
EXPRESS 2004 Preliminary Version

On the Expressiveness of

Higher Dimensional Automata
(extended abstract)

R.J. van Glabbeek 1,2

National ICT Australia
and School of Computer Science and Engineering

The University of New South Wales
Locked Bag 6016, Sydney, NSW 1466, Australia

Abstract

In this paper I compare the expressive power of several models of concurrency
based on their ability to represent causal dependence. To this end, I translate
these models, in behaviour preserving ways, into the model of higher dimensional
automata, which is the most expressive model under investigation. In particular, I
propose four different translations of Petri nets, corresponding to the four different
computational interpretations of nets found in the literature.

I also extend various equivalence relations for concurrent systems to higher dimen-
sional automata. These include the history preserving bisimulation, which is the
coarsest equivalence that fully respects branching time, causality and their inter-
play, as well as the ST-bisimulation, a branching time respecting equivalence that
takes causality into account to the extent that it is expressible by actions overlap-
ping in time. Through their embeddings in higher dimensional automata, it is now
well-defined whether members of different models of concurrency are equivalent.

Key words: Concurrency, expressiveness, causality, higher
dimensional automata, Petri nets, event structures, history
preserving bisimulation, ST-bisimulation.

1 A hierarchy of concurrency models

Figure 1 lists the main models of concurrency proposed in the literature, or-
dered by expressive power. Of all models, the labelled variant is understood.
Here I only treat models of processes that perform actions a, b, c, . . . whose in-
ternal structure is not further examined, and real-time and stochastic aspects

1 This work was supported by EPSRC under grant number GR/S22097
2 Email: rvg@cs.stanford.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

van Glabbeek

synchronisation trees [18]

6
prime event structures [28,29] -�















bundle e.s. [16]
flow e.s. [5]
stable e.s. [28,29]
safe Petri nets

6

6

Winskel’s event structures [28,29]

pure Petri nets�-configuration structures [11]
@

@
@I

automata [9]

�
�

��
Petri nets

�
�

��

@
@

@I
higher dimensional automata [8]

Fig. 1. A hierarchy of concurrency models, ordered by expressive power up to
history preserving bisimulation

of processes are completely ignored. Furthermore, I only study the represen-
tation of processes, not the representation of operators on processes. I restrict
myself to models that take branching time fully into account, and hence skip
models that represent processes by the sets of their executions. Thus, the
expressive power of the models differs only to the extent that certain forms
of causal dependence are expressible. I limit myself to models that take a
fully asynchronous view on parallelism: whenever a number of actions can
happen simultaneously, this must be because they are causally independent,
and hence they can also happen in any order. Because of this, I do not include
Petri nets with inhibitor arcs, or Chu spaces [23].

There is an arrow from model A to model B in Figure 1 iff there exists a
translation from processes representable in model A to processes representable
in model B that fully respects branching time, causality, and their interplay.
Thus a process and its translation ought to be history preserving bisimulation
equivalent [24,10].

Part of the contribution of this paper is a definition of what this means.
Forms of history preserving bisimulation were defined on behaviour structures
in [24], on stable event structures in [10], and on Petri nets under the indi-
vidual token interpretation in [4]; however, it has never been formally defined
what it means for an event structure, for instance, to be history preserving
bisimulation equivalent to a Petri net.

In Section 2 I introduce the model of higher dimensional automata. Then,
in Sections 3, 4 and 5, I define behaviour preserving translations from the other
models of Figure 1 into this model; for the model of Petri nets I do this in four
different ways, corresponding to the four different computational interpreta-

2

van Glabbeek

tions of nets found in the literature. In Section 7 I define history preserving
bisimulation equivalence on higher dimensional automata. The embeddings of
the other models of concurrency into higher dimensional automata make this
definition apply to processes representable in any of these models: two pro-
cesses are equivalent iff their representations as higher dimensional automata
are. Naturally, I have to ensure that the new definition agrees with the ex-
isting ones on the models where it has already been defined. Demonstrating
this is deferred to the full version of this paper.

With this tool in hand, the hierarchy of Figure 1 is justified in Section 8.
In particular, counterexamples will be presented to illustrate the strictness of
the expressiveness ordering.

Besides history preserving bisimulation equivalence, I also define interleav-
ing bisimulation equivalence [18,10] on higher dimensional automata, and thus
on the other models, as well as ST-bisimulation equivalence [13], a branching
time respecting semantic equivalence that takes causality into account to the
extent that it can be expressed by the possibility of durational actions to over-
lap in time. If I compare the models merely up to interleaving bisimulation
equivalence they turn out to be all equally expressive. If I compare them up
to ST-bisimulation equivalence, I conjecture that just two equivalence classes
of models remain: the models that do not take causality into account—in

Figure 1 just the model of synchronisation trees—and the models that do—in

Figure 1 all other models. It follows that the more interesting hierarchy of
Figure 1 is due to causal subtleties that evaporate when considering processes
up to ST-bisimulation equivalence.

2 Higher Dimensional Automata

One of the most commonly used models of concurrency is that of automata,
also known as process graphs, state transition diagrams or labelled transition
systems. In ordinary automata, the parallel composition P of two actions
a and b is displayed in the same way as a system M that executes a and b

in either order, ending in the same state each way, such that a and b are
mutually exclusive (see Figure 2). Nevertheless, it is often important to tell
these systems apart. This happens for instance when a and b take time: the
total running time of M is at least the sum of the running times of a and b,
whereas P may be as quick as the maximum of the running times of a and b.
Another occasion where it is essential to distinguish between P and M is when
designing systems using action refinement, as described in [10]. In many other
models of concurrency P and M are represented distinctly. For the model of
Petri nets, this is illustrated in Figure 2.

Throughout the years, people have wondered whether the elegance of au-
tomata could be combined with the expressiveness of models like Petri nets or
event structures, that are able to capture causal relationships between action
occurrences. These relationships include the causal independence of a and b in

3

van Glabbeek

P: •

a

•

b

M: •

a •

•

b

?b
�

�
�	
a

b

@
@
@R

b
b

@
@
@R
b

b

�
�

�	
a

Fig. 2. The automaton in the middle represents both parallelism, as does the Petri
net P, and mutual exclusion, as does the Petri net M.

P, the dependence of b on a in the left branch of the automaton representing M,
and the dependence of a on b in the right branch. As a result, several models
of concurrency have been proposed that are essentially automata, upgraded
with some extra structure to express causal independence [26,2,24,27,30].

In [6] it was pointed out that ordinary automata, without such extra struc-
ture, are already sufficiently expressive to capture these causal relationships.
All that is needed is a reading of automata that assumes squares to represent
concurrency, and nonconfluent branching to represent a choice or conflict.
Under this concurrent interpretation the automaton of Figure 2 represents
parallelism only, whereas mutual exclusion is represented by the automaton
of Figure 3. The square of Figure 2 is now seen as the product of the transi-

?b
�

�
�	
a

b

?
b
b

@
@
@R
b

b

?
a

b

Fig. 3. Representation of mutual ex-
clusion in ordinary automata under
the concurrent interpretation

ba

ab

Fig. 4. Travelling through the inside
of a square

tions a and b that form its sides. As each of these two transitions has 3 cells,
a start node, an end node, and the edge between them, their product has 9
cells, namely the 4 nodes and 4 edges displayed in Figure 2, and the inside of
the square. The latter represents the concurrent execution of a and b.

Modelling concurrency by means of squares (or cubes, hypercubes etc. in
case of three or more concurrent actions) is particularly useful when actions
are thought to have a duration or structure. A concurrent execution of a and
b in the process a‖b can then be thought of as a continuous path through
the surface of the square, starting at the top and terminating at the bottom
node, while being nondecreasing when projected on any edge. The execution
displayed in Figure 4 for instance passes through a point in which 50% of a

and about 17% of b has happened. As long as we want to identify all such
paths (when abstracting from timing information and structural knowledge of
a and b) we simply represent their equivalence class as the square. In [14] this
representation of concurrent systems turned out to be essential in finding and
explaining an essential counterexample in the study of semantic equivalences.

4

van Glabbeek

The price to pay for this simple solution is that it is no longer possible
to represent the system M of Figure 2 in such a way that both executions
ab and ba end up in the same state. In order to overcome this deficiency,
and to distinguish choice, as displayed in Figure 3, from mutual exclusion,
as in M in Figure 2, Vaughan Pratt [22] preferred for every square, cube,
hypercube etc. to indicate explicitly whether it represents concurrency or not.
An n-dimensional hypercube that represents the concurrent execution of the
n transitions that span its sides is thought of as being “filled in”, which is
represented by an additional n-dimensional cell in the automaton. Those that
represent mutual exclusion stay empty. This gives rise to what he baptised
higher dimensional automata.

A totally sequential implementation of a system, in which no two actions
happen in parallel, can be represented by an ordinary automaton, which is
a higher dimensional automaton in which there are no higher dimensional
cells, so no squares are filled in. At the other side of the spectrum, the very
same ordinary automata under the concurrent interpretation of [6] form the
special case of higher dimensional automata in which every (nondegenerate)
square, cube or hypercube is filled in. In between, Pratt’s higher dimensional
automata can model systems that feature both parallelism and mutual ex-
clusion, without having to resort to untying the join of two branches that
surround an area of mutual exclusion.

The idea of higher dimensional automata above had to some extent been
contemplated before in [26] and applied in [21]. However, [22] offered the first
formalisation of the idea. Pratt’s formalisation, based on n-categories, takes a
globular or hemispherical approach, in which an n-cell has only two boundaries
of dimension n − 1. Desperate attempts by me to fully grok the globular
approach led to an exchange with Pratt in December 1990 that gave rise to the
joint conclusion that a cubical approach, in which an n-cell has 2n boundaries
of dimension n− 1, would be preferable (and easier to understand). A higher
dimensional automaton (HDA) was henceforth defined as a presheaf over 2,
the category of cubical complexes. 3 At the occasion of proposing notions
of bisimulation equivalence, homotopy and unfolding for higher dimensional

3 The objects of 2 are the symbols 0,1,2,... denoting the hypercubes of each dimension,
and its morphisms from k to n are the embeddings of the k-dimensional hypercube as a
k-dimensional face of the n-dimensional hypercube. All dimensions are directed and the
morphisms preserve this direction. Thus, there are for example 6 morphisms from 2 to 3,
corresponding to the fact that a cube has 6 sides. A presheaf over a category C is a functor
F : Cop → Set. Thus a presheaf F over 2 associates a set F (n) to every object n in 2. F (n)
is thought of as the set of n-dimensional hypercubes in the HDA. Also, for every morphism
m : k → n, recognising the k-dimensional hypercube as a face of the n-dimensional one,
there exists a function F (m) : F (n) → F (k), giving for every n-dimensional hypercube
its k-dimensional face on the side indicated by m. These functions must satisfy exactly
those composition laws that hold for the morphisms in 2. The advantage of the categorical
approach is that the concept of a HDA is thus completely defined without the need for
figuring out these laws.

5

van Glabbeek

automata in [8], I reworded this definition in set-theoretical terms as follows.

Definition 2.1 A cubical set consists of a family of sets (Qn)n≥0 and for every
n∈IN a family of maps si, ti : Qn → Qn−1 for 1 ≤ i ≤ n, such that

αi ◦ βj = βj−1 ◦ αi for all 1 ≤ i < j ≤ n and α, β ∈ {s, t}. (*)

A higher dimensional automaton, labelled over an alphabet A, is a tuple
(Q, s, t, I, F, l) with (Q, s, t) a cubical set, I ∈ Q0, F ⊆ Q0 and l : Q1 → A,
such that l(si(q)) = l(ti(q)) for all q ∈ Q2 and i = 1, 2.

The elements of Q0 are called nodes and those of Q1, Q2 and Q3 are edges,
squares and cubes, respectively. In general, the elements of Qn are called n-
dimensional hypercubes, or n-cells. An n-dimensional hypercube represents a
state of a concurrent system in which n transitions are firing concurrently.
Because the dimensions of the hypercube are numbered 1, . . . , n, these n tran-
sitions are de facto stored as a list.

An edge q connects 2 nodes: its source s1(q) and its target t1(q). Likewise,
an n-dimensional hypercube q has n sources si(q) and n targets ti(q), one in
each dimension i = 1, ..., n, and each being an (n−1)-dimensional hypercube.
The source si(q) represents the possible state prior to q in which n− 1 out of
n transitions are already firing, but the ith one has not yet started. Likewise,
ti(q) represents the possible state past q in which n − 1 out of n transitions
are still firing, but the ith one has terminated.

When removing the ith transition out of a list of n transitions, an implicit
renumbering takes place, and what was formerly the jth transition, for j > i,
is now called the (j−1)th transition. Hence, first leaving out the jth and then
the ith, with i < j, leaves us with the same list as first removing the ith and
then the (j − 1)th transition. This is the content of the cubical laws (*).

I is the initial state, and F the final states of the represented system.
These states are required to have dimension 0, meaning that no transition is
currently firing. An edge q ∈ Q1 represents a state where exactly 1 transition
is firing, and l indicates the label of that transition. It is required that opposite
sides of a square have the same label. This because they represent the same
transition, scheduled before and after the firing of another one. The labelling
function can trivially be extended to a labelling of arbitrary n-dimensional
hypercubes by lists of n actions (cf. Section 6.2).

Based on this definition, and the computational motivation of Pratt [22], nu-
merous papers on higher dimensional automata have emerged [31–64].

A semantics of CCS in terms of higher dimensional automata is provided in
Goubault & Jensen [54], and also studied by Lanzmann [57]. In Goubault [47],
higher dimensional automata are used as a semantic domain for richer lan-
guages, and to compute local invariants which can decide a few computational
properties of interest. Cridlig & Goubault [36] provide a semantics of Linda
in terms of higher dimensional automata. Applications of higher dimensional

6

van Glabbeek

automata to scheduling problems and wait-free protocols for distributed sys-
tems are studied by Goubault [48,49,51], and model checking applications
by Cridlig [34,35]. Algorithms for deadlock detection in terms of higher di-
mensional automata appear in Fajstrup et al. [38,37]. Takayama [62,63,64]
studies parallelisation algorithms by means of higher dimensional automata.
Extensions of higher dimensional automata with time are investigated by
Goubault [48,50].

In Goubault [53] the relations between 1-dimensional automata, asyn-
chronous transition systems [26,2], and higher dimensional automata are cast
in a categorical framework, following the work of Winskel & Nielsen [30]. To
this end it appears to be fruitful to equip the cubical sets of Definition 2.1
with degeneracy mappings, so that they become exactly the cubical sets stud-
ied before in algebraic topology [25].

Homotopy for higher dimensional automata is defined in Pratt [22] and
Van Glabbeek [8], and further investigated by Goubault [48] and Raussen [60].
Gunawardena [56] uses homotopy theory to show that 2-phase locking is safe.
Goubault & Raussen [55] show, using homotopy theory, how geometric models
of concurrency like higher dimensional automata are suitable for attacking the
state-explosion problem.

Homology theories for higher dimensional automata are proposed by Gou-
bault and Gaucher [54,48,39–46]. Gaucher [39–44], like Pratt [22], takes a
globular approach to higher dimensional automata, and relates it to the cubi-
cal approach. Variations and generalisations of this approach are studied by
Gaucher & Goubault [46,45].

Buckland et al. [31,32] study a simplified version of globular higher dimen-
sional automata, and equip it with process algebraic operations. A generalisa-
tion of higher dimensional automata suitable for modelling continuous rather
than discrete processes has been proposed by Sokolowsky [61].

In Cattani & Sassone [33] a simplified form of higher dimensional automata
is proposed, called higher dimensional transition systems. The simplification
is payed for in expressive power though: not all higher dimensional automata
that arise as the image of a Petri net under the self-concurrent collective token
interpretation (see Section 5) exist as higher dimensional transition systems.

In [58,59], Pratt argues that acyclic higher dimensional automata can be
seen as subsets of a single infinite dimensional cube, which in turn can be
modelled as Chu spaces over 3.

An overview of work related to higher dimensional automata and the use
of other geometric methods in computer science is presented in Goubault [52].

3 Embedding ordinary automata in HDA

A (1-dimensional) automaton is a tuple (Q0, Q1, s1, t1, I, F, l), the special case
of higher dimensional automaton in which Qn = ∅ for n > 1. Often automata
are required to be extensional, meaning that a transition is completely deter-

7

van Glabbeek

mined by its source, target and label:

s1(q) = s1(q
′) ∧ t1(q) = t1(q

′) ∧ l(q) = l(q′)⇒ q = q′ for q, q′ ∈ Q1.

In that case, a transition q∈Q1 can be named after the triple (s1(q), l(q), t1(q)),
and, writing S for the set of states Q0, the quadruple (Q1, s1, t1, l) can be
conveniently represented by a relation T ⊆ S × A × S, thereby contracting
the definition of an automaton to a quadruple (S, T, I, F).

A straightforward embedding of ordinary automata in higher dimensional
automata is given by recognising them as HDA in which Qn = ∅ for n > 1.
However, the concurrent interpretation of automata from [6], elaborated in
[9], yields a more expressive model of concurrency. Here an extensional 1-
dimensional automaton G = (S, T, I, F) is, in essence, seen as an abbreviation
of a higher dimensional automaton A(G) by assuming that any nondegener-
ate n-dimensional hypercube that can be recognised in G is “filled in”, i.e.
constitutes an n-dimensional cell in A(G). In [6,9] this was merely a com-
putational interpretation of automata; here I use it to formally define A(G).
An n-dimensional hypercube in G consists of a string ` = a1 · · ·an ∈ An of n

action labels and 2n corners pξ ∈ S, with ξ ∈ {0, 1}n ranging over the strings
of n 0s and 1s, such that (pξ, ai, pχ) ∈ T whenever ξ and χ differ only on
their ith bit and that bit is 0 in ξ and 1 in χ. The source si(q) (resp. target
ti(q)) in dimension i of such an n-dimensional hypercube q in G is the (n−1)-
dimensional hypercube in G obtained by deleting ai from ` and restricting the
set of corners pξ of q to those in which the ith bit of ξ is 0 (resp. 1).

A hypercube q = (`, pξ (ξ∈{0, 1}n)) in G is degenerate iff there are indices
1 ≤ i < j ≤ n such that ai = aj in ` and, for certain bits bk ∈ {0, 1} (k 6= i, j),

pb1···bi−10bi+1···bj−11bj+1···bn
= pb1···bi−11bi+1···bj−10bj+1···bn

.

In particular, a degenerate square consists of two transitions (p, a, q) and
(q, a, r). It is a square by taking ` = aa and the corners p00 = p, p01 = p10 = q

and p11 = r. The reason for not assuming this square to be filled in, is that
if I do, I loose the expressive power to specify a sequence of two identical ac-
tions that have to occur in sequential order. Hence the property that at least
all synchronisation trees are representable as automata under the concurrent
interpretation would be lost. In general, a hypercube in G is nondegenerate iff
all its 2-dimensional faces are nondegenerate. So the definition of degeneracy
above is the most stringent one I could get away with.

4 Embedding event oriented models in HDA

Winskel [28,29] introduced six kinds of event structures: the prime, stable
and [general] event structures, each optionally with the restriction of binary
conflict. The behaviour of these event structures is fully specified by the
families of configurations that can be associated to them; moreover, the family
of all configurations of an event structure is fully determined by the finite

8

van Glabbeek

configurations in the family. Hence, event structures embed faithfully in the
model of configuration structures of [11], which generalises the families of
configurations of event structures.

synchronisation trees [18]

6

prime event structures
with binary conflict [29]

AAK
bundle event structures [16]

AAK
flow event structures [5]

AAK

stable event structures
with binary conflict [29]

A
A

A
A

A
AK

event structures
with binary conflict [29]

��������1

��������1

��������1

prime event structures [28]
A

A
A

A
A

A
AK

stable event structures [28]
A

A
A

A
A

A
AK

event structures [28]

6
configuration structures [11]

Fig. 5. A hierarchy of event oriented models of concurrency

In Figure 5, taken from [11], the six models of event structures from [28,29]
are ordered with respect to their expressive power as measured by the class
of configuration structures they can denote. In addition, the figure includes
the flow event structures of Boudol [5], and the bundle event structures of
Langerak [16]. The synchronisation trees of Milner [18], which are just tree
shaped (1-dimensional) automata, can be seen as special kinds of prime event
structures with binary conflict, and, naturally, the maximal expressive power
is obtained by the model of all configuration structures.

In [9], the configuration structures are faithfully embedded in the model
of ordinary automata under the concurrent interpretation of [6]. To this end,
the concurrent interpretation of [6] was extended to cover all automata—in
[6] it applied merely to automata of a certain shape: the ones arising as the
images of (labelled) prime event structures.

By composing the mappings of [11], embedding the models of Figure 5
in configuration structures, of [9], embedding configuration structures in au-
tomata under the concurrent interpretation, and of Section 3 above, embed-
ding automata in HDA, all models of Figure 5 embed faithfully in HDA.

9

van Glabbeek

5 Embedding Petri nets in HDA

In this section I show that the model of higher dimensional automata is at
least at expressive as the model of Petri nets, by giving translations from
Petri nets to higher dimensional automata that capture exactly the dynamic
behaviour of nets, as expressed by the firing rule, informally described below.

Definition 5.1 A (labelled) Petri net is a tuple (S, T, F, I, l) 4 with
• S and T two disjoint sets of places (Stellen in German) and transitions,
• F : (S × T ∪ T × S)→ IN, the flow relation,
• I : S → IN, the initial marking,
• and l : T → A, for A a set of actions, the labelling function.

Petri nets are pictured by drawing the places as circles and the transitions as
boxes, containing their label. For x,y∈S∪T there are F (s,t) arcs from x to y.

When a Petri net represents a concurrent system, a global state of this
system is given as a marking, a function M : S → IN. Such a state is depicted
by placing M(s) dots (tokens) in each place s. The initial state is given by
the marking I. A transition t can fire (occur) by taking F (s, t) tokens out of
each place s, one for each arc from s to t. If this is possible in the state given
by the marking M : S → IN, i.e. if F (s, t) < M(s) for all s ∈ S, one says
that t is enabled under M . After t has fired, F (t, s) tokens are added to each
place s, one of each arc from t to s. For t a transition in a Petri net N, let
•t : SN → IN be given by •t(s) = F (s, t) and t• : SN → IN by t•(s) = F (t.s).
The multiset •t describes which tokens are consumed by firing t, and t• which
tokens are produced.

In Van Glabbeek & Vaandrager [13], Petri nets were studied from the
point of view that transitions may take time, and we introduced global states
in which any number of transitions may be currently firing. The states rep-
resented by markings as defined above are those in which no transition is
currently firing. In general, a state is given by a multiset of places and transi-
tions. In order to precisely keep track of causal relationships between transi-
tion firings, we found it convenient to represent the (multi)set of transitions in
a state as a list. This made it possible to distinguish different occurrences of
currently firing transitions (i.e. the third and the fifth). Hence an ST-marking
is defined as a pair (M, σ) ∈ M(S) × T ∗ of a multiset of places and a list
of transitions. This is exactly the notion of state that I need below in my
translations of Petri nets to higher dimensional automata.

As pointed out in [11], there are 2×2 = 4 computational interpretations of
Petri nets, called the individual token and the collective token interpretation,
and, orthogonally, the self-sequential and the self-concurrent interpretation.
In the individual token interpretation one distinguishes different tokens resid-
ing in the same place, keeping track of where they come from. If a transition

4 The components of a net N are called SN, T N, FN, IN and lN, a convention that also
applies to other structures given as tuples. When clear from context, the index N is omitted.

10

van Glabbeek

fires by using a token that has been produced by another transition, there is
a causal link between the two. Consequently, the causal relations between the
transitions in a run of a net can always be described by means of a partial
order. In the collective interpretation, on the other hand, tokens cannot be
distinguished: if there are two tokens in a place, all that is present there is
the number 2. This gives rise to more subtle causal relationships between
transitions in a run of a net, which cannot be expressed by partial orders.
In the self-concurrent interpretation, a transition may fire concurrently with
itself. This is not allowed in the self-sequential interpretation.

The below can be understood as a way of formally pinpointing the differ-
ences between these computational interpretations, by giving four translations
from Petri nets into higher dimensional automata, one for each interpretation.
In some sense this amounts to giving four different semantics of Petri nets.

5.1 The self-concurrent collective token interpretation

First I define the higher dimensional automaton ACT(N) associated to a Petri
net N according to the self-concurrent collective token interpretation of nets.
As cells of ACT(N) I take the ST-markings of N, each being a pair (M, σ)
of a multiset M of places and a list σ of transitions in N. The number of
transitions in the list is the dimension of the cell. The source si(q) (resp. the
target ti(q)) in dimension i of a cell q = (M, σ) is obtained by omitting the
ith transition t from σ, and adding the multiset of places •t (resp. t•) to M .
Below, + denotes the union of multisets, given by (M +X)(s) = M(s)+X(s).
The empty list is denoted ε. As there is no standard definition of successful
termination in Petri nets, I map them to HDA without final states; however,
for any definition of successful termination of Petri nets found in the literature,
most likely a corresponding definition of the final states of the associated HDA
can be obtained.

Definition 5.2 Let N be a Petri net. The higher dimensional automaton
ACT(N) = (Q, s, t, I, F, l) is given by
• Qn = M(SN)× (TN)n for n ∈ IN,
• si(M, t1 · · · tn) = (M + •ti, t1 · · · ti−1ti+1 · · · tn) for 1≤ i≤n,
• ti(M, t1 · · · tn) = (M + t•i , t1 · · · ti−1ti+1 · · · tn) for 1≤ i≤n,
• I = (IN, ε) and F = ∅,
• l(M, t) = lN(t) for (M, t) ∈ Q1.

The source and target functions defined above correspond exactly to the start
and termination of a transition firing as defined in clauses 2 and 4 of Definition
7.1.1 in [13]. They are also consistent with the informal description of the firing
rule given above.

5.2 The self-concurrent individual token interpretation

Below I will define the notion of a token as it could occur in a Petri net, in such
a way that all possible token occurrences have a different name. A token will be

11

van Glabbeek

a triple (t′, k, s), with s the place where the token occurs, and t′ the transition
firing that brought it there. For tokens that are in s initially, I take t′ = ∗.
When the number of tokens that t′ deposits in s in n, I distinguish these tokens
by giving them ordinal numbers k = 0, 1, 2, ..., n−1. In order to define tokens
as announced above I need to define transition firings simultaneously. These
will be pairs (X, t) with t the transition that fires, and X the set of tokens
that is consumed in the firing. Transitions t that can fire without consuming
tokens can fire multiple times on the same (empty) input; these firings will
be called (k, t) with k ∈ IN instead of (∅, t). I define the functions β from
tokens to the places where they occur by β(t′, k, s) = s, and η from transition
firings to the transition that fires by η(X, t) = t. The function β extends to
a function from sets of tokens X to multisets of places β(X) : S → IN, by
β(X)(s) = |{s′ ∈ X | β(s′) = s}|.

Definition 5.3 Given a Petri net N = (S, T, F, I, l), the sets of tokens S• and
transition firings T• of N are recursively defined by
• (∗, k, s) ∈ S• for s ∈ S and k < I(s);
• (t′, k, s) ∈ S• for s ∈ S, t′ ∈ T• and k < F (η(t′), s);
• (X, t) ∈ T• for t ∈ T and X ⊆ S• such that β(X) = •t 6= ∅;
• (k, t) ∈ T• for k ∈ IN and t ∈ T such that •t = ∅.

Now I define the higher dimensional automaton AIT(N) associated to a Petri
net N according to the self-concurrent individual token interpretation of nets.
As cells of AIT(N) I take the ST-markings with individual tokens of N, each
being a pair (M, σ) of a multiset M of tokens of N (each token allocated to a
place in N) and a list σ of transition firings of N. The number of transition
firings in the list is the dimension of the cell. The source si(q) in dimension
i of a cell q = (M, σ) is obtained by omitting the ith transition firing (X, t)
from σ, and adding the set of tokens X (or ∅ in case X is a number k) to M .
Likewise, the target ti(q) of q in dimension i is obtained by omitting the ith

transition firing (X, t) from σ and upgrading M by adding F (t, s) tokens to
each place s. Below, in applying the multiset union +, sets X are identified
with multisets by taking X(s) = 1 if s ∈ X and X(s) = 0 otherwise, and
numbers k and treated as the empty (multi)set.

Definition 5.4 Let N be a Petri net. The HDA AIT(N) = (Q, s, t, I, F, l) is
given by
• Qn = M(SN

•)× (TN
•)n for n ∈ IN,

• si(M, t′1 · · · t
′
n) = (M + X, t′1 · · · t

′
i−1t

′
i+1 · · · t

′
n) for 1≤ i≤n and t′i =(X, t),

• ti(M, t′1 · · · t
′
n) = (M + {(t′i, k, s) | k<FN(η(t′i), s)}, t

′
1 · · · t

′
i−1t

′
i+1 · · · t

′
n),

• I = ({(∗, k, s) | k < IN(s)}, ε) and F = ∅,
• l(M, t′) = lN(η(t′)) for (M, t′) ∈ Q1.

It may be helpful to observe that ACT(N) can be obtained from AIT(N) by
applying β and η to the tokens and transition firings that make up a cell in
AIT(N); in particular one has si((β, η)(q)) = (β, η)(si(q)), and likewise for ti.

12

van Glabbeek

A cell q ∈ Q in a HDA A is reachable iff it occurs in a path of A as defined
in Section 6.3. It is not hard to check that each reachable cell in AIT(N) is
an ST-marking with individual tokens (M, σ) of N in which M is a plain set.
The reason to involve multisets of tokens in the definition above is to avoid
the problems related to unions M ∪X not being disjoint.

5.3 The self-sequential interpretations

A self-sequential version of the collective token interpretation above is ob-
tained by only allowing cells (M, σ) in which no transition occurs twice in σ.
Likewise, a self-sequential version of the individual token interpretation above
is obtained by only allowing cells (M, t′1 · · · t

′
n) such that η(t′i) = η(t′j)⇒ i = j.

5.4 The relative expressiveness of the four interpretations

Each of the four computational interpretations above makes a different model
of concurrency out of Petri nets. These models can now be compared with
respect to their expressive power in denoting higher dimensional automata.
A partial result is easily obtained. Let a standard Petri net be one in which
each transition has at least one incoming arc: ∀t ∈ T. ∃s ∈ S. F (s, t) > 0.
Now standard nets under the collective token interpretation are at least as
expressive as standard nets under the individual token interpretation, in the
sense that any higher dimensional automaton that can be denoted by a net
under the individual token interpretation can also be a denoted by a net under
the collective token interpretation.

Theorem 5.5 For every standard net N there exists a standard net N•, such
that ACT(N•) = AIT(N).

Proof. N• = (S•, T•, F•, I•, l•) with
• S• and T• as in Definition 5.3.
• F•(s

′, t′) = 1 if t′ = (X, t) with s′ ∈ X; F•(s
′, t′) = 0 otherwise.

• F•(t
′, s′) = 1 if s′ has the form (t′, k, s); F•(t

′, s′) = 0 otherwise.
• I•(∗, k, s) = 1 and I•(t

′, k, s) = 0 for t′ ∈ T•.
• l•(M, t′) = lN(η(t′)).

That ACT(N•) = AIT(N) is straightforward. 2

The net N• constructed above is a close relative of the unfolding of a Petri
net into an occurrence net, as defined in [17]. The difference is that I have not
bothered to eliminate unreachable places and transitions.

In general, results as strong as the one above can not be obtained: in
order to compare expressiveness in a meaningful way, processes represented
by higher dimensional automata, Petri nets, or other models of concurrency
should be regarded modulo some semantic equivalence relation. A particularly
fine equivalence relation that allows one to totally order the computational
interpretations of Petri nets is isomorphism of reachable parts of HDA.

13

van Glabbeek

Definition 5.6 Two higher dimensional automata A and B are isomorphic if
there exists a dimension preserving bijection I between their cells, such that
• sB

i (I(q)) = I(sAi (q)),
• tBi (I(q)) = I(tAi (q)),
• I(IA) = IB,
• I(q) ∈ FB ⇔ q ∈ FA,
• lB(I(q)) = lA(q) for q ∈ QA

1 .

The reachable part R(A) of an HDA A is the HDA consisting of its reachable
cells, those that occur in a path of A as defined in Section 6.3. (Note thatR(A)
is closed under si and ti.) Write A ∼= B if R(A) and R(B) are isomorphic.

By means of a small twist on Theorem 5.5 it can be shown that there is a
subclass of Petri nets such that

• for any net N in that subclass, ACT(N) ∼= AIT(N), and

• for any net N there is a net N′ in the subclass such that AIT(N′) ∼= AIT(N).

In fact, the indented subclass is close to the occurrence nets of Nielsen, Plotkin
& Winskel [19], but not necessarily with the requirements that cause the
elimination of unreachable parts.

Thus, up to isomorphism of reachable parts of associated HDA, the class
of all Petri nets under the individual token interpretation is equally expressive
as a subclass of nets on which the two interpretations coincide. The situation
with the self-concurrent and self-sequential interpretations is likewise, leading
to a hierarchy:

self-sequential individual token interpretation
?
6

self-concurrent individual token interpretation

6
self-sequential collective token interpretation

6
self-concurrent collective token interpretation

Fig. 6. Relative expressiveness of four computational interpretations of Petri nets

For this reason, the self-concurrent collective token interpretation will be my
default; this is the interpretation that comes with the Petri net entries in Fig-
ure 1. In order to integrate the hierarchies of Figures 5 and 6, it pays to con-
sider higher dimensional automata up to a semantic equivalence coarser than
isomorphism of reachable parts. I will define such equivalences in Section 7,
using the material of Section 6. It turns out that up to history preserving
bisimulation equivalence the self-sequential and the self-concurrent collective
token interpretations of Petri nets coincide.

14

van Glabbeek

6 Homotopy for Higher Dimensional Automata

6.1 Naming the faces of n-cells

In order to name the faces of a hypercube, following [59], I use the bits 0,
and 1 to indicate whether a transition has not yet started, is active, or has
terminated, respectively. In other work, the bit is sometimes called 1

2
, A, or

T for active or in transition, and yet others use the bits 0, 1, 2, or −, 0, +.

Since an n-cell represents a list of n transitions being active concurrently,
each of its 3n faces can be represented by a list b1 · · · bn of n such bits, where
bi indicates the status of the ith transition in the list. Thus, the dimension of
the face b1 · · · bn is given by the number of s in the list, · · · is the identity
map, and · · · 0 · · · (resp. · · · 1 · · ·), with only bi 6= , denotes the
map si (resp. ti). The face b1 · · · bn can also be expressed as α1 ◦ . . . ◦ αn with
αi = si if bi = 0, αi = ti if bi = 1, and αi = Id, the identity map, if bi = .
Using this convention, the 2n 0-dimensional corners of an n-cell q are named
by lists b1 · · · bn with bi ∈ {0, 1}, and the n · 2n−1 1-dimensional edges of q by
lists containing exactly one occurrence of .

6.2 Labelling n-cells

As a HDA is required to satisfy l(si(q)) = l(ti(q)) for all q ∈ Q2 and i =
1, 2, it follows that, for each q ∈ Qn and each 1 ≤ i ≤ n, the 2n−1 edges
b0 · · · bi−1 bi+1 · · · bn of q, with bj ∈ {0, 1} for j 6= i, all have the same label.
Calling this label li(q), the labelling function l : Q1 → A can be extended
to Q :=

⋃∞

k=0 Qk by l(q) = l1(q) · · · ln(q) for q ∈ Qn. Thus, the label of an
n-dimensional hypercube q is the list of the labels of the n transitions whose
concurrent execution is represented by q.

6.3 Paths and their observable content

Definition 6.1 A path in a higher dimensional automaton (Q, s, t, I, F, l) is
a sequence of pairs (∂1, q1)(∂2, q2) · · · (∂m, qm), denoted I ∂1 q1

∂2 q2
∂3 · · · ∂m qm,

with qk ∈ Q and ∂k ∈ {si, ti | 1 ≤ i ≤ d(qk)} for 1 ≤ k ≤ m, such that

qk−1 = si(qk) if ∂k = si and qk = ti(qk−1) if ∂k = ti.

Here q0 := I, i.e. I consider only paths starting from the initial state, and d(q),
de dimension of q, is n if q ∈ Qn. One writes end(π) for qm.

A path π in a HDA A represents a partial run of the system represented by A
in which between every two consecutive states an action starts or terminates.
It represents a total run iff end(π) ∈ F . If ∂k = si, the transition from qk−1

to qk represents the start of the action li(qk), and if ∂k = ti, it represents the
termination of the action li(qk−1).

Definition 6.2 Write split-trace(π) for the sequence σ1 · · ·σm, where σk =
li(qk)

+ if ∂k = si, and σk = li(qk−1)
− if ∂k = ti.

15

van Glabbeek

Split-trace(π) approximates the observable content of a path π. It consists of
the sequence of starts a+ and terminations a− of actions a occurring during the
run represented by π. The HDA of Figure 2 in which the square is not filled
in, for instance, has only two maximal paths, whose split-traces are a+a−b+b−

and b+b−a+a−. (The prefixes of these sequences are also split-traces of paths.)
The HDA of Figure 2 in which the square is filled in moreover has paths with
split-traces like a+b+b−a−.

If it is possible to keep track of parallel occurrences of the same action,
a split-trace falls short of representing the full observable content of a path.
The observable behaviour of a real-time execution would consist of a set of
action occurrences, with for each action occurrence an interval given by a start
time and a termination time, indicating the period during with the action
takes place. Abstracting from real-time information, what remains is a split-
trace σ—a sequence σ = σ1 · · ·σm of action phases, each being a start a+ or a
termination a− of an action a—together with an injective function start from
the (indices of) termination phases in σ to the (indices of) start phases in σ.
This functions tells for every termination of an action occurrence in σ where
that action occurrence starts. Naturally, for every termination phase σ` = a−

in σ, one has start(`) < ` and σstart(`) = a+. Such an annotated split-trace is
called an ST-trace. It can be compactly represented by writing astart(`) for σ`

whenever σ` = a−. A formal definition of the ST-trace of a path in a higher
dimensional automaton will follow in Section 6.5.

b+ a+ a+ b− a+ a− b+ a−

Fig. 7. An ST-trace

A typical ST-trace is depicted as Figure 7. It lists the starts and terminations
of actions occurring in a path, and additionally links the start and termination
of the same action. Its compact representation is b+a+a+b1a+a3b+a5. Note
that it contains more information than the underlying split-trace. ST-traces
were introduced in [7] in the context of event structures. Arguably, they
constitute the best formalisation of the observable content of execution paths.

Paths and their ST-traces lack the possibility to express that action phases
happen simultaneously. However, in higher dimensional automata two action
phases can occur simultaneously iff they can occur in either order. Therefore,
considering only paths in which all action phases are totally ordered does not
lead to a decrease in expressive power.

6.4 Homotopy

Two paths in a higher dimensional automaton can be considered equivalent if
they differ merely in the timing of causally independent actions. This applies
for instance to the path ab and the path ba in the automaton of Figure 4,
given that the actions a and b are causally independent. However, it would

16

van Glabbeek

not apply when the square is not filled in, as this signifies mutual exclusion,
and the relative order of a and b would matter. As observed by Pratt [22], this
notion of equivalence can be formalised beautifully by means of what he calls
“monoidal homotopy”. When seeing a higher dimensional automaton as a
structure composed of higher dimensional cubes embedded in a higher dimen-
sional Euclidean space, two paths are homotopic if one can be obtained out
of the other by a continuous transformation, keeping the begin and endpoints
the same, and allowing as intermediate stages of the transformation arbitrary
paths going through the insides of higher dimensional cells, as long as they
are monotonically increasing when projected on the axes of the cells they are
going through. The path drawn in Figure 4 for instance could be one of the
uncountably many stages in the continuous transformation of ab into ba.

This form of homotopy differs from the standard homotopy used in topol-
ogy in that the directed nature of the underlying space needs to be preserved
during transformations. Therefore it is called monoidal homotopy [22], or di-
rected homotopy (dihomotopy) [55], as opposed to group homotopy, although
in the context of higher dimensional automata it is simply called homotopy.

The following discrete analog of continuous deformation defines the same
concept of homotopy without involving the notion of Euclidean space.

Definition 6.3 Two paths π and π′ are adjacent—denoted π ↔ π′—if one
can be obtained from the other by replacing, for q, q′ ∈ Q and i < j,
• a segment si q

sj by
sj−1 q′ si ,

• a segment
tj q ti by ti q′

tj−1 ,
• a segment si q

tj by
tj−1 q′ si ,

• or a segment
sj q ti by ti q′

sj−1 .

Homotopy is the reflexive and transitive closure of adjacency.

The third adjacency replacement above can be motivated as follows: suppose
we have a list of n actions, numbered 1 to n, and we first insert an action a

at position i (thereby incrementing the slot-numbers ≥ i by one) and subse-
quently delete the jth action (j > i) from the list (thereby decrementing the
slot-numbers >j by one), then we get the same result as when we first delete
the (j − 1)th action (thereby decrementing the slot-numbers ≥ j by one) and
subsequently insert the action a at position i (incrementing the slot-numbers
≥ i). The other replacements are motivated in a similar way.

The paths with split-traces a+a−b+b− and b+b−a+a− in Figure 4 for in-
stance are homotopic, because the first can be transformed into the second
through four adjacency replacements, namely (on the level of split-traces)

a+a−b+b− ↔ a+b+a−b− ↔ b+a+a−b− ↔ b+a+b−a− ↔ b+b−a+a−.

Homotopic paths share their endpoints. A homotopy class of paths in a higher
dimensional automaton (with endpoint q) is called a history (of q). Histories
form the analog of paths, after abstraction from the order or causally inde-
pendent action occurrences.

17

van Glabbeek

6.5 Matching starts and terminations of action occurrences in paths

The following proposition illustrates the agreement between Definition 6.3 and
the cubical laws of Definition 2.1.

Proposition 6.4 For every segment p si q
tj r with i 6= j, and for every segment

p si q
sj r or p ti q

tj r in a path π in a HDA A, there exists a unique path π′ in A,
adjacent to π, that can be obtained from π by replacing the indicated segment
in the manner described in Definition 6.3 (going either right or left).

Proof. Suppose π contains p si q
tj r, with i < j. Then p = si(q) and r = tj(q).

By the cubical laws in Definition 2.1, tj−1(p) = tj−1((si(q)) = si(tj(q)) = si(r).
Hence the unique replacement is p

tj−1 q′ si r with q′ = tj−1(p) = si(r).

Likewise, suppose π contains p si q
sj r, with i < j. Then p = si(q) and

q = sj(r). By the cubical laws (*) in Definition 2.1 one has p = sj−1(si(r)).
So the unique replacement is p

sj−1 q′ si r with q′ = si(r).

The other four cases go similarly. 2

The intuition is that when two actions happen concurrently, they can start
in either order as well as terminate in either order; moreover, if it is possible
for action a to start before b terminates, b could just as well terminate before
a starts, provided a and b are distinct action occurrences. Note, however,
that Proposition 6.4 does not apply to segments p ti q

sj r. If the termination
of one action precedes the start of another, it may be that there is a causal
link between the two that prevents this order from being interchanged.

Write π
`
←→ π′ if π′ can be obtained from π = I ∂1 q1

∂2 q2
∂3 · · · ∂m qm by

an adjacency replacement of the segment ∂` q`
∂`+1 of π, inducing a swap of

the action phases σ` and σ`+1 in the split-trace σ = σ1 · · ·σm of π. Assume
∂`+1 = ti, i.e. σ`+1 is the termination li(q`)

− of an action li(q`). In case ∂` = si

we have that σ` is the start li(q`)
+ of the very same occurrence of the action

li(q`) in π. In this case σ` and σ`+1 cannot be swapped: there is no path π′ such
that π

`
←→ π′. Proposition 6.4 tells that in all other cases (i.e. when ∂` 6= si)

σ` and σ`+1 can be swapped: there exists a unique path π′ in A with π
`
←→ π′.

This makes it possible to tell which action phase in split-trace(π) is the start
of the action occurrence whose termination happens as phase σ`+1: it is the

unique phase σk such that π
`
←→ π`

`−1
←→ π`−1

`−2
←→ · · ·

k+1
←→ πk+1 6

k
←→ πk.

Definition 6.5 Let π = I ∂1 q1
∂2 q2

∂3 · · · ∂m qm be a path in a higher dimen-
sional automaton. For 1 ≤ ` ≤ m such that ∂` denotes a termination phase,
let start(`) denote the unique number k such that

π
`−1
←→ π`−1

`−2
←→ · · ·

k+1
←→ πk+1 6

k
←→ πk.

Now ST-trace(π) is the sequence obtained from split-trace(π) = σ1 · · ·σk, by
replacing σ` by astart(`) whenever σ` = a−.

18

van Glabbeek

7 Bisimulation semantics for HDA

Using the material of Section 6, I now extend the main forms of bisimulation
equivalence found in the literature that do not involve a special treatment of
hidden or internal actions, to higher dimensional automata. For interleav-
ing bisimulation equivalence this is trivial: it is just the standard notion of
bisimulation equivalence on ordinary automata found in the literature [18,1],
applied to higher dimensional automata by ignoring their higher dimensional
cells. ST-bisimulation equivalence [13] is a branching time respecting equiv-
alence that takes causality into account to the extent that it is expressible
by durational actions overlapping in time. History preserving bisimulation
equivalence [24,10] is the coarsest equivalence that fully respects branching
time, causality and their interplay. Hereditary history preserving bisimulation
equivalence [3] is a variant of the latter that strongly respects the internal
structure of processes, while still collapsing choices between indistinguishable
courses of action (i.e. satisfying the CCS law x + x = x [18]).

By Definition 6.1, the empty path in a higher dimension automata A starts
and ends in the initial state of A and hence is denoted IA. I write π → π′ if
π is a prefix of a path π′, i.e., if π′ is an extension of π.

Definition 7.1 Two higher dimensional automata A and B are history pre-
serving bisimulation equivalent if there exists a binary relation R between their
paths—a history preserving bisimulation—such that

(1) the empty paths in A and B are related: IARIB,
(2) if πRρ then then ST-traceA(π) = ST-traceB(ρ),
(3) if πRρ and π ↔ π′ then ∃ρ′ with ρ↔ ρ′ and π′Rρ′,
(4) if πRρ and ρ↔ ρ′ then ∃π′ with π ↔ π′ and π′Rρ′,
(5) if πRρ and π → π′ then ∃ρ′ with ρ→ ρ′ and π′Rρ′,
(6) if πRρ and ρ→ ρ′ then ∃π′ with π → π′ and π′Rρ′,
(7) and if πRρ then end(π) ∈ F A ⇔ end(ρ) ∈ F B.

A and B are hereditary history preserving bisimulation equivalent if there exists
a history preserving bisimulation R between their paths that moreover satisfies

(8) if πRρ and π′ → π then ∃ρ′ with ρ′ → ρ and π′Rρ′, and
(9) if πRρ and ρ′ → ρ then ∃π′ with π′ → π and π′Rρ′.

ST-bisimulation equivalence between HDA is defined exactly as history pre-
serving bisimulation equivalence, but dropping clauses (3) and (4).

Note that in the presence of clause (2), related paths have the same length.
Hence clauses (8) and (9) are equivalent. I listed them both solely to stress the
symmetric nature of the definition. It is not hard to see that the notion of ST-
bisimulation equivalence would not change upon adding clauses (8) and (9),
but because of clauses (3) and (4), this does not apply to history preserving
bisimulation equivalence. Using clause (2) it follows that the effect of clauses
(3) and (4) would not change if I wrote

`
←→ instead of ↔ throughout these

19

van Glabbeek

clauses. The clauses (3) and (4) express that the causal relations between
action phases in the ST-traces of two related paths are the same, for these
relations are determined by the space of all allowed permutations of action
phases.

8 A hierarchy of concurrency models

After having defined precisely what the arrows in Figure 1 mean, I will now
proceed to argue for their soundness and completeness in describing the rela-
tive expressiveness of the models of concurrency under investigation.

8.1 Soundness of the inclusions of Figure 1

It is well known that stable event structures with binary conflict [29] are
more expressive than flow event structures [5], which are more expressive than
bundle event structures [16], which are in turn more expressive than prime
event structures with binary conflict [29], cf. Figure 5. However, this holds
when comparing the families of configurations they can express; the difference
disappears when working up to history preserving bisimulation. This follows
immediately from the fact that prime and stable event structures with binary
conflict specify the same Scott domains [28,29], and thus also the same [higher
dimensional] automata. Alternatively, a direct proof can be found in [15]. In
[15] and [20] it has furthermore been shown that, up to history preserving
bisimulation, finitary conflict can be expressed in terms of binary conflict.
Thus, by the criteria of this paper, the stable event structures of [28] do not
rank higher in expressive power than the ones with binary conflict in [29].
Likewise, the general event structures of [28] do not rank higher in expressive
power than the ones with binary conflict in [29]. This shows that up to history
preserving bisimulation Figure 5 collapses into the bottom of Figure 1.

A Petri net is safe if no reachable marking will every have two tokens in
the same place. In [19] the expressive equivalence has been established of
the model of safe Petri nets with that of prime event structures with binary
conflict. This was done by means of translations between these models that
preserve more than history preserving bisimulation equivalence.

Up to history preserving bisimulation equivalence, on safe Petri nets there
is no difference between any of the four computational interpretations of Petri
nets discussed in Section 5. Moreover, the nets N•, constructed in the proof
of Theorem 5.5, are safe. It follows that under the self-sequential individual
token interpretation, as well as under the self-concurrent individual token
interpretation, the class of all Petri nets is equally expressive as the class of
safe Petri nets.

In [11] two forms of 1-unfolding are defined, one for Petri nets under the
self-concurrent collective token interpretation, and one for Petri nets under the
self-sequential collective token interpretation. Each of them converts any Petri

20

van Glabbeek

c

•

a

•

b

•

•

•

a

•
c

•
b

•

b

c

•

b

•

a
c

a

E = {a, b, c}

= ∅

∅ ` a
∅ ` b
a ` c
b ` c

a

c #

b

c

Fig. 8. A system with disjunctive causality represented as an event structure of [29],
a [higher dimensional] automaton in which the dashed lines indicate that all three
squares are filled in, and a Petri net. The last picture is the best representation of
the same system as a prime event structure [19,29]. It requires the decomposition
of the event c, which is causally dependent on the disjunction of a and b, into two
events c1 and c2, only one of which may happen: c1 being causally dependent only
on a, and c2 on b. This prime event structure is ST-bisimulation equivalent to the
original one, but not history preserving bisimulation equivalent.

net into a so-called 1-occurrence net, a net in which each transition can fire only
once. And each of these 1-unfoldings respects history preserving bisimulation
equivalence w.r.t. to the computational interpretation of nets that comes with
this 1-unfolding. Trivially, on 1-occurrence nets there is no difference between
the self-concurrent and the self-sequential interpretation of nets. It follows
that, up to history preserving bisimulation equivalence, Petri nets under the
self-sequential collective token interpretation are equally expressive as Petri
nets under the self-concurrent collective token interpretation.

A Petri net is pure if it has no self-loops, i.e. there are no places s and
transitions t with F (s, t) > 0 and F (t, s) > 0. In [11] we showed that configu-
ration structures are equally expressive as pure Petri nets under the collective
token interpretation (or precisely, each of the two collective token interpreta-
tions). Taking into account that pureness is preserved by the two 1-unfoldings,
this was done my means of translations between configuration structures and
pure 1-occurrence nets that preserve more than history preserving bisimula-
tion equivalence.

This concludes the justification of the arrows in Figure 1.

8.2 Completeness of the inclusions of Figure 1

That the model of synchronisation trees is less expressive than that of safe
Petri nets is witnessed by the process a‖b, the parallel composition of two
actions a and b. This process can be represented by the safe Petri net P in
Figure 2. However, there is no synchronisation tree which is history preserving
bisimulation equivalent, or even ST-bisimulation equivalent, to this process.

The models of prime and stable event structures are less expressive than
that of (general) event structures of [29]. This is witnessed by the process
of Figure 8, which is representable as an event structure of [29], but, up to

21

van Glabbeek

•

c

••

a

•

b

•

•

a

•
c

•

b

•
c

a

•

b

•
c

b

a

E = {a, b, c}

c ` {a, b}
∅ ` X for X 6= {a, b} a

#
#

a #

c

b

#
b

Fig. 9. A system with resolvable conflict represented as a pure Petri net, a pure
event structure as introduced in [12], and a [higher dimensional] automaton. The
events a and b are initially in conflict (only one of them may happen), but as soon
as c occurs this conflict is resolved. The last picture is the best representation of the
same system as a prime event structure. It yields a system with two maximal runs,
in one of which c causes just a, and in the other just b. Again it is ST-bisimulation
equivalent to the original, but not history preserving bisimulation equivalent. There
is no event structure as in [28,29] that is history preserving bisimulation equivalent
to the system above.

history preserving bisimulation equivalence, not as a prime event structure.

In [12], a generalisation of Winskel’s event structures is proposed that
(up to history preserving bisimulation equivalence) is equally expressive as
Petri nets under the collective token interpretation. Also a subclass of pure
event structures is defined that matches the expressive power of configuration
structures and pure nets. An example of a pure Petri net and a pure event
structure as in [12] that cannot be represented as an event structure of [28,29]
appears in Figure 9.

Figure 10 shows a system represented as a Petri net, that cannot be rep-
resented as a pure Petri net, or as an automaton under the concurrent inter-
pretation.

••

a

•

b

•

c

•

?b
�

�
�	
a

b

?
b

b

@
@
@R

c
b

?
b
b

�
�

�	

a @
@
@R

c@
@
@Rc b

�
�

�	a

?
b

@
@
@R
c

b

?
b
b

�
�

�	
a

Fig. 10. A 2-out-of-3 semaphore, represented as a Petri net and as a higher dimen-
sional automaton. In the latter, all six squares are supposed to be filled in, but the
interior of the cube is not. Up to history preserving bisimulation equivalence this
system cannot be represented as an automaton under the concurrent interpretation,
because, due to the filled-in squares, the cube shape is unavoidable, and interior of
the cube would by default be understood to be filled in. Hence the system can also
not be represented as a pure Petri net.

22

van Glabbeek

8.2.1 Beyond Petri nets

The final counterexample witnessing the completeness of the expressiveness
hierarchy of Figure 1 concerns the process of Figure 11, that is representable
as a higher dimensional automaton, and even as an ordinary automaton under
the concurrent interpretation, but not as a Petri net.

?b
�

�
�	

a

b

�
�

�
�

b

b

?
d

b

PPPPPqc

?
c

b

@
@
@R
b

b

?
c
b

�
�

�	
a

@
@
@R

b

@
@
@R

b

b

B
B
B
BN

a

b

?
e
b

�����) c

?
c

b

�
�

�	
a

Fig. 11. A process, represented as an ordinary automaton under the concurrent
interpretation, that, up to history preserving bisimulation equivalence, cannot be
represented as a Petri net.

The process displayed in Figure 11 was implemented during my presentation
at EXPRESS 2004. Two computer scientists A and B were travelling from
one end of the podium to the other. Their task to was perform the actions a

resp. b of crossing a line on the podium. Due to strategic placing of obstacles,
the only place were this was possible was at a narrow opening between the
obstacles that had room for only one of the scientists A and B at a time. This
made the actions a and b mutually exclusive, in the sense that they could not
occur simultaneously. A third computer scientist, C, was assigned the task
c of removing an obstacle that caused the bottleneck to exists. The action
c was executed causally independent of a and b. The actions a and b were
mutually exclusive only until c occurred, after which they became causally
independent. Finally, a fourth participant was assigned the task of making a
statement when a and b had both occurred before the action c started. This
statement was going to be d in case A passed the bottleneck before B did, and
e in case B passed the bottleneck before A did. Hearing this statement would
prevent computer scientist C from carrying out the action c. The resulting
process is described by the automaton above, in which all five squares are
filled in.

In order to represent the process of Figure 11, up to history preserving
bisimulation equivalence, as a Petri net, there must be a single transition
representing the action a, regardless of whether it is scheduled before or after
b or c. This because of the concurrency inherent in the example. The same
holds for b. However, in a Petri net, firing just these two transitions labelled
a and b necessarily leads to a unique state, independent of the order in which
a and b occur. This is in contradiction with the fact that the process under
consideration has two states reachable by doing only a and b, in which different
further actions are possible.

23

van Glabbeek

8.3 Comparisons modulo other notions of equivalence

If I compare the models of Figure 1 up to hereditary history preserving bisim-
ulation equivalence the same hierarchy results. This because all translations
used in Section 8.1 even preserve hereditary history preserving bisimulation
equivalence. If I compare them merely up to interleaving bisimulation equiva-
lence, all models turn out to be equally expressive. This because every higher
dimensional automaton is trivially interleaving bisimulation equivalent to the
1-dimensional automaton resulting from ignoring its higher dimensional cells,
and to the unfolding of that 1-dimensional automaton into a tree.

If I compare the models up to ST-bisimulation equivalence, the model of
synchronisation trees is still less expressive than that of event structures, as
explained in Section 8.2. I conjecture that all models of Figure 1 other than
synchronisation trees are equally expressive, in the sense that any process
representable in any of the models can be translated into an ST-bisimulation
equivalent prime event structure. For configuration structures this is Theo-
rem 1 in [11]. My conjecture is that this result extends to higher dimensional
automata; in other words, that up to ST-bisimulation equivalence the prime
event structures have universal expressivity.

References

[1] Baeten, J.C.M. and W.P. Weijland, “Process Algebra,” Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press, 1990.

[2] Bednarczyk, M., “Categories of asynchronous systems,” Ph.D. thesis, Computer
Science, University of Sussex, Brighton (1987).
Available at ftp://ftp.ipipan.gda.pl/marek/phd.ps.gz.

[3] Bednarczyk, M., Hereditary history preserving bisimulation, or what is the
power of the future perfect in program logics, Technical report, Polish Academy
of Sciences, Gdansk (1991).
Available at ftp://ftp.ipipan.gda.pl/marek/historie.ps.gz.

[4] Best, E., R. Devillers, A. Kiehn and L. Pomello, Concurrent bisimulations in
Petri nets, Acta Informatica 28 (1991), pp. 231–264.

[5] Boudol, G., Flow event structures and flow nets, in: I. Guessarian, editor,
Semantics of Systems of Concurrent Processes, Proceedings LITP Spring School

on Theoretical Computer Science, La Roche Posay, France, LNCS 469 (1990),
pp. 62–95.

[6] Glabbeek, R.J. van, An operational non-interleaved process graph semantics of
CCSP (abstract), in: E.-R. Olderog, U. Goltz and R.J. van Glabbeek, editors,
Combining Compositionality and Concurrency, Summary of a GMD-Workshop,
Königswinter, March 1988, Arbeitspapiere der GMD 320 (1988), pp. 18–19.

24

ftp://ftp.ipipan.gda.pl/marek/phd.ps.gz
ftp://ftp.ipipan.gda.pl/marek/historie.ps.gz

van Glabbeek

[7] Glabbeek, R.J. van, The refinement theorem for ST-bisimulation semantics, in:
M. Broy and C.B. Jones, editors, Proceedings IFIP TC2 Working Conference on
Programming Concepts and Methods, Sea of Gallilee, Israel (1990), pp. 27–52,
available at http://kilby.stanford.edu/~rvg/pub/STbisimulation.pdf.

[8] Glabbeek, R.J. van, Bisimulations for higher dimensional automata, email
message (July 7, 1991), available at http://theory.stanford.edu/~rvg/hda.

[9] Glabbeek, R.J. van, History preserving process graphs, draft, available at
http://kilby.stanford.edu/~rvg/pub/history.draft.dvi (1996).

[10] Glabbeek, R.J. van and U. Goltz, Refinement of actions and equivalence notions
for concurrent systems, Acta Informatica 37 (2001), pp. 229–327, available at
http://boole.stanford.edu/pub/refinement.ps.gz.

[11] Glabbeek, R.J. van and G.D. Plotkin, Configuration structures (extended
abstract), in: D. Kozen, editor, Proceedings 10th Annual IEEE Symposium on
Logic in Computer Science, LICS’95, San Diego, USA (1995), pp. 199–209,
available at http://boole.stanford.edu/pub/conf.ps.gz.

[12] Glabbeek, R.J. van and G.D. Plotkin, Event structures for resolvable conflict,
in: V. Koubek and J. Kratochvil, editors, Proceedings 29th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2004,
Prague, Czech Republic, LNCS (August 2004),
available at http://boole.stanford.edu/pub/resolv.ps.gz.

[13] Glabbeek, R.J. van and F.W. Vaandrager, Petri net models for algebraic
theories of concurrency (extended abstract), in: J.W. de Bakker, A.J. Nijman
and P.C. Treleaven, editors, Proceedings PARLE, Parallel Architectures

and Languages Europe, Eindhoven, The Netherlands, June 1987, Vol.
II: Parallel Languages, LNCS 259 (1987), pp. 224–242, available at
http://kilby.stanford.edu/~rvg/pub/petri.pdf.

[14] Glabbeek, R.J. van and F.W. Vaandrager, The difference between splitting in
n and n + 1, Information and Computation 136 (1997), pp. 109–142, available
at http://boole.stanford.edu/pub/split.pdf.

[15] Glabbeek, R.J. van and F.W. Vaandrager, Bundle event structures and
CCSP, in: R. Amadio and D. Lugiez, editors, Proceedings CONCUR

2003, 14th International Conference on Concurrency Theory, Marseille,
France, September 2003, LNCS 2761 (2003), pp. 57–71, available at
http://boole.stanford.edu/pub/bundle.ps.gz.

[16] Langerak, R., “Transformations and Semantics for LOTOS,” Ph.D. thesis,
Department of Computer Science, University of Twente (1992).

[17] Meseguer, J., U. Montanari and V. Sassone, On the semantics of Petri nets,
in: W. Cleaveland, editor, Proceedings CONCUR ’92, Second International
Conference on Concurrency Theory, Stony Brook, NY, USA, LNCS 630 (1992),
pp. 286–301.

[18] Milner, R., “A Calculus of Communicating Systems,” LNCS 92, Springer, 1980.

25

http://kilby.stanford.edu/~rvg/pub/STbisimulation.pdf
http://theory.stanford.edu/~rvg/hda
http://kilby.stanford.edu/~rvg/pub/history.draft.dvi
http://boole.stanford.edu/pub/refinement.ps.gz
http://boole.stanford.edu/pub/conf.ps.gz
http://boole.stanford.edu/pub/resolv.ps.gz
http://kilby.stanford.edu/~rvg/pub/petri.pdf
http://boole.stanford.edu/pub/split.pdf
http://boole.stanford.edu/pub/bundle.ps.gz

van Glabbeek

[19] Nielsen, M., G.D. Plotkin and G. Winskel, Petri nets, event structures and
domains, part I, Theoretical Computer Science 13 (1981), pp. 85–108.

[20] Nielsen, M. and G. Winskel, Petri nets and bisimulation, Theoretical Computer
Science 153 (1996), pp. 211–244.

[21] Papadimitriou, C., “The Theory of Database Concurrency Control,” Computer
Science Press, 1986.

[22] Pratt, V.R., Modeling concurrency with geometry, in: Proc. 18th Ann. ACM

Symposium on Principles of Programming Languages (1991), pp. 311–322,
available at http://boole.stanford.edu/pub/cg.ps.gz.

[23] Pratt, V.R., Chu spaces, a summary and large collection of papers available at
http://chu.stanford.edu/ (1993–2002).

[24] Rabinovich, A. and B.A. Trakhtenbrot, Behavior structures and nets,
Fundamenta Informaticae 11 (1988), pp. 357–404.

[25] Serre, J., Homology singulière des espaces fibrés. application, Ph.D. thesis, École
Normale Supérieure (1951).

[26] Shields, M.W., Concurrent machines, The Computer Journal 28 (1985),
pp. 449–465.

[27] Stark, E.W., Concurrent transition systems, Theoretical Computer Science 64
(1989), pp. 221–269.

[28] Winskel, G., Event structures, in: W. Brauer, W. Reisig and G. Rozenberg,
editors, Petri Nets: Applications and Relationships to Other Models of

Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced

Course, Bad Honnef, September 1986, LNCS 255 (1987), pp. 325–392.

[29] Winskel, G., An introduction to event structures, in: J.W. de Bakker, W.P. d.
Roever and G. Rozenberg, editors, REX School and Workshop on Linear Time,

Branching Time and Partial Order in Logics and Models for Concurrency,

Noordwijkerhout, The Netherlands, May/June 1988, LNCS 354 (1989), pp.
364–397.

[30] Winskel, G. and M. Nielsen, Models for concurrency, in: Handbook of Logic in

Computer Science, Oxford University Press, 1995 pp. 1–148.

Bibliography on Higher Dimensional Automata (besides [22] and [8])

[31] Buckland, R., Choice as a first class citizen, in: M. Orgun and E. Ashcroft,
editors, Proceedings Intensional Programming I (1996), pp. 249–259.

[32] Buckland, R., M. Johnson and D. Verity, On the specification of higher
dimensional automata, Electronic Notes in Theoretical Computer Science 68(1)
(2002), pp. 1–11.

26

http://boole.stanford.edu/pub/cg.ps.gz
http://chu.stanford.edu/

van Glabbeek

[33] Cattani, G.L. and V. Sassone, Higher dimensional transition systems, in:
Proceedings LICS ’96, Eleventh Annual IEEE Symposium on Logic in

Computer Science, New Brunswick, USA (1996), pp. 55–62.
Available at ftp://ftp.cl.cam.ac.uk/users/glc25/hdts.dvi.gz.

[34] Cridlig, R., Semantic analysis of shared-memory concurrent languages using
abstract model-checking, in: Proceedings PEPM 1995, ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
La Jolla, USA, June 1995 (1995), pp. 214–225.
Available at http://portal.acm.org/citation.cfm?doid=215465.215577.

[35] Cridlig, R., Implementing a static analyzer of concurrent programs: Problems
and perspectives, in: M. Dam, editor, Selected Papers of Analysis and

Verification of Multiple-Agent Languages, 5th LOMAPS Workshop, Stockholm,
Sweden, June 1996, LNCS 1192 (1997), pp. 244–259.

[36] Cridlig, R. and E. Goubault, Semantics and analysis of Linda-based languages,
in: Proceedings WSA ’93, 3rd International Workshop on Static Analysis,
Padova, Italy, September 1993, LNCS 724 (1993), pp. 72–86.
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[37] Fajstrup, L., Loops, ditopology and deadlocks, Mathematical Structures in
Computer Science 10(4) (2000), pp. 459–480.

[38] Fajstrup, L., E. Goubault and M. Raussen, Detecting deadlocks in concurrent
systems, in: D. Sangiorgi and R. de Simone, editors, Proceedings CONCUR ’98,
9th International Conference on Concurrency Theory, Nice, France, September
1998, LNCS 1466 (1998), pp. 332–347.
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[39] Gaucher, P., From concurrency to algebraic topology, Electronic Notes in
Theoretical Computer Science 39(2) (2000).
Available at http://www.pps.jussieu.fr/~gaucher/expose.ps.gz.

[40] Gaucher, P., Homotopy invariants of higher dimensional categories and
concurrency in computer science, Mathematical Structures in Computer Science
10(4) (2000), pp. 481–524.
Available at http://www.pps.jussieu.fr/~gaucher/homotopie_cat.ps.gz.

[41] Gaucher, P., Combinatorics of branchings in higher dimensional automata,
Theory and Applications of Categories 8(12) (2001), pp. 324–376.
Available at http://www.pps.jussieu.fr/~gaucher/coin.ps.gz.

[42] Gaucher, P., About the globular homology of higher dimensional automata,
Cahiers de Topologie et Géométrie Différentielle Catégoriques XLIII(2) (2002),
pp. 107–156. At http://www.pps.jussieu.fr/~gaucher/sglob.ps.gz.

[43] Gaucher, P., Investigating the algebraic structure of dihomotopy types,
Electronic Notes in Theoretical Computer Science 52(2) (2002).
Available at http://www.pps.jussieu.fr/~gaucher/dihomotopy.ps.gz.

27

ftp://ftp.cl.cam.ac.uk/users/glc25/hdts.dvi.gz
http://portal.acm.org/citation.cfm?doid=215465.215577
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.pps.jussieu.fr/~gaucher/expose.ps.gz
http://www.pps.jussieu.fr/~gaucher/homotopie_cat.ps.gz
http://www.pps.jussieu.fr/~gaucher/coin.ps.gz
http://www.pps.jussieu.fr/~gaucher/sglob.ps.gz
http://www.pps.jussieu.fr/~gaucher/dihomotopy.ps.gz

van Glabbeek

[44] Gaucher, P., The branching nerve of HDA and the Kan condition, Theory and
Applications of Categories 11(3) (2003), pp. 75–106.
Available at http://www.pps.jussieu.fr/~gaucher/fibrantcoin.ps.gz.

[45] Gaucher, P., A model category for the homotopy theory of concurrency,
Homology, Homotopy and Applications 5(1) (2003), pp. 549–599.
Available at http://www.pps.jussieu.fr/~gaucher/modelflow.ps.gz.

[46] Gaucher, P. and E. Goubault, Topological deformation of higher dimensional
automata, Homology, Homotopy and Applications 5(2) (2003), pp. 39–82.
Available at http://www.pps.jussieu.fr/~gaucher/diCW.ps.gz.

[47] Goubault, E., Domains of higher-dimensional automata, in: E. Best, editor,
Proceedings CONCUR ’93, 4th International Conference on Concurrency

Theory, Hildesheim, Germany, August 1993, LNCS 715 (1993), pp. 293–307.
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[48] Goubault, E., The geometry of concurrency, Ph.D. thesis, École Normale
Supérieure (1995), http://www.di.ens.fr/~goubault/papers/these.ps.gz.

[49] Goubault, E., Schedulers as abstract interpretations of higher-dimensional
automata, in: Proceedings PEPM 1995, ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program Manipulation, La Jolla, USA, June
1995 (1995), pp. 134–145.
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[50] Goubault, E., Durations for truly-concurrent actions, in: H. R. Nielson,
editor, Proceedings Programming Languages and Systems - ESOP’96, 6th
European Symposium on Programming, Linköping, Sweden, April 1996,
LNCS 1058 (1996), pp. 173–187, available as Transitions take time from
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[51] Goubault, E., A semantic view on distributed computability and complexity, in:
Proceedings 3rd Theory and Formal Methods Workshop (1996).
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[52] Goubault, E., Geometry and concurrency: a user’s guide, Mathematical
Structures in Computer Science 10(4) (2000), pp. 411–425.
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[53] Goubault, E., Cubical sets are generalized transition systems (2002), available
from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[54] Goubault, E. and T.P. Jensen, Homology of higher dimensional automata,
in: R. Cleaveland, editor, Proceedings CONCUR ’92, Third International
Conference on Concurrency Theory, Stony Brook, NY, USA, August 1992,
LNCS 630 (1992), pp. 254–268.
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

[55] Goubault, E. and M. Raussen, Dihomotopy as a tool in state space analysis,
in: Proceedings LATIN ’02, 5th Latin American Symposium on Theoretical

Informatics, Cancun, Mexico, 2002, pp. 16–37.
Available from http://www.di.ens.fr/~goubault/GOUBAULTpapers.html.

28

http://www.pps.jussieu.fr/~gaucher/fibrantcoin.ps.gz
http://www.pps.jussieu.fr/~gaucher/modelflow.ps.gz
http://www.pps.jussieu.fr/~gaucher/diCW.ps.gz
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/papers/these.ps.gz
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html
http://www.di.ens.fr/~goubault/GOUBAULTpapers.html

van Glabbeek

[56] Gunawardena, J., Homotopy and concurrency, Bulletin of the EATCS 54
(1994), pp. 184–193, also in: G. Paun, G. Rozenberg and A. Salomaa, editors,
Current trends in Theoretical Computer Science: Entering the 21st Century,
World Scientific, 2001.
Available at http://www.jeremy-gunawardena.com/papers/hac.pdf.

[57] Lanzmann, E., Automates d’ordre supérieur, Master’s thesis, Université d’Orsay
(1993).

[58] Pratt, V.R., Higher dimensional automata revisited, Mathematical Structures
in Computer Science 10(4) (2000), pp. 525–548.
Available at http://boole.stanford.edu/pub/hda.ps.gz.

[59] Pratt, V.R., Transition and cancellation in concurrency and branching time,
Mathematical Structures in Computer Science 13(4) (2003), pp. 485–529.
Available at http://boole.stanford.edu/pub/seqconc.ps.gz.

[60] Raussen., M., On the classification of dipaths in geometric models for
concurrency, Mathematical Structures in Computer Science 10(4) (2000),
pp. 427–457.

[61] Sokolowski, S., A case for po-manifolds: in chase after a good topological model
for concurrency, Electronic Notes in Theoretical Computer Science 81 (2003),
at ftp://ftp.ipipan.gda.pl/stefan/reports/73-pomanif.ps.gz.

[62] Takayama, Y., Parallelization of concurrent processes in higher dimensional
automata, in: Proceedings RIMS Workshop on Term Rewriting Systems and its

Applications, RIMS Kyoto University, 1995.

[63] Takayama, Y., Extraction of concurrent processes from higher dimensional
automata, in: H. Kirchner, editor, Proceedings CAAP ’96, 21st International
Colloquium on Trees in Algebra and Programming, Linköping, Sweden, April
1996, LNCS 1059 (1996), pp. 72–86.

[64] Takayama, Y., Towards cycle filling as parallelization, in: Proceedings 4th
International RIMS Workshop on Concurrency Theory and Applications, RIMS
Kyoto University, 1996.

29

http://www.jeremy-gunawardena.com/papers/hac.pdf
http://boole.stanford.edu/pub/hda.ps.gz
http://boole.stanford.edu/pub/seqconc.ps.gz
ftp://ftp.ipipan.gda.pl/stefan/reports/73-pomanif.ps.gz

	A hierarchy of concurrency models
	Higher Dimensional Automata
	Embedding ordinary automata in HDA
	Embedding event oriented models in HDA
	Embedding Petri nets in HDA
	The self-concurrent collective token interpretation
	The self-concurrent individual token interpretation
	The self-sequential interpretations
	The relative expressiveness of the four interpretations

	Homotopy for Higher Dimensional Automata
	Naming the faces of n-cells
	Labelling n-cells
	Paths and their observable content
	Homotopy
	Matching starts and terminations of action occurrences in paths

	Bisimulation semantics for HDA
	A hierarchy of concurrency models
	Soundness of the inclusions of Figure 1
	Completeness of the inclusions of Figure 1
	Comparisons modulo other notions of equivalence

	References
	Bibliography on Higher Dimensional Automata (besides [22] and [8])

