
Fundamerzta illj(Jrmaticae XII (1989) 221-242
North-Holland

ABSTRACTION AND EMPTY PROCESS
IN PROCESS ALGEBRA

J.C.M. BAETEN* and R.J. VAN GLABBEEK**

*Programming Research Group, University of Amsterdam
P. 0. Box 41882, 1009 DB Amsterdam, The Netherlands

**Dept. of Software Technology
Centre for Mathematics and Computer Science

221

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Received February 1988 I Accepted September 1988

Abstract: In this paper, we combine the hidden step 11 of the authors' paper [2] with the empty
process E of VRANCKEN [12] and the authors' [3]. We formulate a system ACPc, which is a
conservative extension of the systems ACP,.\' ACP{ but also of ACP,. This is a general system,
in which most relevant issues can be discussed. Abstraction from internal steps can be
achieved in two ways, in two stages: we can abstract to the hidden step ri. and then from ri to
Milner's silent s1ep i:.
Note: Partial support received from the European Communities under ESPRIT contract no.
432, An Integrated Formal Approach to Industrial Software Development (Meteor).

1. INTRODUCTION

Having been introduced to the Algebra of Communicating Processes of BERGSTRA & KLOP [4], many

people ask the question why there is no neutral element for the sequential composition .. The neutral

element for alternative composition +is the constant 8, that is used to denote deadlock, unsuccessful

termination. A constant e satisfying the laws e·x = x·e = x must stand for an empty process, a

process that tenninates immediately and successfully. The investigation of what happens when we want

to add such a constant to ACP was started by KOYMANS & VRANCKEN [8]. It turned out that the

constant e is very useful, but that the technicalities involved were substantial. For instance, the just

quoted paper contained a non-associative merge operator. This problem was remedied in VRANCKEN

[12], where the theory ACP was modified and extended to ACP£. Recently, the system ACP£ was

reformulated as ACP..J in BAETEN & VAN GLABBEEK [3], where tennination was made explicit. In

practice, the constant e already showed its usefulness in BERGSTRA, KLOP & OLDEROG [6], where e

was needed to define the constant L'i denoting divergence. However, this last paper left an open

question: how do we combine the empty process e with the system ACP, of BERGSTRA & KLOP [5]?

Incorporated in ACP i: is the notion of abstraction, a central issue in concurrency theory. We use

operators like alternative, sequential and parallel composition, to build up large systems from smaller

processes. Often, such a large system must have a certain prescribed external behaviour, must

communicate in a certain way with the environment. To verify that is indeed the case, we need to

abstract from all internal behaviour of the system.

Following ideas of MILNER [9] and HOARE [7J, abstraction can be modelled by distinguishing two

kinds of actions in a process, viz. external or observable actions, and internal or hidden actions, and by

introducing an explicit abstraction operator that transforms observable actions into internal ones. Now

the constant e stands for a process of no duration, and so cannot be used for an internal action; using it,

222 J.C.M. Baeten, R.J. van Glabbeek I Abstraction and Empty Process

we would loose too much infonnation, e.g. infonnation on deadlock behaviour.

The silent step 't of MILNER [9] can be used for an internal step, and the operator 'tJ, that renames

actions from the set I into i:, can be used for abstraction.

Koymans and Vrancken found that the second law for 't immediately translates to 't = 't + E, so 't

contains a summand E. This raised the question, what the process 't turns into, when we remove the

option of immediate tennination. The resulting process, called T\, together with the abstraction operator

T\r. that renames actions from I into T\, was extensively investigated in BAETEN & VAN GLABBEEK [2).

There, laws were fonnulated for the constant T), and it was added to the system ACP (without E). It was

found that T\ can also be used for an internal step. Also, the hidden step T\ was compared with the silent

step 't. It was found that the T\ has technical advantages over the 't, but both types of abstraction can

co-exist, indeed that one can be applied after the other. What was lacking, is a single system in which

both constants appear. While the 't exists in ACP11 in prefix position, it could not be defined as a

process.

The solution was already indicated in the last paragraph of [2]: we can define 't, if we have added the

empty process E. Thus, the task is to combine the system ACf>'i of [3] with the system ACPTJ of [2].

This is what we do in this paper. The result is a system ACPc (Algebra of Communicating Processes

with constants), which has constants T\ and E, and in which 't is definable.

We discuss a model for ACPc consisting of finitely branching process graphs modulo an appropriate

notion of bisimulation (cf. PARK [11], MILNER [10)). We use this model to establish the consistency of

ACPc and the conservativity of ACPc over ACPTJ, and most of ACP..J and ACPi:.

ACKNOWLEDGEMENT

The original ideas for E and T\. and the central equation 't = T\ + E, are due to Karst Koymans and Jos
Vrancken.

2. ALGEBRA OF COMMUNICATING PROCESSES WITH EMPTY PROCESS

In this section, we review the theory ACF..J (Algebra of Communicating Processes with empty process

and explicit tennination) as defined in BAETEN & VAN GLABBEEK [3]. ACF..J is a reformulation of the

system ACF€ ofVRANCKEN (12].

For a review of related approaches and comparisons with them, we refer to BERGSTRA & KLOP [4].

The axioms of ACF..J are displayed in table 1, in 2.3 on page 4.

2.1 SIGNATURE

A is a given (finite) set of atomic actions. On A, we have given a partial binary function y, which is

commutative and associative, i.e.

y(a,b) = y(b,a)

y(a;y(b,c)) = y(y(a,b),c)

for all a,b,c e A (and each side of these equations is defined just when the other side is). y is the

communication function: if y(a,b) is defined (we write y(a,b}..l.), and y(a,b) = c, it means that actions a

and b can communicate, and their communication is c; if y(a,b) is not defined, we say that a and b do

not communicate.

All elements of A are constants of ACF..J. Further, ACF..J has binary operators +.-.11.ll.. I, unary

operators aH' EK (for H' K I: A) and constants 15,e . ..J is another notation for a A·

I.CM. Baeten, R.J. !'all Glabbeek /Abstraction and Empty Process 223

2.2 HEURISTICS

Process algebra starts from a collection of given objects, called atomic actions, atoms or steps. These
actions are taken to be indivisible, usually have no duration and form the basic building blocks of our
systems. The first two compositional operators we consider are "denoting sequential composition, and
+ for alternative composition. If x and y are two processes, then x·y is the process that starts the
execution of y after the completion of x, and x+y is the process that chooses either x or y and executes

the chosen process (not the other one). Each time a choice is made, we choose from a set of alternatives
(we see this from laws Al-3, since A3 is equivalent to X+X=X, by use of A4 and A8). We do not
specify whether a choice is made by the process itself, or by the environment. We leave out · and
brackets as in regular algebra, so xy + z means (x·y) + z. · will always bind stronger than other
operators, and+ will always bind weaker.

On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of choice is
different), and therefore, an axiom x(y + z) = xy + xz is not included.

We have a special constant e denoting the empty process, characterized as the neutral element of
sequential composition. See axioms AS,9. In a sum, as in x + e, it tells us that the process can terminate
immediately. We have the operator.../ to indicate whether or not a process can terminate immediately:
.J(x) = e if x has the termination option, and .../(x) = 8 otherwise.

Furthermore, there is a special constant 8 denoting deadlock, the acknowledgement of a process that it
cannot do anything anymore, the absence of any alternative. See axioms A6-7 (note that axiom A6 is
equivalent to 8+X=X, by use of A4, A7 and AS). We can consider 8 to stand for unsuccessful
termination, and E for successful termination.

Next, we have the parallel corn position operator II. called merge. The merge of processes x and y will
interleave the actions of x and y, except for the communication actions. In x II y, there are 4 possibilities:
the process can terminate (only if both x and y have that option), a step from x can be executed, or a
step from y, or x and y both synchronously perform an action, which together make up a new action,
the communication action. These options are present in axiom EM!. Here, we use the auxiliary
operators IL (left-merge), [(communication merge) and.../ (used to indicate termination). Thus, xll_y is

xlJy, but with the restriction that the first step comes from x, and x [y is xlJy with a communication step
as the first step. A simple case distinction learns us that the termination summand of x II y can be
represented by .../(x)·.../(y). Axioms CFI,2 and EM2-8 give the laws for li. and I. Axioms for .J are
discussed below. It is also possible to use the left-merge IL to express the termination possibility (as in
VRANCKEN [12]), or even the communication merge I. Note that it is not a good solution to replace
EM2 by the axiom i::ll_x = x (as in KOYMANS & VRANCKEN [8]), as was shown in [12].

Finally, we have in table l the renaming operators aH and EK· Here H and K are sets of atoms. aH

blocks the actions from H, renames them into 8 (axioms D0-4), and EK erases actions from K, renames
them into e (axioms E0-4). The operator ()H can be used to encapsulate a process, i.e. to block
communications with the environment. If we block all atomic actions, as in a A, we get an expression

for the termination operator.../.

2.3 AXIOMS

The axioms of Acp,j are presented in table 1, on the following page. There a,b E Au{8}, H,K f;;; A,

and x,y,z are arbitrary processes.

Note that axiom CF2 implies that o I a = 8 for all a E Au{ 8). Since every expression of the form a I b

is equal to an element of Au{8}, we can assume that axioms EM3,7, Dl,2, El,2 also hold for these
expressions instead of a. We call the theory just consisting of the first nine axioms, A 1-9, BPA& (so

224 J.C.M. Baeten, R.J. van G!abbeek /Abstraction and Empty Process

BPA& has in the signature only operators+, and constants Au{o,E}).

X+Y=Y+X Al

(x + y) + z = x + (y + z) A2

E+E=E A3

(x + y)z = xz + yz A4

(xy)z = x(yz) A5

x II y = xll.y + yll.x + x I y + ../(x)../(y) EMl

elLX = 0 EM2
axll.y = a(xllY) EM3

(x + y)ll.z = xllz + yll.z EM4

aH(E) =E DO

aH(a) = a if a 11: H DI

aH(a) = o if a E H D2

aH(X + y) = aH(x) + aH(Y) D3

aH(xy) = aH(x)·aH(Y) D4

o+E=E

OX= 0

EX=X

XE=X

a I b = y(a,b) if y(a,b)J.

a I b = o otherwise

xiy=yix

xle= o
xJay = (xia)ILY
x I (y + z) = x I y + x I z

EK(E) =E
EK(a) = a if a E K

EK(a)=E ifae K

EK(x + y) = EK(x) + EK(y)

EK(xy) = EK(X)· EK(Y)

Table 1. ACp-../,

2.4REMARKS

A6

A7

A8

A9

CFl

CF2

EM5

EM6

EM7

EM8

EO

El

E2

E3

E4

The system ACP../ presented above differs in four respects from the system ACPE in [12]. Firstly, we

use an explicit summand in the equation for merge for the tennination possibility, as was discussed in
2.1. Next, in [12], y is a total function from AxA to Au{o}, while in this paper, y is a partial function

from AxA to A. Also, in the axioms in [12], a varies over A, not over Au{o}, which necessitates more

axioms. Lastly, we left out the axiom (x I y) J z = x I (y I z), as we saw no reason for its inclusion.

The system ACP../ differs in several aspects from the system ACP ofBERGSTRA & KLOP [4]. Most of

these differences were a consequence of the addition of the constant E. Another difference is the

inclusion of axiom EMS, the commutativity of the communication merge, which decreased the number

of axioms needed.

3. HIDDEN STEPTJ

3.1 In [2], the constant TJ is introduced. It stands for a hidden or internal action: when we want to

abstract from the internal actions in systems consisting of several components (essential for verification

purposes), we rename these actions into TJ, the hidden step. TJ obeys the laws of atomic actions, but has

in addition three extra laws, which serve to calculate the Tt away in certain contexts. We cannot get rid

of TJ altogether (11 is note), because deadlock behaviour would not be preserved. The three T]-laws are

presented in table 2 below.

For some intuitive background on these laws, we refer to [2). Roughly, this intuition amounts to saying

that an TJ-Step cannot be directly observed, but will take some time to execute.

J.C.M. Baeten, R.J. 11an Glabbeek /Abstraction and Empty Process

XT(= X

a(11(x + y) + x) = a(x + y)

a(11x + y) = a(11x + y) + ax

Table 2. rt-laws.

HI

H2

H3

225

In a setting with E, the first law cannot be maintained, for substituting E for x leads to an unwanted

equation. However, by taking X=o, Y=£ in the second law, we obtain a11 = a, from which the first law

can be derived for all basic tenns that do not have a subtenn with an e-summand.

Therefore, we will only add the laws H2,3 to ACP°'I, and will have a vary over C = Au{o,T(} (the set

of atom-like constants) instead of Au{o}. Furthennore, we have to leave out the operator EK, which

cannot be added (for we would have E = E{a}(a) = E{a}(a11) = E{a}(a)·E{a}(ll) = eri = T(; it is no solution to

have EK always rename T(into E as well (the trick we use fort1), since then a(b + c) = 1::0(a(rtb + c) =

1::0(a(rtb + c) + ab) = a(b + c) + ab).

Now we will present the system ACPc. We present the system in two parts: the first part, in 3.2,

contains the basic system; in 3.3 we discuss in addition the constant t and the operator 'tri·

3.2 ACPC, THE BASIC SYSTEM

As before, A is a given (finite) set of atomic actions; on A, we have given a partial binary function y,

which is commutative and associative. All elements of A are constants of ACPc. Further, the basic

system ACPc has binary operators+,, 11.IL. I. constants o,E,T(, and unary operators OH, rt1 (for H,I ~
A, but we also allow H = C = Au{o,T(}). -.J now is another notation for Clc.

x+y=y+x Al £X =X A8

(x + y) + z = x + (y + z) A2 X£= X A9

E+E=E A3

(x + y)z = xz + yz A4 a(n(x + y) + x) = a(x + y) H2

(xy)z = x(yz) A5 a(11x + y) = a(11x + y) + ax H3

O+£=E A6

ox= 0 A7 a I b = "r'(a,b) if"r'(a,b)J.. CFI

alb=o otherwise CF2

xlly = x!Ly + y!Lx + x I y + -./(x)-./(y) EMI xiy=ylx EM5

E!Lx = o EM2 xle= o EM6

axb=a(x!ly) EM3 x I ay = (x I a)ILY EM7

(x + y)ll.z = xll.z + yll.z EM4 x I (y + z> = x I y + x I z EMS

OH(E) = E DO llJ(e) = E HIO

ClH(a) =a ifae H DI 111(a) =a if a e I Hll

ClH(a) = o ifae H D2 Tt1(a) = 1l if a E I HI2

ClH(x + y) = ClH(x) + ClH(y) D3 Tt1(X + Y) = Tt1(x) + Tt1(Y) HI3

ClH(xy) = ClH(x)-ClH(Y) D4 Tt1(xy) = Tt1(X)- Tt1(Y) HI4

Table 3. ACPc (basic system).

226 J.C.M. Baeten, R.J. 11a11 Glabbeek /Abstraction and Empty Process

Note that 11 can only be renamed into Ii, when all atomic actions are renamed into 1l at the same time (for

otherwise we get an inconsistency from the equation a=al]). 111 is the hiding operator, that renames

actions from I into 11; I is the set of internal actions, that are hidden in order to verify the external

behaviour of a system. 111 is also called the 11-abstraction operator. The axioms of ACPc are

presented in table 3 above. There a,b e C, H,l !;;; A or H = C, and x,y,z are arbitrary processes.

3.3 ACPC, THE FULL SYSTEM

The full system ACPc has in the signature, besides the elements mentioned in 3.2, a constant t, and a

unary operaton11 . t is the silent step of MILNER [9], that, like 11. stands for an invisible step; we find

however, that it has different properties than 11 (see [2] and below).

t 11 is a kind of abstraction operator, that renames 11 into t. Applying this operator means that we lose

some information: we 'forget' that internal actions have to take a positive amount of time (t has the

option of terminating immediately, 11 does not).

Furthermore, we use the abbreviation t 1 fort,, 0 11r (I 1::; A). t 1 is the (t-)abstraction operator, that

renames atoms from I, and also 11. into t. This operator is also used to abstract from the internal

behaviour of a system. Note that we must always rename 11 into t, when we use t 1, for otherwise t =
tA(a) = tA(a11) = tA(a)·tA(ll) = t1] = 1].

The axioms of ACPc comprise, besides the axioms in table 3, those in table 4.

t =1] + e THE

t,,(e) = e HTO
t,,(T\) = t HTl
t,,(a) =a if a ;e 11 HT2

t,,(X + y) = t 11{x) + t,,(Y) HT3
t,,(xy) = tii(x)·t,,(y) HT4

Table 4. ACPc (additional axioms).

3.4LEMMA

The following equations are derivable from the system ACPc (a,b e C, H, I,;;;; A):

1. al]= at= a 9. tx!Ly = T\(xlly) + x!Ly

2. l]t=tl]=T\ 10. a(11xlly) = a(txlly) = a(xlly)

3. TI =t 11. axllby = byllax

4. tli = T\li 12. oH(t) = Tl1(t) = t1(t} = t1(1l) = 't, but Clc(t) = e
5. t + e = t + T\ = t 13. t 1(e) = e
6. tX + X ='tX 14. t1(a) =a if at! lu{11}. and t 1(a) = t if ae Iv{11}
7. a('tX + y) = a(tx + y) + ax 15. t1(X + y) = t1(X) + t1(Y)
8. xiii =Ii 16. t1(xy) = t1(x)·t1(y)
PROOF: Straightforward. We give some hints:

1. a11 = a(11(e +Ii) +Ii)= a(e +Ii) =a and at= a(11(1i + E) + e) = a(ll + e) =a.
8. ll = x I E = x I (E +Ii)= x I E + x Is= ii+ x I ii= x Is.

10. a(11xl!y) = al]x!Ly = ax!Ly = a(xlly) = ax!Ly = atx!Ly = a(txlly).

J. C.M. Baeten, R.J. van G/abbeek /Abstraction and Empty Process 227

3.5 NOTE

The second equation of 3.4.1 with 3.4.3, together with 3.4.6 and 3.4.7, folTI! the three 't-laws of

MILNER [9). They form, in the system ccs. and also in ACP, (see BERGSTRA & KLOP [5]) the

defining equations for the silent step t. Compared to the defining equations for T\. we see that the

crucial point is the difference between the law H2 and 3.4.6: H2 is more restrictive, and this difference

has many consequences, as was made clear in [2).

3.6LEMMA

In the system ACPc plus extra axiom e\lx = x the following equations are derivable (a,b E C):

1. x = xll_e + '1(x)

2. x\le = x 5. a I bx = ax I b = (a I b)x

3. all_x = ax 6. axlby= (alb)(xlly)

4. 'tll_X = T)X 7. a(1111x) = a(-c\lx) = ax

PROOF: Straightforward.

3.7 NOTE

Equation 3.4.1 states that we can write each process as the sum of its termination option (--.l(x)) and the

summands that start with an atomic action (x[Le). Next, we consider another equation that is of special

interest, namely the assertion that '1(x) must be either e or o (here x = x + e amounts to saying that x has

an e-summand):

'1(x) = e iff x = x + e, and '1(x) = 8 otherwise (*).

3.8 LEMMA

In the system ACPc plus extra axiom (*)the following equations are derivable:

1. '1(x)ll_y = 8 4. '1(x)-'1(y) = '1(y)·'1(x)

2. '1(x) IY = 8 5. xlly = y\lx

3. '1(--.l(x)) = '1(x) 6.11x\111y = 11(xllY)

PROOF: Straightforward.

3.9 DEF!NlTION

A basic term is a closed term of the form

t = aoto + ... + an-1tn-1 + bo + ... + bm-1 (+ c:)

for certain n,m E N, certain ai,bj E C, basic terms t1 and the summand e may or may not occur. If the

summand e does not occur, we must have n+m > 0.

We usually abbreviate such expressions, in this case to t = Lkn a1t1 + Lj<m bj (+ e). Note that we can

always write t = Lkn a1t1 + Lj<m bi+ '1(t), for it is easy to see that '1(t) = e ifft has a summand e, and

'1 (t) = 8 otherwise.

The set of basic terms BT can be inductively built up as follows (working modulo laws Al-3 and A9):

1. e E BT

2. if a E C and x E BT, then ax E BT

3. if x,y E BT, then x+y E BT.

Alternatively, if LkO x; denotes 8, we can build up BT as follows:

- If n E W, a; E C and ti E BT (for kn), then Li<n ail; (+ e) E BT.

Both these inductive schemes can be used in proofs.

228 J. C.M. Baeten. R.J. Fan G/abbeek /Abstraction and Empty Process

3.10 THEOREM

For every closed ACPc-term t there is a basic term s such that ACPc I- l=S. This is the so-called

elimination theorem.

PROOF: The proof is very similar to the case of ACP-.J, treated in [3]. We mention the differences

briefly: Tlr should be treated like OH and t 11 like t:K· Take Te(t) = 1, l{t) = 1 and w(t) = 2. In claim 3, t

is not a normal form of RACPc.

3.11 LEMMA

The following statements hold for all closed ACPc-terms:

1. e II x = x, and hence the equations oflemma 3.6;

2. '1(x) = e iff x + e = x and -.J(x) = o otheIWise, and hence the equations oflemma 3.8;

3. '1(xll.y) = -.J(x I y) = o 6. 4 ty = xll.y

4. rixly =ri Ix =tlx = o 7. txlly =t(x!ly)

5. tx I y = x I y 8. x II (riy + z) = x II (TlY + z) + xll.y
PROOF: By theorem 3.10, it is enough to prove these equations for basic terms. This proof can be done
by structural induction, following one of the schemes in 3.9.

Write x = Li<n aixi (+ e) and y = Lj<m bjYj (+ e) (m,n E N, ai,bj E C).

Now l - 5 follow immediately, and 6 follows from 3.8.5 and 3.4. JO (note that only in the proof of

statement 1, we actually need the induction hypothesis).

The proof of7: txlly = txll.y + yll. tx +tX I y + "'1(tx}'-.J(y) =

=rixll.y + xll.y+ yll.x +x IY+ -.J(xH(y) =ri(xliy) + xlly = t(xlly).
In the proof of 8, we use the following notation: p s q iff p + q = q.

It follows from Al, A2 and A3 that sis antisymmetrical, transitive and reflexive, respectively, and
hence a partial ordering. Now H3 can be reformulated as a conditional equation:

TlP sq => ap s aq (H3).

Now we can prove 8: ri(xdJy) = n(yllxi) = riyll.xi s (TlY + z)ll.xi s xdl(TlY + z), and thus
xll.y = Li aixill.Y =Li ai(Xi lly) s Li ai(xdl (T\Y + z)) = xll.(ny + z) s x II (TlY + z).

3.12 PROPOSITION

For all closed ACPc-terms x,y,z we have the following laws of standard concurrency:

ellx =X
"'1(x) = E iff x + e = x, and '1(x) = o otherwise

"'1(xlly) = -.J(x)'-.J(y)
x I (y I z) = (x I y) I z

(xll.y)ll.z = xll. (yll z)

(x I y)h = x I (yll.z)

x II (yllz) = (x M 11 z.

PROOF: As in [3].

3.13 NOTE

We usually assume that the laws of Standard Concurrency hold for all processes. Therefore, they are
often called the axioms of Standard Concurrency.

Often, we also assume the following Handshaking Axiom:

xlylz=o (HA).

It says, that all communication is binary, i.e. only involves two communication partners.

J.C.M. Baeten. R.J. van Glabbeek /Abstraction and Empty Process 229

3.14 PROPOSITION

In ACPc with standard concurrency and handshaking axiom we have the following expansion

theorem (n~1):

II Xt = ::E xiii..(II xk) + ::E (x1 I xi)IL(II xk) +TI ..J(x1)
!Sn i!;n kSn,k;ti i<~n kSn,k;ti,j l!;n

(Where II ts;n Xt means Xo 11 .•. 11 Xn, and TI1s;n Xt means xa· ... ·xn.)
PROOF: As in [3].

3.15 PROPOSITION

The operator 'tTI is a homomorphism on closed terms, w.r.t. the operators+,, 11,IL.aH, for H ;;;;;; A.
PROOF: The proof is only non-trivial for the case of 11,11... We prove the case of II.

Thus, let x,y be closed ACPc-terms. We have to prove that ACPc t- "t,i(X lly) = "tti(x) ll"tti(Y).

Because of the elimination theorem, we can assume that x,y are basic terms. We use the second

induction scheme of 3.9.

Write x = Lkn a,x, + LJ<m 11X'j + ..J(x) and y = Lk<p bkYk + Lkq 11Y'1 + ..J(y) ca,,bkeAv{S}).

Then 't11(x) =Lt ar't11 (x1) + Lj 1l"'tti(x'1) + Lj "tti(x'i) + ..J(x). Also, note that ..J("t,i(x)) =

= Lj ..J(-r,,(x'j)) + ..J(x), and ..J('t11(y)) =:Et ..J(-r,,M)) + ..J(y), so ..J(-r,,(x))·..J('tTl(y)) =

= Lj,t ..J('t11(x'j))·..J('t11{y'j)) + 2:1 ..J(xH<-r,,M)) + 2:1 ..J("t,i(x'J)H(y) + ..J(xH(y)
(use A4, in combination with 3.8.4) =

= 2:1 ..J('t11(x))·..J('tTl{y'j)) + Lj ..J("t,i(X'j)}"..J('tTl(y)) + ..J(xH(y).
Now, using 3.8.1-2, we get -r,,(x) ll'tTl(y) =

=:Et a1(-r,,(x1) ll"t,i(Y)) + LJ 1l("t,i(x'1) ll"t,i(Y)) + LJ -r,,(x'1)1l -r,,(y) +

+ Lk bk("t,i(x) ll'tTl(Yk)) + LI 'll("tti(x) ll"tti(Y'1)) + 2:1 "t,i<Y't))ll..-r,,(x) +

Li,k (a1Ibk)('t11 (x1)11-r,,(Yk)) + LJ 't11(x'1) I "tti(Y) +Lt -r,,(x) 1-r,,Ml +
+ 2:1 ..J("t,i(x)H(-r,,(Y'1)) + LJ ..J(-r,,(x'ilH("t,i(Y)) + ..J(xH(y).

Using 3.11.8, which involves an application of H3, we may add to this expression the term

Lt -r,,(x)IL 'tTl{y'j) + LJ -r,,(y)IL "t,i(x'1). which yields

"t,i(x) ll't11(y) =Li a1("t,i(x1) ll"t,i(Y)) + LJ 't(-r,,(x'1) 11-r,,(y)) +
+ Lk bk(-r,,(x) ll'tTl(Ykll +:Et 't('tTl(x) ll"ttiMll +
+ 2:1,k (a1 I bk)("t,i(x1) ll"t,i(Yk)) + ..J(x}"..J(y) =

= 2:1 a1("t,i(xj(ly)) + Lj 't("t,i(X'j llY)) + Lk bk("t,i(XllYk)) +Li 't("t,i(XllY'1)) +
+ Li,k (ad bk)(-r,,(xtllYk)) + ..J(xH(y) (by induction hypothesis)= "t,i(x(ly).

3.16 NOTE

The mapping 'tii is not a homomorphism w.r.t. I or ..J. E.g., if 'Y(a,b) is defined, then 'ta I b = 'Y(a,b),

while 'lla I b = o. Also the termination behaviour is different, viz. 'trJ(..J(11)) = o but ..J("tti('ll)) =e. This is

not so bad, however, as operators I • ..J are only auxiliary operators, needed to define the merge

operator, and 'tri is a homomorphism for merge.

3.17 NOTE

In the next section we will prove that ACPc is a conservative extension of ACPTI, and most of

ACp..J and of ACPi;. i.e. for all closed ACP11-tenns t,s we have

ACPc I- t=S iff ACP11 t- t=S,
for all closed Acp..J-terms t,s in which the operator EK does not appear, we have

ACPc I- t=S iff Acp..J I- t=S,

230 J.C.M. Baeten, R.J. van Glabbeek I Abstraction and Empty Process

and for all closed ACP,-tenns t,s in which the operator IL does not appear, we have

ACPc I- t .. s iff ACP't I- t=S.

4. THE GRAPH MODEL

We construct a model for ACPc consisting of equivalence classes of process graphs. Tiris model will

also contain infinite processes, processes that cannot be represented by a closed tenn. The way to talk

about such processes algebraically, is by means of recursive equations, or, more generally, recursive

specifications. We will not discuss recursive specifications in this paper, but refer the reader e.g. to [2,

3].

4.1 DEFINITIONS

A process graph is a labeled, rooted, finitely branching, directed multigraph. An edge goes from a

node to another (or the same) node, and is labeled with an element of Av{o,11,e}, the set of constants

(but there is no label t). We consider only finitely branching graphs, so each node has only finitely

many outgoing edges. Graphs need not be finite (have finitely many nodes and edges), but we must be

able to reach every node from the root in finitely many steps. G is the set of all process graphs. 0 is the

trivial graph, just consisting of a single node and no edges. A tree is a graph in which the root has no

incoming edge, and all other nodes have exactly one incoming edge. Note that a tree has no cycles,

i.e. there is no series of edges that leads from a node back to the same node. 1' is the set of all nontrivial

process trees.

A path 7t in a process graph g is a finite alternating sequence of connected nodes and edges of g. The

length of 7t is the number of non-e-edges in n. A node s of g is reached by the path 7t if 7t ends ins.

Ifs is a node of graph g, then (g)5 is the subgraph of g that consists of all nodes and edges that can be

reached from s, with roots. Note that in a process tree every node is reached by exactly one path from

the root. The depth d (g) of a finite tree g is the length of its longest path. A node in a graph is an

endnode if it has no outgoing edges. An edge is intermediate if it ends in a non-endnode.

Au-step in a graph from s to s' is an edge going from s to s' with label u e Av{o,11,e}, notations

-+u s'; .,.Eis the transitive and reflexive closure of -+e, so s .,.E s' if there is path of (2:0) e-labeled

edges, starting ins, and ending ins'. "*e is called a generalized e-step. Further, we will also need a

generalized e111-step ... Ehl: this is a path with edges labeled e orr1, of which the last one (if there is a

last one) has label 11. For more information about process graphs, see e.g. BAETEN, BERGSTRA &

KLOP[l].

In order to define when two graphs denote the same process, we have the notion of bisimulating

process graphs. For more information about bisimulations, see PARK [11], MILNER [10] or BAETEN,

BERGSTRA & KWP [1]. The present definition is obtained by 'putting together' the e-bisimulation of

VRANCKEN [12] (also used in [3]) with the fT\-bisimulation of[2].

4.2 DEFINITION

Let g,h be process graphs, and let R be a relation between nodes of g and nodes of h. R is a rooted

ne-bisimulation between g and h, notation R: g tin,e h, iff

1. The roots of g and h are related.

2. If R(s,t) and from s, we can do a generalized e-step followed by an a-step to a nodes' (s e -+as')

with ae A (so a;tT), a;ee, a:;eo), then, in h, we can do a generalized e!Tt-step t Ehl t* to a node t* with

J. CM. Baeten, R.J. Pan Glahbeek I Abstraction and Empty Process 231

R(s,t*), and from t*, we can do a generalized e-step, followed by an a-step, followed by a generalized
Elt]-step, to a node t' with R(s',t'), i.e. t' _,.E -7a -.r.111 t'. See fig. Ja.

g h g h

Fig. la. Fig. lb.

In case (s, t) is the pair of roots, we must have t=:t* (this is part of the so-called root condition).
3. Vice versa: if R(s,t) and t -.E ~at' is a path in h with aE A, then, in g, there are nodes s* ,s' such
that s _..EIT\ s* _,.E ~a _,.f./'Tl s' and R(s*,t), R(s',t'). See fig. lb. In case (s,t) is the pair of roots, we

must have s=:s* (the second part of the root condition).

4. If R(s,t) and s _,.E -7'll s' is a path in g, then, in h, there is a node t' such that t ..,.e111 t' and R(s',t').

In case (s,t) is the pair of roots, the step t _.f./'Tl t' must contain at least one edge (the third part of the
root condition).

5. Vice versa: if R(s,t) and t ..,.e -7'll t' is a path in h, then, in g, there is a nodes' such that s _,.f.l'Tl s'

and R(s' ,t'). In case (s,t) is the pair of roots, the steps _,.f.i'Tl s' must contain at least one edge (the
fourth part of the root condition).

6. If R(s,t), s' is an endpoint in g, and s _,.Es', then, in h, there are nodes t*,t' such that t' is an

endpoint, t _.r.111 t* ..,.et' and R(s,t*). In case (s,t) is the pair of roots, we must have t=:t* (the fifth part

of the root condition).

7. Vice versa: if R(s,t), t' is an endpoint in h, and t _,.Et', then, in g, there are nodes s*,s' such that s'
is an endpoint, s ..,.e1ri s* _.<: s' and R(s* ,!).In case (s,t) is the pair of roots, we must have s=:s* (the

last part of the root condition).

A relation R between nodes of g and nodes of h is an rie-bisimulation between g and h, g Hrie h, if

we do not require the root condition in points 2-7.

Graphs g and h are rrie-bisimilar, g Hf1'\E h, if there is a rooted rie-bisimulation between g and h; g
and hare rie-bisimilar, g B'lle h, if there is a rie-bisimulation between g and h.

4.3 EXAMPLES

See fig. 2. We have a,b,c E A, so ;eo,e,'T].

232 J.C.M. Baeten, R.J. van Glabbeek /Abstraction and Empty Process

· >ill"* f". A ~ 0 0

Fig. 2.

J. CM. Baeten, R.J. !'an Glabbeek /Abstraction and Empty Process

4.4 LEMMA

HrTJE and HT\E are equivalence relations on G.

PROOF: Straightforward.

4.5 LEMMA

Each HniE-equivalence class contains a nontrivial process tree.

PROOF: As in [3].

233

4.6 G/Hnie will be the domain of the graph model for ACPc. The interpretation of a constant u E

Au{o,11,e} is the equivalence class of the graph with two nodes and a single edge between them labeled

u. The interpretation of the constant 't is the equivalence class of the graph with two nodes and two

edges between them (with the same direction), one labeled 11, the other labeled e.

What remains is the definition of the operators of ACPc on Gl±zrrie· We will define these operators on

G (the parallel operators only on 1f) and will then show that HrTJE is a congruence relation w.r.t. them.

These definitions are also given in (3]. We repeat them here, but for comments and examples we refer

the reader to [3].

4.7 DEFINITIONS

1. +. If g, h e G, graph g+h is obtained by taking the graphs of g and h and adding one new node r,

that will be the root of g+h. Then, we add two edges labeled e: from r to the root of g, and from r to

the root of h.

2. ·.If g,h e G, graph g·h is obtained by identifying all endpoints of g with the root node of h. If g

has no endpoints, the result is just g. The root of g·h is the root of g.

3. II. The defmition of the merge on G is rather complicated. Therefore, we will only define the merge

on nontrivial process trees. Using lemma 4.5, this definition can be extended to G.

If g,h E ir, graph g II his the cartesian product graph of graphs g and h, with 'diagonal' edges added

for communication steps, and with non-e-edges 'orthogonal' to an incoming e-step turned into a-steps.

By this, we mean the following: if (s, t) is a node in g II h, then it has the following outgoing edges (u,v

e Au{a.11.e}, a,b e A):

i. an edge (s,t) __,u (s',t) ifs __,u s' is an edge in g, and u = e or h has no edge t" __,et;
ii. an edge (s,t) __,& (s',t) ifs __,u s' is an edge in g, u ;t e and h has an edge t" __,e t;

iii. an edge (s,t) __,v (s,t') if t __,v t' is an edge in h, and u = e or g has no edges" __,e s;

iv. an edge (s,t) __,& (s,t') if t __,v t' is an edge in h, u ;e e and g has an edges" __,e s;

v. an edge (s,t) __,y(a,b) (s',t') ifs __,as' is an edge in g, t __,b t' is an edge in hand)'(a,b) is defined

(these are the diagonal edges).

The root of g II h is the pair of roots of g and h.

Edges (s,t) __,u (s' ,t) are called vertical edges, and edges (s,t) __,u (s,t') are horizontal edges.

4. 11_. If g,h e 'If, graph gll_h is obtained from graph g llh by turning all horizontal and diagonal edges,

that are reachable from the root by a generalized E-step, into 8-edgcs.

5. I. Similar to 4: If g,h E 'If, graph g I h is obtained from graph g II h by turning all horizontal and

vertical edges, that are reachable from the root by a generalized e-step, and do not have label e, or do

have label e but lead to an endpoint, into 8-edges.

6. dH, 111. If g E G, obtain dH(g) by replacing all labels in g from H by 8, and obtain 111(9) by

replacing all labels from I by 11.

7. 1:T\. If g E G, obtain ~(g) by adding an edge s __,et for each edges --711 tin g.

234 J.C.M. Baeten. R.J. van Glabbeek I Abstraction and Empty Process

This finishes the definition of the operators of ACPc on G. Then we also have the operators on

G/HrriE• if we use the following theorem 4.9.

4.8 NOTE

If g,h are process trees, g II h does not have to be a tree (but is equivalent to one). In VRANCKEN [12],

the parallel operators 11.ll.. I are defined on a wider class of graphs, a class which is closed under these

operators. This makes proofs of statements about them much easier.

4.9THEOREM

Hrrie is a congruence relation on G.

PROOF: Tedious, but straightforward. As an example, consider the case of II .
So suppose g,g',h,h' e G and g tin]e g', h tin]e h'. We have to prove that gll h ±±nie g'll h'. Using

lemma 4.5, we can suppose that g,g' ,h,h' are nontrivial process trees.

Take an 111e-bisimulation R between g and g', such that R does not relate endpoints of intermediate

e-edges, and an 111e-bisimulation S between h and h' with the same restriction (such bisimulations

always exist, since we are dealing with trees). Let RxS be the cartesian product of R and S, i.e.

RxS((s,t),(s',t')) iff R(s,s') and S(t,t') (s a node in g, s' in g', tin h, t' in h').

CLAIM: RxS is an 111£-bisimulation between g 11 h and g' 11 h'.

PROOF OF THE CLAIM: Tedious, but straightforward. As an example, consider the verification of

condition 4.2.2 (without the root condition).

(1) Let (s1,t1) -+a (s1,t2) be a horizontal step in glih, with aeA. Let (so.to) ,..e

(s1 ,t1) -+a (s1 ,t2), and RxS((s0,t0),(s'0 ,t'0)). Then we must have that s 0 = s 1, that the vertical

component of (so.to) '* e (s1 ,t1) is empty, for otherwise, the step (s1 ,t1) -+a (s1 ,t2) would be

orthogonal to an incoming £-edge, and would be turned into a o-edge. Now t0 ,..e t1 -+a t2 in h and

S(to.t'o). hence we can find nodes t*o and t'2 such that t'o Efll t* 0 .,.e -+a "*Ei'll t'2 and S(t0 ,t*0) and

S(t2.t'2). This path can be 1ifted' tog' ll h', since s'0 cannot have an incoming £-edge by the restriction
on R, and we obtain (s'0,t'o) .,.et'!] (s'0 ,t*0) .,.e -+a ,..et'!] (s'0 ,t'2) and RxS((s0,t0),(s'0 ,t*0)) and

RxS((so.t2).(s'a,t'2)).

(2) Likewise for a vertical step in g II h.

(3) Suppose (s1.t1)-+c (s2.t2) is a diagonal step in glih, and look at a path (s0,t0)

'*E (s1 .t1) -+c (s2.t2) such that RxS((so.to).(s'o,t'o)). We consider the 'projections' of this path, i.e.

there are paths so .,.e s1 -+a s2 in g and to ,..e t1 -+b t2 in h with y(a,b) =c. Since R(s0,s'0), there
are nodes s*0 and s'2 in g' such that s'o .,.e1'll s*0 .,.e -+a ,..el'l] s•2 and R(s0 ,s*0) and R(s2,s•2).

Likewise, t'o "*Ei'll t* o .,.e -+b Eflt !'2. S(to,t*o) and S(t2.1'2) for certain t* O• t'2 in h'. We compose
these paths in g'll h':

(s'o,t'o) .,.£1'11 (s'o,t*o) .,.e1'll (s*o,t*o) .,.e ,..e -+c ,..Ei'll e1'11 (s'2.t'2)

and RxS((so,to).(s*o.t*o)) and RxS((s2.t2),(s'2.t'2)). Since R does not relate endpoints of

intermediate e-edges, s'o does not have an incoming £-edge, so the T\-edges in (s'0,r o) .,..£1'11 (s'0 ,t* 0)

do not tum into 0-edges; since the last edge in this sequence is not an e-edge, the T\-edges in (s'o.t* 0)

... Eflt (s*o.t*o) do not tum into o-edges (use the restriction on Sin case the sequence is empty); next,

the first sequence of 11-edges in the sequence following -+c are orthogonal to a component of c, and the

second sequence is either orthogonal to the last 11-edge in the first sequence, or to the other component
of c.

The remainder of the verification is not too hard.

J.CM. Baeten, R.J. van G/abbeek /Abstraction and Empt)' Process 235

4. 10 THEOREM

G/Hnir is a model of ACPc.

PROOF: For every axiom of ACPc, it has to be checked that if we substitute process graphs for the

variables, and use the definitions 4.6 and 4.7, then there exists a IT]e-bisimulation between the two

graphs resulting from both sides of the equality sign. The construction of these IT]e-bisimulations is

routine, tedious and omitted (cf. BERGSTRA & KLOP [5], 2.5). The only interesting cases concern the

T\ and e laws, of which instances are presented in examples 4.3.

4.11 REMARK

We also obtain models of ACPc, if instead of limiting ourselves to finitely branching graphs, we allow

all graphs of branching degree less than some infinite cardinal number. Thus we get models GJHl'TJE·

G/H1110 is the model G~ofHl'TJE· Also, the set lR of all finite (or regular) process graphs modulo Hl'l'Je

and the set IF of all finite and acyclic process graphs modulo ±:±nit form models of ACPc.

4.12 In the sequel, we will show that these models are complete for closed ACPc-terms, i.e. if t,s are

closed ACPc-terms, and graph(t) denotes the graph corresponding to the closed term t (following

definitions 4.6 and 4.7), then graph(t) Hrrit graph(s) implies ACPc 1- t=s.

For the completeness proof, it is simplest if we write the terms in the form of basic terms according to

the first inductive scheme of 3.9: this means that every subterm terminates with an E-step, and that a

subterm may have more than one E-summand. Ifs is such a basic term, this means that graph(s) is a

nontrivial finite process tree, with no intermediate e-edges, and with all edges leading to an endnode

having label e. We call such process trees basic trees.

Some notation: from now on we write x = y for ACPc 1- x = y; if this holds we say that x is

ACPc-equal toy. If Al,2 1- x = y we write x = y. We say x is an ACPc-summand ofy if ACPc 1-

y = x + y.

4.13 PROPOSITION

i. If t is a basic term then graph(t) is a basic tree.

ii. If graph(t) = graph(s) for s,t e BT, then t = s.

iii. For any basic tree g, there is a basic term t with graph(t) =g.

PROOF: Easy.

4.14 DEFINITION

Let term be a function that maps a basic tree g onto a basic term t with graph(t) =g.

By proposition 4.13 we have term(graph(t)) = t fort E BT.

4.15 PROPOSITION

If R is an Tje-bisimulation between process graphs g,h (not necessarily rooted), and R(s,t), then (g)5

H11E (h)t.
PROOF: R, restricted to the nodes of (g)5 and (h)i, will be an TJE-bisimulation.

4.16 PROPOSITION

Let g be a basic tree, and a E C.

i. term(g) has a summand s =as' iff there is an edge root(g) -taping with a·term((g)p) = s.

ii. term(g) has a summand E iffthere is an edge root(g) -7° p to an endnode p.

236 J.C.M. Baeten, R.J. van Glabbeek /Abstraction and Empty Process

PROOF: Easy.

4.17 PROPOSITION
Let q be a node of a basic tree h, such that root(h) -ta -i> TI q. Then term(h) = a·term((h)q) + term(h)

(i.e. a·term((h)q) is an ACP~-summand of term(h)).
PROOF: By induction on the length of the path from root(h) to q. Let this length be n.

The induction base n= 1 follows from proposition 4.16.
Now suppose root(h) -ta p ... Tl q such that the path from p to q has length n~1. and the proposition

is already proved forn. Then we can write p -tTI --. TI q.
Thus term(h) = a·term((h)p) + term(h) and term((h)p) = 11·term((h)q) + term((h)p).

Hence term(h) = a(11·term((h)q) + term((h)p)) + term(h) =(using H3)
= a·term((h)q) + a(11·term((h)q) + term((h)p)) + term(h) = a·term((h)q) + term(h).

4.18 PROPOSITION

For basic trees g,h we have:

i. If g HTJE h then ACPc f- a·term(g) = a·term(h) for each ae C.
ii. If g Hrric: h then ACPc f- term(g) = term(h).
PROOF: (i) will be proved with induction on d(g) + d(h). So suppose g HTJE h, say R: g ±:±11 i; h, and
for any basic trees g',h' with d(g') + d(h') < d(g) + d(h) (i) is already proved.
CLAIM: One of the following statements holds:

I: term(h) = 11·term(g) + term(h)

II: term(h) = term(g) + term(h)

III: a·term(h) = a·term(g) for ae C.

PROOF OF THE CLAIM:

I: Suppose there is a node q in h with root(h) -?Tl ... 11 q and R(root(g),q).

Then, by proposition 4.15, g tl.T)e (g)root(g) tl.T)e (h)q and d((h)q) < d(h), so by induction
T\·term(g) = T\·term((h)q). Furthermore, using proposition 4.17, term(h) = 11·term((h)q) + term(h),
and hence term(h) = T\·term(g) + term(h).

II: Suppose there is no such node. We will prove that any summand s = E or at of term(g) either is an
ACPc-summand of term(h), or is ACPc-equal to 11 ·term(h). If all summands of term(g) are
ACPc-summands of term(h) we get II. The case that there are summands of term(g) ACPc-equal to
11·term(h) will be considered in part III of this proof.

So lets= E ors= as' be a summand ofterm(g).

CASE 1: s =E. It follows from proposition 4.16 that there is an edge root(g) -tE ping to an endnode
p. Since R: g H 11c: h. and h is a basic tree, there must be nodes q,q* in h, with q an endnode, such
that root(h) ... Tl q* -t< q and R(root(g),q*). By the assumption above (in the first sentence of II),
root(h) = q*, so we are done using proposition 4.16.

CASE 2: s =as'. By proposition 4.16 there is an edge root(g) -taping with a·term((g)p) = s.
CASE 2.1: a E A. Since R: g HT)c: h, and h is a basic tree, there must be nodes q* and q in h with
root(h) -<>Tl q* -ta 11 q, R(root(g),q*) and R(p,q).

Hence, by proposition 4.15, (g)p H 11 c: (h)q. and since d((g)p) < d(g) (and also d((h)q) < d(h)). the
induction hypothesis yields a·term((g)p) = a·term((h)q)· By the assumption above root(h) =
q* and proposition 4.17 gives term(h) = a·term((h)q) + term(h). Thus term(h) = s + term(h).
CASE 2.2: a = T). Since R: g H:iie h, and h is a basic tree, there must be a node q in h with root(h)
-<> Tl q and R(p,q). Hence (g)p H 11 (h)q and since d((g)p) < d(g), the induction hypothesis yields

J. C.M. Baeten. R.J. van G/abbeek I Abstraction and Emptr Process 237

71·term((g)p) = 11·term((h)q).

Now there are two possibilities: if root(h) o': q, then root(h) -t11 _.,, q and proposition 4.17 gives

term(h) = T\·term((h)q) + term(h). Thus term(h) = s + term(h).

On the other hand, if root(h) = q, then s = 71·term((g)p) = 71·term((h)q) = 71·term(h).

CASE 2.3: a= 8. In this case term(h) = s + term(h) follows from laws A6 and A7.

III: Finally suppose that some summands ofterm(g) are ACPc-equal to ri·term(h), while the others arc

ACPc-summands ofterm(h). Then, there is a term t such that term(g) = ri·term(h) + t

and term(h) = t + term(h). Hence, using H2, a·term(g) = a(ri(t + term(h)) + t) = a(t + term(h))

= a·term(h}, for aE C.

Thus we have proved the claim. Now we return to the proof of the proposition, part (i).

For reasons of symmetry also one of the following statements must hold:

A: term(g) = ri·term(h) + term(g)

B: term(g) = term(h) + term(g)

C: a·term(g) = a·term(h), for aE C.

Now the remainder of the proof consists of a simple case distinction.

• Suppose that I and A hold. From I it follows that for aE C

a·term(h) = a(11·term(g) + term(h)) =(using H3)

= a(71·term(g) + term(h)) + a·term(g) = a·term(h) + a·term(g).

Likewise, A implies a·term(g) = a·term(g) + a·term(h). Putting these two statements together yields

a·term(g) = a·term(h).

• Suppose that II and B hold. Then term(g) = term(h) + term(g) = term(h), so a·term(g) =
a·term(h) for aE C.

• Suppose that II and A hold. Then, for aE C, a·term(g) = a(71(term(g) + term(h)) + term(g)) =
a·term(h), using H2.

•Likewise the case that I and B hold.

• If III or C hold there is nothing left to show.

This finishes the proof of part (i).

For part (ii), suppose g Hl"TlE h, say R: g Hl"TlE h. We will prove that any summand £or as' of

term(g) is an ACPc-summand of term(h) (and vice versa), which yields the desired result.

So lets be a summand of term(g).

CASE 1: s = £. It follows from proposition 4.16 that there is an edge root(g) -tE p in g to an endnode

p. Since R: g Hl"TlE h, and h is a basic tree, there must be nodes q,q* in h, with q an endnode, such

that root(h) 11 q* -tE q and R(root(g) ,q*). By the root condition, root(h) = q*, so we are done

using proposition 4.16.

CASE 2: s = as'. By proposition 4.16 there is an edge root(g) _,aping with a·term((g)p) = s.

CASE 2.1: a E A. Since R: g H 11E h, and h is a basic tree, there must be nodes q* and q in h with

root(h) TI q* _,a -. 11 q, R(root(g),q*) and R(p,q). Moreover, the rootedness condition gives

root(h) = q*. By proposition 4.15, (g)p H 11E (h)q. and (i) yields a·term((g)p) = a·term((h)q).

Furthermore, proposition 4.17 gives term(h) = a·term((h)q) + term(h), so term(h) = s + term(h).

CASE 2.2: a = T}. Since R: g HniE h, and his a basic tree, there must be a node q in h with root(h)

.... 11 q and R(p,q). Moreover, the rootedness condition gives root(h) -t11 -. ll q. By proposition 4.15,

(g)p ..._,,,E (h)q. and (i) yields 11·term((Q)p) = ri·term((h)q). Furthermore, proposition 4.17 gives

term(h) = TJ·term((h)q) + term(h), so term(h) = s + term(h).

238 J.C.M. Baetm, R.J. rnn Glabbeek /Abstraction and Empt.r Process

CASE 2.3, a=o, follows from A6 and A7.

This finishes the proof of part (ii).

4. 19 'THEOREM

ACPc is sound and complete for closed terms, with respect to G/±:±fTle• i.e.

for all closed ACPc-terms t,s we have: graph(!) tirr]e graph(s) <=} ACPc f- t = s.

PROOF: Direction <=, the soundness, follows from theorem 4.10.
For direction~. the completeness, note that the elimination theorem 3.10 and direction<= imply that it
is enough to prove =:. for basic terms t,s. This amounts to an application of 4.18.ii, using definition

4.14: if t,s E BT and graph(!) Hrrie graph(s), then

t = term(graph(t)) = term(graph(s)) = s.

4.20 THEOREM

ACP11 is sound and complete for closed terms, with respect to G/<--->nie• i.e.

for all closed ACP11-terms t,s we have: graph(!) ±=±nie graph(s) <=} ACP11 I- t=S.
PROOF: If we only consider those process graphs in G/<--->nie that are nontrivial and have no e-edges,
then we have the model G/Hn, of BAETEN & VAN GLABBEEK [2] (we do have to change the definition
of+ to an equivalent one that does not use e-edges). In [2], soundness and completeness of closed
ACP11-terms w.r.t. this model was proven. This result transfers completely to the present case.

Note that ACP11 is not sound for all open terms, since the axiom HI of ACP11 , XT] = x, does not hold

for x =e. However, if we replace Hl by an= a, we do get soundness for open terms, and G/<--->nie

becomes a model for ACP11•

4.21 THEOREM

ACP..J is sound and complete for closed terms, that do not contain the eK·operator, with respect to

G/Hnie· i.e. for all closed ACP'1-terms t,s without eK we have:

graph(!) tinie graph(s) <=} ACP°'11- t=s.
PROOF: Exactly as the proof of theorem 4.18 above, but much simpler, by omitting all T]'s from this

chapter. Essentially, this proof is given in [3].

Note that AC?..J is sound for all open terms, if we omit the operator eK and its axioms. Thus, G/<--->nie
becomes a model for AC?..J.

4.22 THEOREM

ACP, is sound and complete for closed terms, that do not contain the 11. -operator, with respect to

G/Hni<• i.e. for all closed ACP,-tcrms t,s without 11. we have:

graph(!) Hnie graph(s) <=} ACP, f- t=s.

PROOF: We consider the graph model 1F1/Hri; for ACP,, as presented in BERGSTRA & KLOP [5]. F-c

consists of all finite acyclic nontrivial process graphs with labels from Av{o;t}. The definition of

rooted 1-bisimulation ±:?r. is like definition 4.2, with the following changes:

\.Omit all reference toe-steps, so s -.et just amounts to s = t, and s -.E111 t becomes s -. T\ t;

2. Change all ri's into t's;

3. Drop all requirements R(s*,t) and R(s,t*);

4. Drop the root conditions in 2,3,6,7, keep only the root conditions in 4,5.

Concerning the definition of the operators, we use the definition for+ alluded to in 4.19, that does not

involve e-edges, but is equivalent to the present one, and we can use the same definitions for the other

J.C.M. Baeten, R.J. van Glabbeek I Abstraction and Empty Process 239

operators, except for the communication merge I (keeping in mind the changes 1 - 4 above). If g and h

are two finite nontrivial process trees, then g I h can be obtained as follows. First, obtain graph g I *h

from graph g II h by turning all horizontal and vertical edges, that are reachable from the root by a

generalized 't-step, and do not have label 't, or do have label t but lead to an endpoint, into Ii-edges.

Then, g I h is the sum of all subgraphs of g I *h, that are reachable from the root by a generalized
't-Step.

Let <p be the mapping from JF't into G, that replaces each edges --?'t t by two edges s --?£ t and

s --?11 t. In BERGSTRA & KWP [5] it is shown that lF.J±:±rt is a sound and complete model for ACP-c,

w.r.t. closed terms, i.e. graph-c(t) ±:±r-c graph,(s) {:} ACP-c 1- t = s for closed t,s, where graph't(t)

is defined as graph(t), but w.r.t. the ACP't-operators.

Thus, we are done if we prove the following two claims:

CLAIM 1: For any g,h E JF't: g tir't h {:} cp(g) tir,,e <p(h).

CLAIM 2: <p is a homomorphism w.r.t. the constants a,o,t and the operators +,,11, I .aH and 'tJ (H,I ~
A), so for 11..-free closed terms t we have <p(graph't(t)) ±:±r,,e graph(t).

PROOF OF CLAIM 1: ~=Suppose g tlr"' h, take a relation R: g f±r"' h. We claim that R also is an

rrie-bisimulation between cp(g) and <p(h). For, supposes -.e s" -?as' is a path in cp(g). Since every

e-edge has a 'neighbouring' 11-edge, s "'*"' s" -?as' is a path in g. Since R is an rt-bisimulation, there

are nodes t",t' in h such that t -.'t t" "'*"'-?a"'*"' t' is a path in h, and R(s",t"), R(s',f). By definition of

<p, t -.q" -.£-?a "* 11 t' is a path in cp(h), and we can take t* = t. It is not hard to finish the verification.

<=: Suppose <p(g) tlr,,e <p(h), take a relation R: cp(g) tlr,,e cp{h). Now we claim that R is an

rt-bisimulation between g and h. For, supposes -?as' is an edge in g. Then s -?as' also is an edge

in cp(g). Since R is an rrie-bisimulation, there are nodes t*,t' in cp(h) such that t £frl t* -i.£

~a v11 t' is a path in cp(h), and R(s,t*), R(s',t'). Hence, by definition of cp, t "*"'-?a"'*"' t' is a path

in h. Again, it is not hard to finish the verification.

PROOF OF CLAIM 2: The proof is easy for the constants a,o,'t and the operators +,,aH and t 1. The

operators II and I are defined on trees, so if g e lF"', we have to 'unshare' cp(g), in the sense that

whenever an edge s --? 't t appears in g, we make two copies of (<p(g))t, with root nodes t1 .t2. and have

edges s ~T\ t1 and s --?e t2 in the tree constructed from cp(g).

Now let g,h e f''t be two process trees, then for the operator II we have to prove that

cp(g llh) Hr,,e tree(cp(g)) lltree(cp(h)),

where the operation tree is as just explained. Let R be the relation that relates each node (s,t) in cp(g II h)

(s a node of g, t a node of h) to the corresponding node in tree(cp(g)) lltree(cp(h)), or, if there is more

than one copy, to all copies which have no incoming e-step. We claim that Risa rrtE-bisimulation. The

crux of the verification is the following: if (s,t) ~£ (s',t) -?a (s',t') is a path in cp(g II h) (a e A), then

the corresponding a-edge in tree(cp(g)) lltree(cp(h)) is turned into a Ii-edge by definition 4.7.3.

However, we can take the path (s,t) -?a (s,t') -?TI (s',t') in tree(cp(g)) lltree(<p(h)) for the bisimulation.

The rest of the verification is left to the reader.

For the operator I . we have to prove that

<p(g I h) Hr,,e tree(cp(g)) I tree(cp(h)).

First remark that cp(g I h) ±:±r,,e \jl(<p(g I *h)), where \j/(g) is obtained from g by changing all ii-edges,

that are reachable from the root by a generalized e-step, into II-edges. Now there is a clear

correspondence between the nodes of \jl(<p(g I *h)) and tree(cp(g)) I tree(cp(h)) so that R: \jl(cp(g I *h))

Hr,,e tree(<p(g)) ltree(cp(h)) can be defined as above. Also the verification that Risa bisimulation

follows the case of II.
We remark that ACP 't is sound for all open terms, apart from the law TI (xi: = x) that does not hold for

240 J. CM. Bae ten, R.J. J'an G/abbeek /Abstraction and Empty Process

e (and could be replaced by ar = a and n = 't), and the Jaws for the operator ll.

4.23 EXAMPLE

The mapping <pin the proof of 4.22 is not a homomorphism w.r.t. the operator ll. For, let g = 't, and h

= a (a E A). Then the graph <p(g!Lh) in fig. 3a does not fT]E-bisimilate with the graph

tree(<p(g))lltree(<p(h)) in fig. 3b.

Fig. 3a. Fig. 3b.

We see that when we compare the process 'tin ACP ~ with the process 11 + e in ACPc, they interact in

the same way with the operators except for the auxiliary operator !L. On the other hand, we found in

3.15 that when we compare 't with 11 in ACPc by means of the homomorphism 't-ri, we also get the same

interaction with the operators, except for the auxiliary operators I and.../. Both comparisons however

work for the merge operator, which is defined by means of these auxiliary operators. This is the same

duality that we found in [2].

4.24 THEOREM

ACPc is a conservative extension of ACPT\, and most of ACP--1 and of ACP~, i.e. for all closed

ACPT\-terms t,s we have

ACPc 1- t=S iff ACP 11 I- t=S,

for all closed ACP--1-terms t,s in which the operator eK does not appear, we have

ACPc 1- t=S iff AcP--11- t=S,

and for all closed ACP ~-terms t,s in which the operator !L does not appear, we have

ACPc 1- t=S iff ACP ~ I- t=S.

PROOF: Combine 4.19 with 4.20, 4.21 and 4.22.

4.25 THEOREM

Let g be a finitely branching process graph, and let h be a finitely branching process graph with no

11-label, such that 't-ri(g) ±=±nie h. Then g """nie h.

PROOF: Let g,h be as stated. -i:T\(g) is obtained from g by adding an e-step for each 11-step, but has the

same nodes. Let R be a fT1 e-bisimulation between 't11 (g) and h. We claim that R is also a

tl)e-bisimulation between g and h. We only give the most difficult part of the verification.

Let R(s,t) and let I ..,.e ~at' be a path in h with aEA. Since Risa fT]e-bisimulation, there are nodes

s*,s' in g such that s ...,.EIT\ s* ..,.e ~a ...,.v11 s' is a path in 't11 (g) and R(s*,t), R(s',t'). Some of the

e-steps in this path might not appear in g. All of such steps however, have a 'neighbouring' 11-step. We

now take the path in g with, where necessary, e-steps replaced by the neighbouring TJ·Steps. Thus s

..,.£111 s" ...,.e ~a ..,.£111 s' is a path in g for some node s" (that may be further along the path than node

s*). Since s .,.£111 s", there is a node t" in h such that t ..,.EIT\ t" and R(s",t"). Buth contains no 11-Iabcls,

so the number of11-steps in ..,.e111 must be 0, whence t" = t. This means R(s",t) holds.

J. C.M. Baeten, R.J. i·an Glabbeek I Abstraction and Empty Process

4.26 Theorem 4.25 allows us to formulate the following proof principle:

if x is an ACPc-process and y is an ACf>\/-process,

and t 11(x) = y, then x = y.

241

We call this the Two-tiered Abstraction Principle (TAP). It follows from the completeness of

the graph model that TAP is derivable for closed terms.

4.27 REMARK

The principles RDP (the Recursive Definition Principle), RSP (the Recursive Specification Principle),

AIP-- (the Approximation Induction Principle) and HAR (the TJ Abstraction Rule) from BAETEN & VAN

GLABBEEK [2] also hold in the graph model G/tzniE• and the same proofs and definitions can be used.

Note that the fairness principle HAR has a nice formulation in this setting (equivalent to the one in [2])

(cf. 4.3.xi):

if x = ix + e. and i e I, then TJi(x) = t.
We conjecture that the principles FAP (the Fresh Atom Principle) and LR- (the Limit Rule) from

BAETEN & VAN GLABBEEK [3] hold in the graph model G/tirrie· In the setting of ACPc, the Limit

Rule says that any equation without abstraction operators (TJ1, t,,. t 1), that holds for all basic terms,

holds for all processes.

REFERENCES

[l] J.C.M. BAETEN, J.A. BERGSTR4. & J. W. KLOP, On the consistency of Koomen's fair abstraction

rule, Theor. Comp. Sci. 51 (1/2), pp. 129 - 176, 1987.

[2] J.C.M. BAETEN & R.J. v AN GLABBEEK, Another look at abstraction in process algebra, in: Proc.

14th ICALP, Karlsruhe (Th. Ottman, ed), Springer LNCS 267, pp. 84 - 94, 1987. Full version: repon

CS-R8701, Centre for Math. & Comp. Sci., Amsterdam 1987.

[3] J.C.M. BAETEN & R.J. v AN GLABBEEK, Merge and termination in process algebra, in: Proc. 7th

FST&TCS, Pune, India (K.V. Nori, ed.), Springer LNCS 287, pp. 153 - 172, 1987.

[4] J.A. BERGSTRA & J.W. KLOP, Process algebra for synchronous communication, Inf. & Control

60 (1/3), pp. 109 - 137, 1984.

[5] J.A. BERGSTRA & J.W. KLOP, Algebra of communicating processes with abstraction, Theor.

Comp. Sci. 37 (1), pp. 77 - 121, 1985.

[6] J .A. BERGSTRA, J. W. KLOP & E.-R. OLDEROG, Failures without chaos: a new process semantics

for fair abstraction, in: Proc. IFIP Conf. on Formal Description of Progr. Concepts - III, Ebberup 1986

(M. Wirsing, ed.), Nonh-Holland, Amsterdam, pp. 77 - 103, 1987.

[7] C.A.R. HOARE, Communicating sequential processes, Prentice-Hall International 1985.

[8] C.P.J. KOYMANS & J.L.M. VRANCKEN, Extending process algebra with the empty process e,

repon LGPS I, Dept. of Philosophy, State University of Utrecht, The Netherlands 1985.

[9] R. MILNER, A calculus of communicating systems, Springer LNCS 92, 1980.

[10] R. MILNER, Lectures on a calculus of communicating systems, Seminar on concurrency (S.D.

Brookes, A.W. Roscoe & G. Winskel, eds.), pp. 197 - 220, Springer LNCS 197, 1985.

[11] D.M.R. PARK, Concurrency and automata on infinite sequences, Proc. 5th GI Conf. (P. Deussen,

ed.), SpringerLNCS 104, pp. 167-183, 1981.

[12] J.L.M. VRANCKEN, The algebra of communicating processes with empty process, report FVI

86-01, Dept. of Comp. Sci., Univ. of Amsterdam 1986.

