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Abstract. We provide both modal- and relational characterisationsay- and
must-testing preorders for recursive CSP processes witrgince, featuring
probabilistic as well as nondeterministic choice. Mayitegsts characterised in
terms of simulation, and must testing in terms of failureldation. To this end we
develop weak transitions between probabilistic procesdabkorate their topolog-
ical properties, and express divergence in terms of paliadibutions.

1 Introduction

It has long been a challenge for theoretical computer sstsrtb provide a firm math-
ematical foundation for process-description languagasititorporate both nondeter-
ministic and probabilistic behaviour in such a way that psses are semantically dis-
tinguished just when they can be told apart by some notioastirg.

In our earlier work [3, 1] a semantic theory was developedofoe particular lan-
guage with these characteristics, a finite process calcalledpCSP: nondeterminism
is present in the form of the standard choice operators itgtefrom CSP [7], that is
P N QandP O @, while probabilistic behaviour is added via a new choicerafm
P ,® @ in which P is chosen with probability and @ with probability 1—p. The
intensional behaviour of aCSP process is given in terms of a probabilistic labelled
transition system [14, 3], or pLTS, a generalisation of laktransition systems [12].
In a pLTS the result of performing an action in a given stageiits in aprobability dis-
tribution over states, rather than a single state; thus the relatiefis ¢ in an LTS are
replaced by relations -2 A, with A a distribution. Close@CSP expressionsd’ are
interpreted as probability distribution®] in the associated pLTS. Our semantic theory
[3,1] naturally generalises the two preorders of standastirtg theory [5] tgpCSP:

— P Cpmay @ indicates that) is at least as good aB from the point of view of
possiblypassing probabilistic tests; and

— P Cpmust @ indicates instead tha} is at least as good &3 from the point of view
of guaranteeindhe passing of probabilistic tests.
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The most significant result of [1] was an alternative chamasation of these preorders
as particular forms of coinductively definstinulationrelations,C ¢ andC zg, over the
underlying pLTS. We also provided a characterisation imsgof a modal logic.

The object of the current paper is to extend the above resuttsrersion opCSP
with recursive process descriptions: we add a constrect. P for recursion, and
extend the intensional semantics of [1] in a straightfodvawanner. We restrict our-
selves tdinitary pCSP processes, those having finitely many states and displéiyiig
branching.

The simulation relations

O

Cg and Cpg in [1] were T 112 172
defined in terms of weak" C
transitions= between dis- .
tributions, obtained as the V2 2 T T
transitive closure of a rela-
tion - between distribu- a % vz
tions that allows one part

° a

of a distribution to make a
T-move with the other part
remaining in place. This
definition is however inade- @) ®)
quate for processes that can
do an unbounded number :
of 7-steps. The problem is Fig. 1. The pLTSs of processé&g; and@-
highlighted by the process
Q1 = recz. (1.x 1@ a. 0) illustrated in Figure 1(a). Procesy is indistinguishable,
using tests, from the simple proces®): we have); ~pmay a.0 andQ1 ~pmust a. 0.
This is because the proce@s will eventually perform the action with probability 1.
However, the actioja.0] -+ [0] can not be simulated by a corresponding move
[@Q1] =-%. No matter which distributiomA we obtain from executing a finite se-
quence of internal moves);] == A, still part of it is unable to subsequently perform
the actiona.

To address this problem we propose a new relatloa= ©, that indicates tha®
can be derived fromA by performing an unbounded sequence of internal moves; we
call © aweak derivativedf A. For exampl€a. 0] will turn out to be a weak derivative
of [@Q1], [@1] = [a. 0], via the infinite sequence of internal moves

[Q1] 7 [Q13®a.0] T [Q1 3 a.0] ... [Q1 4 ®a.0] To....

One of our contributions here is the significant use of “suritiutions” that sum tmo
more tharone [8, 11]. For example, the empty subdistributi@egantly represents the
chaotic behaviour of processes that in CSP and in musttestimantics is tantamount
to divergence, because we have* ¢ for any actiona, and a process likesc z.
that diverges via an infinite path gives rise to the weak transitieec z. x — ¢.
So the proces§)s = Q1 1@ recz.z illustrated in Figure 1(b) will enable the weak
transition [Q2] => 3[a.0], where intuitively the latter is a proper subdistribution
mapping the state. 0 to the probability%. Our weak transition relatios= can be
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regarded as an extension of thheak hyper-transitiofrom [10] to partial distributions;
the latter, although defined in a very different way, can lpegented in terms of ours
by requiring weak derivatives to be total distributions.

We end this introduction with a brief glimpse at our proofstgy. In [1] the char-
acterisations for finite CSP processes were obtained using a probabilistic extension of
the Hennessy-Milner logic [12]. Moving to recursive proges, we know that process
behaviour can be captured by a finite modal logic only if thdertying LTS is finitely
branching, or at least image-finite [12]. Thus to take adsg@bf a finite probabilistic
HML we need a property of pLTSs corresponding to finite bramglin LTSs: this is
topological compactness, whose relevance we now sketch.

Subdistributions over (derivatives of) finitapCSP processes inherit the standard
(complete) Euclidean metric. One of our key results is that

Theorem 1. For every finitarypCSP processP, the set{ A | [P] = A} is convex
and compact.

Indeed, using techniques from Markov Decision Theory [1&] ean show that the
potentially uncountable s¢tA | [P] = A} is nevertheless the convex closure of a
finite set of subdistributions, from which Theorem 1 follows.

This key result allows amductivecharacterisation of the simulation preorders
andC gg, here defined using our novel weak derivation relatien. We first construct
a sequence of approximationg; for £ > 0 and, using Theorem 1, we prove

Theorem 2. For every finitarypCSP processP, and for everyk > 0, the set{ A |
[P] Ck A} is convex and compact.

This in turn enables us to use thmite Intersection Propertpf compact sets to prove
Theorem 3. For finitarypCSP processes we have Cg Q iff P % @ forall k > 0.
Our main characterisation results can then be obtained tendixg the probabilistic

modal logic used in [1], so that for example

— it characteriseg’g for everyk > 0, and therefore it also characteriges
— every probabilistic modal formula can be captured by a nesy-t

Similar results accrue for must testing and the new failimeukation preorde pg:
details are given in Section 6.
Due to lack of space, we omit proofs, and most examples: theeseported in [2].

2 The LanguagepCSP

Let Act be a set of visible actions which a process can perform, andaebe an
infinite set of variables. The languag€SP of probabilistic CSP processes is given by
the following two-sorted syntax, in whighe [0, 1], a € Act andA C Act:

P:=S|Pa®P
Su:=0 |z€Var | a.P | PP | SOS | S|aS | recz.P.
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a.P % [P] recx. P - [Pz — recz. P|]
PRQ =[P PRQ = [Q]

s1 % A sa % A

51082 5 A 51082 % A

s1 — A so /= A

s1 089 5 AO sy s1 080 s 0A
515 A adgA s2 %A adA

s1]a sz = Ala s2 S1las2 = s1]aA

s1 - A, 59 5 Ay a€A
S1 |A S92 = Ay |A Ag

Fig. 2. Operational semantics pCSP

This is essentially the finite language of [1, 3] plus the reme constructecz. P in
which z is a variable and® a term. The notions of free- and bound variables are stan-
dard; byQ[z — P] we indicate substitution of teri® for variablex in @, with renam-
ing if necessary. We writeCSP for the set of close@®-terms defined by this grammar,
andsCSP for its state-basedubset of closed-terms.

Following [3, 1], we interpret the language agpebabilistic labelled transition
systemA (discrete) probabilitgubdistributiorover a sefS'is a functionA : S — [0, 1]
with > ¢ A(s) < 1;thesupportof suchadis [A] := {se€S | A(s) > 0}, andits
masg 4| is Zsem] A(s). A subdistribution is a (total, or fulllistributionif |A| = 1.
The point distributiors assigns probability to s and0 to all other elements aof, so
that [3] = {s}. With Ds,(S) we denote the set of subdistributions owrand with
D(S) its subset of full distributions.

Let{A; | k € K} be a set of subdistributions, possibly infinite. THen . ;- A is
the real-valued function i¥ — R defined by(}, . x Ax)(8) := > ek Ar(s). This
is a partial operation on subdistributions because for sstaies the sum ofA(s)
might exceed.. If the index set is finite, say1..n}, we often writeA; + ... + A,.
For p a real number fromo0, 1] we usep-A to denote the subdistribution given by
(p-A)(s) := p-A(s). Finally we uses to denote the everywhere-zero subdistribution
that thus has empty support. These operations on subdisbrils do not readily adapt
themselves to distributions; yet if thﬁkerk = 1 for some collection op; > 0,
and theA; are distributions, then so is, _ ;- px-Ax. In general wherd<p<1 we
write z ,@® y for p-z + (1—p) -y where that makes sense, so that for example® A
is always defined, and is full ifi\; and A, are.

The expected valug .4 A(s)- f(s) over a distributionA of a bounded non-
negative functionf to the reals or tuples of them is written Exff), and the image
of a distributionA through a functiory is written Img, (A) — the latter is the distribu-
tion over the range of given by Img,(A)(t) == 3_ ;—, A(s).
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Definition 1. A probabilistic labelled transition systepLTS) is a triple(S, L, —),
where

(i) Sis a set of states,

(i) L is a set of transition labels,
(iii) relation — is a subset of x L x D(S5).

A (non-probabilistic) labelled transition system (LTS) yrtze viewed as a degenerate
pLTS — one in which only point distributions are used. As Willgs, we writes - A
for (s,a, A) € —,aswellas % for 3A : s % Aands— for Ja: s . ApLTSis
finitely branchingf the set{A | s % A, « € L} is finite for all statess; if moreover
S is finite, then the pLTS ifinitary. A subdistributionA in an arbitrary pLTS idinitary
if restricting the state set to the states reachable ffoyields a finitary sub-pLTS.

The operational semanticspESP is defined by a particular pLTSCSP, Act., —)
in whichsCSP is the set of states ardtt, := Actu{} is the set of transition labels; we
let a range oveAct anda overAct... We interpretpCSP processe$ as distributions
[P] € D(sCSP) via the function[_] : pCSP — D(sCSP) defined by

[s] = 5 forsesCSP, and [P,® Q] = [P],®[Q].

The relations=- are defined in Figure 2 which extends the rules used in [3 riirfite
processes with a new rule for recursion. External choicepanallel composition use an
abbreviation for distributing an operator over a distribnt for exampleA O s is the
distribution given by(A O s)(t) := A(s') if tiss’ O s and0 otherwise. We sometimes
write 7. P for P 1 P, thus givingr.P —— [P].

Note that this pLTS is finitely branching and for ea@le pCSP the distribution] P]
has finite support. However, it is possible for there to banitdly many states reachable
from [ P]. If only finitely many states are reachable frg#], thenP is calledfinitary.

3 Testing Probabilistic Processes

We follow the approach of [3, 1] to the testing of probabitigirocesses. gestis simply

a process from the languag€SP except that it may use extra visible actiensz Act,
which are assumed to be fresh, for reporting success. Givaat af test action$,

we write pCSP* for the set ofpCSP expressions using actions frofhU Act., and
sCSP* for the set of state-basgdlSP* expressions. To apply te¥tto processP we
form the procesd’ |a P in whichall visible actions except the; must synchronise,
leaving only actions andw;, and as in [3, 1] we extract testing outcomes from them.
However, as process&s|ac: P are in general not of finite depth, we can no longer do
this inductively. Below we outline two alternative methdhat for finitary systems will
turn out to be equivalent. The first one is slightly easienqol&n, whereas the second
one extends the work of [15, 14, 4] and is needed in estahtjshir results.

3.1 Extremal Testing

For the first method we assume that tests may use osiggle success actiow. We
view the unit interval0, 1] ordered in the standard manner as a complete lattice; this
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induces a complete lattice on the set of functis@SP’ — [0,1]. Now consider the
functionRmin : (sCSP—[0,1]) — (sCSP—|0,1]) defined by

1 if s =

Rmin(f)(s) :==40 if s/

min{ Exp,(f) | s % A} otherwise.

In a similar fashion we define the functi@y,ax which usesnax in place ofmin. Both
these functions are monotonic, and therefore have leastpiaimts which we calV iy,
Vmax respectively.
Now for a testl” and a proces® we have two ways of defining the outcome of the

application of7" to P:

Agin(T, P) = EXpH:TIActPﬂ (Vimin)

Aﬁ]aX(Tv P) = EXpH:TIActPﬂ (Vmax) :
Here A%, (T, P) returns a single probability, estimating the minimum probability of
success; it is a pessimistic estimate. On the other W&nd(T', P) is optimistic, in that
it gives the maximum probability of success.

Definition 2. Themay-andmustpreorders are given by
— P Cgmay Q if for every testl” we haveAs, . (T, P) < A% (T, Q)
— P Cmust @ if for every testT” we haveAr, (T, P) < A (T, Q).

3.2 Resolution-based Testing

In the second method we usgtestsfor any given collectior2 of success actions
disjoint fromAct.; herew will be a variable ranging over the individual success axgio
of Q2. We calculate the result of applying t&sto processP in terms of theesolutions
of the combined process |a«: P, where intuitively a resolution representsum of a
process and, as such, gives exactly one probability for saotess action. So in general
the application ofl" to P will yield a set of vector®f probabilities.

We define the resolutions of a procé3k: P in terms of the distributiofiT’ |ac: P]
in the pLTS (sCSPQ |act SCSP, 2., —) obtained by restricting attention to states of
the form¢ |ae s with £ € sSCSP®* ands € sCSP. Note that all transitions in this pLTS
have labels or w € Q2. Following [5, 15, 3, 1], and unlike [14, 4], this paper emydo
state-basedesting [4, 1], meaning that transitions—~ A are merely expedients to
mark the states as anw-success state — the target distributidnis wholly ignored.
Hence the pLTS can also be regarded as having{ebels and moreover state markers
w € Q2. Intuitively, a resolution of a distribution in such a pLTSadbtained by pruning
away multipler-transitions from a state until only a single choice remapussibly
introducing some linear combinations in the process.

Definition 3. A pLTS (R, L, —) is deterministicif for every »r € R and everya € L
there is at most on® € Dy, R) such that - 6.

A resolutionof a subdistributionA € Dgy(.S) in a pLTS (S,Q,, —) is a triple
(R,0,—")where(R, ), —') is adeterministic pLTS an@ € D 4 R), such that there
exists aresolving functionf € R — S satisfying
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1. Img;(®) = A
2. ifr =" 0" fora € Q thenf(r) = Img,(©’)
3. if f(r) = fora € Q, thenr =%/,

By analogy with the function®nyin, and Rmax Of Section 3.1, we define the function
R : (R—[0,1]%) — (R—[0,1]%) for a deterministic pLTSR, Q2,, —) as

1 if r <%
R(f)(r)(w) :== {0 if r <4 andr <4
Exp,(f)(w) if r <4 andr — A.

Once more this function has a least fixed point, which we debgp¥/ z o _.).
Now let A%(T, P) denote the set of vectors

{Expg (V(r,0,,—)) | (R,0,—)is aresolution of T" [act P]} .

We compare two vectors of probabilities component-wise, o sets of vectors of
probabilities via the Hoare- and Smyth preorders:

X<g VY iff VeeX:IyeY:z<y
X<gnY iff WeY:dxeX:z<y.
Definition 4. Given twopCSP processe$ andq@,
— P Chay Q if for every Q-testT, we haveA®(T, P) <y, A%(T, Q)
— P CihustQ if for every Q-testT', we haveA?(T, P) <gm A%(T, Q).
These preorders are abbreviatedt@pmay @ andP Cymyst @ When|Q|= 1.

3.3 Equivalence of Testing Methods

In this section we compare the two approaches of testingdotrted in the previous
two subsections. First of all, we recall the result from [4jieh says that when testing
finitary processes it suffices to use a single success actibarrthan multiple oné’s.

Theorem 4. For finitary processes:
ngmayQ iff P Cpmay @ and ngmustQ iff P Cpmust@-

The following theorem states that, for finitary processeg,eenal testing yields the
same preorders as resolution-based testing with a singtessi action.

Theorem 5. For finitary processes
PESmayQ iff PEpmayQ and PESmustQ iff PEpmustQ-

Neither resultin Theorem 5 is true in the general (non-figjtease, as counterexamples
in [2, App. A] demonstrate. Although Theorem 4 suggestsweatould have avoided
multiple success actions in the resolution-based defindgidesting, our completeness
proof (Theorem 15) makes essential use of a countable se¢wof. t

! The result in [4] is stated faaction-basedesting, meaning that it is the actual execution of a
success action rather than reaching a success state tlsitutes success, but, as mentioned
in the conclusion of [4], it also holds in our current stateséd setting.
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4 A Novel Approach to Weak Derivations

In this section we develop a new definition of what it meansaaecursive process
to evolve by silent activity into another process; it allotie simulation and failure-
simulation preorders of [1] to be adapted to characteriség$ting preorders for at least
finitary probabilistic processes. The key technical gelisation is thesubdistributions
that enable us to express divergence very conveniéntly.

In a pLTS actions are only performed by states, in that astiwe given by relations
from states to distributions. B@iCSP processes in general correspond to distributions
over states, so in order to define what it means for a procgssrform an action we
need tdift these relations so that they also apply to (sub)distribstio

Definition 5. Let (S, L, —) be apLTS andR C S x Dy S) be a relation from states

to subdistributions. TheR C Dgui(S) x Dsun(,S) is the smallest relation that satisfies

(1) s R © impliess R ©, and B

(2) (Linearity) A; R ©; for ic I implies (3, ;pi-Ai) R (D,c;pi-©s) for any
pi € [0,1]with ., p; < 1.

This applies when the relation i€~ for o € Act,, where we also write% for -%.
Thus as source of a relatioh~ we now also allow distributions, and even subdistri-
butions. A subtlety of this approach is that for any actignve haves - ¢ simply
by takingl = @ or_,_; p; = 0 in Definition 5. That will turn out to make espe-
cially useful for modelling the “chaotic” aspects of diverge, in particular that in the
must-case a divergent process can mimic any other.

We now formally define the notation of weak derivatives.

Definition 6. Suppose we have subdistributiods A;”, A}, for & > 0, with the fol-
lowing properties:
A = Ay + Af
Ay T AT + AT

— T — X
Ay = AL+ A0

Then we callA” := 777 ) A aweak derivativeof A, and writeA —> A’ to mean
that A can make aveakr moveto its derivativeA'.

Itis easy to check thgf -, A/ is indeed a subdistribution, whereas in general it is not
a full distribution: for instance we havieec z. 2] = . By setting appropriatel; 's

to € we see thatA(——)*®, where* denotes reflexive and transitive closure, implies
A = . Itis also easy to check that on recursion-fp€&P the relation—- agrees
with the one defined in [3, 1] by means of transitive closur@rdbver the standard
notion ofdivergencethe ability of a subdistributiom\ to perform an infinite sequence
of T transitions, is neatly captured by the relatidn—> ¢.

2 Subdistributions’ nice properties with respect to divexgeare due to their being equivalent
to the discrete probabilistic powerdomain over a flat donf&jn
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Example 1.Consider the (infinite) collection of states and probabilitiep;, for k& > 2
such that
sk T [a.0],,® 5571,

where we choosg;, so that starting from any; the probability of eventually taking a
left-hand branch, and so reachifig O] ultimately, is justl/k in total. Thusp, must
satisfyl/k = py. + (1—px)/(k+1), whence by arithmetic we have that := 1/ will
do. Therefore in particulaf; => £[a. 0], with the remaining} lost in divergence.

Definition 7. Let A and its variants be subdistributions in a pLT$ Act, —).

— Fora € Act write A == A’ wheneverd = AP &, APOSt—. A’ Extend this
to Act, by allowing as a special case thét is simply=, i.e. including identity
(rather than requiring at least or&-).

— ForA C Act ands € S write s 44 if s -2 for everya € AU {7}; write A 44 if
s A% for everys e[ A].

— More generally writeA =44 if A = AP' for someAP™ such thatAP'e 44,

For example, in Figure 1 we hay€;] == [0], becausé@;] = [a.0] %+ [O].

5 Some properties of weak derivations in finitary pLTSs

In this section we expose some less obvious properties df des@vations from states
in finitary pLTSs, relating to their behaviour at infinity;eth underpin many results
in the next section. One important property is that the sev@dk derivations from
a single starting point isompactin the sense (from analysis) of being bounded and
containing all its limit points, where, in turn, limits depeton a Euclidean-style metric
defining the distance between two distributions in a sttéégivard way. The other
property is “distillation of divergence”, allowing us to @inn any weak derivation that
partially diverges (by no matter how small an amount) a painthich the divergence
is “distilled” into a state which wholly diverges.

Both properties depend on our working witHinitary pLTSs — that is, ones in
which the state space is finite and the (unlifted) transitedation is finite-branching.

5.1 Finite generability and closure

In a finitary pLTS, by definition the setsA | s % A} are finite, for every anda.
This of course is no longer true for the lifted relatiofs over subdistributions; nev-
ertheless, the setsA | 5 %+ A} and their weak counterpar{sd | s = A} can be
finitely represented. Below, we focus on the &t | 5 = A}.

Definition 8. A static derivative policySDP) for a pLTSS, Act,, —) is a partial func-
tion pp : S — D(5) such that ifpp is defined at thens - pp(s).

Intuitively a policy pp decides for each state, once and for all, which of the aviaitab
choices to take, if any: since it either chooses a specifitsitian, or inaction (by being
undefined), it does not interpolate via a convex combinaifawo different transitions;
and since it is a function of the state, it makes the same elanevery visit.
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The great importance for us of SDP’s is that they give a pagity simple charac-
terisation of weak derivatives, provided the state-spsdiaite and the pLTS is finitely
branching. This is essentially a result of Markov Decisigndesses [13], which we
translate into our context. We first introduce a notion of Si#fivatives by adapting
Definition 6.

Definition 9 (SDP-derivatives).Let pp be a SDP. We writed —=>,, A" if A = A’
and the following holds (using the notation of Def. 6 and imgtA,, for A” + A):

<,y O if pp defined ats
Ap (s) = {Ak(s) otherwise

Agr1 = > {Ak(s) pp(s) | s € [Ax] andpp defined ats}.

Intuitively, A =, A’ means that\’ is the single derivative ofA that results from
using policypp to construct the weak transitioh —- A’. Note that, for a given SDP
pp, the relation—=>,, is actually a function; moreover in a finitary pLTS the set bf a
possible SDPs is finite, due to the constraints of Definition 8

Theorem 6 (Finite generability). Let s be a state in a finitary pLT$S, Act,, —).
Thens = A for someA € D,y S) iff there is a finite index sef, probabilitiesp;
summing to 1 and static derivative policigs; with s =,,. A, for eachi, such that

A=3 ierpi-Ai
Since the convex closure of a finite set of points is alwayspant) we obtain

Corollary 1. For any states in a finitary pLTS the se{A | s = A} is convex and
compact.

A similar result is obtained by Desharnais, Gupta, Jagahe&d?anagaden [6].
Although the pLTSsCSP, Act, —) is not finitary, the interpretatiofP] € D(sCSP)

of a finitary pCSP processP can also be understood to be a distribution in a fini-

tary pLTS, namely the restriction ¢§CSP, Act,, —) to the states reachable froj].

Using this, Corollary 1 leads to the essential Theorem &yred to in the introduction.

5.2 Distillation of divergence

Although it is possible to have processes that diverge wities probability strictly
between zero and one, in a finitary pLTS we clistill divergence in the sense that for
many purposes we can limit our analyses to processes that @iholly diverge (can
do so with probability one) or wholly converge (can divergdéyavith probability zero).
This property is based on the zero-one law for finite-statbalbilistic systems, relevant
aspects of which we present in this sub-section.

We first note that static derivative policies obey the foilogvzero-one law.

Theorem 7 (Zero-one law).If for a static derivative policyp over a finite-state pLTS
there is for some a derivations =>,, A with |A| < 1 then in fact for some (possibly
different) states. we haves. =, .
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Based on Theorems 6 and 7, the following property of weakvdgons can now be
established.

Theorem 8 (Distillation of divergence).For anys, A in a finitary pLTS withs = A
there is a probability and full distributionsA,, A, such thats = (4, ,¢ A.) and
A=p-A andA; = e.

6 Failure Simulation is Sound and Complete for Must Testing

In this section we define the failure-simulation preorded ahow that it is sound and
complete for the must-testing preorder. The following preation is an enhancement
of our earlier definition in [1].

Definition 10 (Failure-Simulation Preorder). Define Jrg to be the largest relation
in DsyS) X Dsur(S) such that ifA Jpg O then

1. wheneverd == (3, p;A}), for a € Act, and certairp; with (3°, p;) < 1, then
there are®; € Dsuy S) with © = (3=, p;©}) and A} Jdpg O] for eachi
2. and wheneven — 44 then alsa® —-4%4.
Naturally ® Crg A just meansA Jpg 6. For pCSP processed” and Q and any
preordet” C Dgup(sCSP) x DsuysCSP) we write P C @ for [P] C [Q].

Although the regularity of Definition 10 is appealing — foraample it is trivial to see

thatC g is reflexive and transitive, as it should be — in practice sfpecific processes,
it is easier to work with a characterisation of the failunenglation preorder in terms of
a relation betweestatesand subdistributions.

Definition 11 (Failure Similarity). Let <. be the largest relation ifi x Ds,y(.S) such
thatif s <., © then

1. whenevek = ¢ then also® = ¢,
2. wheneves 2 A’, for a € Act,, then there is &’ with © == @’ and A’ ‘I, 6’
3. and whenever 44 then® —-44.

As an example, in Figure 1 it is straightforward to exhibitfee simulations to prove
both[Q1] < [a.0] and the conversg. 0] <. [Q1], the essential ingredient being
the weak movd@,] == [O]. Likewise, we have:.0 < [Q1 1@ recz.z], the
additional ingredient being < €.

The next result shows how the failure-simulation preoraar alternatively be de-
fined in terms of failure similarity. This is actually how wefthed it in [1].

Theorem 9. For finitary A, © € Dguy(S) we haveA Jpg O just when there is ®°
with © = 6% andA I 6°.

The proof of this theorem depends crucially on Theorems 18&rithe restriction to
finitary subdistributions is essential, as in [2, App. A] weyide a counterexample
to the general case. It is in terms of this characterisatiab we establish soundness
and completeness of the failure-simulation preorder witspect to the must-testing
preorder; consequently we have these results for finitavggases only.
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Theorem 10 (Precongruence)f Py, P, Q1 and@ are finitarypCSP processes with
P, Jps Q1 and P, Jpg Q2 then we haver. P, Jpg .1 for anya € Act., as well
asP; © P, drs Q1 ® Q2 for ® any of the operators, O, ,® and| 4.

The proof of this precongruence property involves a sigaificomplication: in order
to relate two processes we have to demonstrate that if theiflerges then so does the
second. This affects particularly the proof thats is preserved by the parallel operator
| 4. The approach we use involves first characterising divergieninductively and then
applying a novel coinductive proof technique.

Theorem 11 (Soundness and Completenes§por finitary pCSP processes” and@
we haveP Crs Q iff P Epnust Q-

Soundness, thal rs C Epmusy IS @ relatively easy consequencelofs being a pre-
congruence (Theorem 10). The completeness proof {thats: C T rs) is much more
complicated and proceeds in three steps, which we detalbélirst we provide a
characterisation of the preorder relations by finite approximations. Secondly, using
this, we develop a modal logic which can be used to charaeténe failure-simulation
preorder on finitary processes. Finally, we adapt the resii[tL] to show that the modal
formulae can in turn be characterised by tests. From thispdeteness follows.

6.1 Inductive Characterisation

The relation<,, of Definition 11 is given coinductively: it is the largest fiaqpt of an
equatioriR= F(R). An alternative approach is to use tifat—) to define<_  as a limit
of approximants:

Definition 12. For everyk > 0 we define the relationsi’, C S x D,y S) as follows:
(i) €% = S x Dsuy9)
(ii) <]§s+1 = F(Qfs)
Finally let< := =, <. Furthermore, for everi > 0 let A J%.. © if there exists
a0 = 68 with A <k 6%, and leta3s, denote >, Jhs.
Theorem 12. For finitary pCSP processe# and(@ we haveP J% Q iff P Jpg Q.

To show this theorem, we need to use two key results, Propasit and 2 below. We
say arelatioR C S x D(S) is convex (resp. compact) whenever the{sét| s R A}
is convex (resp. compact) for evetye S.

Proposition 1. In a finitary pLTS, the relationdX, is convex and compact, for every
k>0.

The proof of this property heavily relies on Corollary 1.

Proposition 2. SupposeR* C S x Dy S) is a sequence of convex and compact
relations such tha®**! C R*. Then(N;2, R*) C (M=, R*).

This proposition is proved using the Finite Intersectioag@rty of compact sets [9].
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6.2 A Modal Logic

Let 7 be the set of modal formulae defined inductively as follows:

—div, T e F

— ref(A) € FwhenA C Act,

— (a)p € F whenp € F anda € Act,

— 1 A2 € Fwhenp, ¢y € F,

— ©1,D @2 € Fwhenpy, g2 € Fandp € [0,1].

This generalises the modal language used in [1] by the additf the new constant
div, representing the ability of a process to diverge.

Relative to a given pLT$S, Act, —) the satisfaction relatior= C Dguy(S) x F
is given by:

— A= Tforany A € Dgyy(S),

- AEdiviff A = ¢,

— A =ref(A) iff A=24,

— A E (a)gp iff there is aA’ with A =% A" and A’ | ¢,

—A):gol/\gogiffA|:<p1andA|:<p2,

— A E p1,® @ iffthere areA;, Ay € Dgu(S) with Ay = 1 andAs = o, such
thatA — Alp@ As.

We write A 37 © whenA = ¢ implies© |= ¢ for all ¢ € F, and can verify thall pg

is sound for2”. In establishing the converse, we mimic the developmentictin

7 of [1] by designingcharacteristic formulaavhich capture the behaviour of states in
a pLTS. But here the behaviour is not characterised relative,, but rather to the
sequence of approximating relation..

Definition 13. In afinitary pLTS(S, Act,, —), thek* characteristic formulae?, o
of statess € S and subdistributionsl € Ds(.S) are defined inductively as follows:

— ¢l =Tandp) =T,

— pFt! = div, provideds = ¢,

— L =ref(A) A\, _a, 4 (a)p whereA = {a € Act | s %}, provideds 24,
— P = A _a, (a)pf AN, 4 % otherwise,

— andpli™ = (Bcpa %-s@?“) a1@ (div) .

The next result relates thg”" characteristic formulae to theg” failure similarity.

Proposition 3. Fork > 0 we have

() © E ¢ impliess <X O,
(i) ©F " implies® 2k, A.

Using Proposition 3 we obtain a logical characterisationgf, (and hence ofl zg):

Theorem 13. For finitary pCSP processe$ and@ we haveP 17 Q iff P J%%
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6.3 Characteristic Tests for Formulae

The import of Theorems 12 and 13 is that we can obtain commsteof the failure-
simulation preorder with respect to the must-testing ptepby designing for each
formulay a test which in some sense characterises the property thategs satisfies
v. This was achieved for the pLTS generated by the recursimffagment opCSP
in Section 8 of [1]. Here we have generalised this technigubé pLTS generated by
the set of finitarypCSP terms. The crucial property is stated as follows.

Theorem 14. For every formulap € F there exists a pai(T,, v,,) with T,, anQ-test
andwv,, € [0,1] such thatA |= ¢ if and only if 30 € AX(T,, A) : 0 < v,,. TestT, is
called acharacteristic tesbf ¢ andv,, is its target value

This property can be shown by exploiting several charasttesi of the testing function
AL(— —); unlike in [1] these cannot be obtained inductively. The tremsnplicated
one is the following.

Proposition 4. If o € AQ(Ty N Ty, A) then there are @ € [0,1] and Ay, As €
DsusCSP) such thath = ¢- Ay + (1—¢q)- Az ando = ¢-01 + (1—¢)- 02 for certain
0; € AQ(TZ', Az)

From Theorem 14 we obtain that the must-testing preorddréaat as discriminating
as the logical preorder:

Theorem 15. Let P andQ bepCSP processes. I I8, Q thenP 27 Q.

The completeness result in Theorem 11 follows by combinimggFems 15, 13 and 12.

7 Simulation is Sound and Complete for May Testing

We define a simulation preorder that can be shown sound angletarior may testing
following the same strategy as for failure simulation andstrtasting, except that we
restrict our treatment to full distributions, a simpler dam This is possible because in
may testing an infinite-path is not treated specially — it engages in no visibleoastj
in must testing, infinite-paths potentially can do anything (chaos).

Definition 14 (Simulation Preorder).Let C g be the largest relation iP(S) x D(S)
such that ifA Cg © then

wheneverA =% (3°. p;A}), for a € Act. and certairp; with (3, p;) <1,
then there ar@®; € D(S) with © == (3, p;©}) and A, C g O] for each.

The technical development from this point on is similar tatthiven in Section 6. For
the modal logic, we use the set of formulae obtained ftbrioy skipping thediv and
ref(A) clauses. However the satisfaction relation used for thislsgic is radically
different from that given in Section 6.2, because here ttegfimetation is relative to full
distributions. Nevertheless we still obtain the counterpaf Theorems 12, 13 and 15.

Theorem 16 (Soundness and Completeness$or finitary pCSP processes® and @
we haveP T,y Q ifand only if P Eg Q.
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8 Conclusion and Related Work

In this paper we continued our previous work [3, 4, 1] in ouesfufor a testing theory
for processes which exhibit both nondeterministic and abilstic behaviour. We have
generalised our results in [1] of characterising the maggter as a simulation relation
and the must preorder as a failure-simulation relationmffimite processes to finitary
processes. To do this it was necessary to investigate fuewnt@istructural properties
of derivation sets (finite generability) and similaritiésfipite approximations), which
are of independent interest. The use of Markov Decisionéases and Zero-One laws
was essential in obtaining our results.

Segala [14] defined two preorders called trace distribupicgtongruenced rp)
and failure distribution precongruende£p). He proved that the former coincides with
an action-based version @ffhay and that for “probabilistically convergent” systems
the latter coincides with an action-based versioRfif,.s» The condition of probabilis-
tic convergence amounts in our framework to the requirertieitfor A € D(S) and
A = A’ we have|A’| = 1. In [10] it has been shown that rp coincides with a
notion of simulation akin t& ¢. Other probabilistic extensions of simulation occurring
in the literature are reviewed in [3, 1].
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