
Divide and Congruence
Applied to η-Bisimulation

Wan Fokkink 1

Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam
CWI, Department of Software Engineering, Amsterdam

Rob van Glabbeek 2

National ICT Australia, Sydney
Univ. of New South Wales, School of Computer Science and Engineering, Sydney

Paulien de Wind 3

Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam

Abstract

We present congruence formats for η- and rooted η-bisimulation equivalence. These
formats are derived using a method for decomposing modal formulas in process
algebra. To decide whether a process algebra term satisfies a modal formula, one
can check whether its subterms satisfy formulas that are obtained by decomposing
the original formula. The decomposition uses the structural operational semantics
that underlies the process algebra.

Key words: Structural operational semantics, modal logic,
decomposition, congruence, η-bisimulation

1 Introduction

Structural operational semantics [16] provides process algebras and specifi-
cation languages with an interpretation. It generates a labelled transition
system, in which states are the closed terms over a (single-sorted, first-order)
signature, and transitions between states may be supplied with labels. The
transitions between states are obtained from a transition system specification,
which consists of a set of proof rules called transition rules.

1 Email: wanf@cs.vu.nl
2 Email: rvg@cs.stanford.edu
3 Email: pdwind@cs.vu.nl

To appear in Electronic Notes in Theoretical Computer Science: Proceedings of the 2nd
Workshop on Structural Operational Semantics, SOS 2005.

Fokkink, van Glabbeek and de Wind

Labelled transition systems can be distinguished from each other by a wide
range of semantic equivalences, based on e.g. branching structure or decorated
versions of execution sequences. Van Glabbeek [8] classified equivalences for
processes that take into account the internal action τ . Here we focus on one
such equivalence, called η-bisimulation [1].

In general a semantic equivalence induced by a transition system specifi-
cation is not a congruence, i.e. the equivalence class of a term f(p1, . . . , pn)
need not be determined by the equivalence classes of its arguments p1, . . . , pn.
Being a congruence is an important property, for instance in order to fit the
equivalence into an axiomatic framework. Syntactic formats for transition
rules have been developed with respect to several semantic equivalences, to
ensure that such an equivalence is a congruence. These formats help to avoid
repetitive congruence proofs. Several congruence formats were introduced for
bisimulation, such as the De Simone format [17], the GSOS format [4], the
tyft/tyxt format [13], and the ntyft/ntyxt format [12]. Bloom [2] introduced
congruence formats for weak and branching bisimulation and for rooted weak
and branching bisimulation. These formats include so-called patience rules for
arguments i of function symbols f , which imply that a term f(p1, . . . , pn) in-
herits the τ -transitions of its argument pi. Furthermore, arguments of function
symbols that contain running processes are marked, and this marking is used
to restrict occurrences of variables in transition rules. Recently, van Glabbeek

[11] significantly simplified the formats from [2], and presented similar formats
for delay and η-bisimulation and for rooted delay and η-bisimulation.

Van Glabbeek [9,8] gave characterisations of equivalences in terms of the
observations that an experimenter could make during a session with a pro-
cess. Modal logic captures such observations. A modal characterisation of an
equivalence consists of a class C of modal formulas such that two processes are
equivalent if and only if they make true the same formulas in C. For instance,
Hennessy-Milner logic [14] is the modal characterisation of bisimulation.

Larsen and Liu [15] introduced a method for decomposing formulas from
Hennessy-Milner logic for concrete processes, with respect to terms from a
process algebra with a structural operational semantics in De Simone format.
To decide whether a process algebra term satisfies a modal formula, one can
check whether its subterms satisfy certain other formulas, obtained by decom-
posing the original formula. This method was extended by Bloom, Fokkink &

van Glabbeek [3] to ntyft/ntyxt format without lookahead, and by Fokkink,

van Glabbeek & de Wind to tyft/tyxt format in the full version of [7]. In
[3], the decomposition method was applied to obtain congruence formats for
behavioural equivalences from [9]. The idea is that given an equivalence and
its modal characterisation C, the congruence format for this equivalence must
ensure that decomposing a formula in C always produces formulas in C.

In an unpublished manuscript, we extend the work of [3] to processes with
τ -transitions. We present a method for decomposing formulas from modal
logic for processes with τ -transitions, and use this decomposition method to

2

Fokkink, van Glabbeek and de Wind

obtain congruence formats for branching and rooted branching bisimulation.

In the current paper, we use this decomposition method to obtain congru-
ence formats for η- and rooted η-bisimulation. Thus we drive home the point
that, in contrast to the ad hoc construction of congruence formats from the
past, we can now systematically derive expressive congruence formats from
the modal characterisations of semantic equivalences. Our formats use two
predicates on arguments of function symbols, to mark both running processes
and processes that may have started running.

2 Preliminaries

2.1 Equivalences on labelled transition systems

A labelled transition system (LTS) is a pair (
�
,→) with

�
a set of processes

and → ⊆
�
×(A∪{τ})×

�
where τ is an internal action and A a set of actions

not containing τ . We use α, β, γ for elements of A∪ {τ} and a, b for elements
of A. We write p

α
−→ q for (p, α, q) ∈ → and p 6

α
−→ for ¬∃q ∈

�
: p

α
−→ q, and

ε
=⇒ for the transitive-reflexive closure of

τ
−→.

Definition 2.1 [1] A symmetric relation B ⊆
�
×

�
is an η-bisimulation if

pBq and p
α

−→ p′ implies that either α = τ and p′B q, or q
ε

=⇒ q′
α

−→ q′′
ε

=⇒
q′′′ for some q′, q′′, q′′′ with pBq′ and p′Bq′′′. Processes p, q are η-bisimilar,
denoted by p↔η q, if there exists an η-bisimulation B with pBq.

η-bisimulation is not a congruence with respect to most process algebras
from the literature, meaning that the equivalence class of a term f(p1, . . . , pn)
is not always determined by the equivalence classes of its arguments p1, . . . , pn.
A rootedness condition remedies this imperfection.

Definition 2.2 [1] A symmetric relation R ⊆
�
×

�
is a rooted η-bisimulation

if pRq and p
α

−→ p′ implies that q
α

−→ q′
ε

=⇒ q′′ for some q′, q′′ with p′↔η q
′′.

Processes p, q are rooted η-bisimilar, denoted by p↔rη q, if there exists a rooted
η-bisimulation R with pRq.

2.2 Modal logic

Modal logic aims to formulate properties of processes in an LTS. Following
[8], we extend Hennessy-Milner logic [14] with the modal connective 〈ε〉.

Definition 2.3 The class � of modal formulas is defined as follows, where I
ranges over all index sets:

� ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈α〉ϕ | 〈ε〉ϕ

p |= ϕ denotes that p satisfies ϕ. By definition, p |= 〈α〉ϕ if p
α

−→ p′ with
p′ |= ϕ, and p |= 〈ε〉ϕ if p

ε
=⇒ p′ with p′ |= ϕ. We use abbreviations > for

the empty conjunction, ϕ1 ∧ ϕ2 for
∧

i∈{1,2} ϕi, and ϕ〈α〉ϕ′ for ϕ ∧ 〈α〉ϕ′. We

write ϕ ≡ ϕ′ if p |= ϕ⇔ p |= ϕ′ for any process p in any LTS.

3

Fokkink, van Glabbeek and de Wind

Definition 2.4 The subclasses � η and � rη of � are defined as follows:

� η ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈ε〉ϕ | 〈ε〉(ϕ〈a〉〈ε〉ϕ) (a ∈ A)

� rη ϕ ::=
∧

i∈Iϕi | ¬ϕ | 〈α〉〈ε〉ϕ̂ | ϕ̂ (ϕ̂ ∈ � η, α ∈ A ∪ {τ})

The classes � ≡
η and � ≡

rη are the closures of � η, respectively � rη, under ≡.

The last clause in the definition of � rη guarantees that � η ⊆ � rη, which we
need in the proof of Prop. 3.7. Also without this clause it would follow that

� ≡
η ⊆ � ≡

rη, using structural induction and 〈ε〉ϕ ≡ ϕ ∨ 〈τ〉〈ε〉ϕ.

For L ⊆ � , we write p ∼L q if p and q satisfy the same formulas in L.
Note that, trivially, p ∼ �

η
q ⇔ p ∼ � ≡

η
q and p ∼ �

rη
q ⇔ p ∼ � ≡

rη
q.

Theorem 2.5 p↔η q ⇔ p ∼ � η
q and p↔rη q ⇔ p ∼ � rη

q, for all p, q ∈
�
.

A proof of this theorem is presented in the appendix.

2.3 Structural operational semantics

Let V be an infinite set of variables, with typical elements x, y, z. A syntactic
object is closed if it does not contain any variables. A signature is a set Σ of
function symbols f with arity ar(f). We always take |Σ|, |A| ≤ |V |. The set

�
(Σ) of terms over Σ and V is defined as usual. t, u denote terms and p, q

closed terms. var(t) is the set of variables that occur in t. A substitution is a
partial function from V to

�
(Σ). A closed substitution σ is a total function

from V to closed terms.

Definition 2.6 A (positive or negative) literal is an expression t
α

−→ t′ or
t 6

α
−→. A (transition) rule is of the form H

t
α

−→t′
with H a set of literals called

the premises. t
α

−→ t′ is the conclusion and t the source of the rule. A rule
∅

t
α

−→t′
is also written t

α
−→ t′. A transition system specification (TSS) is a set

of transition rules.

Definition 2.7 Let P = (Σ, R) be a TSS. An irredundant proof from P of a
rule H

t
α

−→t′
is a well-founded tree with the nodes labelled by literals and some

of the leaves marked “hypothesis”, such that the root has label t
α

−→ t′, H is
the set of labels of the hypotheses, and if µ is the label of a node that is not
a hypothesis and K is the set of labels of the children of this node, then µ is
positive and K

µ
is a substitution instance of a rule in R.

The proof of H

t
α

−→t′
is called irredundant because H must equal (instead of

include) the set of labels of the hypotheses. This irredundancy will be crucial
for the preservation of our congruence formats in Sect. 3.1 (see Prop. 3.4).

A TSS is meant to specify an LTS in which the transitions are closed
positive literals. A TSS with only positive premises specifies an LTS in a
straightforward way, but it is not so easy to associate an LTS to a TSS with
negative premises. From [10] we adopt the notion of a well-supported proof
of a closed literal. Literals t

α
−→ t′ and t 6

α
−→ are said to deny each other.

4

Fokkink, van Glabbeek and de Wind

Definition 2.8 Let P = (Σ, R) be a TSS. A well-supported proof from P of a
closed literal µ is a well-founded tree with the nodes labelled by closed literals,
such that the root is labelled by µ, and if ν is the label of a node and K is
the set of labels of the children of this node, then:

(i) either ν is positive and K
ν

is a closed substitution instance of a rule in R;

(ii) or ν is negative and for each set N of closed negative literals with N
κ

irredundantly provable from P and κ a closed positive literal denying ν,
a literal in K denies one in N .

P `ws µ denotes that a well-supported proof from P of µ exists. P is complete
if for each p and α, either P `ws p 6

α
−→ or P `ws p

α
−→ p′ for some p′.

A complete TSS specifies an LTS, consisting of the ws-provable closed positive
literals.

2.4 Notions regarding transition rules

In this section we present terminology for syntactic restrictions on rules, orig-
inating from [3,12,13].

Definition 2.9 An ntytt rule is a rule in which the right-hand sides of positive
premises are variables that are all distinct, and that do not occur in the source.
An ntytt rule is an ntyxt rule if its source is a variable, an ntyft rule if its source
contains exactly one function symbol and no multiple occurrences of variables,
and an nxytt rule if the left-hand sides of its premises are variables.

Definition 2.10 A variable in a rule is free if it occurs neither in the source
nor in right-hand sides of premises. A rule has lookahead if some variable
occurs in the right-hand side of a premise and in the left-hand side of a premise.
A rule is decent if it has no lookahead and does not contain free variables.

The ntyft/ntyxt and ready simulation formats [12,3] were originally introduced
to guarantee congruence for bisimulation and ready simulation.

Definition 2.11 A TSS is in ntyft/ntyxt format if it consists of ntyft and
ntyxt rules, and in ready simulation format if moreover its rules do not have
lookahead.

A predicate ℵ marks arguments of function symbols that contain running
processes (cf. [3]). Typically, in process algebra, ℵ holds for the arguments of
the merge ‖, but not for the arguments of alternative composition +.

Definition 2.12 Let ℵ be a unary predicate on {(f, i) | 1 ≤ i ≤ ar(f), f ∈
Σ}. If ℵ(f, i), then argument i of f is liquid; otherwise it is frozen. An occur-
rence of x in t is at an ℵ-liquid position if either t = x, or t = f(t1, . . . , tar(f))
and the occurrence is at an ℵ-liquid position in ti for a liquid argument i of f .

A patience rule for an argument i of a function symbol f expresses that term
f(p1, . . . , pn) inherits the τ -transitions of argument pi (cf. [2,5]). We will

5

Fokkink, van Glabbeek and de Wind

require the presence of patience rules for liquid arguments.

Definition 2.13 An ntyft rule is a patience rule for (f, i), with 1 ≤ i ≤ ar(f),
if it is of the form

xi
τ

−→ y

f(x1, . . . , xi, . . . , xar(f))
τ

−→ f(x1, . . . , xi−1, y, xi+1 . . . , xar(f))

It is an ℵ-patience rule if ℵ(f, i).

An ntytt rule is patient with respect to ℵ if it is irredundantly provable from

the ℵ-patience rules. Such rules have the form t
τ

−→y

C[t]
τ

−→C[y]
with C[] an ℵ-liquid

context, meaning that the context symbol [] occurs at an ℵ-liquid position.

Definition 2.14 A TSS is ℵ-patient if it contains all ℵ-patience rules. It is
abstraction-free if only ℵ-patience rules have a conclusion of the form t

τ
−→ u.

2.5 Decomposition of modal formulas

To decompose modal formulas, we use a result from [3], where for any TSS P
in ready simulation format a collection of decent nxytt rules, called P -ruloids,
is constructed. We explain this construction on a rather superficial level; the
precise transformation can be found in [3].

First P is converted to a TSS in decent ntyft format. In this conversion
from [13], free variables in a rule are replaced by closed terms, and if the
source is of the form x then this variable is replaced by a term f(x1, . . . , xn)
for each f ∈ Σ. Next, using a construction from [6], left-hand sides of posi-
tive premises are reduced to variables. Roughly the idea is, given a premise
f(t1, . . . , tn)

α
−→ y in a rule r, and a rule H

f(x1,...,xn)
α

−→t
, to transform r by re-

placing the aforementioned premise by H, y by t, and the xi by the ti; this is
repeated (transfinitely) until all positive premises with a non-variable left-hand
side have disappeared. In the final transformation step, rules with a negative
conclusion t 6

α
−→ are introduced. The motivation is that instead of the notion

of well-founded provability in Def. 2.8, we want a more constructive notion
like Def. 2.7, by making it possible that a negative premise is matched with a
negative conclusion. A rule r with a conclusion f(x1, . . . , xn) 6

α
−→ is obtained

by picking one premise from each rule with a conclusion f(x1, . . . , xn)
α

−→ t,
and including the denial of each of the selected premises as a premise of r.
For this last transformation it is essential that rules do not have lookahead.

The resulting TSS, which is in decent ntyft format, is denoted by P+. In
[3] it is established that P+ ` µ ⇔ P `ws µ for all closed literals µ. The
notion of irredundant provability is adapted in a straightforward fashion to
accommodate rules with a negative conclusion. P -ruloids are the decent nxytt
rules that are irredundantly provable from P+. The following correspondence
result from [3] between a TSS and its ruloids plays a crucial role in the de-
composition method employed here. It says that there is a well-supported
proof from P of a transition p

a
−→ q, with p a closed substitution instance of

6

Fokkink, van Glabbeek and de Wind

a term t, if and only if there is a proof of this transition that uses at the root
a P -ruloid with source t.

Proposition 2.15 Let P be a TSS in ready simulation format. Then P `ws

σ(t)
α

−→ p if and only if there are a P -ruloid H

t
α

−→u
and a σ′ with P `ws σ

′(µ)

for µ ∈ H, σ′(t) = σ(t) and σ′(u) = p.

We now show how one can decompose formulas from � . To each term t

and formula ϕ we assign a set t−1(ϕ) of decomposition mappings ψ : V → � .
Each of these mappings ψ ∈ t−1(ϕ) guarantees that σ(t) |= ϕ if σ(x) |= ψ(x)
for x ∈ var(t). Vice versa, whenever σ(t) |= ϕ, there is a decomposition
mapping ψ ∈ t−1(ϕ) with σ(x) |= ψ(x) for x ∈ var(t). This is formalised in
Thm. 2.17.

In order minimise the complexity inherent in the combination of modal
decomposition and the internal action τ , we apply the decomposition method
to abstraction-free TSSs, and extend our derived congruence results to the
general case using the well-known compositionality of the abstraction operator.

Definition 2.16 Let P be an ℵ-patient, abstraction-free TSS in ready simu-
lation format. We define ·−1 :

�
(Σ)× � → P(V → �) as follows. Let t denote

a univariate term, i.e. without multiple occurrences of the same variable.

(i) ψ ∈ t−1(
∧

i∈I ϕi) iff for x ∈ V

ψ(x) =
∧

i∈I

ψi(x)

where ψi ∈ t−1(ϕi) for i ∈ I.

(ii) ψ ∈ t−1(〈α〉ϕ) iff there is a P -ruloid H

t
α

−→u
and a χ ∈ u−1(ϕ) with

ψ(x) =

χ(x) ∧
∧

x
β

−→y∈H

〈β〉χ(y) ∧
∧

x 6
γ
−→∈H

¬〈γ〉> if x ∈ var(t)

> if x 6∈ var(t)

(iii) ψ ∈ t−1(¬ϕ) iff there is a function h : t−1(ϕ) → var(t) with

ψ(x) =
∧

χ∈h−1(x)

¬χ(x) for x ∈ V

(iv) ψ ∈ t−1(〈ε〉ϕ) iff there is a χ ∈ t−1(ϕ) with

ψ(x) =

〈ε〉χ(x) if x occurs ℵ-liquid in t

χ(x) otherwise

(v) ψ ∈ ρ(t)−1(ϕ) for ρ : var(t) → V not injective iff there is a χ ∈ t−1(ϕ)
with

ψ(x) =
∧

y∈ρ−1(x)

χ(y) for x ∈ V

7

Fokkink, van Glabbeek and de Wind

It is not hard to see that if ψ ∈ t−1(ϕ), then ψ(x) ≡ > for x 6∈ var(t).

To explain the idea behind Def. 2.16, we expand on two of its cases. Con-
sider t−1(〈α〉ϕ), and let σ be any closed substitution. The question is under
which conditions ψ(x) ∈ � on σ(x), for x ∈ var(t), there is a transition
σ(t)

α
−→ q with q |= ϕ. According to Prop. 2.15, there is such a transition if

and only if there is a closed substitution σ′ with σ′(t) = σ(t) and a P -ruloid
H

t
α

−→u
such that (1) the premises in σ′(H) are satisfied and (2) σ′(u) |= ϕ. The

first condition is covered if for x ∈ var(t), ψ(x) contains conjuncts 〈β〉> for

x
β

−→ y ∈ H and conjuncts ¬〈γ〉> for x 6
γ

−→ ∈ H. By adding a conjunct
χ(x), and replacing each conjunct 〈β〉> by 〈β〉χ(y), for some χ ∈ u−1(ϕ), the
second condition is covered as well.

Consider t−1(¬ϕ), and let σ be any closed substitution. We have σ(t) 6|= ϕ

if and only if there is no χ ∈ t−1(ϕ) such that σ(x) |= χ(x) for all x ∈ var(t).
In other words, for each χ ∈ t−1(ϕ), ψ(x) must contain a conjunct ¬χ(x), for
some x ∈ var(t).

The following theorem, whose proof is omitted here, will be the key to the
forthcoming congruence results.

Theorem 2.17 Given a complete, ℵ-patient, abstraction-free TSS in ready
simulation format. For any term t, closed substitution σ and ϕ ∈ � :

σ(t) |= ϕ ⇔ ∃ψ ∈ t−1(ϕ) ∀x ∈ var(t) : σ(x) |= ψ(x)

3 η-Bisimulation as a Congruence

We proceed to apply the decomposition method from the previous section to
derive congruence formats for η- and rooted η-bisimulation equivalence. The
idea is that the η-bisimulation format must guarantee that a formula from

� η is always decomposed into formulas from � ≡
η (see Prop. 3.6). Likewise,

the rooted η-bisimulation format must guarantee that a formula from � rη

is always decomposed into formulas from � ≡
rη (see Prop. 3.7). This implies

the desired congruence results (see Thm. 3.9 and Thm. 3.11). In deriving
the congruence formats, we will circumvent the restriction to abstraction-free
TSSs, using compositionality of the abstraction operator.

3.1 Congruence formats

We assume a second predicate Λ on arguments of function symbols, to denote
that the processes they contain may have started running, but might currently
be resting, in which case no patience rule is needed for these arguments. Al-
ways ℵ ⊆ Λ. Typically, in process algebra, ℵ holds for the first argument of
sequential composition while only Λ holds for the second argument, and Λ
does not hold for the arguments of alternative composition.

8

Fokkink, van Glabbeek and de Wind

Definition 3.1 Let ℵ ⊆ Λ. An ntytt rule H

t
α

−→u
is rooted η-bisimulation safe

with respect to ℵ and Λ if:

(i) it has no lookahead,

(ii) right-hand sides of premises occur only at ℵ-liquid positions in u, and

(iii) if x occurs exactly once 4 in t, at a Λ-liquid position, then:
(a) all occurrences of x in the rule are at Λ-liquid positions,
(b) x has no ℵ-liquid occurrences in left-hand sides of negative premises,
(c) x has at most one ℵ-liquid occurrence in the left-hand side of one

positive premise, and this premise has a label from A, and
(d) if x occurs at an ℵ-frozen position in t, then x does not occur at

ℵ-liquid positions in left-hand sides of premises.

In case Λ is the universal predicate, we say that the rule is η-bisimulation safe
with respect to ℵ.

Definition 3.2 A TSS in ready simulation format is in rooted η-bisimulation
format if, for some ℵ ⊆ Λ, it consists of the ℵ-patience rules and rules that
are rooted η-bisimulation safe with respect to ℵ and Λ.

A TSS in ready simulation format is in η-bisimulation format if, for some
ℵ, it consists of the ℵ-patience rules and rules that are η-bisimulation safe
with respect to ℵ.

The operators initial priority (with frozen argument) and binary Kleene star
(with both arguments frozen) of [3] fit the rooted η-bisimulation format. In
these applications, as well as for capturing the operators of CCS and similar
languages, it suffices to take Λ = ℵ. In the following example this is not
possible.

Example 3.3 Let f be a binary operator that interleaves actions α ∈ A∪{τ}
from its arguments, until its first argument produces an action crash. Then
f performs the actions alert and prevent meltdown, without any τ -steps in
between, and subsequently continues as its second argument.

x
α

−→ x′

f(x, y)
α

−→ f(x′, y)

y
α

−→ y′

f(x, y)
α

−→ f(x, y′)

x
crash
−→ x′

f(x, y)
alert
−→ pm.y

pm.y

prevent
meltdown
−−−−−→ y

pm is a CCS action-prefixing operator. For this TSS to be in (rooted) η-
bisimulation format, it is essential that the argument of pm is marked as
ℵ-frozen (and hence not accompanied by a patience rule) but Λ-liquid, for it
harbours a process that has already started but is not currently running.

In the definition of modal decomposition, we did not use the rules from the
original TSS P , but the P -ruloids. Therefore we must verify that if P is in
(rooted) η-bisimulation format, then so are the P -ruloids.

4 Only the requirements for rules in which t is univariate matter. The current formulation
of Def. 3.1 for general terms t paves the way for Prop. 3.4.

9

Fokkink, van Glabbeek and de Wind

Proposition 3.4 If a TSS P is in (rooted) η-bisimulation format with respect
to some ℵ, then each P -ruloid is either patient or (rooted) η-bisimulation safe
with respect to ℵ.

The proof of Prop. 3.4 is omitted here. The key part of the proof is to show
that the decent (rooted) η-bisimulation format is preserved under irredundant
provability. (The adjective irredundant is essential here.)

3.2 Preservation of modal characterisations

From now on we will mention patient and (rooted) branching safe rules without
reference to the accompanying predicates ℵ and Λ.

Lemma 3.5 Given a TSS in ready simulation format. For any term t, ϕ ∈ �
and variable x that occurs only ℵ-liquid in t, ψ ∈ t−1(〈ε〉ϕ) ⇒ ψ(x) ≡ 〈ε〉ψ(x).

Proof. Let ψ ∈ t−1(〈ε〉ϕ) and x occur only ℵ-liquid in t. Then by Def. 2.16.iv
and 2.16.v, ψ(x) is of the form

∧

i∈I〈ε〉ϕi. So ψ(x) ≡ 〈ε〉ψ(x). 2

Proposition 3.6 Let P be an abstraction-free TSS in rooted η-bisimulation
format. For any term t and variable x that occurs only Λ-liquid in t:

ϕ ∈ � η ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈ � ≡
η

Proof. We apply structural induction on ϕ. Let ϕ ∈ � η. Let t ∈
�

(Σ) and
ψ ∈ t−1(ϕ), and let x occur only Λ-liquid in t. First we treat the case where t
is univariate. If x 6∈ var(t), then ψ(x) ≡ > ∈ � ≡

η . Suppose x occurs once in t.

• ϕ =
∧

i∈I ϕi with ϕi ∈ � η for i ∈ I. By Def. 2.16.i, ψ(x) =
∧

i∈I ψi(x) with
ψi ∈ t−1(ϕi) for i ∈ I. By induction, ψi(x) ∈ � ≡

η for i ∈ I, so ψ(x) ∈ � ≡
η .

• ϕ = ¬ϕ′ with ϕ′ ∈ � η. By Def. 2.16.iii, there is a function h : t−1(ϕ′) →
var(t) such that ψ(x) =

∧

χ∈h−1(x) ¬χ(x). By induction, χ(x) ∈ � ≡
η for

χ ∈ h−1(x), so ψ(x) ∈ � ≡
η .

• ϕ = 〈ε〉ϕ′ with ϕ′ ∈ � η. By Def. 2.16.iv, either ψ(x) = 〈ε〉χ(x) or ψ(x) =
χ(x) for some χ ∈ t−1(ϕ′). By induction on formula size, χ(x) ∈ � ≡

η . So
ψ(x) ∈ � ≡

η .

• ϕ = 〈ε〉(ϕ1〈a〉〈ε〉ϕ2) with ϕ1, ϕ2 ∈ � η. By Def. 2.16.iv, either ψ(x) =
〈ε〉χ(x) or ψ(x) = χ(x) for some χ ∈ t−1(ϕ1〈a〉〈ε〉ϕ2). By Def. 2.16.i, χ(x) =
χ1(x) ∧ χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈ t−1(〈a〉〈ε〉ϕ2). By induction on
formula size, χ1(x) ∈ � ≡

η . By Def. 2.16.ii,

χ2(x) = ξ(x) ∧
∧

x
β

−→y∈H

〈β〉ξ(y) ∧
∧

x 6
γ
−→∈H

¬〈γ〉>

for some ξ ∈ u−1(〈ε〉ϕ2) and some P -ruloid H

t
a

−→u
. Since a 6= τ , by Prop. 3.4,

H

t
a

−→u
is rooted η-bisimulation safe. Since the occurrence of x in t is Λ-

liquid, x occurs only Λ-liquid in u. Moreover, variables in right-hand sides
of premises in H occur only ℵ-liquid (hence Λ-liquid) in u. So in the pre-

10

Fokkink, van Glabbeek and de Wind

vious case we proved that ξ(x) ∈ � ≡
η and ξ(y) ∈ � ≡

η for x
β

−→ y ∈ H. We
distinguish two cases.
Case 1: The occurrence of x in t is ℵ-liquid. Then ψ(x) = 〈ε〉χ(x). Since

H

t
a

−→u
is rooted η-bisimulation safe and an nxytt rule, x does not occur in

left-hand sides of negative premises in H, and at most once in the left-
hand side of one positive premise in H, which is of the form x

b
−→ y with

b ∈ A. The right-hand side, y, of such a premise, occurs only ℵ-liquid in
u, so by Lem. 3.5, ξ(y) ≡ 〈ε〉ξ(y). Hence, either χ2(x) = ξ(x) or χ2(x) =
ξ(x)〈b〉ξ(y) ≡ ξ(x)〈b〉〈ε〉ξ(y). Since ψ(x) = 〈ε〉(χ1(x) ∧ χ2(x)), either
ψ(x) = 〈ε〉(χ1(x)∧ξ(x)) ∈ � ≡

η or ψ(x) ≡ 〈ε〉(χ1(x)∧ξ(x)〈b〉〈ε〉ξ(y)) ∈ � ≡
η .

Case 2: The occurrence of x in t is ℵ-frozen. Then ψ(x) = χ(x). Since
H

t
a

−→u
is rooted η-bisimulation safe and an nxytt rule, x does not occur

in left-hand sides of premises in H. So χ2(x) = ξ(x), and thus ψ(x) =
χ1(x) ∧ χ2(x) = χ1(x) ∧ ξ(x) ∈ � ≡

η .

Finally, suppose t is not univariate. Then t = ρ(u) for some univariate term
u and ρ : var(u) → V not injective. By Def. 2.16.v, ψ(x) =

∧

y∈ρ−1(x) χ(y) for

some χ ∈ u−1(ϕ). Since u is univariate, and for each y ∈ ρ−1(x) the occurrence
in u is Λ-liquid, χ(y) ∈ � ≡

η for y ∈ ρ−1(x). Hence, ψ(x) ∈ � ≡
η . 2

Proposition 3.7 Let P be an abstraction-free TSS in rooted η-bisimulation
format. For any term t and variable x:

ϕ ∈ � rη ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈ � ≡
rη

Proof. We apply structural induction on ϕ. Let ϕ ∈ � rη, t ∈
�

(Σ) and
ψ ∈ t−1(ϕ). We restrict attention to the case where t is univariate; the general
case then follows just as at the end of the proof of Prop. 3.6. If x 6∈ var(t),
then ψ(x) ≡ > ∈ � ≡

rη. So suppose x occurs once in t.

• The cases ϕ =
∧

i∈I ϕi and ϕ = ¬ϕ′ proceed as in the proof of Prop. 3.6.

• ϕ = 〈α〉〈ε〉ϕ′ with ϕ′ ∈ � η. By Def. 2.16.ii,

ψ(x) = χ(x) ∧
∧

x
β

−→y∈H

〈β〉χ(y) ∧
∧

x 6
γ
−→∈H

¬〈γ〉>

for some χ ∈ u−1(〈ε〉ϕ′) and some P -ruloid H

t
α

−→u
. By induction, χ(x) ∈ � rη.

(Induction may be applied because 〈ε〉ϕ′ ∈ � η ⊆ � rη and 〈ε〉ϕ′ is a strict
subformula of ϕ.) By Prop. 3.4, H

t
α

−→u
is either rooted η-bisimulation safe

or ℵ-patient. Thus variables in right-hand sides of premises in H occur

only ℵ-liquid in u. By Prop. 3.6, χ(y) ∈ � η for x
β

−→ y ∈ H. Moreover,
by Lemma 3.5, χ(y) ≡ 〈ε〉χ(y). Hence 〈β〉χ(y) ≡ 〈β〉〈ε〉χ(y) ∈ � ≡

rη. Also
¬〈γ〉> ≡ ¬〈γ〉〈ε〉> ∈ � ≡

rη. Hence, ψ(x) ∈ � rη.

• ϕ ∈ � η. If the occurrence of x in t is Λ-liquid, then ψ(x) ∈ � ≡
rη follows

from Prop. 3.6. So we can assume that this occurrence is Λ-frozen. The
cases ϕ =

∧

i∈I ϕi and ϕ = ¬ϕ′ proceed as before. We focus on the other
two cases.

11

Fokkink, van Glabbeek and de Wind

∗ ϕ = 〈ε〉ϕ′ with ϕ′ ∈ � η ⊆ � rη. Since the occurrence of x in t is Λ-frozen,
by Def. 2.16.iv, ψ(x) = χ(x) for some χ ∈ t−1(ϕ′). By induction on formula
size, χ(x) ∈ � rη. So ψ(x) ∈ � rη.

∗ ϕ = 〈ε〉(ϕ1〈a〉〈ε〉ϕ2) with ϕ1, ϕ2 ∈ � η ⊆ � rη. Since the occurrence of x in t
is Λ-frozen, by Def. 2.16.iv, ψ(x) = χ(x) for some χ ∈ t−1(ϕ1〈a〉〈ε〉ϕ2). By
Def. 2.16.i, χ(x) = χ1(x) ∧ χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈ t−1(〈a〉〈ε〉ϕ2).
By induction on formula size, χ1(x), χ2(x) ∈ � rη. Hence, ψ(x) ∈ � rη. 2

3.3 Congruence results

Finally we are in a position to prove the promised congruence results.

Lemma 3.8 Given a complete abstraction-free TSS in η-bisimulation format.
If σ(x)↔η σ

′(x) for x ∈ var(t), then σ(t)↔η σ
′(t).

Proof. By Thm. 2.5, σ(x) ↔η σ
′(x) implies σ(x) ∼ � ≡

η
σ′(x) for x ∈ var(t).

Let σ(t) |= ϕ ∈ � η. By Thm. 2.17 there is a ψ ∈ t−1(ϕ) with σ(x) |= ψ(x)
for x ∈ var(t). Since Λ is universal, by Prop. 3.6, ψ(x) ∈ � ≡

η for x ∈ var(t).
Since σ(x) ∼ � ≡

η
σ′(x), σ′(x) |= ψ(x) for x ∈ var(t). By Thm. 2.17, σ′(t) |= ϕ.

Likewise, σ′(t) |= ϕ ∈ � η implies σ(t) |= ϕ. So σ(t) ∼ � η
σ′(t). Hence,

σ(t)↔η σ
′(t). 2

Theorem 3.9 Given a complete TSS P = (Σ, R) in η-bisimulation format.
If σ(x)↔η σ

′(x) for x ∈ var(t), then σ(t)↔η σ
′(t).

Proof. Let P ′ be obtained from P , by changing in all rules expect ℵ-patience
rules a conclusion of the form t

τ
−→ u into t

i
−→ u, for a fresh action i 6∈

A∪{τ}. By construction, P ′ is abstraction-free and in η-bisimulation format.
So by Lemma 3.8, ↔η is a congruence for all operators of P ′.

Let P ′′ be obtained from P ′ by adding a new operator τi with rules

x
α

−→ y

τi(x)
α

−→ τi(y)
(α 6= i)

x
i

−→ y

τi(x)
τ

−→ τi(y)

This operator turns all i-labels into τ -labels. It is well-known [1] and trivial
to check that ↔η is a congruence for τi as well.

If follows trivially that for any operator f ∈ Σ the behaviour of τi ◦ f in
P ′′ is the same as the behaviour of f in P . So as ↔η is a congruence for τi ◦f
in P ′′, it must be a congruence for f in P . 2

Lemma 3.10 Given a complete abstraction-free TSS in rooted η-bisimulation
format. If σ(x)↔rη σ

′(x) for x ∈ var(t), then σ(t)↔rη σ
′(t).

Theorem 3.11 Given a complete TSS in rooted η-bisimulation format. If
σ(x)↔rη σ

′(x) for x ∈ var(t), then σ(t)↔rη σ
′(t).

The proof of Lemma 3.10 is similar to the one of Lemma 3.8, except that
Prop. 3.7 is applied instead of Prop. 3.6. Likewise, the proof of Thm. 3.11 is
similar to the one of Thm. 3.9.

12

Fokkink, van Glabbeek and de Wind

4 Related work

The only other formats for η- and rooted η-bisimulation that we are aware of
appeared in [11]. Those formats are contained in the GSOS format [4]. The
formats of [11] distinguish so-called “principal” operators and “abbreviations”.
The latter can be regarded as syntactic sugar, adding nothing that could not
be expressed with principal operators. Our formats are incomparable with
the ones of [11]. However, our formats generalise the result of simplifying the
formats of [11] by requiring all operators to be principal.

For the η-bisimulation format our generalisation consists in allowing transi-
tion rules outside the GSOS format; the simplified format of [11] is exactly the
intersection of our η-bisimulation format and the GSOS format. However, the
intersection of our rooted η-bisimulation format and the GSOS format is still a
proper generalisation of the simplified format for rooted η-bisimulation of [11].
The latter can be described as the intersection of our rooted η-bisimulation
format and the GSOS format in which all arguments of all operators that
occur in the right-hand sides of conclusions of transition rules, are required to
be Λ-liquid.

The format of [11] for rooted η-bisimulation, following [2], distinguishes
“tame” and “wild” function symbols. In terms of our approach, wild operators
have only Λ-frozen arguments, and tame operators only Λ-liquid arguments.
The idea to allow operators with both kinds of arguments stems from [5].

References

[1] J.C.M. Baeten & R.J. van Glabbeek (1987): Another look at abstraction in
process algebra. In Proc. ICALP’87, LNCS 267, Springer, pp. 84–94.

[2] B. Bloom (1995): Structural operational semantics for weak bisimulations.
Theoretical Computer Science 146(1/2), pp. 25–68.

[3] B. Bloom, W.J. Fokkink & R.J. van Glabbeek (2004): Precongruence formats
for decorated trace semantics. ACM Transactions on Computational Logic 5(1),
pp. 26–78.

[4] B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation can’t be traced.
Journal of the ACM 42(1), pp. 232–268.

[5] W.J. Fokkink (2000): Rooted branching bisimulation as a congruence. Journal

of Computer and System Sciences 60(1), pp. 13–37.

[6] W.J. Fokkink & R.J. van Glabbeek (1996): Ntyft/ntyxt rules reduce to ntree
rules. Information and Computation 126(1), pp. 1–10.

[7] W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2005): Compositionality
of Hennessy-Milner logic by structural operational semantics. Available
at http://theory.stanford.edu/~rvg/abstracts.html#61. To appear in
Theoretical Computer Science. Extended abstract appeared in: Proc. FCT’03,
LNCS 2751, Springer, 2003, pp. 412–422.

13

http://theory.stanford.edu/~rvg/abstracts.html#61

Fokkink, van Glabbeek and de Wind

[8] R.J. van Glabbeek (1993): The linear time-branching time spectrum II: The
semantics of sequential systems with silent moves. In Proc. CONCUR’93, LNCS
715, Springer, pp. 66–81.

[9] R.J. van Glabbeek (2001): The linear time – branching time spectrum I: The
semantics of concrete, sequential processes. In J.A. Bergstra, A. Ponse & S.A.
Smolka, editors: Handbook of Process Algebra, chapter 1, Elsevier, pp. 3–99.

[10] R.J. van Glabbeek (2004): The meaning of negative premises in transition
system specifications II. Journal of Logic and Algebraic Programming 60/61,
pp. 229–258.

[11] R.J. van Glabbeek (2005): On cool congruence formats for weak bisimulations.
Available at http://theory.stanford.edu/~rvg/abstracts.html#58.
Extended abstract in Proc. ICTAC’05, LNCS 3722, Springer, pp. 331–346.

[12] J.F. Groote (1993): Transition system specifications with negative premises.
Theoretical Computer Science 118(2), pp. 263–299.

[13] J.F. Groote & F. Vaandrager (1992): Structured operational semantics and
bisimulation as a congruence. Information and Computation 100, pp. 202–260.

[14] M. Hennessy & R. Milner (1985): Algebraic laws for non-determinism and
concurrency. Journal of the ACM 32(1), pp. 137–161.

[15] K.G. Larsen & X. Liu (1991): Compositionality through an operational
semantics of contexts. Journal of Logic and Computation 1(6), pp. 761–795.

[16] G.D. Plotkin (2004): A structural approach to operational semantics. Journal

of Logic and Algebraic Programming 60/61, pp. 17–139. Originally appeared
in 1981.

[17] R. de Simone (1985): Higher-level synchronising devices in Meije–SCCS.
Theoretical Computer Science 37(3), pp. 245–267.

A Modal Characterisation of η-Bisimulation

We prove the first part of Thm. 2.5, which states that � η is a modal char-
acterisation of η-bisimulation equivalence. We need to prove, given an LTS
(

�
,→), that p↔η q ⇔ p ∼ �

η
q for all p, q ∈

�
.

Proof. (⇒) Suppose p↔η q, and p |= ϕ for some ϕ ∈ � η. We prove q |= ϕ,
by structural induction on ϕ. The reverse implication follows by symmetry.

• ϕ =
∧

i∈I ϕi. Then p |= ϕi for i ∈ I. By induction q |= ϕi for i ∈ I, so
q |=

∧

i∈I ϕi.

• ϕ = ¬ϕ′. Then p 6|= ϕ′. By induction q 6|= ϕ′, so q |= ¬ϕ′.

• ϕ = 〈ε〉ϕ. Then for some n there are p0, . . . , pn ∈
�

with pn = p, pi+1
τ

−→ pi

for i ∈ {0, . . . , n− 1}, and p0 |= ϕ. We apply induction on n.
n = 0 p |= ϕ, so by induction on formula size, q |= ϕ. Hence q |= 〈ε〉ϕ.
n > 0 Since pn

τ
−→ pn−1, according to Def. 2.1 there are two possibilities.

(i) Either pn−1↔η q. Since pn−1 |= 〈ε〉ϕ, by induction on n, q |= 〈ε〉ϕ.

(ii) Or q
ε

=⇒ q′
τ

−→ q′′
ε

=⇒ q′′′ with pn−1 ↔η q
′′′. Since pn−1 |= 〈ε〉ϕ, by

induction on n, q′′′ |= 〈ε〉ϕ. Hence q |= 〈ε〉ϕ.

14

http://theory.stanford.edu/~rvg/abstracts.html#58

Fokkink, van Glabbeek and de Wind

• ϕ = 〈ε〉(ϕ1〈a〉〈ε〉ϕ2). Then for some n there are p0, . . . , pn ∈
�

with pn = p,
pi+1

τ
−→ pi for i ∈ {0, . . . , n−1}, and p0 |= ϕ1〈a〉〈ε〉ϕ2. We apply induction

on n.
n = 0 Then p |= ϕ1, and there is a p′ ∈

�
with p

a
−→ p′ and p′ |= 〈ε〉ϕ2. By

Def. 2.1, q
ε

=⇒ q′
a

−→ q′′
ε

=⇒ q′′′ with p↔η q
′ and p′↔η q

′′′. By induction
on formula size, q′ |= ϕ1 and q′′′ |= 〈ε〉ϕ2. Hence q |= 〈ε〉(ϕ1〈a〉〈ε〉ϕ2).

n > 0 Since pn
τ

−→ pn−1, according to Def. 2.1 there are two possibilities.
(i) Either pn−1 ↔η q. Since pn−1 |= 〈ε〉(ϕ1〈a〉〈ε〉ϕ2), by induction on n,

q |= 〈ε〉(ϕ1〈a〉〈ε〉ϕ2).
(ii) Or q

ε
=⇒ q′

τ
−→ q′′

ε
=⇒ q′′′ with pn−1↔η q

′′′. By induction on n, pn−1 |=
〈ε〉(ϕ1〈a〉〈ε〉ϕ2), so q′′′ |= 〈ε〉(ϕ1〈a〉〈ε〉ϕ2). Hence q |= 〈ε〉(ϕ1〈a〉〈ε〉ϕ2).

We conclude that p ∼ �
η
q.

(⇐) We prove that ∼ � η
is an η-bisimulation relation. The relation is

clearly symmetric. Let p ∼ � η
q. Suppose p

α
−→ p′. If α = τ and p′ ∼ � η

q,
then the first condition of Def. 2.1 is fulfilled. So we can assume that either
(i) α 6= τ or (ii) p′ 6∼ �

η
q. We define

Q′ = {q′ ∈
�
| q

ε
=⇒ q′ ∧ p 6∼ � η

q′}

Q′′′ = {q′′′ ∈
�
| ∃q′, q′′ ∈

�
: q

ε
=⇒ q′

α
−→ q′′

ε
=⇒ q′′′ ∧ p′ 6∼ � η

q′′′}

For each q′ ∈ Q′, let ϕq′ be a formula in � η such that p |= ϕq′ and q′ 6|= ϕq′.
(Such a formula always exists because � η is closed under negation ¬.) We
define

ϕ =
∧

q′∈Q′

ϕq′

Similarly, for each q′′′ ∈ Q′′′, let ψq′′′ be a formula in � η such that p′ |= ψq′′′

and q′′′ 6|= ψq′′′ . We define

ψ =
∧

q′′′∈Q′′′

ψq′′′

Clearly, ϕ, ψ ∈ � η, p |= ϕ and p′ |= ψ. We distinguish two cases.

(i) α 6= τ . Since p |= 〈ε〉(ϕ〈α〉〈ε〉ψ) ∈ � η and p∼ � η
q, also q |= 〈ε〉(ϕ〈α〉〈ε〉ψ).

Hence, q
ε

=⇒ q′
α

−→ q′′
ε

=⇒ q′′′ with q′ |= ϕ and q′′′ |= ψ. By the definition
of ϕ and ψ it follows that p ∼ �

η
q′ and p′ ∼ �

η
q′′′.

(ii) α = τ and p′ 6∼ �
η
q. Let ϕ̂ ∈ � η such that p′ |= ϕ̂ and q 6|= ϕ̂. Since

p |= 〈ε〉(ϕ̂ ∧ ψ) ∈ � η and p ∼ �
η
q, also q |= 〈ε〉(ϕ̂ ∧ ψ). Since q 6|= ϕ̂,

q
τ

−→ q′′
ε

=⇒ q′′′ with q′′′ |= ϕ̂ ∧ ψ. By the definition of ψ it follows that
p′ ∼ �

η
q′′′.

Both cases imply that the second condition of Def. 2.1 is fulfilled. We therefore
conclude that ∼ �

η
is an η-bisimulation relation. 2

Using the first part of Thm. 2.5, which was proved above, it is not hard to
derive the second part of Thm. 2.5, i.e. that � rη is a modal characterisation
of rooted η-bisimulation equivalence.

15

	Introduction
	Preliminaries
	Equivalences on labelled transition systems
	Modal logic
	Structural operational semantics
	Notions regarding transition rules
	Decomposition of modal formulas

	Eta-Bisimulation as a Congruence
	Congruence formats
	Preservation of modal characterisations
	Congruence results

	Related work
	References
	Modal Characterisation of Eta-Bisimulation

