let t = ρ(u) for some univariate u and
ρ : var (u) → V not injective. σ(ρ(u)) |= ϕ ⇔ ∃χ ∈ u−1(ϕ) ∀y ∈ var (u) :
σ(ρ(y)) |= χ(y) ⇔ ∃χ ∈ u−1(ϕ) ∀x ∈ var (t) : σ(x) |=

∧

y∈ρ−1(x) χ(y) ⇔ ∃ψ ∈

t−1(ϕ) ∀x ∈ var(t) : σ(x) |= ψ(x). ut

The part of Thm. 2 that deals with the modalities
∧

i∈I , ¬ and 〈α〉 only has been
established in [9]. There, a few examples are given showing how Def. 14 can be
used to decompose a modal formula, as well as a counterexample showing that
the completeness requirement in Thm. 2 cannot simply be skipped. The inclusion
of the modalities 〈ε〉 and 〈τ̂ 〉 is new. The following example illustrates the use of
the decomposition method on a formula with the modality 〈ε〉.

Example 1. Let A = {a} and P = (Σ,R), where Σ consists of a binary func-

tion symbol ‖ with liquid arguments, and R contains the rules x
α−→x′

x‖y
α−→x′‖y

and

y
α−→y′

x‖y
α−→x‖y′

for α ∈ {a, τ}. The TSS P is complete and in ready simulation format.

Furthermore, it contains the two patience rules and is abstraction-free.

We compute (x‖y)−1(〈ε〉〈a〉>). By Def. 14.4, for each ψ ∈ (x‖y)−1(〈ε〉〈a〉>)
we have ψ(x) = 〈ε〉χ(x) and ψ(y) = 〈ε〉χ(y) for some χ ∈ (x‖y)−1(〈a〉>). Accord-
ing to Def. 14.3, (x‖y)−1(〈a〉>) = {χ1, χ2}, where χ1 and χ2 are constructed

from the only P -ruloids with a conclusion x‖y
a

−→ , namely x
a−→x′

x‖y
a−→x′‖y

and

y
a−→y′

x‖y
a−→x‖y′

, together with ξ1 ∈ (x′‖y)−1(>) resp. ξ2 ∈ (x‖y′)−1(>):

χ1(x) = ξ1(x) ∧ 〈a〉ξ1(x
′) ≡ 〈a〉> χ2(x) = >

χ1(y) = > χ2(y) = ξ2(y) ∧ 〈a〉ξ2(y
′) ≡ 〈a〉>

Hence (x‖y)−1(〈ε〉〈a〉>) = {ψ1, ψ2} with ψ1 and ψ2 defined as follows:

ψ1(x) = 〈ε〉χ1(x) ≡ 〈ε〉〈a〉> ψ2(x) = 〈ε〉χ2(x) = 〈ε〉> ≡ >
ψ1(y) = 〈ε〉χ1(y) = 〈ε〉> ≡ > ψ2(y) = 〈ε〉χ2(y) ≡ 〈ε〉〈a〉>

4 Branching Bisimulation as a Congruence

We proceed to apply the decomposition method from the previous section to de-
rive congruence formats for branching and rooted branching bisimulation equiv-
alence. The idea is that the branching bisimulation format must guarantee that
a formula from � b is always decomposed into formulas from � ≡

b (see Prop. 3).
Likewise, the rooted branching bisimulation format must guarantee that a for-
mula from � rb is always decomposed into formulas from � ≡

rb (see Prop. 4). This
implies the desired congruence results (see Thm. 3 and Thm. 4). In the derivation
of the congruence formats, we will circumvent the restriction in the decomposi-
tion method to abstraction-free TSSs, using compositionality of the abstraction
operator.

12 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

4.1 Congruence formats

We assume a second predicate Λ on arguments of function symbols, to denote
that the processes they contain may have started running, but might currently be
resting, in which case no patience rules are needed for these arguments. Always
ℵ ⊆ Λ.

Definition 15. Let ℵ ⊆ Λ. An ntytt rule H

t
α−→u

is rooted branching bisimulation

safe with respect to ℵ and Λ if:

1. it has no lookahead,
2. right-hand sides of premises occur only Λ-liquid in u, and
3. if x occurs exactly once5 in t, at a Λ-liquid position, then:

(a) all occurrences of x in the rule are Λ-liquid,
(b) x has no ℵ-liquid occurrences in left-hand sides of negative premises,
(c) x has at most one ℵ-liquid occurrence in the left-hand side of one positive

premise, and this premise has a label from A, and
(d) if x occurs ℵ-frozen in t, then x does not occur ℵ-liquid in left-hand sides

of premises.

In case Λ is the universal predicate, we say that the rule is branching bisimulation
safe with respect to ℵ.

Definition 16. A TSS in ready simulation format is in rooted branching bisim-
ulation format if, for some ℵ ⊆ Λ, it consists of the ℵ-patience rules and rules
that are rooted branching bisimulation safe with respect to ℵ and Λ.

A TSS in ready simulation format is in branching bisimulation format if, for
some ℵ, it consists of the ℵ-patience rules and rules that are branching bisimu-
lation safe with respect to ℵ.

If a TSS P is in rooted branching bisimulation format then there are smallest
predicates ℵ0 and Λ0 such that P consists of the ℵ0-patience rules and rules that
are rooted branching bisimulation safe with respect to ℵ0 and Λ0. Namely the
Λ0-liquid arguments are generated by requirements 2 and 3(a) of Def. 15; they
are the smallest collection of arguments such that these two requirements are
satisfied. Given Λ0, ℵ0 is the unique collection of arguments within Λ0 for which
patience rules exists. For any TSS P , ℵ0 and Λ0 can be calculated in this way,
and whether P is in rooted branching bisimulation format then depends solely
on whether requirements 1 and 3(b–d) of Def. 15 are satisfied.

When restricting to TSSs consisting of nxytt rules only, it becomes easier
to reformulate the definition of the rooted branching bisimulation format with-
out mentioning ℵ. Namely, requirements 3(b–d) of Def. 15, together with the
existence of the patience rules required in Def. 16 then amount to

3. (b) x does not occur as the left-hand side of a negative premise,

5 For the rooted branching bisimulation format in Def. 16, only the requirements for
rules in which t is univariate matter. The formulation of Def. 15 for general terms t

paves the way for Prop. 2.

Divide and Congruence 13

(c) x occurs at most once as the left-hand side of a positive premise, and
this premise has a label from A, and

(d) if within t, x occurs in an argument of an operator f for which there is
no patience rule, then x does not occur in the left-hand side of premises.

A TSS is now in rooted branching bisimulation format if it consists of patience
rules and rules that are rooted branching bisimulation safe with respect to Λ
and that collection of patience rules.

Using this, it is not hard to see that the rooted branching bisimulation format
strengthens the RBB safe format from [7].

In the definition of modal decomposition, we did not use the rules from the
original TSS P , but the P -ruloids. Therefore we must verify that if P is in
(rooted) branching bisimulation format, then so are the P -ruloids.

Proposition 2. If a TSS P is in (rooted) branching bisimulation format with
respect to some ℵ (and Λ), then each P -ruloid is either ℵ-patient or (rooted)
branching bisimulation safe with respect to ℵ (and Λ).

The proof of Prop. 2 is omitted here. The key part of the proof is to show that the
decent (rooted) branching bisimulation format is preserved under irredundant
provability. The adjective irredundant is essential here; this preservation result
would fail if “junk” could be added to the premises of derived transition rules.

4.2 Preservation of modal characterisations

In this section we prove that given a TSS in rooted branching bisimulation
format, if ψ ∈ t−1(ϕ) with ϕ ∈ � b, then ψ(x) ∈ � ≡

b if x occurs only Λ-liquid in
t. (That is why in the branching bisimulation format, Λ must be universal.) If
ϕ ∈ � rb, then ψ(x) ∈ � ≡

rb for all variables x.

Proposition 3. Let P be an abstraction-free TSS in rooted branching bisimu-
lation format, with respect to some ℵ and Λ. For any term t and variable x that
occurs only Λ-liquid in t:

ϕ ∈ � b ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈ � ≡
b

Proof. We apply structural induction on ϕ ∈ � b. Let t ∈
�

(Σ) and ψ ∈ t−1(ϕ),
and let x occur only Λ-liquid in t. First we treat the case where t is univariate.
If x 6∈ var (t), then ψ(x) ≡ > ∈ � ≡

b . Suppose x occurs once in t.

– ϕ =
∧

i∈I ϕi with ϕi ∈ � b for i ∈ I . By Def. 14.1, ψ(x) =
∧

i∈I ψi(x) with
ψi ∈ t−1(ϕi) for i ∈ I . By induction, ψi(x) ∈ � ≡

b for i ∈ I , so ψ(x) ∈ � ≡
b .

– ϕ = ¬ϕ′ with ϕ′ ∈ � b. By Def. 14.2, there is a function h : t−1(ϕ′) → var(t)
such that ψ(x) =

∧

χ∈h−1(x) ¬χ(x). By induction, χ(x) ∈ � ≡
b for χ ∈ h−1(x),

so ψ(x) ∈ � ≡
b .

14 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

– ϕ = 〈ε〉(ϕ1〈τ̂ 〉ϕ2) with ϕ1, ϕ2 ∈ � b. By Def. 14.4, either ψ(x) = 〈ε〉χ(x) if x
occurs ℵ-liquid in t, or ψ(x) = χ(x) if x occurs ℵ-frozen in t, for some χ ∈
t−1(ϕ1〈τ̂ 〉ϕ2). By Def. 14.1, χ(x) = χ1(x)∧χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈
t−1(〈τ̂ 〉ϕ2). By Def. 14.5, either χ2(x) = 〈τ̂ 〉ξ(x) and x occurs ℵ-liquid in t, or
χ2(x) = ξ(x), for some ξ ∈ t−1(ϕ2). So ψ(x) is of the form 〈ε〉(χ1(x)〈τ̂ 〉ξ(x)),
〈ε〉(χ1(x) ∧ ξ(x)) or χ1(x) ∧ ξ(x). By induction, χ1(x), ξ(x) ∈ � ≡

b . Hence
ψ(x) ∈ � ≡

b .
– ϕ = 〈ε〉(ϕ1〈a〉ϕ2) with ϕ1, ϕ2 ∈ � b. By Def. 14.4, either ψ(x) = 〈ε〉χ(x) if
x occurs ℵ-liquid in t, or ψ(x) = χ(x) if x occurs ℵ-frozen in t, for some
χ ∈ t−1(ϕ1〈a〉ϕ2). By Def. 14.1, χ(x) = χ1(x) ∧ χ2(x) with χ1 ∈ t−1(ϕ1)
and χ2 ∈ t−1(〈a〉ϕ2). By induction, χ1(x) ∈ � ≡

b . By Def. 14.3,

χ2(x) = ξ(x) ∧
∧

x
β−→y∈H

〈β〉ξ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉>

for some ξ ∈ u−1(ϕ2) and P -ruloid H

t
a−→u

. Since a 6= τ , by Prop. 2, H

t
a−→u

is

rooted branching bisimulation safe with respect to ℵ and Λ. Since the occur-
rence of x in t is Λ-liquid, x occurs only Λ-liquid in u. Moreover, variables in
right-hand sides of premises in H occur only Λ-liquid in u. So by induction,
ξ(x) ∈ � ≡

b and ξ(y) ∈ � ≡
b for x

β
−→ y ∈ H . We distinguish two cases.

Case 1: The occurrence of x in t is ℵ-liquid. Then ψ(x) = 〈ε〉χ(x). Since
H

t
a−→u

is rooted branching bisimulation safe with respect to ℵ and Λ and

an nxytt rule, x does not occur in left-hand sides of negative premises
in H , and at most once in the left-hand side of one positive premise in
H , which is of the form x

b
−→ y with b ∈ A. Hence either χ2(x) = ξ(x)

or χ2(x) = ξ(x)〈b〉ξ(y). Since ψ(x) = 〈ε〉(χ1(x) ∧ χ2(x)), either ψ(x) =
〈ε〉(χ1(x) ∧ ξ(x)) ∈ � ≡

b or ψ(x) ≡ 〈ε〉(χ1(x) ∧ ξ(x)〈b〉ξ(y)) ∈ � ≡
b .

Case 2: The occurrence of x in t is ℵ-frozen. Then ψ(x) = χ(x). Since
H

t
a−→u

is rooted branching bisimulation safe with respect to ℵ and Λ and

an nxytt rule, x does not occur in left-hand sides of premises in H . So
χ2(x) = ξ(x), and thus ψ(x) = χ1(x) ∧ χ2(x) = χ1(x) ∧ ξ(x) ∈ � ≡

b .

Finally, suppose t is not univariate. Then t = ρ(u) for some univariate term u
and ρ : var (u) → V not injective. By Def. 14.6, ψ(x) =

∧

y∈ρ−1(x) χ(y) for some

χ ∈ u−1(ϕ). Since u is univariate, and for each y ∈ ρ−1(x) the occurrence in u
is Λ-liquid, χ(y) ∈ � ≡

b for y ∈ ρ−1(x). Hence ψ(x) ∈ � ≡
b . ut

Proposition 4. Let P be an abstraction-free TSS in rooted branching bisimu-
lation format, with respect to some ℵ and Λ. For any term t and variable x:

ϕ ∈ � rb ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈ � ≡
rb

Proof. We apply structural induction on ϕ ∈ � rb. Let t ∈
�

(Σ) and ψ ∈ t−1(ϕ).
We restrict attention to the case where t is univariate; the general case then
follows just as at the end of the proof of Prop. 3. If x 6∈ var(t), then ψ(x) ≡ > ∈

� ≡
rb. So suppose x occurs once in t.

Divide and Congruence 15

– The cases ϕ =
∧

i∈I ϕi and ϕ = ¬ϕ′ proceed as in the proof of Prop. 3.
– ϕ = 〈α〉ϕ′ with ϕ′ ∈ � b. By Def. 14.3,

ψ(x) = χ(x) ∧
∧

x
β−→y∈H

〈β〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉>

for some χ ∈ u−1(ϕ′) and P -ruloid H

t
α−→u

. By induction, χ(x) ∈ � ≡
rb. (In-

duction may be applied because ϕ′ ∈ � b ⊆ � rb.) By Prop. 2, H

t
α−→u

is either

rooted branching bisimulation safe with respect to ℵ and Λ or ℵ-patient.
In either case, variables in right-hand sides of premises in H occur only Λ-
liquid in u. By Prop. 3, χ(y) ∈ � ≡

b for x
β

−→ y ∈ H , so 〈β〉χ(y) ∈ � ≡
rb. Also

¬〈γ〉> ∈ � ≡
rb. Hence ψ(x) ∈ � ≡

rb.
– ϕ ∈ � b. If the occurrence of x in t is Λ-liquid, then ψ(x) ∈ � ≡

rb follows
from Prop. 3. So we can assume that this occurrence is Λ-frozen, and hence
ℵ-frozen. The cases ϕ =

∧

i∈I ϕi and ϕ = ¬ϕ′ proceed as before. We focus
on the other two cases.

∗ ϕ = 〈ε〉(ϕ1〈τ̂ 〉ϕ2) with ϕ1, ϕ2 ∈ � b ⊆ � rb. Since the occurrence of x in
t is ℵ-frozen, by Def. 14.4, ψ(x) = χ(x) for some χ ∈ t−1(ϕ1〈τ̂ 〉ϕ2). By
Def. 14.1, χ(x) = χ1(x) ∧ χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈ t−1(〈τ̂ 〉ϕ2).
Since the occurrence of x in t is ℵ-frozen, by Def. 14.5, χ2(x) = ξ(x) for
some ξ ∈ t−1(ϕ2). By induction, χ1(x), ξ(x) ∈ � ≡

rb. Hence ψ(x) ∈ � ≡
rb.

∗ ϕ = 〈ε〉(ϕ1〈a〉ϕ2) with ϕ1, ϕ2 ∈ � b ⊆ � rb. Since the occurrence of x in t is
ℵ-frozen, by Def. 14.4, ψ(x) = χ(x) for some χ ∈ t−1(ϕ1〈a〉ϕ2). By Def. 14.1,
χ(x) = χ1(x)∧χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈ t−1(〈a〉ϕ2). By induction,
χ1(x), χ2(x) ∈ � ≡

rb. Hence ψ(x) ∈ � ≡
rb. ut

4.3 Congruence results

Finally we are in a position to prove the promised congruence results.

Lemma 2. Given a complete, abstraction-free TSS in branching bisimulation
format, with respect to some ℵ. If σ(x)↔b σ

′(x) for x∈var (t), then σ(t)↔b σ
′(t).

Proof. By Thm. 1, σ(x) ↔b σ
′(x) implies σ(x) ∼ � ≡

b
σ′(x) for x ∈ var(t). Let

σ(t) |= ϕ ∈ � b. By Thm. 2 there is a ψ ∈ t−1(ϕ) with σ(x) |= ψ(x) for x ∈ var(t).
Since Λ is universal, by Prop. 3, ψ(x) ∈ � ≡

b for x ∈ var (t). Since σ(x) ∼ � ≡
b
σ′(x),

σ′(x) |= ψ(x) for x ∈ var (t). By Thm. 2, σ′(t) |= ϕ. Likewise, σ′(t) |= ϕ ∈ � b

implies σ(t) |= ϕ. So σ(t) ∼ �
b
σ′(t). Hence σ(t)↔b σ

′(t). ut

Theorem 3. Given a complete TSS P = (Σ,R) in branching bisimulation for-
mat, with respect to some ℵ. If σ(x)↔b σ

′(x) for x∈var (t), then σ(t)↔b σ
′(t).

Proof. Let P ′ be obtained from P , by changing in all rules, expect the ℵ-patience
rules, conclusions of the form t

τ
−→ u into t

i
−→ u, for a fresh action i 6∈ A∪{τ}.

By construction, P ′ is abstraction-free and in branching bisimulation format
with respect to ℵ. So by Lem. 2, ↔b is a congruence for all operators of P ′.

16 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

Let P ′′ be obtained from P ′ by adding a new operator τi with rules

x
α

−→ y

τi(x)
α

−→ τi(y)
(α 6= i)

x
i

−→ y

τi(x)
τ

−→ τi(y)

This operator turns all i-labels into τ -labels. It is well-known and trivial to check
that ↔b is a congruence for τi as well.

If follows trivially that for any operator f ∈ Σ the behaviour of τi ◦ f in P ′′

is the same as the behaviour of f in P . So as ↔b is a congruence for τi ◦ f in
P ′′, it must be a congruence for f in P . ut

Lemma 3. Given a complete, abstraction-free TSS in rooted branching bisim-
ulation format, with respect to some ℵ and Λ. If σ(x) ↔rb σ

′(x) for x∈ var (t),
then σ(t)↔rb σ

′(t).

Theorem 4. Given a complete TSS in rooted branching bisimulation format,
with respect to some ℵ and Λ. If σ(x)↔rb σ

′(x) for x∈var (t), then σ(t)↔rb σ
′(t).

The proof of Lem. 3 is similar to the one of Lem. 2, except that Prop. 4 is applied
instead of Prop. 3. Likewise, the proof of Thm. 4 is similar to the one of Thm. 3.

5 Applications

In this section we present four applications of the rooted branching bisimulation
format.

5.1 Basic Process Algebra

Basic process algebra BPA [1] assumes a collection Act of constants, called
atomic actions, which upon execution terminate successfully. The signature of
BPA moreover includes function symbols + and · of arity two, called alterna-
tive composition and sequential composition, respectively. Intuitively, t1 + t2 exe-
cutes either t1 or t2, while t1·t2 first executes t1 and upon successful termination
executes t2. We assume a special atomic action tick ∈ Act , indicating the activ-
ity of successful termination upon executing the internal action τ , and a special
constant deadlock δ, outside Act , which does not display any behaviour. These
intuitions are made precise by means of the transition rules for BPAtick

δ presented
below. In these rules, ` ranges over Act , and α over A = {`, `√ | ` ∈ Act}. The
label `√ denotes that upon execution of `, the process terminates successfully.

`
`√

−→ δ
x1

α
−→ y

x1 + x2
α

−→ y

x2
α

−→ y

x1 + x2
α

−→ y

x1
`

−→ y

x1·x2
`

−→ y·x2

x1

`√

−→ y

x1·x2
`

−→ x2

Divide and Congruence 17

The label tick counts as internal action, and for this reason the labels tick
and tick√ can also be written τ and τ√, respectively. The label τ√ denotes
termination and counts as a normal observable action. When this action occurs
in the first component of a sequential composition, it changes into the internal
action τ , so that this TSS is not abstraction-free. We do not have a↔rb a·tick ,
as the former process performs one visible action and the latter two. For this
reason we call the constant tick tick , rather than τ .

The TSS above is in rooted branching bisimulation format, if we take the
arguments of alternative composition to be Λ-frozen, the first argument of se-
quential composition to be ℵ-liquid, and the second argument of sequential com-
position to be ℵ-frozen. For the sake of the application to the action refinement
operator, in Sect. 5.4, we take the second argument of sequential composition to
be Λ-liquid.

Corollary 1. Rooted branching bisimulation is a congruence for BPAtick

δ .

5.2 Binary Kleene star

The binary Kleene star t1
∗t2 [18] repeatedly executes t1 until it executes t2. This

operational behaviour is captured by the following rules, which are added to the
rules for BPAtick

δ .

x1
`

−→ y

x1
∗x2

`
−→ y·(x1

∗x2)

x1

`√

−→ y

x1
∗x2

`
−→ x1

∗x2

x2
α

−→ y

x1
∗x2

α
−→ y

The resulting TSS is in rooted branching bisimulation format, if we take the
arguments of the binary Kleene star to be Λ-frozen.

Corollary 2. Rooted branching bisimulation is a congruence for BPAtick

δ with
the binary Kleene star.

5.3 Initial Priority

Initial priority is a unary function symbol that assumes an ordering on labels
(which is usually defined on the level of atomic actions). The term θ(t) executes

the transitions of t, with the restriction that an initial transition t
α

−→ t1 only
gives rise to an initial transition θ(t)

α
−→ t1 if there does not exist an initial

transition t
β

−→ t2 with α < β. This intuition is captured by the rule for the
initial priority operator below, which is added to the rules for BPAtick

δ .

x
α

−→ y x 6
β
−→ for α < β

θ(x)
α

−→ y

The resulting TSS is in rooted branching bisimulation format, if we take the
argument of initial priority to be Λ-frozen.

Corollary 3. Rooted branching bisimulation is a congruence for BPAtick

δ with
initial priority.

18 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

5.4 Action Refinement

In the previous applications, it sufficed to take Λ = ℵ. In the following example,
however, this is not possible.

The binary action refinement operator t1[` t2], for ` ∈ Act\{tick}, replaces
each `-transition in t1 by t2. Its transition rules, presented below, are added to
the rules for BPAtick

δ .

x1
α

−→ y

x1[` x2]
α

−→ y[` x2]
(α 6= `, `√)

x1
`

−→ y1 x2
`′

−→ y2

x1[` x2]
`′
−→ y2·(y1[` x2])

x1

`√

−→ y1 x2
`′

−→ y2

x1[` x2]
`′

−→ y2

x1
`

−→ y1 x2

`′√

−→ y2

x1[` x2]
`′
−→ y1[` x2]

x1

`√

−→ y1 x2

`′√

−→ y2

x1[` x2]
`′√

−→ y2

The resulting TSS is in rooted branching bisimulation format, if we take the
first argument of action refinement to be ℵ-liquid and the second argument to
be Λ-frozen. For the second rule to be rooted branching bisimulation safe, it is
essential that the second argument of sequential composition is Λ-liquid, for else
it would violate restriction 2 of Def. 15.

Corollary 4. Rooted branching bisimulation is a congruence for BPAtick

δ with
action refinement.

6 Counterexamples

This section presents a series of counterexamples of complete TSSs in ntyft/ntyxt
format, to show that none of the syntactic restrictions of our congruence formats
can be omitted. (Of course it remains possible that certain restrictions can be
refined.) In [16] a series of counterexamples can be found showing that the syn-
tactic restrictions of the ntyft/ntyxt format are essential as well. Furthermore,
in [5] a counterexample is given to show that completeness (there called positive
after reduction) is essential.

It is well-known that branching bisimulation is not a congruence for BPAtick

δ .
For instance, a↔b tick ·a, but a+ c 6↔b (tick ·a)+ c. Still we saw in Sect. 5.1 that
the TSS for this process algebra is in rooted branching bisimulation format. This
shows that universality of the predicate Λ cannot be omitted from the branching
bisimulation format.

The examples in this section assume an action set A = {a, b, c} and a TSS
P = {Σ,R}, where the signature Σ contains the constant 0 and unary function
symbols α for α ∈ A∪ {τ}, and R contains the rules αx

α
−→ x for α ∈ A∪ {τ}.

The argument of α is ℵ-frozen. Unlike before, in this section occurrences of

Divide and Congruence 19

a, b, c as labels in rules are explicit action names, instead of parameters ranging
over A.

Example 2. We extend P with the following rule:

x
a

−→ y y
b

−→ z

f(x)
c

−→ 0

The rule above is not rooted branching bisimulation safe, because it contains
lookahead, violating restriction 1 (of Def. 15). Clearly, ab0 ↔rb aτb0 (and thus
ab0↔b aτb0). However, f(ab0) 6↔b f(aτb0) (and thus f(ab0) 6↔rb f(aτb0)), since

f(ab0)
c

−→ 0, while f(aτb0) 6
α
−→ for α ∈ {c, τ}.

Example 3. We extend P with the following rule:

x
a

−→ y

f(x)
a

−→ f(y)

The argument of f must be ℵ-frozen, in view of the restriction in Def. 16 that for
each ℵ-liquid argument there is an ℵ-patience rule. The rule above is not rooted
branching bisimulation safe. Namely, if the argument of f is Λ-frozen, then y
occurs both as the right-hand side of a premise and Λ-frozen in the right-hand
side of the conclusion, violating restriction 2. And if the argument of f is Λ-liquid,
then x occurs Λ-liquid and ℵ-frozen in the source and ℵ-liquid in the left-hand
side of the premise, violating restriction 3(d). We have f(aa0) 6↔b f(aτa0), since

f(aa0)
a

−→ f(a0)
a

−→ f(0), while f(aτa0) can only do an a-transition to f(τa0),

and f(τa0) 6
α
−→ for α ∈ {a, τ}.

Example 4. We extend P with the following rules:

x
τ

−→ y

f(x)
τ

−→ f(y)

x
a

−→ y

f(x)
a

−→ f(y)

x 6
a
−→

f(x)
c

−→ 0

The argument of f has to be Λ-liquid, for else the first and second rule would
violate restriction 2. It even has to be ℵ-liquid, for otherwise these rules would
violate requirement 3(d). However, with the argument of f ℵ-liquid, the third
rule is not rooted branching bisimulation safe, because x occurs ℵ-liquid both in
the source and in the left-hand side of the negative premise, violating restriction
3(b). We have f(aa0) 6↔b f(aτa0), since f(aτa0)

a
−→ f(τa0)

c
−→ 0, while f(aa0)

can only do an a-transition to f(a0), and f(a0) 6
α
−→ for α ∈ {c, τ}.

Example 5. We extend P with the following rules:

x
τ

−→ y

f(x)
τ

−→ f(y)

x
a

−→ y

f(x)
a

−→ f(y)

x
τ

−→ y

f(x)
c

−→ 0

As in the previous example, the argument of f has to be ℵ-liquid. The third rule
is not rooted branching bisimulation safe, because x occurs ℵ-liquid both in the

20 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

source and in the left-hand side of the positive premise with label τ , violating
restriction 3(c). We have f(aa0) 6↔b f(aτa0), since f(aτa0)

a
−→ f(τa0)

c
−→ 0,

while f(aa0) can only do an a-transition to f(a0), and f(a0) 6
α
−→ for α ∈ {c, τ}.

Example 6. We extend P with the following rules:

η
a

−→ 0 ζ
b

−→ 0 η
τ

−→ ζ ζ
τ

−→ η ν
a

−→ 0 ν
b

−→ 0

x
τ

−→ y

f(x)
τ

−→ f(y)

x
a

−→ y x
b

−→ z

f(x)
c

−→ 0

Again, the argument of f is ℵ-liquid. The last rule is not rooted branching
bisimulation safe, because x has an ℵ-liquid occurrence in the source, and two ℵ-
liquid occurrences in the left-hand sides of the premises, violating restriction 3(c).

Clearly, τν↔rb τη. However, f(τν) 6↔b f(τη), since f(τν)
τ

−→ f(ν)
c

−→ 0, while

f(τη) only exhibits an infinite sequence of τ -transitions: f(τη)
τ

−→ f(η)
τ

−→

f(ζ)
τ

−→ f(η)
τ

−→ · · · .

Example 7. In the TSS from Example 6, we replace the last rule with the fol-
lowing rules:

f(x)
τ

−→ g(x)
x

a
−→ y x

b
−→ z

g(x)
c

−→ 0

The argument of f is again ℵ-liquid, and the argument of g must be Λ-frozen, as
otherwise the second rule would violate restriction 3(c). The first rule above is not
rooted branching bisimulation safe, because x occurs ℵ-liquid (hence Λ-liquid)
in the source and Λ-frozen in the right-hand side of the conclusion, violating
restriction 3(a). We have f(τν) 6↔b f(τη), since f(τν)

τ
−→ f(ν)

τ
−→ g(ν)

c
−→ 0,

while f(τη) can only perform τ -transitions.

Example 8. In the TSS from Example 6, we replace the last rule with the fol-
lowing rules:

x
a

−→ y x
b

−→ z

g(x)
c

−→ 0

g(x)
c

−→ y

f(x)
c

−→ 0

As in the previous example, the argument of f must be ℵ-liquid, and the ar-
gument of g Λ-frozen. The last rule above is not rooted branching bisimula-
tion safe, because x occurs ℵ-liquid in the source and Λ-frozen in the left-hand
side of the premise, violating restriction 3(a). We have f(τν) 6↔b f(τη), since

f(τν)
τ

−→ f(ν)
c

−→ 0, while f(τη) can only perform τ -transitions.

7 Related Work

The first congruence formats for branching and rooted branching bisimulation
were presented in [2], and reformulated in [13]. Those formats, which are con-
tained in the GSOS format [4], distinguish so-called “principal” operators and

Divide and Congruence 21

“abbreviations”. The latter can be regarded as syntactic sugar, adding nothing
that could not be expressed with principal operators. Our formats are incom-
parable with the ones of [2, 13]. However, our formats generalise the result of
simplifying the formats of [2, 13] by requiring all operators to be principal.

For the branching bisimulation format our generalisation consists of allow-
ing transition rules outside the GSOS format; the simplified format of [2, 13]
is exactly the intersection of our branching bisimulation format and the GSOS
format. However, the intersection of our rooted branching bisimulation format
and the GSOS format is still a proper generalisation of the simplified format for
rooted branching bisimulation of [2, 13]. The latter can be described as the in-
tersection of our rooted branching bisimulation format and the GSOS format in
which all arguments of all operators that occur in right-hand sides of conclusions
of transition rules are required to be Λ-liquid.

The format of [2, 13] for rooted branching bisimulation distinguishes “tame”
and “wild” function symbols. In terms of our approach, wild operators have only
Λ-frozen arguments, and tame operators only Λ-liquid arguments. The idea to
allow operators with both kinds of arguments stems from [7].

In [7] a format for rooted branching bisimulation was proposed that gener-
alises the simplified format of [2, 13]. Given that it applies to TSSs with predi-
cates, it is incomparable with our current rooted branching bisimulation format.
However, predicates can easily be encoded in terms of transitions, and when dis-
regarding predicates, our current format is more general than the format of [7].
Still, the format of [7] strictly contains the intersection of our format with the
GSOS format, and all applications of our work discussed in Sect. 5 fall within
that intersection.

In [10] we apply the techniques of the current paper to derive congruence
formats for η- and rooted η-bisimulation. These formats differ from the ones
of the current paper only in restriction 2 of Def. 15. There it is required that
right-hand sides of premises occur only ℵ-liquid in u, whereas here we merely
require Λ-liquidity. That the rooted branching bisimulation format is essentially
more general than the rooted η-bisimulation format is illustrated by the action
refinement example of Sec. 5.4. BPAtick

δ with action refinement falls outside
the rooted η-bisimulation format, due to the fact that the second argument
of sequential composition needs to be ℵ-liquid in order for the second action
refinement rule to be rooted η-bisimulation safe. Indeed, this operator fails to
be compositional for rooted η-bisimulation [14].

References

1. J.A. Bergstra & J.W. Klop (1984): Process algebra for synchronous communi-
cation. Information and Control 60(1/3), pp. 109–137.

2. B. Bloom (1995): Structural operational semantics for weak bisimulations. The-

oretical Computer Science 146(1/2), pp. 25–68.
3. B. Bloom, W.J. Fokkink & R.J. van Glabbeek (2004): Precongruence formats

for decorated trace semantics. ACM Transactions on Computational Logic 5(1),
pp. 26–78.

22 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

4. B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced. Jour-

nal of the ACM 42(1), pp. 232–268.
5. R.N. Bol & J.F. Groote (1996): The meaning of negative premises in transition

system specifications. Journal of the ACM 43(5), pp. 863–914.
6. R. De Nicola & F.W. Vaandrager (1995): Three logics for branching bisimu-

lation. Journal of the ACM 42(2), pp. 458–487.
7. W.J. Fokkink (2000): Rooted branching bisimulation as a congruence. Journal of

Computer and System Sciences 60(1), pp. 13–37.
8. W.J. Fokkink & R.J. van Glabbeek (1996): Ntyft/ntyxt rules reduce to ntree

rules. Information and Computation 126(1), pp. 1–10.
9. W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2006): Compositionality of

Hennessy-Milner logic by structural operational semantics. Theoretical Computer

Science 354(3), pp. 421–440.
10. W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2005): Divide and congru-

ence applied to η-bisimulation. In Proc. SOS’05, To appear, ENTCS. Elsevier.
11. R.J. van Glabbeek (1993): The linear time-branching time spectrum II: The

semantics of sequential systems with silent moves. In Proc. CONCUR’93, LNCS
715, pp. 66–81. Springer.

12. R.J. van Glabbeek (2004): The meaning of negative premises in transition system
specifications II. Journal of Logic and Algebraic Programming 60/61, pp. 229–258.

13. R.J. van Glabbeek (2005): On cool congruence formats for weak bisimulations
(extended abstract). In Proc. ICTAC’05, LNCS 3722, pp. 331–346. Springer.

14. R.J. van Glabbeek & W.P. Weijland (1996): Branching time and abstraction
in bisimulation semantics. Journal of the ACM 43(3), pp. 555–600.

15. J.F. Groote (1993): Transition system specifications with negative premises. The-

oretical Computer Science 118(2), pp. 263–299.
16. J.F. Groote & F.W. Vaandrager (1992): Structured operational semantics and

bisimulation as a congruence. Information and Computation 100(2), pp. 202–260.
17. M.C.B. Hennessy & R. Milner (1985): Algebraic laws for non-determinism and

concurrency. Journal of the ACM 32(1), pp. 137–161.
18. S.C. Kleene: Representation of events in nerve nets and finite automata. In

(C. Shannon and J. McCarthy, eds.) Automata Studies, pp. 3–41. Princeton Uni-
versity Press, 1956.

19. K.G. Larsen & X. Liu (1991): Compositionality through an operational semantics
of contexts. Journal of Logic and Computation 1(6), pp. 761–795.

20. G.D. Plotkin (2004): A structural approach to operational semantics. Journal

of Logic and Algebraic Programming 60/61, pp. 17–139. Originally appeared in
1981.

21. R. de Simone (1985): Higher-level synchronising devices in Meije–SCCS. Theo-

retical Computer Science 37(3), pp. 245–267.

A Modal Characterisation of Branching Bisimulation

We prove the first part of Thm. 1, which states that � b is a modal characterisa-
tion of branching bisimulation equivalence. The proof is based on [6]. We need
to prove, given an LTS (

�
,→), that p↔b q ⇔ p ∼ �

b
q for all p, q ∈

�
.

Proof. (⇒) Suppose p↔b q, and p |= ϕ for some ϕ ∈ � b. We prove q |= ϕ, by
structural induction on ϕ. The reverse implication (q |= ϕ implies p |= ϕ) follows
by symmetry.

Divide and Congruence 23

– ϕ =
∧

i∈I ϕi. Then p |= ϕi for i ∈ I . By induction q |= ϕi for i ∈ I , so
q |=

∧

i∈I ϕi.
– ϕ = ¬ϕ′. Then p 6|= ϕ′. By induction q 6|= ϕ′, so q |= ¬ϕ′.
– ϕ = 〈ε〉(ϕ1〈τ̂ 〉ϕ2). Then for some n there are p0, . . . , pn ∈

�
with p0 = p,

pi
τ

−→ pi+1 for i ∈ {0, . . . , n−1}, and pn |= ϕ1〈τ̂ 〉ϕ2. We apply induction on
n.
n = 0 Then p |= ϕ1, so by induction on formula size, q |= ϕ1. Further-

more, either (1) p |= ϕ2 or (2) there is a p′ ∈
�

with p
τ

−→ p′ and
p′ |= ϕ2. In case (1), by induction on formula size, q |= ϕ2, so q |=
〈ε〉(ϕ1〈τ̂ 〉ϕ2). In case (2), since p↔b q, by Def. 1 either (2.1) p′ ↔b q or
(2.2) q

ε
=⇒ q′

τ
−→ q′′ with p↔b q

′ and p′↔b q
′′. In case (2.1), by induc-

tion on formula size, q |= ϕ2. In case (2.2), by induction on formula size,
q′ |= ϕ1 and q′′ |= ϕ2. In both cases, q |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2).

n > 0 Since p
τ

−→ p1, and p↔b q, according to Def. 1 there are two possi-
bilities.
1. Either p1 ↔b q. Since p1 |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2), by induction on n, q |=

〈ε〉(ϕ1〈τ̂ 〉ϕ2).
2. Or q

ε
=⇒ q′

τ
−→ q′′ with p1 ↔b q

′′. Since p1 |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2), by in-
duction on n, q′′ |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2). Hence q |= 〈ε〉(ϕ1〈τ̂ 〉ϕ2).

– ϕ = 〈ε〉(ϕ1〈a〉ϕ2). Then for some n there are p0, . . . , pn ∈
�

with p0 = p,
pi

τ
−→ pi+1 for i ∈ {0, . . . , n−1}, and pn |= ϕ1〈a〉ϕ2. We apply induction on

n.
n = 0 Then p |= ϕ1, and there is a p′ ∈

�
with p

a
−→ p′ and p′ |= ϕ2. Since

p↔b q, by Def. 1 q
ε

=⇒ q′
a

−→ q′′ with p↔b q
′ and p′↔b q

′′. By induction
on formula size, q′ |= ϕ1 and q′′ |= ϕ2. Hence q |= 〈ε〉(ϕ1〈a〉ϕ2).

n > 0 Since p
τ

−→ p1, and p↔b q, according to Def. 1 there are two possi-
bilities.
1. Either p1 ↔b q. Since p1 |= 〈ε〉(ϕ1〈a〉ϕ2), by induction on n, q |=

〈ε〉(ϕ1〈a〉ϕ2).
2. Or q

ε
=⇒ q′

τ
−→ q′′ with p1 ↔b q

′′. Since p1 |= 〈ε〉(ϕ1〈a〉ϕ2), by in-
duction on n, q′′ |= 〈ε〉(ϕ1〈a〉ϕ2). Hence q |= 〈ε〉(ϕ1〈a〉ϕ2).

We conclude that p ∼ �
b
q.

(⇐) We prove that ∼ �
b

is a branching bisimulation relation. The relation is
clearly symmetric. Let p ∼ �

b
q. Suppose p

α
−→ p′. If α = τ and p′ ∼ �

b
q, then

the first condition of Def. 1 is fulfilled. So we can assume that either (i) α 6= τ
or (ii) p′ 6∼ �

b
q. We define two sets:

Q′ = {q′ ∈
�
| q

ε
=⇒ q′ ∧ p 6∼ �

b
q′}

Q′′ = {q′′ ∈
�
| ∃q′ ∈

�
: q

ε
=⇒ q′

α
−→ q′′ ∧ p′ 6∼ �

b
q′′}

For each q′ ∈ Q′, let ϕq′ be a formula in � b such that p |= ϕq′ and q′ 6|= ϕq′ .
(Such a formula always exists because � b is closed under negation ¬.) We define

ϕ =
∧

q′∈Q′

ϕq′

24 W.J. Fokkink, R.J. van Glabbeek and P. de Wind

Similarly, for each q′′ ∈ Q′′, let ψq′′ be a formula in � b such that p′ |= ψq′′ and
q′′ 6|= ψq′′ . We define

ψ =
∧

q′′∈Q′′

ψq′′

Clearly, ϕ, ψ ∈ � b, p |= ϕ and p′ |= ψ. We distinguish two cases.

1. α 6= τ . Since p |= 〈ε〉(ϕ〈α〉ψ) ∈ � b and p∼ �
b
q, also q |= 〈ε〉(ϕ〈α〉ψ). Hence

q
ε

=⇒ q′
α

−→ q′′ with q′ |= ϕ and q′′ |= ψ. By the definition of ϕ and ψ it
follows that p ∼ �

b
q′ and p′ ∼ �

b
q′′.

2. α = τ and p′ 6∼ �
b
q. Let ϕ̃ ∈ � b such that p′ |= ϕ̃ and p, q 6|= ϕ̃. Since

p |= 〈ε〉(ϕ〈τ̂ 〉(ϕ̃ ∧ ψ)) ∈ � b and p ∼ �
b
q, also q |= 〈ε〉(ϕ〈τ̂ 〉(ϕ̃ ∧ ψ)). So

q
ε

=⇒ q′ with q′ |= ϕ〈τ̂ 〉(ϕ̃ ∧ ψ). By definition of ϕ it follows that p ∼ �
b
q′.

Thus q′ 6|= ϕ̃, so q′
τ

−→ q′′ with q′′ |= ϕ̃ ∧ ψ. By the definition of ψ it follows
that p′ ∼ �

b
q′′.

Both cases imply that the second condition of Def. 1 is fulfilled. We therefore
conclude that ∼ �

b
is a branching bisimulation relation. ut

Using the first part of Thm. 1, which was proved above, it is not hard to derive
the second part of Thm. 1, i.e. that � rb is a modal characterisation of rooted
branching bisimulation equivalence.

