
Testing finitary probabilistic processes

Yuxin Deng, Rob van Glabbeek, Matthew Hennessy, Carroll Morgan

February 13, 2009

Abstract

This paper provides modal- and relational characterisations of may- and must-testing preorders for recursive CSP
processes with divergence, featuring probabilistic as well as nondeterministic choice. May testing is characterisedin
terms of simulation, and must testing in terms of failure simulation. To this end we develop weak transitions between
probabilistic processes, elaborate their topological properties, and capture divergence in terms of partial distributions.

Contents

1 Introduction 2

2 The languagepCSP 4

3 Lifted transitions, and weak moves over distributions 6
3.1 Lifted relations 7
3.2 Weak transitions defined 9
3.3 Elementary properties of weak derivations 11

4 Testing probabilistic processes 12
4.1 Extremal testing 12
4.2 Resolution-based testing 13
4.3 Comparison 15

4.3.1 Scalar versus Vector testing 15
4.3.2 Must testing 16
4.3.3 May testing 18

4.4 Testing via weak-p derivatives 24

5 Further properties of weak derivation 27
5.1 Finite generability and closure 27
5.2 Distillation of divergence 28

6 The failure simulation preorder 29
6.1 Two equivalent definitions and their rationale 29
6.2 A simpler characterisation of failure similarity for finitary processes 33
6.3 Precongruence 34
6.4 Soundness 38

7 Failure simulation is complete for must testing 39
7.1 Inductive characterisation 39
7.2 The modal logic 42
7.3 Characteristic tests for formulae 44

1

8 Simulations and may testing 48
8.1 Soundness 48
8.2 Completeness 50

9 Conclusion and Related Work 50

A Assorted counter-examples 52
A.1 Finite state space is necessary; otherwise. 52

A.1.1 Distillation of divergence 52
A.1.2 Transitivity of failure simulation 52
A.1.3 Equivalence of finite and infinite interpolation 52
A.1.4 Soundness of failure simulation 52
A.1.5 Pre-congruence of simple failure similarity 52

A.2 Finite branching is necessary; otherwise. 53
A.2.1 Closure of derivatives 53
A.2.2 Distillation of divergence 53
A.2.3 Equivalence of failure simulation and extended failure simulation 53
A.2.4 Transitivity of failure simulation 53
A.2.5 Soundness of failure simulation 53
A.2.6 Coincidence of failure simulation and the limit of itsapproximation 55

B Technical lemmas and proofs for Section 3 55
B.1 Infinitary properties of lifting 55
B.2 Elementary properties of weak derivations 56
B.3 Structural properties of weak derivations 58

1 Introduction

It has long been a challenge for theoretical computer scientists to provide a firm mathematical foundation for process
description languages that incorporate both nondeterministic and probabilistic behaviour in such a way that processes
are semantically distinguished only if they can be told apart by some notion of testing.

In our earlier work [3, 2] a semantic theory was developed forone particular language with these characteristics, a
finite process calculus calledpCSP: nondeterminism is present in the form of the standard choice operators inherited
from CSP [9], that isP ⊓ Q andP 2 Q, while probabilistic behaviour is added via a new choice operatorP p⊕ Q
in whichP is chosen with probabilityp andQ with probability1−p. The intensional behaviour of apCSP process
is given in terms of a probabilistic labelled transition system [21, 3], or pLTS, a generalisation of labelled transition
systems [17]. In a pLTS the result of performing an action in agiven state results in aprobability distributionover
states, rather than a single state; thus the relationss α−→ t in an LTS are replaced by relationss α−→ ∆, with ∆ a
distribution. ClosedpCSP expressionsP are interpreted as probability distributions[P ℄ in the associated pLTS. Our
semantic theory [3, 2] naturally generalises the two preorders of standard testing theory [5] topCSP:

• P ⊑pmay Q indicates thatQ is at least as good asP from the point of view ofpossiblypassing probabilistic
tests; and

• P ⊑pmustQ indicates instead thatQ is at least as good asP from the point of view ofguaranteeingprobabilistic
tests.

The most significant result of [2] was an alternative characterisation of these preorders as particular forms of coin-
ductively definedsimulationsover the underlying pLTS. We also provided a characterisation in terms of a modal
logic.

The object of the current paper is to extend the above resultsto a version ofpCSP with recursive process de-
scriptions: we add a constructrecx. P for recursion, and extend the intensional semantics of [2] in a straightforward
manner. We restrict ourselves tofinitary pCSP processes, having finitely many states and displaying finitebranching.

2

•

τ

•

1
2

•

1
2

τ

•

a

Figure 1: The pLTS of processQ1

The simulation relations in [2] were defined in terms of weak transitions
τ̂

=⇒ between distributions, obtained as the transitive closureof a relation τ̂−→
between distributions that allows part of a distribution tomake aτ -move,
whereas the remaining part remains in place. This definitionis however inade-
quate for processes that can do an unbounded number ofτ -steps. The problem
is highlighted by the processQ1 = recx. (τ.x 1

2
⊕ a. 0) illustrated in Figure 1.

ProcessQ1 is indistinguishable, using tests, from the simple processa. 0; we
haveQ1 ≃pmay a. 0 andQ1 ≃pmust a. 0. This is because the processQ1

will eventually perform the actiona with probability 1. However, the action[a. 0 ℄ a−→ [0 ℄ can not be simulated by a corresponding move[Q1℄ τ̂
=⇒ a−→.

No matter which distribution∆ we obtain from executing a finite sequence of
internal moves[Q1℄ τ̂

=⇒ ∆, part of it is unable to subsequently perform the
actiona.

To address this problem we propose a new relation∆ =⇒ Θ, that indicates thatΘ can be derived from∆ by
performing an unbounded sequence of internal moves; we callΘ aweak derivativeof ∆. For example[a. 0 ℄ will turn
out to be a weak derivative of[Q1℄, [Q1℄ =⇒ [a. 0 ℄, via the infinite sequence of internal moves[Q1℄ τ−→ [Q1 1

2
⊕ a. 0 ℄ τ−→ [Q1 1

22
⊕ a. 0 ℄ τ−→ . . . [Q1 1

2n
⊕ a. 0 ℄ τ−→

One of our contributions here is the significant use of “subdistributions” that sum tono more thanone [10, 16]. For
example, the empty subdistributionε elegantly represents the chaotic behaviour of processes that in CSP and in must-
testing semantics is tantamount to divergence, because we haveε a−→ ε for any actiona, and a process likerecx. x that
diverges via an infiniteτ path gives rise to the weak transitionrecx. x =⇒ ε. Our weak transitions relation=⇒ can be
regarded as an extension of the one from Lynch, Segala & Vaandrager [15] to partial distributions; the latter, although
defined in a very different way, can be obtained from ours by requiring weak derivatives to be total distributions.

We end this introduction with a brief glimpse at our proof strategy. In [2] the characterisations for finitepCSP

processes were obtained using a probabilistic extension ofthe Hennessy-Milner logic [17]. Moving to recursive
processes, we know that process behaviour can be captured bya finite modal logic only if the underlying LTS is
finitely branching, or at least image-finite [17]. Thus to take advantage of a finite probabilistic HML we need a
property of pLTSs corresponding to finite branching in LTSs;this is topological compactness.

Subdistributions over (derivatives of) finitarypCSP processes inherit the standard (complete) Euclidean metric.
One of our key results is that

Theorem 1.1 For every finitarypCSP processP , the set{∆ | [P ℄ =⇒ ∆ } is convex and compact.

Indeed, using techniques from Markov Decision Theory [19] we can show that the potentially infinite set{∆ |[P ℄ =⇒ ∆ } is nevertheless the convex closure of afinite set of subdistributions, from which Theorem 1.1 follows
immediately. This in turn implies that the simulation preorder⊑S is compact in the following sense:

Theorem 1.2 For every finitarypCSP processP , the set{∆ | [P ℄ ⊑S ∆ } is convex and compact.

This key result allows aninductivecharacterisation of the simulation preorder: we can construct a sequence of approx-
imations⊑kS for k ≥ 0 with the property that

Theorem 1.3 For finitary distributions∆ andΘ we have∆ ⊑S Θ if and only if ∆ ⊑kS Θ for everyk ≥ 0.

Our main characterisation results can then be obtained by extending the probabilistic modal logic used in [2], so that
for example

• it characterises⊑kS for everyk ≥ 0, and therefore it also characterises⊑S

• every probabilistic modal formula can be mimicked by a may-test.

Similar results accrue for must testing: details are given in Section 7.

3

P ::= S | P p⊕ P

S ::= 0 | x ∈ Var | a.P | P ⊓ P | S 2 S | S |A S | recx. P

Figure 2: Syntax ofpCSP

2 The languagepCSP

Let Act be a set of visible actions which a process can perform, and let Var be an infinite set of variables. The language
pCSP is then given by the two-sorted syntax in Figure 2. It is essentially the finite language of [2, 3], to which has
been added the recursive constructrecx. P in whichx is a variable andP a term. Intuitivelyrecx. P represents the
solution of the fixed-point equationx = P . The notions of free and bound variables are standard, as is that of the
substitution of terms for free occurrences of variables (with renaming if necessary). ByQ[x 7→ P] we mean the result
of substituting the termP for the variablex in Q.

We writepCSP for the set ofclosed termsdefined by this grammar, thepCSP processes, andsCSP for its subset
of pCSP states: the sub-sortS above.

The processP p⊕ Q, for 0 ≤ p ≤ 1, represents aprobabilistic choicebetweenP andQ: with probabilityp it
will act like P and with probability1−p it will act like Q.1 Any process is a probabilistic combination of state-
based processes built by repeated application of the operatorp⊕. The state-based processes have a CSP-like syntax,
involving the stopped process0, action prefixinga. for a∈Act, internal-andexternal choices⊓ and2, and aparallel
composition|A for A ⊆ Act.

The processP ⊓ Q will first do a so-calledinternal actionτ 6∈Act, choosingnondeterministicallybetweenP
andQ. Therefore⊓, like a. , acts as aguard, in the sense that it converts any process arguments into a state-based
process. The same applies torecx. P as, following CSP [18], our recursion construct performs aninternal action when
unfolding. As our testing semantics will abstract from internal actions, theseτ -steps are harmless and merely simplify
the semantics.

The processs 2 t on the other hand does not perform actions itself but rather allows its arguments to proceed,
disabling one argument as soon as the other has done a visibleaction. In order for this process to start from a state
rather than a probability distribution of states, we require its arguments to be state-based as well; the same requirement
applies to|A.

Finally, the expressions |A t, whereA ⊆ Act, represents processess and t running in parallel. They may
synchronise by performing the same action fromA simultaneously; such a synchronisation results inτ . In additions
andt may independently do any action from(Act\A) ∪ {τ}.

Although formally the operators2 and |A can only be applied to state-based processes, informally weuse ex-
pressions of the formP 2 Q andP |A Q, whereP andQ arenot state-based, as syntactic sugar for expressions in
the above syntax obtained by distributing2 and|A overp⊕. Thus for examples 2 (t1 p⊕ t2) abbreviates the term
(s 2 t1)p⊕ (s 2 t2).

The full language of CSP [1, 9, 18] has many more operators; wehave simply chosen a representative selection,
and have added probabilistic choice. Our parallel operatoris not a CSP primitive, but it can easily be expressed in
terms of them — in particularP |A Q = (P‖AQ)\A, where‖A and\A are the parallel composition and hiding
operators of [18]. It can also be expressed in terms of the parallel composition, renaming and restriction operators of
CCS. We have chosen this (non-associative) operator for convenience in defining the application of tests to processes.

As usual we may elide0; the prefixing operatora. binds stronger than any binary operator; and precedence
between binary operators is indicated via brackets or spacing. We will also sometimes use indexed binary operators,
such as

⊕
i∈I pi·Pi with

∑
i∈I pi = 1 and allpi > 0, and

e
i∈I Pi, for some finite index setI.

Our language is interpreted as aprobabilistic labelled transition system[3, 2]. Essentially the same model has
appeared in the literature under different names such asNP-systems[11], probabilistic processes[12], simple prob-
abilistic automata[20], probabilistic transition systems[13] etc. Furthermore, there are strong structural similarities
with Markov Decision Processes[19, 4].

1In our semantics we have[P 0⊕ Q℄ = [Q℄ and[P 1⊕ Q℄ = [P ℄, so without limitation of generality we could have requiredthat0<p<1.
In papers involving axiomatisations this is customary, as the most natural formulation of the law of associativity involves dividing byp.

4

(action)

a.P a−→ [P ℄ (recursion)

recx. P τ−→ [P [x 7→ recx. P]℄
(int.l)

P ⊓ Q τ−→ [P ℄ (int.r)

P ⊓ Q τ−→ [Q℄
(ext.l)

s1
a−→ ∆

s1 2 s2
a−→ ∆

(ext.r)

s2
a−→ ∆

s1 2 s2
a−→ ∆

(ext.i.l)

s1
τ−→ ∆

s1 2 s2
τ−→ ∆ 2 s2

(ext.i.r)

s2
τ−→ ∆

s1 2 s2
τ−→ s1 2 ∆

(par.l)

s1
α−→ ∆

s1 |A s2
α−→ ∆ |A s2

α 6∈A

(par.r)

s2
α−→ ∆

s1 |A s2
α−→ s1 |A ∆

α 6∈A

(par.i)

s1
a−→ ∆1, s2

a−→ ∆2

s1 |A s2
τ−→ ∆1 |A ∆2

a∈A

∣∣∣ In the above inferencesA ranges over subsets ofAct,
and actionsa, α are elements ofAct, Actτ respectively.

Figure 3: Operational semantics ofpCSP

We now fix some notation. A (discrete) probabilitysubdistributionover a setS is a function∆:S → [0, 1] with∑
s∈S ∆(s) ≤ 1; the supportof such a∆ is ⌈∆⌉ := { s∈S | ∆(s) > 0 }, and themassof ∆, written |∆|, is∑
s∈⌈∆⌉ ∆(s). A subdistribution is a (total, or full)distributionif |∆| = 1. We writes to denote the point distribution

assigning probability1 to s and0 to all other elements ofS, so that⌈s⌉ = {s}. With D(S) we denote the set of
subdistributions overS, and withD1(S) its subset of full distributions. For∆∈D(S) andf a function with domain
S, we write Exp∆(f), theexpected valueof f over∆∈D(S), for

∑
s∈⌈∆⌉ ∆(s)·f(s) whenever the range off makes

the right-hand side well defined. For∆,Θ∈D(S) we write∆ ≤ Θ iff ∆(s) ≤ Θ(s) for all s∈S.
When∆k for k ∈K is a collection, not necessarily finite, of subdistributions then

∑
k∈K ∆k is the subdistribution

given by(
∑

k∈K ∆k)(s) :=
∑
k∈K ∆k(s) — however because in general the sum could exceed 1 at somes we must

view this as a partial operation. If the index set is finite, say {1, · · · , n}, we often write the sum as∆1 + · · · + ∆n .
Whenp is a real number from[0, 1] we usep ·∆ for the subdistribution(p ·∆)(s) := p ·∆(s). Finally we useε to
denote theemptysubdistribution of mass zero.

These operations on subdistributions do not readily adapt themselves to full distributions. But whenever the prob-
abilitiespk sum to 1 and the∆k are themselves full distributions, then also

∑
k∈K pk ·∆k is a full distribution.

Definition 2.1 A probabilistic labelled transition system(pLTS) is a triple〈S,L,→〉, where

(i) S is a set of states,
(ii) L is a set of transition labels,

(iii) relation→ is a subset ofS × L×D1(S).

A (non-probabilistic) labelled transition system (LTS) may be viewed as a degenerate pLTS — one in which only point
distributions are used. As with LTSs, we writes α−→ ∆ for (s, α,∆)∈→, as well ass α−→ for ∃∆ : s α−→ ∆ ands→
for ∃α : s α−→.

The operational semantics ofpCSP is defined by a particular pLTS〈sCSP,Actτ ,→〉, constructed by takingsCSP to
be the set of states andActτ := Act ∪ {τ} to be the set of transition labels; we leta range overAct andα overActτ .
We interpretpCSP processesP as distributions[P ℄ ∈ D1(sCSP) via the function[℄ : pCSP → D1(sCSP) defined
below: [s℄ := s for s∈ sCSP[P p⊕ Q℄ := p ·[P ℄+ (1 − p)·[Q℄ .

5

The transition relation→ is defined in Figure 3. This is a very slight extension of the rules we used earlier [3, 2] for
finite processes: one new rule is required to interpret recursive processes. All rules are very similar to the standard
ones used to interpret CSP as a labelled transition system [18], but are modified so that the result of an action is
a distribution. The rules for external choice and parallel composition use an obvious notation for distributing an
operator over a distribution; for example∆ 2 s represents the distribution given by

(∆ 2 s)(t) =

{
∆(s′) if t = s′ 2 s

0 otherwise.

We sometimes writeτ.P for P ⊓ P , thus givingτ.P τ−→ [P ℄.
The set of statesreachablefrom a subdistribution∆ is the smallest set that contains⌈∆⌉ and is closed under

transitions, meaning that if some states is reachable ands α−→ Θ then every state in⌈Θ⌉ is reachable as well. We
graphically depict the operational semantics of apCSP expressionP by drawing the part of the pLTS reachable from[P ℄ as a directed graph with states represented by filled nodes• and distributions by open nodes◦. For any states
and distribution∆ with s α−→ ∆ we draw an edge froms to ∆ labelled withα; and for any distribution∆ and states
in ⌈∆⌉, the support of∆, we draw an edge from∆ to s labelled with∆(s). Sometimes we partially unfold this graph
by drawing the same nodes multiple times; in doing so, all outgoing edges of a given instance of a node are always
drawn, but not necessarily all incoming edges.

Note that for eachP ∈ pCSP the distribution[P ℄ has finite support. Moreover, our pLTS isfinitely branchingin
the sense that for each states ∈ sCSP there are only finitely many pairs(α,∆) ∈ Actτ × D1(sCSP)) with s α−→ ∆.
In spite of[P ℄’s finite support, and the finite branching of our pLTS, it is possible for there to be infinitely many states
reachable from[P ℄; when there are only finitely many, thenP is said to be finitary [4].

Definition 2.2 A subdistribution∆∈D(S) in a pLTS〈S,L,→〉 is finitary if only finitely many states are reachable
from ∆; apCSP expressionP is finitary if [P ℄ is.

3 Lifted transitions, and weak moves over distributions

Our intention is to define simulation relations on processes, which are both sound and complete with respect to testing.
This has been accomplished in [2] for recursion-freepCSP processes, where it was shown, for instance, that for such
processesP ⊑pmay Q if and only ifQ can (recursively) simulate the ability ofP to perform actions. It turns out that
to generalise these results requires a careful examinationof weak derivations in probabilistic systems of unbounded
depth; and that is the purpose of this section.

Recall for example the processQ1 defined in the introduction. It turns out that in our testing framework this
process is indistinguishable froma: both processes can do nothing else than ana-action, possibly after some internal
moves, and in both cases the probability that the process will never do thea-action is 0. In [3, 2], where we didn’t
deal with recursive processes likeQ1, we defined a weak transition relationâ=⇒ in such a way thatP â

=⇒ iff there is
a finite number ofτ -moves after which the entire distribution[P ℄ will have done ana-action. Lifting this definition
verbatim to a setting with recursion would create a difference betweena andQ1, for only the former admits such a
weak transition â

=⇒. The purpose of this section is to propose a new definition of weak transitions, with which we can
capture the intuition that the processQ1 can perform the actiona with probability1, provided it is allowed to run for
an unbounded amount of time.

We construct our generalised definition of weak move by revising what it means for a probabilistic process to
execute an indefinite sequence of (internal)τ moves. The key technical innovation is to change the focus from distri-
butions tosubdistributions.

First some relatively standard terminology. For any subsetX of D(S), with S a set, letlX , theconvex closureof
X , be the least set satisfying:

(i) X ⊆ lX

(ii) ∆ ∈ lX if and only if ∆ =
∑

i∈I

pi ·∆i, where∆i ∈ X andpi ∈ [0, 1], for some index setI such that
∑

i∈I

pi = 1.

6

In caseS is a finite set, it makes no difference whether we restrictI to being finite or not; in fact, index sets of size 2
will suffice. However, in general they do not:

Example 3.1 LetS = {si | i∈N}. Thenl{si | i > 2} consists of all total distributions whose support is included in
{si | i > 2}. However, with a definition of convex closure that requires only binary interpolations of distributions to
be included,l{si | i > 2} would merely consist of all such distributions with finite support. 2

Convex closure is a closure operator in the standard sense, in that it satisfies

• X ⊆ lX

• X ⊆ Y implieslX ⊆ lY

• llX = lX .

We say a setX is convexif lX = X . Furthermore, we say that a relationR ⊆ Y ×D(S) is convex whenever the set
{∆ | y R ∆} is convex for everyy in Y , andlR denotes the smallest convex relation containingR.

3.1 Lifted relations

In a pLTS actions are only performed by states, in that actions are given by relations from states to distributions. But
pCSP processes in general correspond to distributions over states, so in order to define what it means for a process
to perform an action, we need tolift these relations so that they also apply to distributions. Infact we will find it
convenient to lift them to subdistributions.

Definition 3.2 Let (S,L,→) be a pLTS andR ⊆ S × D(S) be a relation from states to subdistributions. Then
R ⊆ D(S) ×D(S) is the smallest relation that satisfies:

(1) s R Θ impliess R Θ, and

(2) (Linearity)∆i R Θi for i∈ I implies
∑

i∈I pi ·∆i R
∑

i∈I pi ·Θi for anypi ∈[0, 1] (i∈ I) with
∑

i∈I pi ≤ 1.

Remark 3.3 ForR1,R2 ⊆ S ×D1(S), if R1 ⊆ R2 thenR1 ⊆ R2.

By constructionR is convex. Moreover, becauses(lR)Θ impliess R Θ we haveR=lR, which means that when
considering a lifted relation we can w.l.o.g. assume the original relation to have been convex. In fact whenR is indeed
convex, we have thats R Θ ands R Θ are equivalent.

An application of this notion is when the relation isα−→ for α ∈ Actτ ; in that case we also writeα−→ for α−→. Thus,
as source of a relationα−→ we now also allow distributions, and even subdistributions. A subtlety of this approach is
that for any actionα, we have

ε α−→ ε (1)

simply by takingI = ∅ or
∑
i∈I pi = 0 in Definition 3.2. That will turn out to makeε especially useful for modelling

the “chaotic” aspects of divergence, in particular that in the must-case a divergent process can simulate any other.
Definition 3.2 is very similar to our previous definition in [2], although there it applied only to (full) distributions:

Lemma 3.4 ∆ R Θ if and only if

(i) ∆ =
∑

i∈I pi ·si, whereI is an index set and
∑

i∈I pi ≤ 1,

(ii) For eachi ∈ I there is a subdistributionΘi such thatsi R Θi ,

(iii) Θ =
∑
i∈I pi ·Θi.

Proof: Straightforward. 2

An important point here is that a single state can be split into several pieces: that is, the decomposition of∆ into∑
i∈I pi ·si is not unique. One important property of this lifting operation is the following:

Lemma 3.5 Suppose∆ R Θ, whereR is any relation inS ×D(S). Then

(i) |∆| ≥ |Θ|.

7

(ii) If R is a relation inS ×D1(S) then|∆| = |Θ|.

Proof: This follows immediately from the characterisation in Lemma 3.4. 2

So for example ifε R Θ then0 = |ε| ≥ |Θ|, whenceΘ is alsoε.

Remark 3.6 From Lemma 3.4 it also follows that lifting enjoys the following two properties:
(Scaling) If∆ R Θ, p∈R and|p ·∆| ≤ 1 thenp ·∆ R p ·Θ.
(Additivity) If ∆i R Θi for i∈ I and|

∑
i∈I ∆i| ≤ 1 then

∑
i∈I ∆i R

∑
i∈I Θi.

In fact, we could have presented Definition 3.2 using scalingand additivity instead of linearity.

The lifting operation has yet another characterisation, this time in terms ofchoice functions.

Definition 3.7 Let R ⊆ S × D(S) be a relation from states to subdistributions. Thenf : S → D(S) is a choice
function forR, writtenf ∈SR, if s R f(s) for everys∈S.

Proposition 3.8 SupposeR ⊆ S × D(S) is a convex relation. Then for any∆ ∈ D(S), ∆ R Θ if and only if there
is some choice functionf ∈⌈∆⌉R such thatΘ = Exp∆(f).

Proof: First supposeΘ = Exp∆(f) for some choice functionf ∈⌈∆⌉R, that isΘ =
∑
s∈⌈∆⌉ ∆(s)·f(s). It now

follows from Lemma 3.4 that∆ R Θ sinces R f(s) for eachs.
Conversely suppose∆ R Θ; we have to find a choice functionf ∈⌈∆⌉R such thatΘ = Exp∆(f). Applying

Lemma 3.4 we know that

(i) ∆ =
∑

i∈I pi ·si, for some index setI, with
∑

i∈I pi ≤ 1

(ii) Θ =
∑
i∈I pi ·Θi for someΘi satisfyingsi R Θi.

Now define the functionf : ⌈∆⌉ → D(S) by letting

f(s) =
∑

{ i∈I | si=s }

(
pi

∆(s)
)·Θi

Note that∆(s) =
∑

{ i∈I | si=s }
pi and therefore by convexitys R f(s); sof is a choice function forR. Moreover, a

simple calculation shows that Exp∆(f) =
∑

i∈I pi ·Θi, which by (ii) above isΘ. 2

An important further property is the following:

Proposition 3.9 If
∑

i∈I pi ·∆i R Θ thenΘ=
∑
i∈I pi ·Θi for some subdistributionsΘi such that∆i R Θi for i∈ I.

Proof: Let ∆ R Θ where∆ =
∑

i∈I pi ·∆i. By Proposition 3.8, using thatR=lR, there is a choice function
f ∈⌈∆⌉ lR such thatΘ = Exp∆(f). TakeΘi := Exp∆i

(f) for i∈ I. Using that⌈∆i⌉ ⊆ ⌈∆⌉, Proposition 3.8 yields
∆i R Θi for i∈ I. Finally,

∑

i∈I

pi ·Θi =
∑

i∈I

pi ·
∑

s∈⌈∆i⌉

∆i(s)·f(s) =
∑

s∈⌈∆⌉

∑

i∈I

pi ·∆i(s)·f(s) =
∑

s∈⌈∆⌉

∆(s)·f(s) = Exp∆(f) = Θ. 2

The converse to the above is not true in general: from∆ R (
∑

i∈I pi ·Θi) it does not follow that∆ can correspondingly

be decomposed. For example, we havea.(b 1
2
⊕ c) a−→ 1

2 ·b+ 1
2 ·c, yeta.(b 1

2
⊕ c) cannot be written as12 ·∆1 + 1

2 ·∆2

such that∆1
a−→ b and∆2

a−→ c.
In fact a simplified form of Proposition 3.9 holds for un-lifted relations, provided they are convex:

Corollary 3.10 If (
∑

i∈I pi ·si) R Θ andR is convex, thenΘ =
∑

i∈I pi ·Θi for subdistributionsΘi with si R Θi

for i∈ I.

Proof: Take∆i to besi in Proposition 3.9, whenceΘ =
∑

i∈I pi ·Θi for some subdistributionsΘi such thatsi R Θi

for i∈ I. BecauseR is convex, we then havesi R Θi from the remarks following Definition 3.2. 2

8

Lifting satisfies the following monadic property with respect to composition.

Lemma 3.11 LetR1,R2 ⊆ S×D(S). Then the forward relational compositionR1;R2 is equal to the lifted compo-

sitionR1;R2.

Proof: Suppose∆ R1;R2 Φ. Then there is someΘ such that∆ R1 Θ R2 Φ. By Lemma 3.4 we have the
decomposition∆ =

∑
i∈I pi ·si andΘ =

∑
i∈I pi ·Θi with si R1 Θi for eachi∈ I. By Proposition 3.9 we obtain

Φ =
∑

i∈I pi ·Φi with Θi R2 Φi. It follows thatsi R1;R2 Φi, and thus∆ R1;R2 Φ. So we have shown that

R1;R2 ⊆ R1;R2. The other direction can be proved similarly. 2

3.2 Weak transitions defined

Definition 3.12 (Weakτ moves to derivatives)Suppose we have subdistributions∆, ∆→
k ,∆

×
k , for k ≥ 0, with the

following properties:

∆ = ∆→
0 + ∆×

0 — The× component stops “here” (even if it could have moved),
∆→

0
τ−→ ∆→

1 + ∆×
1 — but the→ component moves on.

...
...

∆→
k

τ−→ ∆→
k+1 + ∆×

k+1
...

In total: ∆′ =
∑∞

k=0 ∆×
k — Finally, all the stopped-somewhere components are summed.

The τ−→ moves above with subdistribution sources are lifted in the sense of the previous section.
We call∆′ :=

∑∞
k=0 ∆×

k a derivativeof ∆, and write∆ =⇒ ∆′ to mean that∆ can make aweakτ moveto its
derivative∆′.

There is always at least one derivative of any distribution (the distribution itself) and there can be many. Using
Lemma 3.5 it is easily checked that Definition 3.12 is well-defined in that derivatives do not sum to more than one.

Example 3.13 Let τ−→⋆ denote the reflexive transitive closure of the relationτ−→ over subdistributions. By the judi-
cious use of the empty distributionε in the definition of=⇒, and property (1) above, it is easy to see that

∆ τ−→⋆ Θ implies ∆ =⇒ Θ .

For ∆ τ−→⋆ Θ means the existence of a finite sequence of subdistributions∆ = ∆0, ∆1, . . . ,∆k = Θ, k ≥ 0 for
which we can write

∆ = ∆0 + ε
∆0

τ−→ ∆1 + ε
...

...
∆k−1

τ−→ ε + ∆k

ε τ−→ ε + ε
...

In total: Θ

This implies that=⇒ is indeed a generalisation of the standard notion for non-probabilistic transition systems of
performing an indefinite sequence of internalτ moves. 2

In Definition 3.12 we can see that∆′ = ε iff ∆×
k = ε for all k. Thus∆ =⇒ ε iff there is an infinite sequence of

subdistributions∆k such that∆ = ∆0 and∆k
τ−→ ∆k+1, that is iff ∆ can give rise to a divergent computation.

9

Example 3.14 Consider the processrecx. x, which recall is a state, and for which we haverecx. x τ−→ [recx. x℄ and
thus[recx. x℄ τ−→ [recx. x℄. Then[recx. x℄ =⇒ ε . 2

Example 3.15 Recall the processQ1 = recx. (τ.x 1
2
⊕ a) from the introduction. We have[Q1℄ =⇒ [a℄ because[Q1℄ = [Q1℄+ ε[Q1℄ τ−→

1

2
·[τ.Q1℄+

1

2
·[a℄

1

2
·[τ.Q1℄ τ−→

1

2
·[Q1℄+ ε

1

2
·[Q1℄ τ−→

1

22
·[τ.Q1℄+

1

22
·[a℄

. . .
1

2k
·[Q1℄ τ−→

1

2k+1
·[τ.Q1℄+

1

2k+1
·[a℄

. . .

which means that by definition we have [Q℄ =⇒ ε+
∑

k≥1

1

2k
·[a℄

which is just[a℄ as claimed. 2

Example 3.16 Consider statessk and probabilitiespk for k ≥ 2 such that

sk
τ−→ [a℄pk

⊕ sk+1 ,

where we choosepk so that starting from anysk the probability of eventually taking a left-hand branch, and so reaching[a℄ ultimately, is just1/k in total. Thuspk must satisfy1/k = pk + (1−pk)/(k+1), whence by arithmetic we have
thatpk := 1/k2 will do. Therefore in particulars2 =⇒ 1

2 [a℄, with the remaining12 lost in divergence. 2

Our final example demonstrates that derivatives of (interpretations of)pCSP processes may have infinite support, and
hence that we can have[P ℄ =⇒ ∆′ such that there is noP ′ ∈ pCSP with [P ′℄ = ∆′.

Example 3.17 Let P denote the processrecx. b 1
2
⊕ (x |∅ 0). Then we have the derivation:[P ℄ = [P ℄+ ε[P ℄ τ−→
1

2
·[P |∅ 01℄+

1

2
·[b℄

1

2
·[P |∅ 01℄ τ−→

1

22
·[P |∅ 02℄+

1

22
·[b |∅ 01℄

.
1

2k
·[P |∅ 0k℄ τ−→

1

2k+1
·[P |∅ 0k+1℄+

1

2k+1
·[b |∅ 0k℄

. . .

where0k representsk instances of0 running in parallel. This implies that[P ℄ =⇒ Θ

where

Θ =
∑

k≥1

1

2k
·[b |∅ 0k℄

a distribution with infinite support. 2

10

3.3 Elementary properties of weak derivations

Here we develop some properties of the weak move relation=⇒ which will be important later on in the paper; full
proofs and technical lemmas have in some cases been placed inAppendix B. We wish to use weak derivation as much
as possible in the same way as the lifted action relationsα−→, and therefore we start with showing that=⇒ enjoys two
of the most crucial properties ofα−→: linearity of Definition 3.2 and the decomposition propertyof Proposition 3.9.

Theorem 3.18 Let pi ∈[0, 1] for i∈ I with
∑

i∈I pi ≤ 1. Then

(i) If ∆i =⇒ Θi for all i∈ I then
∑

i∈I pi ·∆i =⇒
∑

i∈I pi ·Θi.

(ii) If
∑
i∈I pi ·∆i =⇒ Θ thenΘ =

∑
i∈I pi ·Θi for subdistributionsΘi such that∆i =⇒ Θi for all i∈ I.

Proof: See Lemma B.3. 2

With Theorem 3.18, the relation=⇒ ⊆ D(S)×D(S) can be obtained as the lifting of a relation=⇒S fromS toD(S),
which is defined by writings =⇒S Θ just whens =⇒ Θ.

Proposition 3.19 (=⇒S) = (=⇒).

Proof: That∆ =⇒S Θ implies∆ =⇒ Θ is a simple application of Part (i) of Theorem 3.18. For the other direction,
suppose∆ =⇒ Θ: given that∆ =

∑
s∈⌈∆⌉ ∆(s)·s, Part (ii) of the same lemma enables us to decomposeΘ into∑

s∈⌈∆⌉ ∆(s)·Θs wheres =⇒ Θs for eachs in ⌈∆⌉. But the latter actually means thats =⇒S Θs, and so by
definition this implies∆ =⇒S Θ. 2

Corollary 3.20 The relations=⇒ is convex.

Proof: This is immediate from its being a lifting. 2

We proceed with the important properties of reflexivity and transitivity of weak derivations.

Theorem 3.21 (Reflexivity and transitivity of =⇒) For any∆ ∈ D(S) we have∆ =⇒ ∆. Moreover, if∆ =⇒ Θ
andΘ =⇒ Λ then∆ =⇒ Λ.

Proof: The first statement is trivial: just take∆→
0 := ε in Definition 3.12. For the second, see Theorem B.4. 2

Finally, we need a property that is the converse of transitivity: if one executes a given weak derivation partly, by
stopping more often and moving on less often, one makes another weak transition that can be regarded as an initial
segment of the given one. We need the property that after executing such an initial segment, it is still possible to
complete the given derivation.

Definition 3.22 A weak derivationΦ =⇒ Γ is called aninitial segmentof a weak derivationΦ =⇒ Ψ if for k ≥ 0
there areΓk,Γ→

k ,Γ
×
k ,Ψk,Ψ

→
k ,Ψ

×
k ∈ D(S) such thatΓ0 = Ψ0 = Φ and

Γk = Γ→
k + Γ×

k Ψk = Ψ→
k + Ψ×

k Γ→
k ≤ Ψ→

k

Γ→
k

τ−→ Γk+1 Ψ→
k

τ−→ Ψk+1 Γk ≤ Ψk

Γ =
∑∞
i=0 Γ×

k Ψ =
∑∞
i=0 Ψ×

k (Ψ→
k − Γ→

k) τ−→ (Ψk+1 − Γk+1).

Proposition 3.23 If Φ =⇒ Γ is an initial segment ofΦ =⇒ Ψ, thenΓ =⇒ Ψ.

Proof: To be placed in Appendix B. 2

Further properties of weak derivations from finitary subdistributions are given in Section 5.

11

4 Testing probabilistic processes

We follow our earlier approach [2, 3] to the testing of probabilistic processes. Atest is simply a process from the
languagepCSP except that it may use special “success” actions for reporting the outcome. Thus we assume a setΩ of
fresh success actions not already inActτ . We refer to the augmented language aspCSPΩ, and the pLTS it generates as
pltst. Now formally a testT is process from this language, and to apply it to processP we form the processT |Act P
in which all visible actions ofP must synchronise withT . Thus this gives rise to a pLTS in which the only possible
actions areτ and elements ofΩ:

Definition 4.1 A pLTS of the form〈S,Ωτ ,−→〉 is referred to as acomputation structure.

To determine the outcome of applying a test to a process we therefore have extract some result from a computation
structure. However because of the presence of recursion inpCSP these may now be of infinite depth. Consequently
we can no longer use our earlier approach [2], because it assumed both processes and tests to be finite.

In the following two subsections we outline two different ways in which outcomes can be calculated from the
infinite (but finite-branching) computation structure ofT |Act P ; for finite-state systems they will turn out to be equiv-
alent.

4.1 Extremal testing

Here we assume that tests are allowed to use asinglesuccess actionω; thusΩ = {ω}. Let S be the set of states in
a computation structure. We view the unit interval[0, 1] ordered in the standard manner as a complete lattice (with
least element0), and this induces the same structure on the set of functionsS → [0, 1]; the induced order is given
by f ≤ g wheneverf(s) ≤ g(s) for everys ∈ S. Now consider the functionalRmin : (S→[0, 1]) → (S→[0, 1])
defined by:

Rmin(f)(s) =






1 if s ω−→

0 if s 6−→

min{ f(∆) | s τ−→ ∆ } otherwise

wheref(∆) = Exp∆(f). In a similar fashion we can define the functionalRmax : (S→[0, 1]) → (S→[0, 1]) which
uses themax function in place ofmin. Both these functions are monotonic, and therefore have least fixed points, which
we abbreviate toVmin, Vmax respectively. Furthermore, it can be shown that bothRmin andRmax are continuous (see
Lemma 4.19 below) , so we have the characterisation

Vmin =
⊔
n∈N

Vmin
n and Vmax =

⊔
n∈N

Vmax
n (2)

where bothVmin
0 andVmax

0 denote thebottomfunction⊥ defined by⊥(s) = 0 for all s ∈ S, and

• Vmin
(k+1) = Rmin(Vmin

k)

• Vmax
(k+1) = Rmax(Vmax

k)

Now for a testT and a processP , we have two ways of defining the outcome of the application ofT to P :

Ae
min(T, P) = Vmin(T |Act P)

Ae
max(T, P) = Vmax(T |Act P)

HereAe
min(T, P) returns a single probabilityp, estimating the minimal probability of success; it is a pessimistic

estimate. On the other handAe
max(T, P) is optimistic, in that it gives the maximal probability of success.

Definition 4.2

1. P ⊑epmayQ if for every testT , Ae
max(T, P) ≤ Ae

max(T,Q)

12

b

bc

b b

b

τ
1
2

1
2

a

τ

b

bc

b b

b

b

τ
1
2

1
2

τ

ω

τ

(i) The processQ1 (ii) The computation structure(a.ω |Act Q1)

Figure 4: Testing the processQ1

2. P ⊑epmustQ if for every testT , Ae
min(T, P) ≤ Ae

min(T,Q)

Example 4.3 Consider the processQ1 = recx. (τ.x 1
2
⊕ a), which is described graphically in Figure 4. When we

apply the testT = a.ω to it we get the computation structure also described there.Note that this is deterministic and
consequently the pessimistic and optimistic approaches coincide. That is, we haveVmax(T |Act Q1) = Vmin(T |Act

Q1) = v wherev is the least probability –indeed the only probability, in this case– that satisfies

v =
1

2
· v +

1

2
, so thatv = 1.

In general these solutions are unique just when the process is almost free of divergence, that isalmost (surely) conver-
gentso that the infinite internal paths have total probability zero. In fact it is possible to show that

Q1 ≃epmay a Q1 ≃epmusta.

2

4.2 Resolution-based testing

Here tests are allowed to use afinite collection of success actions,Ω = {ω1, . . . ωn}, although it will be convenient
to assume that in any given stateat mostone of the actionsωi can be executed. Then, when calculating the result
of applying the testT to the processP , we use the collection ofresolutionsof T |Act P ; intuitively a resolution
represents arun of the combined processT |Act P , and as such gives exactly one probability for each success action.
So in general the application ofT to P will be a setof probabilities vectors,result vectors, not necessarily finite.

Here we adapt the notion ofresolutiondefined in [21, 4] for probabilistic automata, to pLTSs. A computation
structure〈S,Ωτ ,→〉 is calleddeterministicif for every s ∈ S and everyα ∈ Ωτ there is at most one∆ such that
s α−→ ∆.

Definition 4.4 A resolutionof a computation structure〈S,Ωτ ,→〉 is a deterministic computation structure
〈T,Ωτ ,→〉 such that there is a resolving functionf ∈ T → S which satisfies the following conditions:

1. if t ω−→ Θ for someω ∈ Ω thenf(t) ω−→ f(Θ)

2. if t τ−→ Θ thenf(t) 6ω−→ for all ω ∈ Ω andf(t) τ−→ f(Θ)

3. if t 6−→ thenf(t) 6−→

wheref(Θ) is the distribution defined byf(Θ)(s) =
∑

f(t)=sΘ(t).

The reader is referred to Section 2 of [4] for a detailed discussion of this concept of resolutions, and the manner in
which it representscomputation runs of a process; in particular in a resolution states inS are allowed to be resolved
into distributions, and computation steps can beprobabilistically interpolated. We often use the meta-variableR to

13

b

bc bc

b b b b

b b

τ τ
1
2

1
2

a

1
2

1
2

a

τ
b

bc bc

b b b b

b b

b b

τ τ
1
2

1
2

τ

ω

1
2

1
2

τ

ω

τ

(i) The processQ2 (ii) The computation structure(a.ω |Act Q2)

Figure 5: Testing the processQ2

refer to a resolution, with resolving functionfR, and the computation structure involved will usually be understood
from the context; in most cases it is that generated bypltst.

Let S denote the set of states in a deterministic computation structure. Then by analogy with the functionalRmin

andRmax of the previous subsection we can defineR : (S → [0, 1]Ω) → (S → [0, 1]Ω) by

R(f)(s) =






~ωi if s ωi−→
~0 if s 6−→

f(∆) if s τ−→ ∆

(3)

Here we use notation originally introduced in [4] for denoting result vectors in[0, 1]Ω; ~0 is the vector which is every-
where0 while ~ωi has1 in theωth

i position, but is otherwise0. Once more this functional has a least fixed point, which
we denote byV. When the deterministic computation structure concerned is given by a resolutionR, we say thatR
realisesthe functionV.

Now letAΩ(T, P) denote the set

{V(∆) | fR(∆) = [T |Act P ℄, R a resolution ofpltst }. (4)

Definition 4.5

1. P ⊑Ω
pmayQ if for everyΩ-testT , AΩ(T, P) ≤Ho AΩ(T,Q)

2. P ⊑Ω
pmustQ if for everyΩ-testT , AΩ(T, P) ≤Sm AΩ(T,Q)

These preorders are abbreviated toP ⊑pmayQ, andP ⊑pmustQ, when|Ω|= 1.

Example 4.6 Consider the processQ2 = recx. τ.(τ.x 1
2
⊕ a) 2 τ.(0 1

2
⊕ a) and the application of the testT = a.ω to

it; this is outlined in Figure 5. In the computation structure ofT |Act Q2, for eachk ≥ 1 there is a resolutionRk such
thatV(Rk) = (1 − 1

2k); intuitively it goes around the loop(k − 1) times before at last taking the right handτ action.
ThusAΩ(T,Q2) contains(1 − 1

2k) for everyk ≥ 1. But it also contains1, because of the resolution which takes the
left handτ move every time. Thus

AΩ(T,Q2) = {(1 −
1

2
), (1 −

1

22
), . . . , (1 −

1

2k
), . . . 1}

SinceAΩ(T, a) = {1} it follows that

AΩ(T, a) ≤Ho AΩ(T,Q2) AΩ(T,Q2) ≤Sm AΩ(T, a)

Indeed it is possible to show that

a ⊑pmayQ2 Q2 ⊑pmusta

2

14

4.3 Comparison

In this section we compare the two approaches of testing introduced in the previous two subsections. Our first result
is that in the most general setting they lead to different testing preorders.

Example 4.7 [MonsterB] Consider the infinite-state pLTS defined as follows: in addition to the statesa and0 it has
the infinite setb1, b2, . . ., with each of these having two transitions:

• bk
τ−→ bk+1

• bk
τ−→ [0 1

2k
⊕ a℄.

Now let us compare the stateb1 with the processa. With the testa.ω, using resolutions, we get:

AΩ(a.ω, b1) = {0, (1 −
1

2
), . . . , (1 −

1

2k
), . . .}

AΩ(a.ω, a) = {1}
(5)

which means thata 6⊑Ω
pmay b1.

However when we use extremal testing, the testa.ω can not distinguish these processes. It is straightforwardto see
thatVmax(a.ω |Act a) = 1. Moreover for everyn > 0 once can calculateVmax

(n+1)(a.ω |Act bk) to be(1 − 1
2(k+n)),

which in turns means thatVmax(a.ω |Act b1) also evaluates to1.
With some more work one can go on to show that no test can distinguish between these processes using optimistic

extremal testing, meaning thata ⊑epmay b1.
2

In the remainder of this section we show that provided some finitary constraints are imposed on the pLTS extremal
testing and resolution-based testing coincide. It is convenient to break the material up into three subsections. In this
first we show, that for resolution-based testing it is sufficient to use a singleton set of success actions,|Ω|= 1. In the
second we examinemusttesting, which is easier than themaycase, which in turn is treated in the final subsection.

4.3.1 Scalar versus Vector testing

In [4] it was shown that for finite-branching probabilistic automata, and resolution-based testing, it is sufficient to use
results setsΩ of size1. We wish to apply this result in our setting, to obtain Theorem 4.11 below; however to do so we
need to demonstrate that the manner in which the value obtained from a resolution used in that paper coincides with
our use of least fixed points.

First of all, we recall the notion of occurrences of actions and the results-gathering functionW given in Definition
5 of [4].

Definition 4.8 Given a fully probabilistic automatonR = 〈S,∆◦,→〉, the probability thatR starts with a sequence
of actionsℵ ∈ Σ∗, is given byPrR(ℵ,∆◦), wherePrR : Σ∗ × S → [0, 1] is defined inductively:

PrR(ε, s) := 1 andPrR(αℵ, s) :=

{
PrR(ℵ,∆) if s α−→ ∆
0 otherwise

wherePrR(ℵ,∆) =
∑

s∈⌈∆⌉ ∆(s) · PrR(ℵ, s). The notationε denotes the empty sequence of actions andαℵ the
sequence starting withα ∈ Σ and continuing withℵ ∈ Σ∗. The valuePrR(ℵ, s) is the probability thatR proceeds
with sequenceℵ from states.

Let Σ∗α be the set of finite sequences inΣ∗ that containsα just once, namely at the end. Then the probability that
that the fully probabilistic automatonR ever performs an actionα is given by

∑
ℵ∈Σ∗α PrR(ℵ,∆◦).

Definition 4.9 For a fully probabilistic automatonR, let its success tupleW.R ∈ [0, 1]n be such that(W.R)i is the
probability thatR performs the actionωi.

Then for a (not necessarily fully probabilistic) automatonM we define the set of its success tuples to be those
resulting as above from all its resolutions:

W.M := {W.R | R is a resolution ofM}.

15

Proposition 4.10 If R = 〈S,∆◦,→〉 is a fully probabilistic automaton, thenW.R = V(∆◦).

Proof: We need to show that∀i : (W.R)i = (V(∆◦))i, i.e.
∑

ℵ∈Σ∗ωi PrR(ℵ,∆◦) = (V(∆◦))i, for which it suffices
to show that ∑

ℵ∈Σ∗ωi

PrR(ℵ, s) = (V(s))i for all s ∈ S. (6)

SinceV =
⊔
n∈N

V
n, we have that(V(s))i = limn→∞(Vn)i. Lettingℵ ∈ Σ∗ be a sequence of actions, we write|ℵ|

for its length. The sequence of reals{
∑

ℵ∈Σ∗ωi ,|ℵ|≤n PrR(ℵ, s)}∞n=0 is increasing and bounded by1, so it converges
and we have

∑
ℵ∈Σ∗ωi PrR(ℵ, s) = limn→∞

∑
ℵ∈Σ∗ωi ,|ℵ|≤n PrR(ℵ, s). We now prove by induction onn that

∑

ℵ∈Σ∗ωi ,|ℵ|≤n

PrR(ℵ, s) = (Vn(s))i for all n ∈ N. (7)

which will yield (6) immediately.

• The base case isn = 0. Then∀i :
∑

ℵ∈Σ∗ωi ,|ℵ|≤n PrR(ℵ, s) = 0 andV
0(s) = ~0.

• Now supposing (7) holds for somen, we consider the case forn+ 1. If s 6−→, then we have
∑

ℵ∈Σ∗ωi ,|ℵ|≤n+1

PrR(ℵ, s) = 0 = (Vn+1(s))i.

If s α−→ ∆ for some actionα and distribution∆, then there are two possibilities:

– α = ωi. We then have(Vn+1(s))i = 1. Note that ifℵ is a finite non-empty sequence without any
occurrence ofωi, thenPrR(ℵωi, s) = 0. In other words,

∑
ℵ∈Σ∗ωi ,|ℵ|≤n+1 PrR(ℵ, s) = PrR(〈ωi〉, s) =

1.

– α 6= ωi. Then(Vn+1(s))i = (Vn(∆))i. On the other hand,PrR(α′ℵ, s) = 0 if α 6= α′. Therefore,
∑

ℵ∈Σ∗ωi ,|ℵ|≤n+1 PrR(ℵ, s) =
∑
αℵ∈Σ∗ωi ,|αℵ|≤n+1 PrR(αℵ, s)

=
∑
αℵ∈Σ∗ωi ,|αℵ|≤n+1 PrR(ℵ,∆)

=
∑

ℵ∈Σ∗ωi ,|ℵ|≤n PrR(ℵ,∆)

= (Vn(∆))i by induction
= (Vn+1(s))i

2

As a corollary of Proposition 4.10, we haveAΩ(T, P) = W.(T |Act P) for any processP and testT . Therefore,
the testing preorders⊑Ω

pmay,⊑Ω
pmustdefined in Section 4.2 coincides with those in Definition 6 of [4]. Now Theorem 4

of [4] (to be accurate, the variant of that theorem for state-based testing) tells us that when testing finite-state processes
it suffices to use a single success action rather than using multiple success actions. That is,

Theorem 4.11 For finite-state processes:

• P ⊑Ω
pmayQ if and only if P ⊑pmayQ

• P ⊑Ω
pmustQ if and only if P ⊑pmustQ 2

4.3.2 Must testing

Here we show that provided we restrict our attention to finite-branching processes there is no difference between
extremalmusttesting, and resolution-basedmusttesting. In view of Theorem 4.11, we will restrict our attention to
resolution-based testing in which there is only one successactionω, |Ω|= 1.

Let us consider a computation structure〈S,Ωτ ,→〉, obtained perhaps from applying a testT to a processP in
(T |Act P). We have two ways of obtaining a result for a distribution of states fromS, by applying the functionVmin,
or by using resolutions of the computation structure to realise V. Our first result says that regardless of the actual
resolution used, the value obtained from the latter will always dominate the former.

16

Proposition 4.12 Vmin(fR(∆)) ≤ V(∆), for any resolutionR.

Proof: SupposeR is a resolution of〈S,Ωτ ,→〉, giving the deterministic computation structure〈T,Ωτ ,→〉. First we
show by induction onn that for every statet ∈ T

Vmin
n(fR(t)) ≤ V

n(t) (8)

For n = 0, this is trivial. We consider the inductive step. First ift ω−→ Θ, then fR(t) ω−→ f(Θ), and thus
Vmin

n+1(fR(t)) = 1 = V
n+1(t). A similar argument applies ift 6−→, and so let us assumet τ−→ Θ for some

Θ, andt 6ω−→.
Vmin

(n+1)(fR(t)) = min{Vmin
n(∆)|fR(t) τ−→ ∆}

≤ Vmin
n(fR(Θ))

=
∑
s∈S fR(Θ)(s) · Vmin

n(s)
=

∑
t′∈T Θ(t′) · Vmin

n(fR(t′))
≥

∑
t′∈T Θ(t′) · Vn(t′) by induction

= V
n(Θ)

= V
(n+1)(t)

Now by continuity we have from (8) that
Vmin(fR(t)) ≤ V(t) (9)

and this result is then easily generalised to distributions:

Vmin(fR(∆)) =
∑

s∈S fR(∆)(s) · Vmin(s)
=

∑
t∈T ∆(t) · Vmin(fR(t))

≤
∑

t∈T ∆(t) · V(t) by (9)
= V(∆)

2

Our next result says that in any finite-branching computation structure we can find a resolution which realises the
functionVmin. Moreover this resolution will be of a particularly simple form.

This new material of Matthew’s should be used in the proof of Lemma 5.3.
A resolutionR is said to bestatic if its resolving functionfR is injective. Again we refer the reader to [4] for a
discussion of power of this restriction. Static restrictions are particularly simple, in that they does not allow states to
be resolving into distributions, or computation steps to beinterpolated. Moreover they are very easy to describe.

Definition 4.13 A (static) policy for a computation structure〈S,Ωτ ,→〉 is a partial functionpp : S ⇀ D1(S)
satisfying:

• s −→ impliespp(s) is defined

• s ω−→ impliess ω−→ pp(s)

• otherwise, ifs τ−→ thens τ−→ pp(s)

Intuitively a policypp decides between the choices available at a given state, witha preference for reporting success.

It is easy to see that a policypp determines a static resolution of the computation structure. This is defined as the de-
terministic computation structure〈S,Ωτ ,→pp〉, where→pp is determined bys→pp f(s), and note that the associated
resolving function is the identity. Indeed it is possible toshow that every static resolution is determined in this manner
by some policy.

Proposition 4.14 In any finite-branching computation structure, there exists a static resolutionR such that
V(f−1

R (∆)) = Vmin(∆) for any distribution∆.

17

Proof: Let ∆ be a distribution over the computation structure〈S,Ωτ ,→〉. We exhibit the required resolution by
defining a policy overS. We say policypp(−) is min-seekingif its domain is{ s ∈ S | s −→} and it satisfies:

if s 6ω−→ buts τ−→ thenVmin(pp(s)) ≤ Vmin(∆) whenevers τ−→ ∆

Note that by design a min-seeking policy satisfies:

if s 6ω−→ buts τ−→ thenVmin(s) = Vmin(pp(s)) (10)

In a finite-branching computation structure it is straightforward to define a min-seeking policy:

(i) If s ω−→ then letpp(s) be any∆ such thats ω−→ ∆.

(ii) Otherwise, ifs τ−→ let {∆1, . . .∆n} be the finite non-empty set{∆ | s τ−→ ∆ }. Now let pp(s) be any∆k

satisfying the propertyVmin(∆k) ≤ Vmin(∆j) for every1 ≤ j ≤ n; at least one such∆k must exist.

We now show that the static resolution determined by such a policy satisfies the requirements of the proposition. For
the sake of clarity let us writeVpp(∆) for the value realised for∆ in the resolution determined by the policypp(−).

We already know, from Proposition 4.12, thatVmin(∆) ≤ Vpp(∆) and so we concentrate on the converse,
Vpp(∆) ≤ Vmin(∆). Recall that the functionVpp is the least fixpoint of the functionalR defined in (3) above,
and interpreted in the resolution determined bypp(−). So the result follows if we can show that the functionVmin is
also a fixed point. Since|Ω|= 1 this amounts to proving

Vmin(s) =






1 if s ω−→

0 if s 6−→

Vmin(pp(s)) otherwise

However this is a straightforward consequence of (10) above. 2

Theorem 4.15 For finite-branching processes,P ⊑epmustQ if and only if P ⊑pmustQ

Proof: This is a consequence of the two previous propositions. First supposeP ⊑epmust Q. To showP ⊑pmust Q
we must show that for any valuev in AΩ(T, P), for any arbitrary testT , there exists somev′ ∈ AΩ(T,Q) such
thatv′ ≤ v. The valuev must be of the formV(∆), where there is a resolutionR such thatfR(∆) = [T |Act P ℄.
From Proposition 4.12 we know thatVmin([T |Act P ℄) ≤ v, and now from the hypothesisP ⊑epmust Q we have that
Vmin([Q |Act P ℄) ≤ v. Now employing Proposition 4.14 we can find some other (static) resolutionR′ and such that
V(Θ) = Vmin([Q |Act P ℄), whereΘ is fR′([Q |Act P ℄). So we can take the requiredv′ to beV(Θ).

The converse,P ⊑pmustQ impliesP ⊑epmustQ is equally straightforward, and is left to the reader.
2

4.3.3 May testing

Here we can try to apply the same proof strategy as in the previous section. The analogue to Proposition 4.12 goes
through:

Proposition 4.16 V(∆) ≤ Vmax(fR(∆)) for any resolutionR.

Proof: Similar to the proof of Proposition 4.12 2

However the proof strategy used in Proposition 4.14 can not be used to show thatVmax can be realised by some static
resolution, as the following example shows.

18

Example 4.17 In analogy with the definition used in the proof of Proposition 4.14, we say that a policypp(−) is
max-seekingif its domain is precisely{ s ∈ S | s −→}, and

if s 6ω−→ buts τ−→ thenVmax(∆) ≤ Vmax(pp(s)) whenevers τ−→ ∆

This ensures thatVmax(s) = Vmax(pp(s)), whenevers τ−→ ands 6ω−→, and again it is straightforward to define a
max-seeking policy in a finite-branching computation structure. However the resulting resolution does not in general
realise the functionVmax.

To see this, let us turn the (finite-branching) pLTS used in Example 4.7 into a computation structure. Here in
addition to the two statesω and0 there is the infinite setc1, . . . ck, . . . and the transitions

• ck
τ−→ ck+1

• ck
τ−→ [0 pk⊕ ω℄, where againpk is the probability 1

2k .

One can calculateVmax(ck) to be1 for everyk, and a max-seeking policy is given determined bypp(ck) = ck+1;
indeed this is essentially the only such policy. However this resolution does not realiseVmax, asVpp(ck) = 0. 2

Nevertheless we will show that if we restrict attention to finite-branching, and finite-state, computation structures,
then there will always exist some static resolution which realisesVmax. The proof relies on techniques used in Markow
process theory [19], and unlike that of Proposition 4.14 is non-constructive; we simply prove that some such resolution
exists, without actually showing how to construct it.

Consider the set of all functions from a finite setS to [0, 1], denoted byFS , and the distance functiond overFS
defined byd(f, g) = max|f(s) − g(s)|s∈S . We can check that(FS , d) constitutes a complete metric space. Let
δ ∈ (0, 1) be a discount factor. The discounted version of the functionalR in Section 4.2,Rδ : FS → FS defined by

Rδ(f)(s) =






1 if s ω−→
0 if s 6−→
δ · f(∆) otherwise

(11)

wheref(∆) = Exp∆(f), is a contraction mapping with constantδ. It follows from the Banach fixed point theorem
thatRδ has a unique fixed point whenδ < 1, which we denote byVδ. On the other hand, it can be shown thatRδ

is a continuous function over the complete latticeFS . SoV
δ, as the least fixed point ofRδ, has the characterisation

V
δ =

⊔
n∈N

V
δ,n, whereV

δ,n is then-th iteration ofRδ over⊥. Note that if there is no discount, i.e.δ = 1, we see
thatRδ,Vδ coincides withR,V respectively. Similarly, we can defineVmin

δ andVmax
δ.

Let R
+ be the set of non-negative real numbers. The following property is very useful. It says that the directed

sup and countable sum can be interchanged. Later on, we only need the first clause since we restrict ourselves to
finite-state systems in this paper. The second clause is alsoproved because it is interesting by itself.

Lemma 4.18 Let S be a set and(S → R
+) be the set of all functions fromS to R

+. Suppose{fi | i ∈ I} is any
directed subset of(S → R

+).

1. If S is finite, then ∑

s∈S

⊔

i∈I

fi(s) =
⊔

i∈I

∑

s∈S

fi(s).

2. If S is countable and the partial sumSn :=
∑n
j=1

⊔
i∈I fi(sj) is bounded, i.e. there exists somec ∈ R

+ such
thatSn ≤ c for anyn, then ∑

s∈S

⊔

i∈I

fi(s) =
⊔

i∈I

∑

s∈S

fi(s).

Proof: 1. SinceS is finite, we can assume that|S| = N for someN ∈ N. Let ǫ be any positive real number. For
eachs ∈ S, there is some indexis such that0 ≤

⊔
i∈I fi(s)− fi(s) ≤

ǫ
N

for all i > is. Let iS = max{is | s ∈
S}. For anys ∈ S, we have0 ≤

⊔
i∈I fi(s) − fi(s) ≤ ǫ

N
for all i > iS . Summing up over alls ∈ S, we get

0 ≤
∑
s∈S

⊔
i∈I fi(s)−

∑
s∈S fi(s) ≤ ǫ for all i > iS. Therefore,

⊔
i∈I

∑
s∈S fi(s) = limi→∞

∑
s∈S fi(s) =∑

s∈S

⊔
i∈I fi(s).

19

2. Since the sequence{Sn}n∈N is increasing and bounded, it converges to
∑

s∈S

⊔
i∈I fi(s). Let ǫ be any positive

real number. We can take a finite subsetS′ of S which is large enough so that

0 ≤
∑

s∈S

⊔

i∈I

fi(s) −
∑

s∈S′

⊔

i∈I

fi(s) ≤
ǫ

2
. (12)

With the same argument as in the proof the first clause, we can choose an indexiS′ so that

0 ≤
∑

s∈S′

⊔

i∈I

fi(s) −
∑

s∈S′

fi(s) ≤
ǫ

2
(13)

for all i > iS′ . We observe thatfi(s) ≤
⊔
i∈I fi(s), so the sequence{

∑n
j=1 fi(s)}n∈N, for any i ∈ I, is

increasing and bounded, thus converges to
∑

s∈S fi(s). Therefore, there exists someN ∈ N such that

0 ≤
∑

s∈S

fi(s) −
N∑

j=1

fi(s) ≤
ǫ

2
(14)

for all i ∈ I. Without loss of generality, we assume that{s1, ..., sN} ⊆ S′. It follows from (14) that

−
ǫ

2
≤

∑

s∈S′

fi(s) −
∑

s∈S

fi(s) ≤ 0 (15)

for all i ∈ I. Take the sum of the three inequalities (12), (13) and (15), we obtain

−
ǫ

2
≤

∑

s∈S

⊔

i∈I

fi(s) −
∑

s∈S

fi(s) ≤ ǫ (16)

for all i > iS′ . Therefore,
⊔
i∈I

∑
s∈S fi(s) = limi→∞

∑
s∈S fi(s) =

∑
s∈S

⊔
i∈I fi(s).

2

The functionalsRδ andRδ
max have the following properties.

Lemma 4.19 1. For anyδ ∈ (0, 1], the functionalsRδ andRδ
max are continuous;

2. If δ1, δ2 ∈ (0, 1] andδ1 ≤ δ2, then we haveRδ1 ≤ Rδ2 andRδ1
max ≤ Rδ2

max;

3. Let{δn}n≥1 be a nondecreasing sequence of discount factors convergingto 1. It holds that
⊔
n∈N

Rδn = R
and

⊔
n∈N

Rδn
max = Rmax.

Proof: We only considerR, the case forRmax is similar.

1. Letf0 ≤ f1 ≤ ... be an increasing chain inS → [0, 1]. We need to show that

Rδ(
⊔

n≥0

fn) =
⊔

n≥0

Rδ(fn) (17)

For anys ∈ S, we are in one of the following three cases:

(a) s ωi−→. We have
Rδ(

⊔
n≥0 fn)(s) = 1 by (11)

=
⊔
n≥0 1

=
⊔
n≥0 R

δ(fn)(s)

= (
⊔
n≥0 R

δ(fn))(s)

20

(b) s 6−→. Similar to last case. We have

Rδ(
⊔

n≥0

fn)(s) = 0 = (
⊔

n≥0

Rδ(fn))(s).

(c) Otherwise,s α−→ ∆ for some actionα and distribution∆ ∈ D1(S). Then we infer that

Rδ(
⊔
n≥0 fn)(s) = δ · (

⊔
n≥0 fn)(∆) by (11)

= δ ·
∑
s∈⌈∆⌉ ∆(s) · (

⊔
n≥0 fn)(s)

= δ ·
∑
s∈⌈∆⌉ ∆(s) · (

⊔
n≥0 fn(s))

= δ ·
∑
s∈⌈∆⌉

⊔
n≥0 ∆(s) · fn(s)

= δ ·
⊔
n≥0

∑
s∈⌈∆⌉ ∆(s) · fn(s) by Lemma 4.18

= δ ·
⊔
n≥0 fn(∆)

=
⊔
n≥0 δ · fn(∆)

=
⊔
n≥0 R

δ(fn)(s)

= (
⊔
n≥0 R

δ(fn))(s)

2. Straightforward by the definition ofR.

3. For anyf ∈ S → [0, 1] ands ∈ S we show that

R(f)(s) = (
⊔

n∈N
Rδn)(f)(s). (18)

We focus on the non-trivial case thats α−→ ∆ for some actionα and distribution∆ ∈ D1(S).

(
⊔
n∈N

Rδn)(f)(s) =
⊔
n∈N

Rδn(f)(s)
=

⊔
n∈N

δn · f(∆)
= f(∆) · (

⊔
n∈N

δn)
= f(∆) · 1
= R(f)(s)

2

Lemma 4.20 Let {δn}n≥1 be a nondecreasing sequence of discount factors convergingto 1.

• V =
⊔
n∈N

V
δn

• Vmax =
⊔
n∈N

Vmax
δn

Proof: We only considerV; the case forVmax is similar. We use the notationlfp(f) for the least fixed point of the
functionf over a complete lattice. Recall thatV andV

δn are the least fixed points ofR andRδn respectively, so we
need to prove that

lfp(R) =
⊔

n∈N
lfp(Rδn) (19)

We now show two inequations.
For anyn ∈ N, we haveδn ≤ 1, so Lemma 4.19 (2) yieldsRδn ≤ R. It follows that lfp(Rδn) ≤ lfp(R), thus⊔

n∈N
lfp(Rδn) ≤ lfp(R).

For the other direction,lfp(R) ≤
⊔
n∈N

lfp(Rδn), it suffices to show that
⊔
n∈N

lfp(Rδn) is a pre-fixed point ofR,
i.e. R(

⊔
n∈N

lfp(Rδn)) ≤
⊔
n∈N

lfp(Rδn), which we derive as follows. Let{δn}n≥1 be a nondecreasing sequence of

21

discount factors converging to1.

R(
⊔
n∈N

lfp(Rδn))
= (

⊔
m∈N

Rδm)(
⊔
n∈N

lfp(Rδn)) by Lemma 4.19 (3)
=

⊔
m∈N

Rδm(
⊔
n∈N

lfp(Rδn))
=

⊔
m∈N

⊔
n∈N

Rδm(lfp(Rδn)) by Lemma 4.19 (1)
=

⊔
m∈N

⊔
n≥mRδm(lfp(Rδn))

≤
⊔
m∈N

⊔
n≥mRδn(lfp(Rδn)) by Lemma 4.19 (2)

=
⊔
n∈N

Rδn(lfp(Rδn))
=

⊔
n∈N

lfp(Rδn)

This completes the proof of (19). 2

In the rest of this section, we consider probabilistic automata with actionsτ andω only.

Lemma 4.21 Supposeδ ∈ (0, 1]. If 〈T,Θ◦,→〉 is a resolution of〈S,∆◦,→〉, then we haveVδ,n(Θ◦) ≤ Vmax
δ,n(∆◦).

Proof: Let f : T → S be the resolving function associated with the resolution〈T,Θ◦,→〉, we show by induction on
n that

Vmax
δ,n(f(t)) ≥ V

δ,n(t) for anyt ∈ T (20)

The base casen = 0 is trivial. We consider the inductive step. Ift ω−→ Θ, thenf(t) ω−→ f(Θ), thusVmax
δ,n(f(t)) =

1 = V
δ,n(t). Now supposet τ−→ Θ. Thenf(t) 6ω−→ andf(t) τ−→ f(Θ). We can infer that

Vmax
δ,(n+1)(f(t)) = δ ·max{Vmax

δ,n(∆)|f(t) τ−→ ∆}
≥ δ · Vmax

δ,n(f(Θ))

= δ ·
∑

s∈S f(Θ)(s) · Vmax
δ,n(s)

= δ ·
∑

t′∈T Θ(t′) · Vmax
δ,n(f(t′))

≥ δ ·
∑

t′∈T Θ(t′) · Vδ,n(t′) by induction
= δ · V

δ,n(Θ)
= V

δ,(n+1)(t)

So we have proved (20), from which it follows that

Vmax
δ(f(t)) ≥ V

δ(t) for anyt ∈ T (21)

Therefore, we have that
Vmax

δ(∆◦) = Vmax
δ(f(Θ◦))

=
∑
s∈S f(Θ◦)(s) · Vmax

δ(s)

=
∑
t∈T Θ◦(t) · Vmax

δ(f(t))
≥

∑
t∈T Θ◦(t) · Vδ(t) by (21)

= V
δ(Θ◦)

2

We say a resolution of a process isstatic if its associated resolving function is injective.

Lemma 4.22 Supposeδ < 1. Given a probabilistic automaton〈S,∆◦,→〉, there exists a static resolution〈T,Θ◦,→〉
such thatVmax

δ(∆◦) = V
δ(Θ◦).

Proof: Let 〈T,Θ◦,→〉 be a resolution with an injective resolving functionf such that ift τ−→ Θ thenVmax
δ(f(Θ)) =

max{Vmax
δ(∆) | f(t) τ−→ ∆}. The finite-branching assumption ensures the existence of the such resolving function

f .

22

Let g : T → [0, 1] be the function defined byg(t) = Vmax
δ(f(t)) for all t ∈ T . Below we show thatg is a fixed

point ofRδ. If t ω−→ thenf(t) ω−→. Therefore,Rδ(g)(t) = 1 = Vmax
δ(f(t)) = g(t). Now supposet τ−→ Θ. By the

definition off , we havef(t) 6ω−→, f(t) τ−→ f(Θ) with Vmax
δ(f(Θ)) = max{Vmax

δ(∆) | f(t) τ−→ ∆}. Therefore,

Rδ(g)(t) = δ · g(Θ)
= δ ·

∑
t∈T Θ(t) · g(t)

= δ ·
∑

t∈T Θ(t) · Vmax
δ(f(t))

= δ ·
∑

s∈S f(Θ)(s) · Vmax
δ(s)

= δ · Vmax
δ(f(Θ))

= δ ·max{Vmax
δ(∆)|f(t) τ−→ ∆}

= Vmax
δ(f(t))

= g(t)

SinceRδ has a unique fixed pointVδ, we derive thatg coincides withV
δ, i.e. V

δ(t) = g(t) = Vmax
δ(f(t)) for all

t ∈ T , from which we can obtain the required resultV
δ(Θ◦) = Vmax

δ(∆◦). 2

Theorem 4.23 Given a finite-state probabilistic automaton〈S,∆◦,→〉, there exists a static resolution〈T,Θ◦,→〉
such thatVmax(∆

◦) = V(Θ◦).

Proof: By Lemma 4.22, for every discount factord ∈ (0, 1) there exists a static resolution which achieves the maxi-
mum probability of success. Since there are finitely many states inS, there are finitely many static resolutions. There
must exist a static resolution that achieves the maximum probability of success for infinitely many discount factors.
In other words, for every nondecreasing sequence{δn}n≥1 converging to1, there exists a subsequence{δnk

}k≥1 and
a static resolution〈T,Θ◦,−→〉 with resolving functionf0 such thatVδnk (t) = Vmax

δnk (f0(t)) for all t ∈ T and
k = 1, 2, By Lemma 4.20, we have that, for everyt ∈ T ,

V(t) =
⊔
k∈N

V
δnk (t)

=
⊔
k∈N

Vmax
δnk (f0(t))

= Vmax(f0(t))

It follows thatV(Θ◦) = Vmax(∆
◦). 2

Along the same line, we can obtain a similar theorem forVmin. However, the use of discount factors is not necessary
in this case.

Lemma 4.24 If 〈T,Θ◦,→〉 is a resolution of〈S,∆◦,→〉, then it holds thatVmin(∆
◦) ≤ V(Θ◦).

Proof: Analogous to the proof of Lemma 4.21. 2

Theorem 4.25 Given a finite-state probabilistic automaton〈S,∆◦,−→〉. There exists a static resolution〈T,Θ◦,→〉
such thatVmin(∆

◦) = V(Θ◦).

Proof: Similar to the proof of Lemma 4.22. Let〈T,Θ◦,→〉 be a resolution with an injective resolving functionf
such that ift τ−→ Θ thenVmin(f(Θ)) = min{Vmin(∆) | f(t) τ−→ ∆}.

Let g : T → [0, 1] be the function defined byg(t) = Vmin(f(t)). As in the proof of Lemma 4.22, we show thatg
is a fixed point ofR. SinceV is the least fixed point ofR, it holds thatV(t) ≤ g(t) = Vmin(f(t)) for all t ∈ T , from
which we can obtainV(Θ◦) ≤ Vmin(∆

◦). Using Lemma 4.24, we derive thatVmin(∆
◦) = V(Θ◦). 2

From Lemmas 4.21 and 4.24 as well as Theorems 4.23 and 4.25, weobtain the following corollary.

Corollary 4.26 LetM = 〈S,∆◦,→〉 be a finitary probabilistic automaton.

Vmax(∆
◦) = max{V(Θ◦) | Θ◦ is the initial distribution of a static resolution ofM}

Vmin(∆
◦) = min{V(Θ◦) | Θ◦ is the initial distribution of a static resolution ofM}

23

The following theorem states that for finitary processes extremal testing yields the same preorders as resolution-
based testing.

Theorem 4.27 For finite-state processes:

• P ⊑epmayQ if and only if P ⊑pmayQ

• P ⊑epmustQ if and only if P ⊑pmustQ

Proof: An immediate consequence of Corollary 4.26. 2

Because of Theorems 4.11 and 4.27, we can choose the variation of the testing preorders which are most convenient
to the task at hand. So to prove the soundness of the simulation preorders we will useextremaltesting, while to prove
that modal formulae can be characterised by tests we use theresolution-basedtesting.

4.4 Testing via weak-p derivatives

We now show how resolutions, used in Section 4.2 to determinethe outcome of tests, can be realised as the
derivatives of a restrictive class of weak-p moves. With this alternative point of view, we can effectively test processes
by comparing their possible derivatives directly: in effect the inductiveV is replaced by the induction implicit in
the definition of derivative, and the evaluation ofω-move possibilities is done directly on the subdistributions the
derivations produce.

Definition 4.28 In a pLTS a states is calledstableif s 6τ−→, and a subdistributionΘ is calledstableif every state in its
support is stable. We write∆ =⇒≻ ∆′ whenever∆ =⇒ ∆′ and∆′ is stable, and call∆′ anextremederivative of∆.

Referring to Definition 3.12, we see this means that in the derivation of ∆′ from ∆ at every stage a state must move
on if it can, so that every stopping component can contain only states whichmuststop: we haves ∈ ∆×

k if and now
alsoonly if s 6τ−→.

Lemma 4.29 [Existence of extreme derivatives]

(i) For every subdistribution∆ there exists some (stable)∆′ such that∆ =⇒≻ ∆′.

(ii) In a deterministic pLTS we have that∆ =⇒≻ ∆′ and∆ =⇒≻ ∆′′ implies∆′ = ∆′′.

Proof: The construction of derivatives in Definition 3.12 is simplyspecialised by choosing at every stage∆×
k uniquely

to be∆k restricted exactly to those states that must stop, i.e. those s for which s 6τ−→. Then∆→
k := ∆k − ∆×

k and
∆k+1 is chosen arbitrarily so that∆→

k
τ−→ ∆k+1. That establishes (i).

For (ii) we observe that in a deterministic pLTS the above choice of ∆k+1 is unique, so that the whole derivative
construction becomes unique. 2

It is worth pointing out that the use of subdistributions, rather than distributions, is essential here. For example if∆
diverges, that is if there is an infinite sequence of derivations∆ τ−→ ∆1

τ−→ . . .∆k
τ−→ . . ., then the only extreme

derivative of∆ is the empty subdistributionε.

Lemma 4.30 Let ∆ be a subdistribution in a fully probabilistic pLTS. If∆ =⇒≻ ∆′ thenV
Ω(∆) = V

Ω(∆′).

Proof: Recall thatVΩ is defined over deterministic pLTSs (only), and thatV =
⊔
n≥0 V

n because its defining func-
tional is continuous, where we are now (in this proof) dropping the superscript·Ω to reduce clutter: theVn’s are
thenth approximants toV. By inspection we have thats τ−→ ∆ impliesV

n+1(s) = V
n(∆), whence by lifting and

linearity we get
If ∆ τ−→ ∆′ thenV

n+1(∆) = V
n(∆′) for all n ≥ 0. (22)

24

Now suppose∆ =⇒≻ ∆′. Referring to Definition 3.12 and carrying out a straightforward induction based on (22),
we have

V
n+1(∆) = V

0(∆n+1) +

n∑

k=0

V
n−k+1(∆×

k) =

n∑

k=0

V
n−k+1(∆×

k) (23)

for all n ≥ 0, with the second step depending onV
0’s being identically~0.

Now because∆′ is an extreme derivative we know that all the∆×
k ’s are stable, whence immediately for eachk ≤ n

we haveVn−k+1(∆×
k) = V(∆×

k), simplifying the last step above to just
∑n
k=0 V(∆×

k). We conclude by reasoning

V(∆) =
⊔
n≥0 V

n(∆) =
⊔
n≥0 V

n+1(∆)

=
⊔
n≥0

∑n
k=0 V(∆×

k) (23) and immediately above

=
⊔
n≥0 V(

∑n
k=0 ∆×

k) finite linearity ofV

= V(
⊔
n≥0

∑n
k=0 ∆×

k) least fixed point of continuous functional is itself continuous

= V(
∑∞
k=0 ∆×

k)
= V(∆′) .

2

Now according to (4) and Definition 4.5, the outcome of applying a test to a process is determined by the values
V(Θ) for distributionsΘ over particular deterministic pLTSs, namely resolutions.Then determinacy and Lemma 4.30
immediately above ensures thatV(Θ) coincides withV(Θ≻), whereΘ≻ is the unique extreme derivative ofΘ. More-
over because of its stability the calculation ofV(Θ≻) is simply the weighted sum of all the successful states in its
support.

The final link between the resolution- and derivation views of testing is that, in anω-respecting computation
structure, resolutions and extreme derivatives are essentially the same thing.

Theorem 4.31 (Resolutions and extreme derivatives)Consider anω-respecting computation structure〈S,Ωτ ,→〉.
Then∆ =⇒≻ ∆′ if and only if there is a resolution〈T,Ωτ ,→T 〉 with resolving functionf and subdistributions
Θ,Θ′: D(T) such that

(i) f(Θ), f(Θ′) = ∆,∆′

(ii) Θ =⇒≻T Θ′.

Proof: For only if, suppose〈T,Ωτ ,→T 〉 is a resolution of〈S,Ωτ ,→〉, letΘ be a subdistribution overT , and suppose
Θ =⇒≻T Θ′. By linearity we can applyf to that whole derivation structure, preserving its validity and establishing
f(Θ) =⇒T f(Θ′).

Now we observe that each state in the support off(Θ′) is stable: consider any statet ∈ ⌈Θ×
k ⌉ for anyk ≥ 0. Since

t is stable by assumption, eithert is a deadlock state ort ω−→ Γ for some success actionω ∈ Ω and subdistribution
Γ. By Definition 4.4, it must be the case thatf(t) is a deadlock state in the first case, and thatf(t) ω−→ f(Γ) in the
second. Additionally, since〈S,Act,→〉 is a “non-scooting” computation structure andf(t) ∈ S, we havef(t) 6τ−→ in
the second case. Therefore,f(t) is stable in both cases. Thus, we have in factf(Θ) =⇒T f(Θ′).

For if, consider an extreme derivation∆ =⇒≻ ∆′, as given in Definition 3.12 where all∆×
k are assumed to be

stable; for convenience we let∆k denote∆→
k + ∆×

k . To define the corresponding resolution〈T,Ωτ ,−→T 〉 we refer
to Definition 4.4. First let the set of statesT beS × N and the resolving functionf :T → S be given byf(s, k) = s.
To complete the description we must define the two partial functions α−→, for α = ω andα = τ . These are always
defined so that if(s, k) α−→ Γ then the only states in the support ofΓ are of the form(s, k + 1). In the definition we
useΘ↓k, for any subdistributionΘ overS, to be the subdistribution overT given by

Θ↓k(t) =

{
Θ(s) if t = (s, k)

0 otherwise

Note that by definition

25

(a) f(Θ↓k) = Θ

(b) ∆↓k
k = ∆→↓k

k + ∆×↓k
k

The definition of ω−→T is straightforward: its domain consists of states(s, k) wheres ∈ ⌈∆×
k ⌉ and is defined by

letting (s, k) ω−→ ∆↓k+1
s for some arbitrarily chosens ω−→ ∆s.

The definition of τ−→T is more complicated, and is determined by the moves∆→
k

τ−→ ∆k+1. For a givenk this
move means that

∆→
k =

∑

i∈I

pi ·si, ∆k+1 =
∑

i∈I

pi ·Γi, si
τ−→ Γi

So for eachk we let

(s, k) τ−→T

∑

si=s

pi ·Γ
↓k+1
i

This definition ensures

1. (∆→
k)↓k τ−→T (∆k+1)

↓k+1

2. (∆×)↓k is stable.

This completes our definition of the resolution; it remains to find distributionsΘ,Θ′ over T such thatf(Θ) =
∆, f(Θ′) = ∆′ andΘ =⇒≻ Θ′.

Because of (a) (c) and (d) we have the following extreme derivation, which by Part (ii) of Lemma 4.29 is the unique
one from∆↓0

0 :
∆↓0 = (∆→

0)↓0 + (∆×
0)↓0

(∆→
0)↓0 τ−→T (∆→

1)↓1 + (∆×
1)↓1

...
...

(∆→
k)↓k τ−→T (∆→

k+1)
↓k+1 + (∆×

k+1)
↓k+1

...

Θ′ =
∑∞
k=0(∆

×
k)↓k

Letting Θ be ∆↓0, we see that Note (a) above ensuresf(Θ) = ∆; the same note and the linearity off applied to
distributions also givesf(Θ′) = ∆′.

2

Corollary 4.32 In anω-respecting computation structure, the following statements hold.

1. If ∆ =⇒≻ ∆′ then there is a resolutionΘ of ∆ such thatVΩ(Θ) = V
Ω(∆′).

2. For any resolutionΘ of ∆, there exists an extreme derivative∆′ such that∆ =⇒≻ ∆′ andV
Ω(Θ) = V

Ω(∆′).

Proof: Suppose∆ =⇒≻ ∆′. By Theorem 4.31, there is a resolution of∆ with resolving functionf and a subdistri-
butionΘ such thatΘ =⇒≻ Θ′ andf(Θ′) = ∆′ andf(Θ) = ∆; this last statement means that by definitionΘ is a
resolution of∆. By Lemma 4.30, we haveVΩ(Θ) = V

Ω(Θ′). SinceΘ′ and∆′ are extreme derivatives, all the states
in their supports are stable. Therefore, for anyt ∈ ⌈Θ′⌉ we have that (i)t ω−→ with ω ∈ Ω iff f(t) ω−→, (ii) t 6−→ iff
f(t) 6−→. It follows thatVΩ(Θ′) = V

Ω(∆′). As a result, we obtain thatVΩ(Θ) = V
Ω(∆′).

To prove 2, supposeΘ is a resolution of∆; that is there is a resolution as in Definition 4.4 with a resolving
functionf such thatf(Θ) = Θ′. We know from Lemma 4.29 that there exists a (unique) subdistributionΘ′ such that
Θ =⇒≻ Θ′. By Theorem 4.31 we have that∆ = f(Θ) =⇒≻ f(Θ′). The same arguments as in the other direction
show thatVΩ(Θ) = V

Ω(f(Θ′)). 2

26

Definition 4.33 Let∆ be a subdistribution in a computation structure. We writeVΩ(∆) for the set of testing outcomes
{V

Ω(Γ) | Γ is a resolution of∆} obtained from∆.

Lemma 4.34 Let ∆ be a subdistribution in anω-respecting computation structure.
ThenVΩ(∆) = {V

Ω(∆′) | ∆ =⇒≻ ∆′}.

Proof: This is immediate from Corollary 4.32. 2

Finally we have the basis of a derivation-style definition oftesting.

Lemma 4.35 LetP be a process andT a compatible test.
ThenAΩ(T, P) = {V

Ω(∆′) | [[T |Act P ℄] =⇒≻ ∆′}.

Proof: This is immediate from (4) and Lemma 4.34. 2

5 Further properties of weak derivation

In this section we expose some less obvious properties of derivations, relating to their behaviour at infinity. One
important property is that the set of derivations from a single starting point isclosedin the sense (from analysis) of
containing all its limit points where, in turn, limit depends on a Euclidean-style metric defining the distance between
two distribuitions in a straightforward way. The other property is “distillation of divergence,” allowing us to find in
any derivation that partially diverges (by no matter how small an amount) a point at which the divergence is “distilled”
into a state which wholly diverges.

Both properties depend on our working withinfinitary pLTSs — that is, ones in which the state space is finite
and the (unlifted) transition relation is finite-branching. (The examples of Appendix A show this is necessary, for our
approach at least.) Again, some proofs and technical lemmasare deferred to Appendix B.

5.1 Finite generability and closure

Now let us restrict our attention to finitary pLTSs. Here by definition the setss · a−→ are finite, for everys anda. This
of course is no longer true for the lifted relationsa−→; nevertheless the setss · a−→ can be finitely represented.

Definition 5.1 A resolutionR is said to bestaticif its resolving functionfR is injective. This means that the transition
used at a state is always the same one, no matter how often or from where the state is reached, and that it ispure, that
is not interpolated.

Static resolutions are particularly easy to describe because they are given effectively by subsets of the transition
relation of the original pLTS. For us a convenient formulation of this is in terms of the following definition.

Definition 5.2 A static derivative policyfor a computation structure〈S,Act,→〉, or anSDP, is a partial function
pp : S ⇀D1(S) satisfying:

• If pp is defined ats thens τ−→ pp(s), and

• If s 6τ−→ thenpp is undefined ats.

Intuitively a policypp decides for each state, once and for all, which of the available τ -choices to take if any: since
it chooses a specific transition, or inaction, it does not interpolate; and since it is a function of the state, it makes the
same choice on every visit.

There is a close relationship betweenSDP’s and static resolutions. One difference is that (here) we are concerned
only with policies forτ transitions (although clearly the idea generalises). The other difference is that anSDPcan
select a “do not take anyτ -transition” option, even if some are available, which it does by settingpp to be undefined
ats even whens enables some transition. On the other hand, a static resolution must take a transition if it can. In this
respectSDP’s are close to derivations, which also have the “stopping-here” option.

The great importance for us ofSDP’s is that they give a particularly simple characterisationof derivatives, provided
the state-space is finite and the pLTS is finite-branching. This is essentially a result of Markov Decision Processes
[19], which we now translate into our context.

27

Lemma 5.3 (=⇒ realised by interpolation of finitely many static policies) Supposes =⇒ ∆′ for some states and
subdistribution∆′. Then there is a finite index setI, probabilitiespi summing to 1 and static strategiesppi such that
∆′ =

∑
i∈I pi ·∆

′
i where uniquelys =⇒ppi

∆′
i for eachi.

Proof: See Lemma B.20 and its preceding material. 2

Lemma 5.4 (Closure of=⇒) For any states the set(s =⇒) of derivatives ofs is closed.

Proof: From Lemma 5.3 that set is a subset of the convex closure of theset of subdistributions reachable via=⇒
using one of the finitely many static policies of the pLTS, andthat latter set is closed since it is the convex closure
of finitely many points. But each of those subdistributions is trivially a derivative itself; and the set of derivatives is
convex by Corollary 3.20. Hence the two sets are equal, and thus the former is closed as well. 2

Lemma 5.5 [Closure of a
=⇒] For any states the set{∆′ | s a

=⇒ ∆′} is closed.

Proof: The relation a
=⇒ is a composition of three stages: there must be∆′

1,∆
′
2 with s =⇒ ∆′

1
a−→ ∆′

2 =⇒ ∆′. For
the first stage, from Lemma 5.3 we know any such∆′

1 is the interpolation of fixed finite set of (other) subdistributions;
call them “principal” for that starting point (s) and type of transition (=⇒).

For each states1 in the support of some principal subdistribution̂∆1 from the first stage, there are only a finite
number of distributions in(s1

a−→), because of finite branching. Because⌈∆̂1⌉ itself is finite, there are thus only
finitely many subdistributions necessary to generate all of(∆̂1

a−→); and because there are only finitely many∆̂1’s,
we still need only a finite number of principal subdistributions∆̂2 to generate the results of the first and second stages.

For the third stage we make effectively the same argument as for the second, except that instead of appealing to
finite branching of(∆̂2 =⇒) instead we use the finite generability that we appealed to in the first stage.

Then Lemma 5.4 applies (analogously) for closure. 2

Lemma 5.6 [Zero-one law, static case] If for some static derivative policy pp over a finite-state pLTS there is for
somes a derivations =⇒pp ∆′ with |∆′| < 1 then in fact for some (possibly different) statesε we havesε =⇒pp ε.

Proof: Suppose that for no states do we haves =⇒pp ε. This means that for every states there is some other states′

(possibly depending ons), some numberNs ≥ 0 (no matter how large) and probabilityps > 0 (no matter how small)
such thats can follow policypp to reachs′ in Ns transitions τ−→ with aggregated probabilityps and then can go no
further becausepp is undefined ats′ — for if this were not true, policypp would generate an unboundedτ -tree of
transitions rooted ats with aggregate probability 1.

SetN ≥ 0 to be the maximum ofNs over all states, andp > 0 to be the minimum ofps over all states. (That
p > 0 is one place we use finiteness of the state space; the other is in the existence of both theNs’s in the first place,
and of their maximum.)

Now pick an arbitrarys and consider the (unique) derivations =⇒pp ∆′. If it is finite, then|∆′|=1 trivially. If
not, group the infinite sequence ofpp-generated τ−→pp moves into blocks ofN . In any such block the probability of
reaching app-undefined state is at leastp > 0, and so the probability of eventually reaching app-undefined state (by
taking manyN -blocks of moves in succession) is in fact 1. Thuss =⇒pp ∆′ implies|∆′| = 1.

Our lemma then is immediate from the contrapositive. 2

5.2 Distillation of divergence

Although it is possible to have processes that diverge with some probability strictly between zero and one, in a finitary
system it is possible to “distill” that divergence in the sense that in many cases we can limit our analyses to processes
that either wholly diverge (can do so with probability one) or wholly converge (can diverge only with probability
zero). This property is based on the zero-one law for finite-state probabilistic systems, and in this section we present
the aspects of it that we need here.

28

Lemma 5.7 [Distillation of divergence, static case]
If for some states and static derivative policypp over a finite-state pLTS there is a derivations =⇒pp ∆′ then

there is a probabilityp and full distributions∆′
1,∆

′
ε such thats =⇒ (∆′

1 p⊕ ∆′
ε) and∆′ = p ·∆′

1 and∆′
ε =⇒ ε.

Proof: See Lemma B.21. 2

Lemma 5.8 [Distillation of divergence, general case] For anys,∆′ in a finitary pLTS withs =⇒ ∆′ there is a
probabilityp and full distributions∆′

1,∆
′
ε such thats =⇒ (∆′

1 p⊕ ∆′
ε) and∆′ = p ·∆′

1 and∆′
ε =⇒ ε.

Proof: From Lemma 5.3 we know that the derivations =⇒ ∆′ is an interpolation of a finite number of static deriva-
tions. Lemma 5.7 then applies to each separately, and the result follows by interpolating the derivations from each
static case. 2

Corollary 5.9 If in a finitary pLTS we have∆,∆′ with ∆ =⇒ ∆′ and|∆|>|∆′| then there is some states′ reachable
with non-zero probability from∆ such thats′ =⇒ ε. That is, the pLTS based on∆ must have a wholly diverging state
somewhere.

Proof: Assume at first that|∆|=1; then the result is immediate from Lemma 5.8 since anys′∈⌈∆′
ε⌉ will do. The

general result is obtained by dividing the given derivationby |∆|. 2

6 The failure simulation preorder

This section is divided in four: the first subsection presents the definition of thefailure simulation preorderin an
arbitrary pLTS, together with some explanatory examples. It gives two equivalent characterisations of this preorder:
a coinductive one as a largest relation between subdistributions satisfying certain transfer properties, and one thatis
obtained through lifting and an additional closure property from a relation between states and subdistributions that we
call failure similarity. It also investigates some elementary properties of the failure simulation preorder and of failure
similarity. In the second subsection we restrict attentionto finitary processes, and on this realm characterise the failure
simulation preorder in terms ofsimple failure similarity. All further results on the failure simulation preorder, in
particular precongruence for the operators ofpCSP and soundness and completeness w.r.t. the must testing preorder,
are in terms in this characterisation, and hence pertain to finitary processes only. The third subsection establishes
monotonicity of the operators ofpCSP with respect to the failure simulation preorder — in other words: shows that
the failure simulation preorder is a precongruence with respect to these operators — and the last subsection is devoted
to showing soundness with respect to must testing. Completeness is the subject of Section 7.

6.1 Two equivalent definitions and their rationale

We start with defining the weak action relationsα=⇒ for α ∈ Actτ and the refusal relations6A−→ for A ⊆ Act that are
the key ingredients in the definition of the failure simulation preorder [6, 2].

Definition 6.1 Let ∆ and its variants be subdistributions in a pLTS〈S,Actτ ,→〉.

• For a ∈ Act write ∆
a

=⇒ ∆′ whenever∆ =⇒ ∆pre a−→ ∆post =⇒ ∆′. Extend this toActτ by allowing as a
special case thatτ=⇒ is simply=⇒, i.e. including identity (rather than requiring at least one τ−→).

• ForA ⊆ Act ands∈S write s 6A−→ if s 6α−→ for everyα∈A ∪ {τ}; write ∆ 6A−→ if s 6A−→ for everys∈⌈∆⌉.

• More generally write∆ =⇒ 6A−→ if ∆ =⇒ ∆pre for some∆pre such that∆pre 6A−→.

For example, referring to Example 3.15 we have[Q1℄ a
=⇒ [0 ℄, while in Example 3.16 we have[s2℄ a

=⇒ 1
2 [0 ℄ as

well as[s2℄ =⇒ 6B−→ for any setB not containinga, becauses2 =⇒ 1
2 [a℄.

Proposition 6.2 The relation a
=⇒, for a∈Act, can be obtained as a lifting.

29

Proof: Relation a
=⇒ is in fact=⇒ a−→ =⇒. By Proposition 3.19 this equals=⇒S

a−→ =⇒S which, by three applica-

tions of Lemma 3.11, equals=⇒S
a−→ =⇒S hence=⇒S

a−→ =⇒S and finally=⇒S
a−→ =⇒. 2

Corollary 6.3 The relation a
=⇒ is convex.

Proof: This is immediate from its being a lifting. 2

Definition 6.4 (Failure Simulation Preorder) Define⊒FS to be the largest relation inD(S) × D(S) such that if
∆ ⊒FS Θ then

1. whenever∆ α
=⇒ (

∑
i pi∆

′
i), for α∈Actτ and certainpi with (

∑
i pi) ≤ 1, then there areΘ′

i ∈D(S) with
Θ

α
=⇒ (

∑
i piΘ

′
i) and∆′

i ⊒FS Θ′
i for eachi, and

2. whenever∆ =⇒ 6A−→ then alsoΘ =⇒ 6A−→.

NaturallyΘ ⊑FS ∆ just means∆ ⊒FS Θ. We have chosen the orientation of the preorder symbol to match that of
must testing, which goes back to the work of De Nicola & Hennessy [5]. This orientation also matches the one used in
CSP [9] and related work, were we have SPECIFICATION⊑ IMPLEMENTATION. At the same time, we like to stick to
the convention popular in the CCS community of writing the simulated process to the left of the preorder symbol and
the simulating process (that mimics moves of the simulated one) on the right. This helps when comparing with may
testing and the simulation preorder in Section 8. We achievethis by writing IMPLEMENTATION ⊒FS SPECIFICATION.

In the first case of the above definition the summation is allowed to be empty, which has the following useful
consequence.

Lemma 6.5 If ∆ diverges and∆ ⊒FS Θ, then alsoΘ diverges.

Proof: Divergence of∆ means that∆ =⇒ ε, whence with∆ ⊒FS Θ we can take the empty summation in Defini-
tion 6.4 to conclude that alsoΘ =⇒ ε. 2

Although the regularity of Definition 6.4 is appealing — for example it is trivial to see that⊑FS is reflexive and
transitive, as it should be — in practice, for specific processes, it is easier to work with a characterisation of the failure
simulation preorder in terms of a relation between betweenstatesand distributions.

Definition 6.6 (Failure Similarity) Define�FS to be the largest relation inS ×D(S) such that ifs �FS Θ then

1. whenevers α
=⇒ ∆′, for α∈Actτ , then there is aΘ′ ∈D(S) with Θ

α
=⇒ Θ′ and∆′

�FS Θ′, and

2. whenevers =⇒ 6A−→ thenΘ =⇒ 6A−→.

Any relationR ⊆ S ×D(S) that satisfies the two clauses above is called afailure simulation.

Obviously, for any failure simulationR we haveR ⊆ �FS. The following two lemmas show that the lifted failure
similarity relation�FS ⊆ D(S) ×D(S) has simulating properties analogous to 1 and 2 above.

Lemma 6.7 Suppose∆ �FS Θ and∆
α

=⇒ ∆′ for α ∈ Actτ . ThenΘ
α

=⇒ Θ′ for someΘ′ such that∆′
�FS Θ′.

Proof: ∆ �FS Θ implies by Lemma 3.4 that ∆ =
∑

i∈I

pi · si, si �FS Θi, Θ =
∑

i∈I

pi · Θi.

By Propositions 6.2 and 3.9 we know from∆ α
=⇒ ∆′ thatsi

α
=⇒ ∆′

i for ∆′
i ∈ D(S) such that∆′ =

∑
i∈I pi · ∆

′
i.

For eachi ∈ I we infer fromsi �FS Θi andsi
α

=⇒ ∆′
i that there is aΘ′

i ∈D(S) with Θi
α

=⇒ Θ′
i and∆′

i �FS Θ′. Let
Θ′ :=

∑
i∈I pi ·Θ

′
i. Then Definition 3.2(2) and Theorem 3.18(i) yield∆′

�FS Θ′ andΘ
α

=⇒ Θ′. 2

Lemma 6.8 Suppose∆ �FS Θ and∆ =⇒ 6A−→. ThenΘ =⇒ 6A−→.

Proof: Suppose∆ �FS Θ and∆ =⇒ ∆′ 6A−→. By Lemma 6.7 there exists someΘ′ such thatΘ =⇒ Θ′ and∆′
�FS Θ′.

From Lemma 3.4 we know that∆′ =
∑

i∈I

pi · si, si �FS Θi, Θ′ =
∑

i∈I

pi · Θi, with si ∈ ⌈∆′⌉ for all i∈ I.

Since∆′ 6A−→, we have thatsi 6A−→ for all i ∈ I. It follows from si �FS Θi thatΘi =⇒ Θ′
i 6A−→. By Theorem 3.18(i) we

obtain that
∑
i∈I pi · Θi =⇒

∑
i∈I pi · Θ

′
i 6A−→. By the transitivity of=⇒ we have thatΘ =⇒ 6A−→. 2

30

The next result shows how the failure simulation preorder can alternatively be defined in terms of failure similarity.

Proposition 6.9 For∆,Θ∈D(S) we have∆ ⊒FS Θ just when there is aΘmatchwith Θ =⇒ Θmatchand∆ �FS Θmatch.

Proof: Let �
′
FS ⊆ S × D(S) be the relation given bys �

′
FS Θ iff s ⊒FS Θ. Then�

′
FS is a failure simulation; hence

�
′
FS ⊆ �FS. Now suppose∆ ⊒FS Θ. Let ∆ :=

∑
i pi ·si. Then there areΘi with Θ =⇒

∑
i pi ·Θi ands ⊒FS Θi for

eachi, whencesi �
′
FS Θi, and thussi �FS Θi. TakeΘmatch :=

∑
i pi ·Θi. Definition 3.2 yields∆ �FS Θmatch.

For the other direction it suffices to show that�FS; =⇒
−1 satisfies the two clauses of Definition 6.4, yielding

�FS; =⇒
−1 ⊆ ⊒FS . So suppose, for given∆,Θ∈D(S), there is aΘmatchwith Θ =⇒ Θmatchand∆ �FS Θmatch.

Suppose∆ α
=⇒

∑
i∈I pi ·∆

′
i for someα∈Actτ . By Lemma 6.7 there is someΘ′ such thatΘmatch α

=⇒ Θ′ and
(
∑

i∈I pi ·∆
′
i) �FS Θ′. From Proposition 3.9 we know thatΘ′ =

∑
i∈I pi ·Θ

′
i for subdistributionsΘ′

i such that
∆′
i �FS Θ′

i for i ∈ I. ThusΘ
α

=⇒
∑
i pi ·Θ

′
i by the transitivity of=⇒ (Theorem 3.21) and∆′

i(�FS; =⇒
−1)Θ′

i for each
i∈ I by the reflexivity of=⇒.

Suppose∆ =⇒ 6A−→. By Lemma 6.8 we haveΘmatch=⇒ 6A−→. It follows thatΘ =⇒ 6A−→ by the transitivity of=⇒. 2

Note the appearance of the “anterior step”Θ =⇒ Θmatch in Proposition 6.9 immediately above; the following example
shows it necessary in the sense that defining⊒FS simply to be�FS (i.e. without anterior step) would not have been
suitable.

Example 6.10 Compare the two processesP := a 1
2
⊕ b andQ := τ.P . They are testing equivalent, and so for

�FS to be complete we would have to have[P ℄ �FS [Q℄. But we do not, for by Proposition 3.9 that would require[a℄ �FS [Q℄, which must fail since the former’s movea−→ [0 ℄ cannot be matched by the latter.
We do however haveP ⊒FS Q because of the anterior stepQ =⇒ P and of course[P ℄ �FS [P ℄. 2

Remark 6.11 For s∈S andΘ∈D(S) we haves �FS Θ iff s ⊒FS Θ; here no anterior step is needed. One direction
of this statement has been obtained in the beginning of the proof of Proposition 6.9; for the other note thats �FS Θ
impliess �FS Θ by Definition 3.2(1) which impliess ⊒FS Θ by Proposition 6.9 and the reflexivity of=⇒.

Example 6.10 shows that⊒FS cannot be obtained as the lifting of any relation: it lacks the decomposition property of
Proposition 3.9. Nevertheless,⊒FS enjoys the property of linearity, as occurs in Definition 3.2:

Lemma 6.12 If ∆i ⊒FS Θi for i∈ I then
∑

i∈I pi ·∆i ⊒FS

∑
i∈I pi ·Θi for anypi ∈[0, 1] (i∈ I) with

∑
i∈I pi ≤ 1.

Proof: This follows immediately from the linearity of�FS and=⇒ (cf. Theorem 3.18(i)), using Proposition 6.9.2

Example 6.13 (Divergence)From Example 3.14 we know that[recx. x℄ =⇒ ε. This, together with (1) in Section 3.1,
and the fact thatε 6A−→ for any set of actionsA, ensures thats �FS [recx. x℄ for anys, henceΘ �FS [recx. x℄ for any
Θ, and thus thatΘ ⊒FS [recx. x℄. Indeed similar reasoning applies to any∆ with ∆ = ∆0

τ−→ ∆1
τ−→ · · · τ−→ · · ·

because — as explained right before Example 3.14 — this also ensures that∆ =⇒ ε. In particular, we haveε =⇒ ε
and hence[recx. x℄ ≃FS ε.

Yet [recx. x℄ 6⊒FS 0, because the move[recx. x℄ =⇒ ε cannot be matched by a corresponding move from[0 ℄
— see Lemma 6.5. 2

Example 6.13 shows again that the anterior move in Proposition 6.9 is necessary: althoughε ⊒FS [recx. x℄ we do
not haveε �FS [recx. x℄, since by Lemma 3.5 anyΘ with ε �FS Θ must have|Θ| = 0.

Example 6.14 Referring to the processQ1 of Example 3.15, with Proposition 6.9 we easily see thata ⊒FS Q1

because we havea �FS [Q1℄. Note that the move[Q1℄ =⇒ [a℄ is crucial, since it enables us to match the move[a℄ a−→ [0 ℄ with [Q1℄ =⇒ [a℄ a−→ [0 ℄. It also enables us to match refusals: if[a℄ 6B−→ thenB can not contain the
actiona, and therefore also[Q1℄ =⇒ 6B−→.

The converse, thata ⊑FS Q1, is also true because it is straightforward to verify that the relation

{(Q1, [a℄), (τ.Q1, [a℄), (a, [a℄), (0, [0 ℄)}
is a failure simulation and thus is a subset of�FS. We therefore haveQ1 ≃FS a. 2

31

Example 6.15 Let P be the processa 1
2
⊕ recx. x and consider the states2 introduced in Example 3.16. First note

that [P ℄ �FS
1
2 ·[a℄, sincerecx. x �FS ε. Then becauses2 =⇒ 1

2 ·[a℄ we have[P ℄ ⊒FS s2. The converse, that
s2 ⊒FS [P ℄ holds, is true becauses2 �FS [P ℄ follows from the fact that the relation

{(sk, [a℄1/k⊕ [recx. x℄) | k ≥ 2} ∪ {(a, [a℄), (0, [0 ℄)}
is a failure simulation that contains the pair(s2, [P ℄). 2

Our final examples pursue the consequences of the fact that the empty distributionε is behaviourally indistinguishable
from divergent processes like[recx. x℄.
Example 6.16 (Subdistributions formally unnecessary)For any subdistribution∆, let ∆e denote the (full) distri-
bution defined by

∆e := ∆ + (1− |∆|)·[recx. x℄ .
Intuitively it is obtained from∆ by padding the missing support with the divergent state[recx. x℄.

Then∆ ≃FS ∆e. This follows because∆e =⇒ ∆, which is sufficient to establish∆ ⊒FS ∆e; but also∆e
�FS ∆

because[recx. x℄ �FS ε, and that implies the converse∆e ⊒FS ∆. The equivalence shows that formally we have no
need for subdistributions, and that our technical development could be carried out using (full) distributions only.2

But abandoning subdistributions comes at a cost: the definition of ∆ =⇒ Θ on p.9 would be much more complex if
expressed with full distributions, as would syntactic manipulations such as those used in the proof of Theorem 3.21.

More significant, however, is that diverging processes havea special character in failure simulation semantics.
Placing them at the bottom of the⊑FS preorder — as we do – requires that they failure-simulate every processes,
thus allowing all visible actions and all refusals and so behaving in a sense “chaotically”; yet applying the operational
semantics of Figure 3 torecx. x literally would suggest exactly the opposite, sincerecx. x allows no visible actions
(all its derivatives enable onlyτ) and no refusals (all its derivatives haveτ enabled). The case analyses that discrepancy
would require are entirely escaped by allowing subdistributions, as the chaotic behaviour of the divergingε follows
naturally from the definitions, as we saw in Example 6.13.

We conclude with an example involving divergence and subdistributions.

Example 6.17 For 0 ≤ c ≤ 1 let Pc be the process0 c⊕ recx. x. We show that[Pc℄ ⊑FS [Pc′℄ just whenc ≤ c′.
(Refusals can be ignored, sincePc refuses every set of actions, for allc.)

Suppose first thatc ≤ c′, and split the two processes as follows:[Pc℄ = c ·[0 ℄+ (c′−c)·[recx. x℄+ (1−c′)·[recx. x℄[Pc′℄ = c ·[0 ℄+ (c′−c)·[0 ℄ + (1−c′)·[recx. x℄ .

Because0 �FS [recx. x℄ (the middle terms), we have immediately[Pc′℄ �FS [Pc℄, whence[Pc℄ ⊑FS [Pc′℄.
For the other direction, note that[Pc′℄ =⇒ c′ ·[0 ℄. If [Pc℄ ⊑FS [Pc′℄ then from Definition 6.4 we would have to

have[Pc℄ =⇒ c′ ·Θ′ for some subdistributionΘ′, a derivative of weight no more thanc′. But the smallest weightPc
can reach via=⇒ is justc, so that we must have in factc ≤ c′. 2

We end this subsection with two properties of failure similarity that will be useful later on.

Proposition 6.18 The relation�FS is convex.

Proof: Supposes �FS Θi andpi ∈ [0, 1] for i∈ I, with
∑

i∈I pi = 1. We need to show thats �FS

∑
i∈I pi ·Θi.

If s α
=⇒ ∆′, then there existΘ′

i for i∈ I such thatΘi
α

=⇒ Θ′
i and∆′

�FS Θ′
i. By Proposition 6.2 and Defini-

tion 3.2(2), we obtain that
∑

i∈I pi ·Θi
α

=⇒
∑
i∈I pi ·Θ

′
i and∆′

�FS

∑
i∈I pi ·Θ

′
i.

If s =⇒ 6A−→ for someA ⊆ Act, thenΘi =⇒ Θ′
i 6A−→ for all i∈ I. By definition we have

∑
i∈I pi ·Θ

′
i 6A−→.

Theorem 3.18(i) yields
∑

i∈I pi ·Θi =⇒
∑

i∈I pi ·Θ
′
i.

So we have checked thats �FS

∑
i∈I pi ·Θ

′
i. It follows that�FS is convex. 2

Proposition 6.19 The relation�FS ⊆ D(S) ×D(S) is reflexive and transitive.

32

Figure 6: Illustration of Theorem 6.21

Proof: Reflexivity is easy; it relies on the fact thats �FS s for every states.
For transitivity, we first show that�FS; �FS is a failure simulation. Supposes �FS Θ �FS Φ. If s α

=⇒ ∆′ then there
is aΘ′ such thatΘ α

=⇒ Θ′ and∆′
�FS Θ′. By Lemma 6.7, there exists aΦ′ such thatΦ α

=⇒ Φ′ andΘ′
�FS Φ′. Hence,

∆′
�FS; �FS Φ′. By Lemma 3.11 we know that

�FS; �FS = �FS; �FS (24)

Therefore, we obtain∆′
�FS; �FS Φ′.

If s =⇒ 6A−→ for someA ⊆ Act, thenΘ =⇒ 6A−→ and henceΦ =⇒ 6A−→ by Lemma 6.8.
So we established that�FS; �FS ⊆ �FS. It now follows from Remark 3.3 and (24) that�FS; �FS ⊆ �FS. 2

6.2 A simpler characterisation of failure similarity for fin itary processes

Here we present a simpler characterisation of failure similarity, valid when considering finitary processes only. It is
in terms of this characterisation that we will establish soundness and completeness of the failure simulation preorder
with respect to the must testing preorder; consequently we have these results for finitary processes only.

Definition 6.20 (Simple Failure Similarity) Let �s
FS be the largest relation inS ×D(S) such that ifs �

s
FS Θ then

1. whenevers =⇒ ε then alsoΘ =⇒ ε, otherwise

2. whenevers α−→ ∆′, for α∈Actτ , then there is aΘ′ with Θ
α

=⇒ Θ′ and∆′
�s

FS Θ′, and

3. whenevers 6A−→ thenΘ =⇒ 6A−→.

Theorem 6.21 (Equivalence of failure- and simple failure similarity) For finitary distributions∆,Θ∈D(S) in a
pLTS 〈S,Actτ ,→〉 we have∆ �

s
FS Θ iff ∆ �FS Θ.

Proof: Becauses α−→ ∆′ impliess α−→ ∆′ ands 6A−→ impliess =⇒ 6A−→ it is trivial that�FS satisfies the conditions of
Definition 6.20, so that�FS ⊆ �

s
FS.

For the other direction we need to show that�
s
FS satisfies Clause 1 of Definition 6.6 withα = τ , that is

if s �
s
FS Θ ands =⇒ ∆′ then there is someΘ′ ∈D(S) with Θ =⇒ Θ′ ∆′

�s
FS Θ′.

Once we have this, the relation�s
FS clearly satisfies both clauses of Definition 6.6, so that we have�

s
FS ⊆ �FS.

So suppose thats �
s
FS Θ and thats =⇒ ∆′ where — for the moment — we assume|∆′| = 1. Referring to

Definition 3.12, there must be∆k, ∆→
k and∆×

k for k ≥ 0 such thats = ∆0, ∆k = ∆→
k + ∆×

k , ∆→
k

τ−→ ∆k+1

and∆′ =
∑∞
k=1 ∆×

k . Since∆×
0 + ∆→

0 = s �s
FS Θ, using Proposition 3.9 we can defineΘ =: Θ×

0 + Θ→
0 so that

∆
{×,→}
0 �s

FS Θ
{×,→}
0 . Since∆→

0
τ−→ ∆1 and∆→

0 �s
FS Θ→

0 we haveΘ→
0 =⇒ Θ1 with ∆1 �s

FS Θ1.

33

Repeating the above procedure gives us inductively a seriesΘk,Θ
→
k ,Θ

×
k of subdistributions, fork ≥ 0, such that

Θ0 = Θ, ∆k �s
FS Θk, Θk = Θ→

k + Θ×
k , ∆×

k �s
FS Θ×

k , ∆→
k �s

FS Θ→
k andΘ→

k
τ

=⇒ Θk. We defineΘ′ :=
∑

iΘ
×
i . By

Additivity (Remark 3.6) we have∆′
�s

FS Θ′. It remains to be shown thatΘ =⇒ Θ′.
For that final step, because(Θ =⇒) is closed (Lemma 5.4) we can establishΘ =⇒ Θ′ by exhibiting a sequence

Θ′
i with Θ =⇒ Θ′

i for eachi and with theΘ′
i’s being arbitrarily close toΘ′. Induction establishes for eachi that

Θ =⇒ Θ′
i := (Θ→

i +
∑
k≤i Θ

×
k). Since|∆′| = 1, we must havelimi→∞ |

∑∞
k=i ∆

→
i | = 0 andlimi→∞ |∆→

i | = 0,
whence by Lemma 3.5, using that∆→

i �s
FS Θ→

i , alsolimi→∞ |
∑∞

k=i Θ
→
i | = 0 andlimi→∞ |Θ→

i | = 0. Thus these
Θ′
i’s form the sequence we needed.

That concludes the case for|∆′| = 1. If on the other hand∆′ = ε, i.e. we have|∆′| = 0, thenΘ =⇒ ε follows
immediately froms �

s
FS Θ, andε �s

FS ε trivially.
In the general case, ifs =⇒ ∆′ then by Lemma 5.8 we haves =⇒ ∆′

1 p⊕ ∆′
ε for some probabilityp and full

distributions∆′
1,∆

′
ε, with ∆′ = p ·∆′

1 and∆′
ε =⇒ ε. From the mass-1 case above we haveΘ =⇒ Θ′

1 p⊕ Θ′
ε with

∆′
{1,ε} �s

FS Θ′
{1,ε}; from the mass-0 case we haveΘ′

ε =⇒ ε and henceΘ′
1 p⊕ Θ′

ε =⇒ p ·Θ′
1 by Theorem 3.18(i); thus

transitivity yieldsΘ =⇒ p ·Θ′
1, with ∆′ = p ·∆′

1 �s
FS p ·Θ

′
1 as required, using Definition 3.2(2). 2

Add the counterexample from Appendix A.2.3 here.

6.3 Precongruence

The purpose of this section is to show that the semantic relation ⊒FS is preserved by the constructs ofpCSP. The
proofs follow closely the corresponding proofs in Section 4of [2], but here there is a significant extra proof obligation:
in order to relate two processes we have to demonstrate that if the first diverges then so does the second. This is often
non-trivial; for example in the development of the testing theory for non-probabilistic processes, this proof obligation
caused considerable difficulty and was only achieved by an appeal to König’s Lemma (see Lemma 4.4.13 of [7]).

Here, in order to avoid such complications, we introduce yetanother version of failure simulation; it modifies
Definition 6.20 by checking divergence co-inductively instead of using a predicate.

Definition 6.22 Define�
c
FS to be the largest relation inS ×D(S) such that ifs �

c
FS Θ then

1. whenevers =⇒ ε, there are some∆′,Θ′ such thats =⇒ τ−→=⇒ ∆′ =⇒ ε, Θ =⇒ τ−→=⇒ Θ′ and∆′
�c

FS Θ′;
otherwise

2. whenevers α−→ ∆′, for α∈Actτ , then there is aΘ′ with Θ
α

=⇒ Θ′ and∆′
�c

FS Θ′, and

3. whenevers 6A−→ thenΘ =⇒ 6A−→.

Lemma 6.23 The following statements about divergence are equivalent.

(1) ∆ =⇒ ε.

(2) There is an infinite sequence∆ τ−→ ∆1
τ−→ ∆2

τ−→

(3) There is an infinite sequence∆ =⇒ τ−→=⇒ ∆1 =⇒ τ−→=⇒ ∆2 =⇒ τ−→=⇒

Proof: By the definition of weak transition, it is immediate that(1) ⇔ (2). Clearly we have(2) ⇒ (3). To show
that(3) ⇒ (2), we introduce another characterisation of divergence. Let∆ be a subdistribution in a pLTSL. A pLTS
induced by∆ is a pLTS that has∆ as initial subdistribution and whose states and transitions are subsets of those inL.

(4) There is a pLTS induced by∆ where all states have outgoingτ transitions.

It holds that(3) ⇒ (4) because we can construct a pLTS whose states and transitionsare just those used in deriving
the infinite sequence in(3). For this pLTS, each state has an outgoingτ transition, which gives(4) ⇒ (2). 2

The next lemma shows the usefulness of the relation�
c
FS by checking divergence in a co-inductive way.

34

Lemma 6.24 Suppose∆ �c
FS Θ and ∆ =⇒ ε. Then there exist∆′,Θ′ such that∆ =⇒ τ−→=⇒ ∆′ =⇒ ε,

Θ =⇒ τ−→=⇒ Θ′, and∆′
�c

FS Θ′.

Proof: Suppose∆ �c
FS Θ and∆ =⇒ ε. By Proposition 3.9(2), we can decomposeΘ as

∑
s∈⌈∆⌉ ∆(s)·Θs and

s �
c
FS Θs for eachs ∈ ⌈∆⌉. Now eachs must also diverge. So there exist∆′

s,Θ
′
s such thats =⇒ τ−→=⇒ ∆′

s =⇒ ε,
Θs =⇒ τ−→=⇒ Θ′

s and∆′
s �c

FS Θ′
s for eachs ∈ ⌈∆⌉. Let ∆′ =

∑
s∈⌈∆⌉ ∆(s)·∆′

s andΘ′ =
∑

s∈⌈∆⌉ ∆(s)·Θ′
s. By

Proposition 3.9(1), we have∆′
�c

FS Θ′, ∆ =⇒ τ−→=⇒ ∆′, andΘ =⇒ τ−→=⇒ Θ′. We also have that∆′ =⇒ ε because
for each states in ∆′ it holds thats ∈ ⌈∆′

s⌉ for some∆′
s and∆′

s =⇒ ε, which meanss =⇒ ε. 2

Lemma 6.25 �
c
FS coincides with�s

FS.

Proof: We only need to check that the first clause in Definition 6.20 isequivalent to the first clause in Definition 6.22.
For one direction, we consider the relation

R := {(s,Θ) | s =⇒ ε,Θ =⇒ ε}

and showR ⊆ �
c
FS. Supposes R Θ. By Lemma 6.23 there are two infinite sequencess τ−→ ∆1

τ−→ ∆2
τ−→ . . . and

Θ τ−→ Θ1
τ−→ Then we have both∆1 =⇒ ε andΘ1 =⇒ ε. Note that∆1 =⇒ ε if and only if t =⇒ ε for each

t ∈ ⌈∆1⌉. Therefore,∆1 R Θ1 as we have∆1 =
∑

t∈⌈∆1⌉
∆1(t)·t, Θ1 =

∑
t∈⌈∆1⌉

∆1(t)·Θ1, andt R Θ1. Here
|∆1| = 1 because∆1, like s, is a distribution.

For the other direction, we show that∆ �c
FS Θ and∆ =⇒ ε imply Θ =⇒ ε. Then as a special case, we get

s �
c
FS Θ ands =⇒ ε imply Θ =⇒ ε. By repeated application of Lemma 6.24, we can obtain two infinite sequences

∆ =⇒ τ−→=⇒ ∆1 =⇒ τ−→=⇒ . . . andΘ =⇒ τ−→=⇒ Θ1 =⇒ τ−→=⇒ . . . such that∆i �c
FS Θi for all i ≥ 1. By

Lemma 6.23 this impliesΘ =⇒ ε. 2

The advantage of this new relation�c
FS over�s

FS is that in order to checks �
c
FS Θ whens diverges it is sufficient

to find a single matching moveΘ =⇒ τ−→=⇒ Θ′, rather than an infinite sequence of moves. However to construct this
matching move we can not rely on clause 2. in Definition 6.22, as the move generated there might actually be empty,
as we have seen in Example 3.13. Instead we need a method for generating p-weak moves which contain at least one
occurrence of aτ -action.

Definition 6.26 [Productive moves] Let us writes |A t τ−→p Θ whenever we can infers |A t τ−→p Θ from rule
(par.r) or (par.i). In effect this means thatt must contribute to the action.

Theseproductiveactions are extended to subdistributions in the standard manner, giving∆ τ−→p Θ.

First let us recall the following lemma which appeared as Lemma 6.12 in [3]; it still holds in our current setting.
The following lemma appeared as Lemma 6.12 in [3]. It still holds in our current setting.

Lemma 6.27 (1) If Φ =⇒ Φ′ thenΦ |A ∆ =⇒ Φ′ |A ∆ and∆ |A Φ =⇒ ∆ |A Φ′.

(2) If Φ a−→ Φ′ anda 6∈ A thenΦ |A ∆ a−→ Φ′ |A ∆ and∆ |A Φ a−→ ∆ |A Φ′.

(3) If Φ a−→ Φ′, ∆ a−→ ∆′ anda ∈ A then∆ |A Φ τ−→ ∆′ |A Φ′.

(4) (
∑

j∈J pj ·Φj) |A (
∑

k∈K qk ·∆k) =
∑

j∈J

∑
k∈K(pj ·qk)·(Φj |A ∆k).

(5) Given relationsR,R′ ⊆ S×D(S) satisfyinguRΨ wheneveru = s |A t andΨ = Θ |A t with s R′ Θ andt∈S.
Then∆ R′ Θ andΦ∈D(S) implies(∆ |A Φ) R (Θ |A Φ). 2

Proposition 6.28 Suppose∆ �c
FS Θ and∆ |A t τ−→p Γ. ThenΘ |A t =⇒ τ−→=⇒ Ψ for someΨ such thatΓ R Ψ,

whereR is the relation given by{(s |A t,Θ |A t) | s �
c
FS Θ}.

Proof: We first show a simplified version of the result. Supposes �
c
FS Θ ands |A t τ−→p Γ; we prove this entails

Θ |A t =⇒ τ−→=⇒ Ψ such thatΓ R Ψ. There are only two possibilities for inferring the above productive move from
s |A t:

35

(i) Γ = s |A Φ wheret τ−→ Φ

(ii) or Γ = ∆ |A Φ where for somea ∈ A, s a−→ ∆ andt a−→ Φ.

In the first case we haveΘ |A t τ−→ Θ |A Φ by Lemma 6.27(2) and(s |A Φ) R (Θ |A Φ) by Lemma 6.27(5),
whereas in the second cases �

c
FS Θ implies Θ =⇒ a−→=⇒ Θ′ for someΘ′ ∈D(S) with ∆ �c

FS Θ′, and we have
Θ |A t =⇒ τ−→=⇒ Θ′ |A Φ by Lemma 6.27(1) and (3), and(∆ |A Φ) R (Θ′ |A Φ) by Lemma 6.27(5).

The general case now follows using a standard decomposition/recomposition argument. Since∆ |A t τ−→p Γ,
Lemma 3.4 yields

∆ =
∑

i∈I

pi ·si, si |A t
τ−→p Γi, Γ =

∑

i∈I

pi ·Γi,

for certainsi ∈S, Γi ∈D(S) and
∑

i∈I pi ≤ 1. For finitary processes�c
FS is convex by combination of Proposi-

tion 6.18, Theorem 6.21 and Lemma 6.25. Hence, since∆ �c
FS Θ, Corollary 3.10 yields thatΘ =

∑
i∈I pi ·Θi for

someΘi ∈D(S) such thatsi �
c
FS Θi for i∈ I. By the above argument we haveΘi |A t =⇒ τ−→=⇒ Ψi for some

Ψi ∈D(S) such thatΓi R Ψi. The requiredΨ can be taken to be
∑

i∈I pi ·Ψi as Definition 3.2(2) yieldsΓ R Ψ and
Theorem 3.18(i) and Definition 3.2(2) yieldΘ |A t =⇒ τ−→=⇒ Ψ. 2

Our next result shows that we can always factor out productive moves from an arbitrary action of a parallel process.

Lemma 6.29 Suppose∆ |A t
τ−→ Γ. Then there exists subdistributions∆→, ∆×, ∆next, Γ× (possibly empty) such

that

(i) ∆ = ∆→ + ∆×

(ii) ∆→ τ−→ ∆next

(iii) ∆× |A t
τ−→p Γ×

(iv) Γ = ∆next |A t+ Γ×

Proof: By Lemma 3.4∆ |A t
τ−→ Γ implies that

∆ =
∑

i∈I

pi ·si, si |A t
τ−→ Γi, Γ =

∑

i∈I

pi ·Γi,

for certainsi ∈S, Γi ∈D(S) and
∑
i∈I pi ≤ 1. Let J = { i∈ I | si |A t τ−→p Γi }. Note that for eachi ∈ (I − J)

Γi has the formΓ′
i |A t, wheresi

τ−→ Γ′
i. Now let

∆→ =
∑

i∈(I−J)

pi ·si, ∆× =
∑

i∈J

pi ·si

∆next =
∑

i∈(I−J)

pi ·Γ
′
i, Γ× =

∑

i∈J

pi ·Γi

By construction (i) and (iv) are satisfied, and (ii) and (iii)follows by property (2) of Definition 3.2. 2

Lemma 6.30 If ∆ |A t =⇒ ε then there is a∆′ ∈D(S) such that∆ =⇒ ∆′ and∆′ |A t
τ−→p=⇒ ε.

Proof: Suppose∆0 |A t =⇒ ε. By Lemma 6.23 there is an infinite sequence

∆0 |A t
τ−→ Ψ1

τ−→ Ψ2
τ−→ . . . (25)

By induction onk ≥ 0, we find distributionsΓk+1, ∆→
k , ∆×

k , ∆k+1, Γ×
k+1 such that

(i) ∆k |A t
τ−→ Γk+1

(ii) Γk+1 ≤ Ψk+1

(iii) ∆k = ∆→
k + ∆×

k

(iv) ∆→
k

τ−→ ∆k+1

36

(v) ∆×
k |A t

τ−→p Γ×
k+1

(vi) Γk+1 = ∆k+1 |A t+ Γ×
k+1.

Induction Base:TakeΓ1 := Ψ1 and apply Lemma 6.30.
Induction Step:Assume we already haveΓk, ∆k andΓ×

k . Since∆k |A t ≤ Γk ≤ Ψk andΨk
τ−→ Ψk+1, Propo-

sition 3.9 gives us aΓk+1 ⊆ Ψk+1 such that∆k |A t τ−→ Γk+1 andΓk+1 ≤ Ψk+1. Now apply Lemma 6.30.

Let ∆′ :=
∑∞

k=0 ∆×
k . By (iii) and (iv) above we obtain a weakτ move∆0 =⇒ ∆′. Since∆′ |A t =

∑∞
k=0(∆

×
k |A t),

by (v) and Definition 3.2 we have∆′ |A t τ−→p

∑∞
k=1 Γ×

k . Note that here it does not matter if∆′ = ε. Since
Γ×
k ≤ Γk ≤ Ψk and Ψk =⇒ ε it follows by Theorem 3.18(ii) thatΓ×

k =⇒ ε. Hence Theorem 3.18(i) yields∑∞
k=1 Γ×

k =⇒ ε. 2

We are now ready to prove the main result of this section, namely that⊑FS is preserved by the parallel operator.

Proposition 6.31 If ∆ ⊒FS Θ then∆ |A Φ ⊒FS Θ |A Φ.

Proof: We first construct the following relation

R := {(s |A t,Θ |A t) | s �
c
FS Θ}

and check thatR ⊆ �
c
FS. As in the proof of Proposition 4.6 in [2], one can check that each strong transition from

s |A t can be matched up by a transition fromΘ |A t, and the matching of failures can also be established. So we
concentrate on the requirement involving divergence.

Supposes �
c
FS Θ ands |A t =⇒ ε. We need to find someΓ,Ψ such that

(a) s |A t =⇒ τ−→=⇒ Γ =⇒ ε,

(b) Θ |A t =⇒ τ−→=⇒ Ψ andΓ R Ψ.

By Lemma 6.30 there are∆′,Γ∈D(S) such thats =⇒ ∆′ and ∆′ |A t τ−→p Γ =⇒ ε. Since�
c
FS coincides

with �
s
FS and�FS, there must be aΘ′ ∈D(S) such thatΘ =⇒ Θ′ and∆′

�c
FS Θ′. By Proposition 6.28 we have

Θ′ |A t =⇒ τ−→=⇒ Ψ for someΨ such thatΓ R Ψ. Now s |A t =⇒ ∆′ |A t τ−→ Γ =⇒ ε andΘ |A t =⇒ Θ′ |A
t =⇒ τ−→=⇒ Ψ with Γ R Ψ, which had to be shown.

Therefore, we have shown thatR ⊆ �
c
FS. Now let us focus our attention on the statement of the proposition, which

involves⊒FS .
Suppose∆ ⊒FS Θ. By definition this means that there is someΘmatchsuch thatΘ =⇒ Θmatchand∆ �s

FS Θmatch.
By Lemma 6.25 we have∆ �c

FS Θmatch and Lemma 6.27(5) yields(∆ |A Φ) R (Θmatch |A Φ). Therefore, we have
(∆ |A Φ) �c

FS (Θmatch |A Φ), i.e. (∆ |A Φ) �s
FS (Θmatch |A Φ) by Lemma 6.25. By Lemma 6.27(1) we also have

(Θ |A Φ) =⇒ (Θmatch |A Φ), which had to be established. 2

Proposition 6.32 (Precongruence)If P ⊒FS Q thenα.P ⊒FS α.Q for α∈Act, and similarly ifP1,2 ⊒FS Q1,2

respectively thenP1 ⊙ P2 ⊒FS Q1 ⊙Q2 for ⊙ any of the operators⊓, 2,p⊕ and|A.

Proof: The most difficult case is the closure of failure simulation under parallel composition, which is proved in
Lemma 6.31. The other cases are simpler, thus omitted. 2

Lemma 6.33 If P ⊑FS Q then for any testT it holds that[P |Act T] ⊑FS [Q |Act T].

Proof: We first construct the following relation

R := {(s |Act t,Θ |Act t) | s �
c
FS Θ}

wheres |Act t is a state in[P |Act T] andΘ |Act t is a subdistribution in[Q |Act T], and show thatR⊆�
c
FS.

1. The matching of divergence betweens |Act t andΘ |Act t is almost the same as the proof of Lemma 6.31,
besides that we need to check the requirementst 6ω−→ andΓ 6ω−→ are always met there.

37

2. We now consider the matching of transitions.

• If s |Act t
ω−→ then this action is actually performed byt. Supposet ω−→ Γ. Thens |Act t

ω−→ s |Act Γ and
Θ |Act t

ω−→ Θ |Act Γ. Obviously we have(s |Act Γ,Θ |Act Γ) ∈R.

• If s |Act t
τ−→ then we must haves |Act t 6ω−→, otherwise theτ transition would be a “scooting” transition.

It follows thatt 6ω−→. There are three subcases.

– t τ−→ Γ. So the transitions |Act t
τ−→ s |Act Γ can simply be matched up byΘ |Act t

τ−→ Θ |Act Γ.

– s τ−→ ∆. Sinces �
c
FS Θ, there exists someΘ′ such thatΘ =⇒ Θ′ and∆ �c

FS Θ′. Note that in this case
t 6ω−→. It follows thatΘ |Act t =⇒ Θ′ |Act t which can match up the transitions |Act t −→ ∆ |Act t
because(∆ |Act t,Θ

′ |Act t) ∈R.

– s a−→ ∆ and t a−→ Γ for some actiona ∈ Act. Sinces �
c
FS Θ, there exists someΘ′ such that

Θ
a

=⇒ Θ′ and∆ �c
FS Θ′. Note that in this caset 6ω−→. It follows thatΘ |Act t =⇒ Θ′ |Act Γ which can

match up the transitions |Act t −→ ∆ |Act Γ because(∆ |Act Γ,Θ′ |Act Γ) ∈R.

• Supposes |Act t 6A−→ for anyA ⊆ Act ∪ {ω}. There are two possibilities.

– If s |Act t 6ω−→, then t 6ω−→ and there are two subsetsA1, A2 of A such thats 6A1−−→, t 6A2−−→ and
A = A1 ∪ A2. Sinces �

c
FS Θ there exists someΘ′ such thatΘ =⇒ Θ′ andΘ′ 6A1−−→. Therefore, we

haveΘ |Act t =⇒ Θ′ |Act t 6A−→.

– If s |Act t
ω−→ thent ω−→ andω 6∈ A. Therefore, we haveΘ |Act t

ω−→ andΘ |Act t 6τ−→ because there
is no “scooting” transition inΘ |Act t. It follows thatΘ |Act t 6A−→.

Therefore, we have shown thatR⊆�
c
FS, from which our expected result can be establishing using similar arguments in

the last part of the proof of Lemma 6.31. 2

6.4 Soundness

In this section we prove that failure simulations are sound for showing that processes are related via the failure-based
testing preorder. We assume initially that we are using onlyone success actionω, so that|Ω| = 1.

Because we prune our computation structures before extracting values from them, we will be concerned mainly
with ω-respecting structures. For those we have the following

Lemma 6.34 Let ∆ andΘ be subdistributions in anω-respecting computation structure. If subdistribution∆ is stable
and∆ �s

FS Θ, thenV(∆) ∈ V(Θ).

Proof: We first show that ifs is stable ands �
s
FS Θ thenV(s) ∈ V(Θ). Sinces is stable, we have only two cases:

(i) s 6−→ HereV(s)=0 and sinces �
s
FS Θ we haveΘ =⇒ Θ′ with Θ′ 6−→, whence in factΘ =⇒≻ Θ′ and

V(Θ′) = 0. Thus from Lemma 4.34 we haveV(s) = 0 ∈ V(Θ).

(ii) s ω−→ ∆′ for some∆′ HereV(s)=1 andΘ =⇒ Θ′ ω−→ with V(Θ′)=1. Because the pLTS isω-respecting,
in factΘ =⇒≻ Θ′ and so againV(s) = 1 ∈ V(Θ).

Now for the general case we suppose∆ �s
FS Θ. Use Proposition 3.9 to decomposeΘ into

∑
s∈⌈∆⌉ ∆(s)·Θs such

thats �
s
FS Θs for eachs ∈ ⌈∆⌉, and recall each such states is stable. From above we have thatV(s) ∈ V(Θs) for

thoses, and soV(∆) =
∑

∈⌈∆⌉ ∆(s)·V(s) ∈
∑
s∈⌈∆⌉ ∆(s)·V(Θs) = V(Θ). 2

Lemma 6.35 Let ∆ be a subdistribution in anω-respecting computation structure. If∆ =⇒ ∆′ thenV(∆′) ⊆ V(∆).

Proof: Note that if∆′ =⇒≻ ∆′′ then∆ =⇒ ∆′ =⇒≻ ∆′′, so that every extreme derivative of∆′ is also an extreme
derivative of∆. The result follows from Lemma 4.34. 2

Lemma 6.36 Let ∆ andΘ be subdistributions in anω-respecting computation structure. If∆ �s
FS Θ, then we have

V(∆) ⊆ V(Θ).

38

Proof: Since∆ �s
FS Θ, for any∆ =⇒≻ ∆′ we have the matching transitionΘ =⇒ Θ′ such that∆′

�s
FS Θ′. It follows

from Lemmas 6.34 and 6.35 thatV(∆′) ∈ V(Θ′) ⊆ V(Θ). By Lemma 4.34 we obtainV(∆) ⊆ V(Θ). 2

Lemma 6.37 Let ∆ andΘ be subdistributions in anω-respecting computation structure. IfΘ ⊑FS ∆, then it holds
thatV(Θ) ⊇ V(∆).

Proof: SupposeΘ ⊑FS ∆. By Proposition 6.9 and Theorem 6.21, there exists someΘ′ such thatΘ =⇒ Θ′ and
∆ �s

FS Θ′. By Lemmas 6.36 and 6.35 we obtainV(∆) ⊆ V(Θ′) ⊆ V(Θ). 2

Theorem 6.38 If P ⊑FS Q thenP ⊑pmustQ.

Proof: We reason as follows.

P ⊑FS Q
implies [P |Act T] ⊑FS [Q |Act T] Lemma 6.33, for any testT
implies V([P |Act T]) ⊇ V([Q |Act T]) [·] is ω-respecting; Lemma 6.37
iff A(T, P) ⊇ A(T,Q) (4)
implies A(T, P) ≤Sm A(T,Q) Def. Smyth order
iff P ⊑pmustQ . Definition 4.5

2

Corollary 6.39 If P ⊑FS Q thenP ⊑Ω
pmustQ.

Proof: Section 4.3.1 recalled our earlier result thatΩ-testing is reducible to scalar testing. 2

7 Failure simulation is complete for must testing

This section establishes the completeness of the failure simulation preorder w.r.t. the must testing preorder. It doesso
in three steps. First we provide a characterisation of the preorder relation⊑FS by finite approximations. Secondly,
using this, we develop a modal logic which can be used to characterise the failure simulation preorder on finitary
pLTSs. Finally, we adapt the results of [2] to show that the modal formulae can in turn be characterised by tests; again
this result depends on the underlying pLTS being finite-state. From this, completeness follows.

7.1 Inductive characterisation

�
s
FS�FS�

k
FS�

′
FS�

c
FS The relation�s

FS of Definition 6.20 is given coinductively: it is the largest fixpoint of an equation
R= F(R). An alternative approach is to use thatF(−) to define�s

FS as a limit of approximants:

Definition 7.1 For everyk ≥ 0 we define the relations�k
FS⊆ S ×D(S) as follows:

(i) �
0
FS := S ×D(S)

(ii) �
k+1
FS := F(�k

FS)

Finally let�∞
FS :=

⋂∞
k=0 �

k
FS.

A simple inductive argument ensures that�
s
FS ⊆ �

k
FS, for everyk ≥ 0, and therefore that�s

FS ⊆ �
∞
FS . The converse is

however not true in general.
A (non-probabilistic) example is well-known in the literature: it makes essential use of an infinite branching. Let

P be the processrecx. a.x ands a state in a pLTS which starts by making an infinitary choice, namely for eachk ≥ 0
it has the option to perform a sequence ofk a actions in succession and then deadlock. This can be described by
the infinitary CCS expression

∑∞
k=0 a

k. Then[P ℄ 6�s
FS s, because the move[P ℄ a−→ [P ℄ can not be matched bys.

However an easy inductive argument shows that[P ℄ �
k
FS a

k for everyk, and therefore that[P ℄ �
∞
FS s.

39

Once we restrict our non-probabilistic systems to finitely branching state spaces, however, a simple counting
argument will show that�s

FS coincides with�
∞
FS ; see [8, Theorem 2.1] for the argument applied to bisimulation

equivalence. In the probabilistic case we restrict to both finite-stateand finite-branching -systems, and the effect of
that is captured by topologicalcompactness. Finiteness is lost unavoidably when we remember that for example the
processτ.a + τ.b can move via=⇒ to a distribution[a℄ p⊕ [b℄ for any of the non-denumerably many probabilities
p∈[0, 1] — and that is hardly finite. Even worse, in probabilistic systems one can have infinite branching over a finite-
state system (not possible without probability), just e.g.by picking some infinite subset of[0, 1] to be the allowedp’s
in the example above; that is why we must now impose finite branching explicitly. The effect is what one could call
“finitely generated” transitions (in this case by arbitraryinterpolation of the two extreme possibilitiesa andb, two
being a finite number), and that is the key structural property that compactness captures.

Because compactness follows from closure and boundedness ,we approach this topic via closure.
Note that the metric space(D(S), d1) with d1(∆,Θ) = maxs∈S |∆(s) − Θ(s)| and (S → D(S), d2) with

d2(f, g) = maxs∈Sd1(f(s), g(s)) are complete. LetX be a subset of eitherD(S) or S → D(S). Clearly,X is
bounded. So ifX is closed, it is also compact.

Definition 7.2 A relationR ⊆ S×D(S) is closedif for everys ∈ S the sets · R is closed.

Two examples of closed relations are=⇒ and a
=⇒ for anya, as shown by Lemmas 5.4 and 5.5.

Our next step is to show that each of the relations�
k
FS are closed. This requires some results to be first established.

Lemma 7.3 LetR⊆ S×D(S) be closed. Then its set of choice functions{ f : S → D(S) | f ∈SR} is also closed.

Proof: Straightforward. Need to say what definition of closure we’re using wrt a set of functions. 2

Corollary 7.4 Let R⊆ S ×D(S) be closed and convex. ThenR is also closed.

Proof: For any∆ ∈ D(S), we know from Proposition 3.8 that∆· R= {Exp∆(f) | f ∈⌈∆⌉R}. The function
Exp∆(−) is continuous. By Lemma 7.3 the set of choice functions ofR is closed, and it is also bounded, thus being
compact. Its image is also compact, thus being closed. 2

Lemma 7.5 Let R ⊆ S ×D(S) be closed and convex, andC ⊆ D(S) be closed. Then the set{∆ | ∆· R ∩C 6=
∅ } is also closed.

Proof: First defineE : D(S) × (S → D(S)) → D(S) by E(Θ, f) = ExpΘ(f), which is obviously continuous.
Then letF = { f | f ∈⌈∆⌉R}, which by the previous lemma is closed. Finally let

Z = π1(E
−1(C) ∩ (D(S) × F))

whereπ1 is the projection on to the first component of a pair. We observe that the continuity ofE ensures that the
inverse image of the closed setC is closed. Furthermore,E−1(C) ∩ (D(S) × F) is compact because it is both
closed and bounded. Its image under the continuous functionπ1 is also compact. It follows thatZ is closed. But
Z = {∆ | ∆· R ∩C 6= ∅ } because

∆ ∈ Z iff (∆, f) ∈ E−1(C) for somef ∈⌈∆⌉R

iff E(∆, f) ∈ C for somef ∈⌈∆⌉R

iff Exp∆(f) ∈ C for somef ∈⌈∆⌉R

iff ∆ R ∆′ for some∆′ ∈ C

The last line is an application of Proposition 3.8, which requires convexity ofR. 2

An immediate corollary of this last result is:

40

Corollary 7.6 In a finitary pLTS the following sets are closed:

(i) {∆ | ∆ =⇒ ε }

(ii) {∆ | ∆ 6A=⇒}

Proof: By Lemma 5.4 and Corollary 3.20 we know that=⇒ is closed and convex. Therefore, we can apply the
previous lemma withC = {ε} to obtain the first result. To obtain the second we apply it with C = {Θ | Θ 6A−→},
which is easily seen to be closed. 2

The result is also used in the proof of:

Proposition 7.7 For everyk ≥ 0 the relation�
k
FS is closed and convex.

Proof: By induction onk. Fork = 0 it is obvious. So let us assume that�
k
FS is closed and convex. We have to show

that

s · �
(k+1)
FS is closed and convex, for every states (26)

If s =⇒ ε then this follows from the corollary above, since in this cases · �
(k+1)
FS coincides with{∆ | ∆ =⇒ ε }. So

let us assume that this is not the case.
For everyA ⊆ Act letRA = {∆ | ∆ 6A=⇒}, which we know by the corollary above to be closed and is obviously

convex. Also for everyΘ, α letGΘ,α = {∆ | (∆· α
=⇒) ∩ (Θ · �k

FS) 6= ∅ }. By Proposition 6.2, the relationα=⇒ is
lifted from a closed convex relation. By Corollary 7.4, the assumption that�k

FS is closed and convex implies that�k
FS

is also closed. So we can appeal to Lemma 7.5 and conclude thateachGΘ,α is closed. By Definition 3.2(2) it is also

easy to see thatGΘ,α is convex. But it follows thats · �
(k+1)
FS is also closed and convex as it can be written as

∩{RA | s 6A−→} ∩ ∩{GΘ,α | s α−→ Θ }

2

Before the main result of this section we need one more technical result.

Lemma 7.8 Let S be a finite set of states. SupposeRk ⊆ S × D(S) is a sequence of closed convex relations such
thatR(k+1) ⊆ Rk. Then(∩∞

k=0 Rk) ⊆ (∩∞
k=0 Rk).

Proof: LetR∞ denote(∩∞
k=0 Rk), and suppose∆ Rk Θ for everyk ≥ 0. We have to show that∆R∞Θ.

LetG = { f : S → D(S) | Θ = Exp∆(f) }, which is easily seen to be a closed set. For eachk let F k = { f :
S → D(S) | f ∈⌈∆⌉R

k }, which by Lemma 7.3 we also know to be closed. Finally considerthe collection of closed

setsHk = F k ∩ G; since∆ Rk Θ, Proposition 3.8 assures us that all of these are non-empty.Also H(k+1) ⊆ Hk

and therefore by the finite-intersection property [14]∩∞
k=0H

k is also non-empty.
Let f be an arbitrary element of this intersection. For any states, and for everyk ≥ 0, s Rk f(s), that is

s R∞ f(s). So f is a choice function forR∞, f ∈⌈∆⌉R
∞. From convexity and Proposition 3.8 it follows that

∆ R∞ Exp∆(f). But from the definition of theG we know thatΘ = Exp∆(f), and the required result follows. 2

Theorem 7.9 In a finitary pLTS,s �
s
FS Θ if and only if s �

∞
FS Θ.

Proof: Since�
s
FS ⊆ �

∞
FS it is sufficient to show the opposite inclusion, which by definition holds if �∞

FS is a failure
simulation, viz. if�∞

FS ⊆ F(�∞
FS). Supposes �

∞
FS Θ, which means thats �

k
FS Θ for everyk ≥ 0. According to

Definition 6.20, in order to shows F(�∞
FS) Θ we have to establish three properties, the first and last of which are

trivial (for they are independent on the argument ofF).
So supposes α−→ ∆′. We have to show thatΘ α

=⇒ Θ′ for someΘ′ such that∆′
�∞

FS Θ′.

41

For everyk ≥ 0 there exists someΘ′
k such thatΘ α

=⇒ Θ′
k and∆′

�k
FS Θ′

k. Now construct the sets

Dk = {Θ′ | Θ
α

=⇒ Θ′ and∆′
�k

FS Θ′ }.

From Lemma 5.4 and Proposition 7.7 we know that these are closed. They are also non-empty andDk+1 ⊆ Dk. So
by the finite-intersection property the set

⋂∞
k=0D

k is non-empty. For anyΘ′ in it we knowΘ
α

=⇒ Θ′ and∆′
�k

FS Θ′

for everyk ≥ 0. By Proposition 7.7, the relations�k
FS are all closed and convex. Therefore, Lemma 7.8 may be applied

to them, which enables us to conclude∆′
�∞

FS Θ′. 2

Analogously to what we did for�s
FS, we also give an inductive characterisation of⊒FS : For everyk ≥ 0 let ∆ ⊒k

FS
Θ

if there exists aΘ =⇒ Θmatchsuch that∆ �k
FS Θmatch, and let⊒∞

FS
denote

⋂∞
k=0 ⊒k

FS
.

Corollary 7.10 In a finitary pLTS,∆ ⊒FS Θ if and only if ∆ ⊒∞
FS

Θ.

Proof: Since�
s
FS ⊆ �

k
FS for everyk ≥ 0, it is straightforward to prove one direction:∆ ⊒FS Θ implies∆ ⊒∞

FS
Θ.

For the converse,∆ ⊒∞
FS

Θ means that for everyk we have someΘk satisfyingΘ =⇒ Θk and∆ �k
FS Θk. By

Proposition 6.9 we have to find someΘ∞ such thatΘ =⇒ Θ∞ and∆ �k
FS Θ∞. This can be done exactly as in the

proof of Theorem 7.9. 2

7.2 The modal logic

LetF be the set of modal formulae defined inductively as follows:

• div,⊤ ∈ F

• ref (A) ∈ F whenA ⊆ Act,

• 〈a〉ϕ ∈ F whenϕ∈F anda∈Act,

• ϕ1 ∧ ϕ2 ∈ F whenϕ1, ϕ2 ∈ F ,

• ϕ1 p⊕ ϕ2 ∈ F whenϕ1, ϕ2 ∈ F andp ∈ [0, 1].

This generalises the modal language used in [2] by the addition of the new constantdiv, representing the ability of a
process to diverge. In [2] there is the probabilistic choiceoperator

⊕
i∈I pi ·ϕi, whereI is a non-empty finite index

set, and
∑

i∈I pi = 1. This can be simulated in our language by nested use of the binary probabilistic choice.
Relative to a given pLTS〈S,Actτ ,→〉 thesatisfaction relation|= ⊆ D(S) ×F is given by:

• ∆ |= ⊤ for any∆ ∈ D(S),

• ∆ |= div iff ∆ =⇒ ε,

• ∆ |= ref(A) iff ∆ =⇒ 6A−→,

• ∆ |= 〈a〉ϕ iff there is a∆′ with ∆
a

=⇒ ∆′ and∆′ |= ϕ,

• ∆ |= ϕ1 ∧ ϕ2 iff ∆ |= ϕ1 and∆ |= ϕ2,

• ∆ |= ϕ1 p⊕ ϕ2 iff there are∆1,∆2 ∈ D(S) with ∆1 |= ϕ1 and∆2 |= ϕ2, such that∆ =⇒ p ·∆1 + (1−p)·∆2.

We write∆ ⊒F Θ when∆ |= ϕ impliesΘ |= ϕ for all ϕ∈F — note the opposing directions. This is because the
modal formulae express “bad” properties of our processes, ultimately divergence and refusal: thusΘ ⊑F ∆ means
that any bad thing implementation∆ does must have been allowed by the specificationΘ.

ForpCSP processes we useP ⊑FQ to abbreviate[P ℄ ⊑F [Q℄ in the pLTS given in Section 2.
The set of formulae used here is obtained from that in Section7 of [2] by adding one operator,div, and relaxing

the constraint on the construction of probabilistic choiceformulae. But the interpretation is quite different, as it
uses the new silent move relation=⇒. As a result our satisfaction relation no longer enjoys a natural, and expected,
property. Recall that if a recursive CCS processP satisfies a modal formula from HML, then there is a recursion-free
finite unwinding ofP which also satisfies it. Intuitively this reflects the fact that if a non-probabilistic process does a
bad thing, then at some (finite) point it must actually do it. But this is not true in our new, probabilistic setting: for

42

exampleQ1 given in Example 4.3 can do ana and then refuse anything; but all finite unwindings of it achieve that
with probability strictly less than one. That is, whereas[Q1℄ |= 〈a〉⊤, no finite unwinding ofQ1 will satisfy 〈a〉⊤.

Our first task is to show that the interpretation of the logic is consistent with the operational semantics of processes.

Theorem 7.11 If ∆ ⊒FS Θ then∆ ⊒F Θ.

Proof: We must show that if∆ ⊒FS Θ then whenever∆ |= ϕ we haveΘ |= ϕ. The proof proceeds by induction on
ϕ:

• The case whenϕ = ⊤ is trivial.

• Supposeϕ is div. Then∆ |= div means that∆ =⇒ ε and we have to showΘ =⇒ ε, which is immediate from
Lemma 6.5.

• Supposeϕ is 〈a〉ϕa. In this case we have∆ a
=⇒ ∆′ for some∆′ satisfying∆′ |= ϕa. The existence of a

correspondingΘ′ is immediate from Definition 6.4 Case 1 and the induction hypothesis.

• The case whenϕ is ref(A) follows by Definition 6.4 Clause 2, and the caseϕ1 ∧ ϕ2 by induction.

• Whenϕ is ϕ1 p⊕ ϕ2 we appeal again to Definition 6.4 Case 1, usingα := τ to infer the existence of suitable
Θ′

{1,2}. 2

We proceed to show that the converse to this theorem also holds, so that the failure simulation preorder⊑FS coincides
with the logical preorder⊑F.

The idea is to mimic the development in Section 7 of [2], by designingcharacteristic formulaewhich capture the
behaviour of states in a pLTS. But here the behaviour is not characterised relative to�s

FS, but rather to the sequence of
approximating relations�k

FS.

Definition 7.12 In a finitary pLTS〈S,Actτ ,→〉, thekth characteristic formulaeϕks , ϕk∆ of statess∈S and subdistri-
butions∆∈D(S) are defined inductively as follows:

• ϕ0
s = ⊤ andϕ0

∆ = ⊤,

• ϕk+1
s = div, provideds =⇒ ε,

• ϕk+1
s = ref (A)∧

∧
s
a−→∆〈a〉ϕk∆ whereA = {a∈Act | s 6a−→}, provideds 6τ−→,

• ϕk+1
s =

∧
s
a−→∆〈a〉ϕk∆ ∧

∧
s
τ−→∆ ϕ

k
∆ otherwise,

• andϕk+1
∆ = (div) 1−⌈∆⌉⊕ (

⊕
s∈⌈∆⌉

∆(s)
⌈∆⌉ ·ϕ

k+1
s) .

Lemma 7.13 For everyk ≥ 0, s∈S and∆∈D(S) we haves |= ϕks and∆ |= ϕk∆.

Proof: By induction onk, with the case whenk = 0 being trivial. The inductive case of the first statement proceeds
by an analysis of the possible moves froms, from which that of the second statement follows immediately. 2

Lemma 7.14 Fork ≥ 0,

(i) Θ |= ϕks impliess �
k
FS Θ,

(ii) Θ |= ϕk∆ impliesΘ =⇒ Θmatchsuch that∆ �k
FS Θmatch,

(iii) Θ |= ϕk∆ impliesΘ ⊒k
FS

∆.

Proof: For everyk part (iii) follows trivially from (ii). We prove (i) and (ii)simultaneously, by induction onk, with
the casek = 0 being trivial. The inductive case, fork + 1, follows the argument in the proof of Lemma 7.3 of [2].

(i) First supposes =⇒ ε. Thenϕk+1
s = div and thereforeΘ |= div, which gives the requiredΘ =⇒ ε.

Now supposes τ−→ ∆. Here there are two cases; if in additions =⇒ ε we have already seen thatΘ =⇒ ε and
this is the required matching move fromΘ, since∆ �k

FS ε. So let us assume thats 6=⇒ ε. Then by the definition
of ϕk+1

s we must have thatΘ |= ϕk∆, and we obtain the required matching move fromΘ from the inductive
hypothesis: induction on part (ii) gives someΘ′ such thatΘ =⇒ Θ′ and∆ �k

FS Θ′.

43

The matching move fors a−→ Θ is obtained in a similar manner.

Finally supposes 6A−→. Since this impliess 6τ−→, by the definition ofϕk+1
s we must have thatΘ |= ref (A), which

actually means thatΘ =⇒ 6A−→.

(ii) By definitionϕk+1
∆ = (div) 1−⌈∆⌉⊕ (

⊕
s∈⌈∆⌉

∆(s)
⌈∆⌉ ·ϕ

k+1
s) and thusΘ =⇒ (1−⌈∆⌉)·Θdiv+

∑
s∈⌈∆⌉ ∆(s)·Θs

such thatΘdiv |= div andΘs |= ϕk+1
s . By definition,Θdiv =⇒ ε, so by Theorem 3.18(i) and the reflexivity

and transitivity of=⇒ we obtainΘ =⇒
∑
s∈⌈∆⌉ ∆(s)·Θs. By part (i) we know thats �

k+1
FS Θs for everys in

⌈∆⌉, which in turn means that∆ �
k+1
FS

∑
s∈⌈∆⌉ ∆(s)·Θs. 2

Theorem 7.15 In a finitary pLTS,∆ ⊒F Θ if and only if ∆ ⊒FS Θ.

Proof: One direction follows immediately from Theorem 7.11. For the opposite direction suppose∆ ⊒F Θ. By
Lemma 7.13 we have∆ |= ϕk∆, and henceΘ |= ϕk∆, for all k ≥ 0. By part (iii) of the previous lemma we thus know
that∆ ⊒∞

FS
Θ. That∆ ⊒FS Θ now follows from Corollary 7.10. 2

7.3 Characteristic tests for formulae

The import of Theorem 7.15 is that we can obtain completenessof the failure simulation preorder with respect to
the must-testing preorder by designing for each formulaϕ a test which in some sense characterises the property of
a process of satisfyingϕ. This has been achieved for the pLTS generated by the recursion free fragment ofpCSP in
Section 8 of [2]. Here we generalise this technique to the pLTS generated by the set of finitarypCSP terms.

As in [2], the generation of these tests depends on crucial characteristics of the testing functionA(−,−), which
are summarised in the following two lemmas 7.16 and 7.19, corresponding to Lemmas 6.7 and 6.8 in [2] respectively.

Lemma 7.16 Let ∆ be apCSP process, andT, Ti be tests.

1. o ∈ A(ω,∆) iff o = |∆| ·~ω.

2. ~0 ∈ A(τ.ω,∆) iff ∆ =⇒ ε.

3. ~0 ∈ A(
e
a∈A a.ω,∆) iff ∆ =⇒ 6A−→.

4. Suppose the actionω does not occur in the testT . Theno ∈ A(τ.ω2 a.T,∆) with o(ω) = 0 iff there is a
∆′ ∈ D(sCSP) with ∆

a
=⇒ ∆′ ando ∈ A(T,∆′).

5. o ∈ A(T1 p⊕ T2,∆) iff o = p ·o1 + (1−p)·o2 for certainoi ∈ A(Ti,∆).

6. o ∈ A(T1 ⊓ T2,∆) if there are aq ∈ [0, 1] and∆1,∆2 ∈ D(sCSP) such that∆ =⇒ q ·∆1 + (1−q)·∆2 and
o = q ·o1 + (1−q)·o2 for certainoi ∈ A(Ti,∆i).

Proof:
1. Sinceω |Act P

ω−→, the states in the support of[ω |Act ∆] have no other outgoing transitions thanω. Therefore
[ω |Act ∆] is the unique extreme derivative of itself, and as$[ω |Act ∆] = |∆| ·~ω we haveA(ω,∆) = {|∆| ·~ω}.

2. (⇐) Assume∆ =⇒ ε. By Lemma 6.27(1) we haveτ.ω |Act ∆ =⇒ τ.ω |Act ε. All states involved in this
derivation (that is, all statesu in the support of the intermediate distributions∆→

i and∆×
i of Definition 3.12)

have the formτ.ω |Act s, and thus satisfyu 6ω−→ for all ω ∈Ω. Therefore we have[τ.ω |Act ∆] =⇒ [τ.ω |Act ε].
Trivially, [τ.ω |Act ε] = ε is stable, and hence an extreme derivative of[τ.ω |Act ∆]. Moreover,$ε = ~0, so
~0 ∈ A(τ.ω,∆).

(⇒) Suppose~0 ∈ A(τ.ω,∆), i.e., there is some extreme derivativeΓ of [τ.ω |Act ∆] such that$Γ = ~0. Given the
operational semantics ofpCSP, all statesu ∈ ⌈Γ⌉ must have one of the formsu = [τ.ω |Act t] or u = [ω |Act t].
As $Γ = ~0, the latter possibility cannot occur. If follows that all transitions contributing to the derivation
[τ.ω |Act ∆] =⇒≻ Γ are obtained by means of the rule(par.r), and in factΓ has the form[τ.ω |Act ∆′] for
some distribution∆′ with ∆ =⇒ ∆′. As Γ must be stable, yet none of the states in its support are, it follows
that⌈Γ⌉ = ∅, i.e.∆′ = ε.

44

3. LetT :=
e
a∈A a.ω.

(⇐) Assume∆ =⇒ ∆′ 6A−→ for some∆′. ThenT |Act ∆ =⇒ T |Act ∆′ by Lemma 6.27(1), and by the
same argument as in the previous case,[T |Act ∆] =⇒ [T |Act ∆′]. All states in the support ofT |Act ∆′ are
deadlocked. So[T |Act ∆] =⇒≻ [T |Act ∆] and$(T |Act ∆) = ~0. Thus we have~0 ∈ A(T,∆).

(⇒) Suppose~0 ∈ A(T,∆). By the very same reasoning as in Case 2 we find that∆ =⇒ ∆′ for some∆′ such
thatT |Act ∆′ is stable. This implies∆′ 6A−→.

4. LetT be a test in which the success actionω does not occur, and letU := τ.ω 2 a.T .

(⇐) Assume there is a∆′ ∈ D(sCSP) with ∆
a

=⇒ ∆′ ando ∈ A(T,∆′). W.l.o.g. we may assume Why?
that ∆ =⇒ ∆pre a−→ ∆′. Using Lemma 6.27(1) and (3), and the same reasoning as in theprevious cases,
[U |Act ∆] =⇒ [U |Act ∆pre] τ−→ [T |Act ∆′] =⇒ Γ for a stable subdistributionΓ with $Γ = o. It follows that
o ∈ A(U,∆).

(⇒) Supposeo ∈ A(U,∆) with o(ω) = 0. Then there is a stable subdistributionΓ such that[U |Act ∆] =⇒ Γ
and$Γ = o. Sinceo(ω) = 0 there no state in the support ofΓ of the formω |Act t. Hence there must be a
∆′ ∈D(sCSP) such that∆ =⇒ a−→ ∆′ and[T |Act ∆′] =⇒ Γ. It follows thato ∈ A(T,∆′).

5. (⇐) Assumeoi ∈ A(Ti,∆) for i = 1, 2. Then[Ti |Act ∆] =⇒ Γi for some stableΓi with $Γi = oi. By
Theorem 3.18(i) we have[(T1 p⊕ T2) |Act ∆] = p ·[T1 |Act ∆] + (1−p)·[T2 |Act ∆] =⇒ p ·Γ1 + (1−p)·Γ2, and
p ·Γ1 + (1−p)·Γ2 is stable. Moreover,$(p ·Γ1 + (1−p)·Γ2) = p ·o1 + (1−p)·o2, soo ∈ A(T1 p⊕ T2,∆).

(⇒) Supposeo ∈ A(T1 p⊕ T2,∆). Then there is a stableΓ with $Γ = o such that[(T1 p⊕ T2) |Act ∆] =
p ·[T1 |Act ∆] + (1−p)·[T2 |Act ∆] =⇒ Γ. By Theorem 3.18(ii) there areΓi for i = 1, 2, such that[Ti |Act

∆] =⇒ Γi andΓ = p ·Γ1+(1−p)·Γ2. AsΓ1 andΓ2 are stable, we have$Γi ∈A(Ti,∆) for i = 1, 2. Moreover,
o = $Γ = p ·$Γ1 + (1−p)·$Γ2.

6. Supposeq ∈ [0, 1] and∆1,∆2 ∈D(pCSP) with ∆ =⇒ q ·∆1 + (1−q)·∆2 andoi ∈ A(Ti,∆i). Then there
are stableΓi with [Ti |Act ∆i] =⇒ Γi and$Γi = oi. Now [(T1 ⊓ T2) |Act ∆] =⇒ q ·[(T1 ⊓ T2) |Act ∆1]
+ (1−q)·[(T1 ⊓ T2) |Act ∆2]

τ−→ q ·[T1 |Act ∆1] + (1−q)·[T2 |Act ∆2] =⇒ q ·Γ1 + (1−q)·Γ2. The latter
subdistribution is stable and satisfies$(q ·Γ1 + (1−q)·Γ2) = q ·o1 + (1−q)·o2. Henceq ·o1 + (1−q)·o2 ∈
A(T1 ⊓ T2,∆). 2

We also have the converse to part (6) of this lemma, again mimicking Lemma 6.8 of [2]. For that purpose, we use two
technical lemmas whose proofs are similar to those for Lemmas 6.29 and 6.30 respectively.

Lemma 7.17 Suppose∆ |A (T1 ⊓ T2)
τ−→ Γ. Then there exist subdistributions∆→, ∆×

1 , ∆×
2 , ∆next (possibly

empty) such that

(i) ∆ = ∆→ + ∆×
1 + ∆×

2

(ii) ∆→ τ−→ ∆next

(iii) Γ = ∆next |A (T1 ⊓ T2) + ∆×
1 |A T1 + ∆×

2 |A T2

Proof: By Lemma 3.4∆ |A (T1 ⊓ T2)
τ−→ Γ implies that

∆ =
∑

i∈I

pi ·si, si |A (T1 ⊓ T2)
τ−→ Γi, Γ =

∑

i∈I

pi ·Γi,

for certainsi ∈S, Γi ∈D(sCSP) and
∑

i∈I pi ≤ 1. Let J1 = { i∈ I | Γi = si |A T1 } andJ2 = { i∈ I | Γi = si |A
T2 }. Note that for eachi ∈ (I − J1 − J2) we haveΓi in the formΓ′

i |A (T1 ⊓ T2), wheresi
τ−→ Γ′

i. Now let

∆→ =
∑

i∈(I−J1−J2)

pi ·si, ∆×
k =

∑

i∈Jk

pi ·si, ∆next =
∑

i∈(I−J1−J2)

pi ·Γ
′
i .

wherek = 1, 2. By construction (i) and (iii) are satisfied, and (ii) follows by property (2) of Definition 3.2. 2

45

Lemma 7.18 If ∆ |A (T1 ⊓ T2) =⇒≻ Ψ then there areΦ1 andΦ2 such that

(i) ∆ =⇒ Φ1 + Φ2

(ii) Φ1 |A T1 + Φ2 |A T2 =⇒≻ Ψ

Proof: Suppose∆0 |A (T1 ⊓ T2) =⇒≻ Ψ. We know from Definition 3.12 that there is a collection of subdistributions
Ψk,Ψ

→
k ,Ψ

×
k , for k ≥ 0, satisfying the properties

∆0 |A (T1 ⊓ T2) = Ψ0 = Ψ→
0 + Ψ×

0

Ψ→
0

τ−→ Ψ1 = Ψ→
1 + Ψ×

1
...

...
Ψ→
k

τ−→ Ψk+1 = Ψ→
k+1 + Ψ×

k+1
...

Ψ =
∑∞

k=0 Ψ×
k

andΨ is stable.
TakeΓ0 := Ψ0. By induction onk ≥ 0, we find distributionsΓk+1, ∆→

k , ∆×
k1, ∆×

k2, ∆k+1 such that

(i) ∆k |A (T1 ⊓ T2)
τ−→ Γk+1

(ii) Γk+1 ≤ Ψk+1

(iii) ∆k = ∆→
k + ∆×

k1 + ∆×
k2

(iv) ∆→
k

τ−→ ∆k+1

(v) Γk+1 = ∆k+1 |A (T1 ⊓ T2) + ∆×
k1 |A T1 + ∆×

k2 |A T2

Induction Step:Assume we already haveΓk and∆k. Note that∆k |A (T1 ⊓ T2) ≤ Γk ≤ Ψk = Ψ→
k + Ψ×

k and
T1 ⊓ T2 can make aτ move. SinceΨ is stable, we know that eitherΨ×

k = ε or Ψ×
k 6τ−→. In both cases it holds that

∆k |A (T1 ⊓ T2) ≤ Ψ→
k . Proposition 3.9 gives a subdistributionΓk+1 ≤ Ψk+1 such that∆k |A (T1 ⊓ T2)

τ−→ Γk+1.
Now apply Lemma 7.17.

Let Φ1 =
∑∞
k=0 ∆×

k1 andΦ2 =
∑∞

k=0 ∆×
k2. By (iii) and (iv) above we obtain a weakτ move∆ =⇒ Φ1 + Φ2.

For k ≥ 0, let Γ→
k := ∆k |A (T1 ⊓ T2), let Γ×

0 := ε and letΓ×
k+1 := ∆×

k1 |A T1 + ∆×
k2 |A T2. Moreover,

Γ := Φ1 |A T1 + Φ2 |A T2. Now all conditions of Definition 3.22 are fulfilled, so∆0 |A (T1 ⊓ T2) =⇒ Γ is an initial
segment of∆0 |A (T1 ⊓ T2) =⇒ Ψ. By Proposition 3.23 we haveΦ1 |A T1 + Φ2 |A T2 =⇒≻ Ψ. 2

Lemma 7.19 If o ∈ A(T1 ⊓ T2,∆) then there are aq ∈ [0, 1] and∆1,∆2 ∈ D(sCSP) such that∆ =⇒ q ·∆1 +
(1−q)·∆2 ando = q ·o1 + (1−q)·o2 for certainoi ∈ A(Ti,∆i).

Proof: If o ∈ A(T1 ⊓ T2,∆) then there is an extreme derivativeΨ of [(T1 ⊓ T2) |Act ∆] such that$Ψ = o. By
Lemma 7.18 there areΦ1,2 such that

(i) ∆ =⇒ Φ1 + Φ2

(ii) and [T1 |Act Φ1] + [T2 |Act Φ2] =⇒≻ Ψ.

By Theorem 3.18(ii) there are some subdistributionsΨ1 andΨ2 such thatΨ = Ψ1 + Ψ2 andTi |Act Φi =⇒≻ Ψi for
i = 1, 2. Let o′i = $Ψi. As Ψi is stable we obtaino′i ∈ A(Ti,Ψi). We also haveo = $Ψ = $Ψ1 + $Ψ2 = o′1 + o′2.

We now distinguish two cases:

• If Ψ1 = ε, then we take∆i = Φi, oi = o′i for i = 1, 2 andq = 0. Symmetrically, ifΨ2 = ε, then we take
∆i = Φi, oi = o′i for i = 1, 2 andq = 1.

• If Ψ1 6= ε andΨ2 6= ε, then we letq = |Φ1|
|Φ1+Φ2|

, ∆1 = 1
q
Φ1, ∆2 = 1

1−qΦ2, o1 = 1
q
o′1 ando2 = 1

1−q o
′
2.

It is easy to check thatq ·∆1 + (1−q)·∆2 = Φ1 + Φ2, q ·o1 + (1−q)·o2 = o′1 + o′2 andoi ∈ A(Ti,∆i) for i= 1, 2. 2

46

Proposition 7.20 For every formulaϕ ∈ F there exists a pair(Tϕ, vϕ) with Tϕ anΩ-test andvϕ ∈ [0, 1]Ω such that
∆ |= ϕ if and only if ∃o ∈ A(Tϕ,∆) : o ≤ vϕ. (27)

Tϕ is called acharacteristic testof ϕ andvϕ its target value.

Proof: The proof is adapted from that of Lemma 8.1 in [2], from where we take the following remarks: AsΩ is
countable andΩ-tests are finite expressions, for everyΩ-test there is anω∈Ω not occurring in it. Furthermore, if a
pair (Tϕ, vϕ) satisfies requirement (27), then any pair obtained from(Tϕ, vϕ) by bijectively renaming the elements of
Ω also satisfies that requirement. Hence two given characteristic tests can be assumed to beΩ-disjoint, meaning that
noω∈Ω occurs in both of them.

Our modal logicF is identical to that used in [2], with the addition of one extra constantdiv. So we need a new
characteristic test and target value for this latter formula, and reuse those from [2] for the rest of the language:2

• Letϕ = ⊤. TakeTϕ := ω for someω ∈Ω, andvϕ := ~ω.

• Letϕ = div. TakeTϕ := τ.ω for someω ∈Ω, andvϕ := ~0.

• Letϕ = ref(A) with A ⊆ Act. TakeTϕ :=
e
a∈A a.ω for someω∈Ω, andvϕ := ~0.

• Let ϕ = 〈a〉ψ. By induction,ψ has a characteristic testTψ with target valuevψ. TakeTϕ := τ.ω2a.Tψ where
ω ∈Ω does not occur inTψ, andvϕ := vψ.

• Let ϕ = ϕ1 ∧ ϕ2. Choose aΩ-disjoint pair(Ti, vi) of characteristic testsTi with target valuesvi, for i = 1, 2.
Furthermore, letp∈ (0, 1] be chosen arbitrarily, and takeTϕ := T1 p⊕ T2 andvϕ := p ·v1 + (1−p)·v2.

• Letϕ = ϕ1 p⊕ ϕ2. Again choose aΩ-disjoint pair(Ti, vi) of characteristic testsTi with target valuesvi, i = 1, 2,
this time ensuring that there are two distinct success actionsω1, ω2 that do not occur in any of these tests. Let
T ′
i := Ti 1

2
⊕ ωi andv′i := 1

2vi + 1
2 ~ωi. Note that fori = 1, 2 we have thatT ′

i is also a characteristic test ofϕi with
target valuev′i. TakeTϕ := T ′

1 ⊓ T
′
2 andvϕ := p ·v′1 + (1−p)·v′2.

Note thatvϕ(ω) = 0 wheneverω∈Ω does not occur inTϕ.
As in the proof of Lemma 8.1 of [2] we now check by induction onϕ that (27) above holds; the proof relies on

Lemmas 7.16 and 7.19.

• Letϕ = ⊤. For all∆ ∈ D(sCSP) we have∆ |= ϕ as well as∃o ∈ A(Tϕ,∆) : o ≤ vϕ, using Lemma 7.16(1).

• Letϕ = div. Suppose∆ |= ϕ. Then we have that∆ =⇒ ε. By Lemma 7.16(2),~0∈A(Tϕ,∆).

Now suppose∃o∈A(Tϕ,∆) : o ≤ vϕ. This implieso = ~0, so by Lemma 7.16(2),∆ =⇒ ε. Hence∆ |= ϕ.

• Letϕ = ref(A) with A ⊆ Act. Suppose∆ |= ϕ. Then∆ =⇒ 6A−→. By Lemma 7.16(3),~0∈A(Tϕ,∆).

Now suppose∃o∈A(Tϕ,∆) : o ≤ vϕ. This implieso = ~0, so∆ =⇒ 6A−→ by Lemma 7.16(3). Hence∆ |= ϕ.

• Let ϕ = 〈a〉ψ with a∈Act. Suppose∆ |= ϕ. Then there is a∆′ with ∆
a

=⇒ ∆′ and∆′ |= ψ. By induction,
∃o∈A(Tψ,∆

′) : o ≤ vψ. By Lemma 7.16(4),o∈A(Tϕ,∆).

Now suppose∃o∈A(Tϕ,∆) : o ≤ vϕ. This implieso(ω) = 0, so by Lemma 7.16(4) there is a∆′ with ∆
a

=⇒ ∆′

ando∈A(Tψ ,∆
′). By induction,∆′ |=ψ, so∆ |=ϕ.

• Letϕ = ϕ1∧ϕ2 and suppose∆ |= ϕ. Then∆ |= ϕi for i=1, 2 and hence, by induction,∃oi ∈ A(Ti,∆) : oi ≤ vi.
Thuso := p ·o1 + (1−p)·o2 ∈A(Tϕ,∆) by Lemma 7.16(5), ando ≤ vϕ.

Now suppose∃o∈A(Tϕ,∆) : o ≤ vϕ. Then, using Lemma 7.16(5),o = p ·o1 + (1−p)·o2 for certain
oi ∈A(Ti,∆). Recall thatT1, T2 areΩ-disjoint tests. One hasoi ≤ vi for bothi = 1, 2, for if oi(ω) > vi(ω) for
somei = 1 or 2 andω∈Ω, thenω must occur inTi and hence cannot occur inT3−i. This impliesv3−i(ω) = 0
and thuso(ω) > vϕ(ω), in contradiction with the assumption. By induction,∆ |= ϕi for i = 1, 2, and hence
∆ |= ϕ.

• Let ϕ = ϕ1 p⊕ ϕ2. Suppose∆ |= ϕ. Then there are∆1,∆2 ∈D(sCSP) with ∆1 |= ϕ1 and∆2 |= ϕ2 such that
∆ =⇒ p ·∆1 + (1−p)·∆2. By induction, fori = 1, 2 there areoi ∈A(Ti,∆i) with oi ≤ vi. Hence, there are
o′i ∈A(T ′

i ,∆i) with o′i ≤ v′i. Thuso := p ·o′1 + (1−p)·o′2 ∈A(Tϕ,∆) by Lemma 7.16(6), ando ≤ vϕ.

2However, because we employ state-based testing here, as opposed to action-based testing in [2], we translate the action-based testω2 a.Tψ
for the action modality〈a〉ψ into the state-based testτ.ω2 a.Tψ .

47

Now suppose∃o∈A(Tϕ,∆) : o ≤ vϕ. Then, by Lemma 7.19, there areq ∈ [0, 1] and∆1,∆2 ∈D(sCSP) such
that∆ =⇒ q ·∆1+(1−q)·∆2 ando = q ·o′1 +(1−q)·o′2 for certaino′i ∈A(T ′

i ,∆i). Now∀i : o′i(ωi)=v
′
i(ωi)=

1
2 ,

so, using thatT1, T2 areΩ-disjoint tests,12q = q ·o′1(ω1) = o(ω1) ≤ vϕ(ω1) = p ·v′1(ω1) = 1
2p and likewise

1
2 (1−q) = (1−q)·o′2(ω2) = o(ω2) ≤ vϕ(ω2) = (1−p)·v′2(ω2) = 1

2 (1−p). Together, these inequalities say that
q = p. Exactly as in the previous case one obtainso′i ≤ v′i for bothi = 1, 2. Given thatT ′

i = Ti 1
2
⊕ ωi, using

Lemma 7.16(5), it must be thato′i = 1
2oi + 1

2 ~ωi for someoi ∈ A(Ti,∆i) with oi ≤ vi. By induction,∆i |= ϕi
for i = 1, 2, and hence∆ |= ϕ. 2

Theorem 7.21 If ∆ ⊒Ω
pmustΘ then∆ ⊒F Θ.

Proof: Suppose∆ ⊒Ω
pmust Θ and∆ |= ϕ for someϕ ∈ F . Let Tϕ be a characteristic test ofϕ with target valuevϕ.

Then Proposition 7.20 yields∃o ∈ A(Tϕ,∆) : o ≤ vϕ, and hence, given that∆ ⊒Ω
pmust Θ, by the Smyth preorder we

have∃o′ ∈ A(Tϕ,Θ) : o′ ≤ vϕ. ThusΘ |= ϕ. 2

8 Simulations and may testing

In this section we follow the same strategy as for failure simulations and testing (Section 6) except that we restrict our
treatment to full distributions: this is possible because partial distributions are not necessary for this case; and itis
desirable because the approach becomes simpler as a result.

Definition 8.1 [Simulation Preorder] Define⊑S to be the largest relation inD1(S) × D1(S) such that if∆ ⊑S Θ
then

whenever∆ α
=⇒ (

∑
i pi∆

′
i), for finitely manypi with

∑
i pi = 1, there areΘ′

i with Θ
α

=⇒ (
∑

i piΘ
′
i)

and∆′
i ⊑S Θ′

i for eachi.

Note that, unlike for Definition 8.1, this summation cannot be empty.
Again it is trivial to see that⊑S is reflexive and transitive; and again it is sometimes easierto work with an

equivalent formulation based on a state-level “simulation” defined as follows.

Definition 8.2 [Simulation] Define�S to be the largest relation inS × D1(S) such that ifs �S Θ then whenever
s α−→ ∆′ there is aΘ′ with Θ

α
=⇒ Θ′ and∆′

�S Θ′.

Definition 8.2 differs from the analogous Definition 6.20 in three ways: it is missing the clause for divergence, and
for refusal; and it is (implicitly) limited to α

=⇒-transitions that simulate by producing full distributions only. Without
that latter limitation, any simulation relation could be scaled down uniformly without losing its simulation properties,
for example allowing counter-intuitivelya to be simulated bya 1

2
⊕ ε.

Lemma 8.3 The above preorder and simulation are equivalent in the following sense: for distributions∆,Θ we have
∆ ⊑S Θ just when there is aΘmatchwith Θ =⇒ Θmatchand∆ �S Θmatch.

Proof: The proof is as for the failure case, except that in Theorem 6.21 we can assume total distributions, and so do
not need the second part of its proof where divergence is treated. 2

8.1 Soundness

In this section we prove that simulations are sound for showing that processes are related via the may-testing preorder.
We assume initially that we are using only one success actionω, so that|Ω| = 1.

Because we prune our computation structures before extracting values from them, we will be concerned mainly
with ω-respecting structures, and for those we have the following.

48

Lemma 8.4 Let ∆ andΘ be two distributions. If∆ is stable and∆ �S Θ, thenV(∆) ≤Ho V(Θ).

Proof: We first show that ifs is stable ands �S Θ thenV(s) ≤Ho V(Θ). Sinces is stable, we have only two cases:

(i) s 6−→ HereV(s)={0} and sinceV(Θ) is not empty we haveV(s) ≤Ho V(Θ).

(ii) s ω−→ ∆′ for some∆′ HereV(s)={1} andΘ =⇒ Θ′ ω−→ with V(Θ′)={1}. By Lemma 6.35 specialised to
full distributions, we have1 ∈ V(Θ). Therefore,V(s) ≤Ho V(Θ).

Now for the general case we suppose∆ �S Θ. Use Proposition 3.9 to decomposeΘ into
∑

s∈⌈∆⌉ ∆(s)·Θs such
thats �S Θs for eachs ∈ ⌈∆⌉, and recall each such states is stable. From above we have thatV(s) ≤Ho V(Θs) for
thoses, and soV(∆) =

∑
∈⌈∆⌉ ∆(s)·V(s) ≤Ho

∑
s∈⌈∆⌉ ∆(s)·V(Θs) = V(Θ). 2

Lemma 8.5 Let ∆ and Θ be distributions in anω-respecting computation structure. If∆ �S Θ, then we have
V(∆) ≤Ho V(Θ).

Proof: Since∆ �S Θ, we consider subdistributions∆′′ with ∆ =⇒≻ ∆′′; by distillation of divergence (Lemma 5.8)
we have full distributions∆′ and∆′

1,2 and probabilityp such thats =⇒ ∆′ = (∆′
1 p⊕ ∆′

2) and∆′′ = p ·∆′
1 and

∆′
2 =⇒ ε. There is thus a matching transitionΘ =⇒ Θ′ such that∆′

�S Θ′. By Proposition 3.9, we can find
distributionsΘ′

1,Θ
′
2 such thatΘ′ = Θ′

1 p⊕ Θ′
2 and∆′

1,2 �S Θ′
1,2.

Since⌈∆′
1⌉ = ⌈∆′′⌉ we have that∆′

1 is stable. It follows from Lemma 8.4 thatV(∆′
1) ≤Ho V(Θ′

1). Thus we
finish off with

V(∆′′)
= V(p ·∆′

1) ∆′′ = p ·∆′
1

= p ·V(∆′
1) linearity ofV

≤Ho p ·V(Θ′
1) above argument based on distillation

= V(p ·Θ′
1) linearity ofV

≤Ho V(Θ′) Θ′ = Θ′
1 p⊕ Θ′

2

≤Ho V(Θ) . Lemma 6.35 specialised to full distributions

Since∆′′ was arbitrary, we have our result. 2

Lemma 8.6 Let ∆ andΘ be distributions in anω-respecting computation structure. If∆ ⊑S Θ, then it holds that
V(∆) ≤Ho V(Θ).

Proof: Suppose∆ ⊑S Θ. By Lemma 8.3, there exists someΘmatch such thatΘ =⇒ Θmatch and∆ �S Θmatch. By
Lemmas 8.5 and 6.35 we obtainV(∆) ≤Ho V(Θ′) ⊆ V(Θ). 2

Theorem 8.7 If P ⊑S Q thenP ⊑pmayQ.

Proof: We reason as follows.

P ⊑S Q
implies [P |Act T] ⊑S [Q |Act T] the counterpart of Lemma 6.33 for simulation, for any testT

implies V([P |Act T]) ≤Ho V([Q |Act T]) [·] is ω-respecting; Lemma 8.6
iff A(T, P) ≤Ho A(T,Q) (4)
iff P ⊑pmayQ . Definition 4.5

2

Corollary 8.8 If P ⊑S Q thenP ⊑Ω
pmayQ.

Proof: Section 4.3.1 recalled our earlier result thatΩ-testing is reducible to scalar testing. 2

49

8.2 Completeness

Let L be the subclass ofF by skipping thediv andref(A) clauses. We writeP ⊑LQ just when[P ℄ |= ϕ implies[Q℄ |= ϕ. We have the counterparts of Theorems 7.15 and 7.21, with similar proofs.

Theorem 8.9 In a finitary pLTS∆ ⊑LΘ if and only if ∆ ⊑S Θ.

Theorem 8.10 If P ⊑Ω
pmayQ thenP ⊑LQ.

Corollary 8.11 If P ⊑pmayQ thenP ⊑S Q.

Proof: From Theorems 8.9 and 8.10 we know that ifP ⊑Ω
pmay Q thenP ⊑S Q. Section 4.3.1 recalled our earlier

result thatΩ-testing is reducible to scalar testing. So the required result follows. 2

9 Conclusion and Related Work

In this paper we continued our previous work [3, 4, 2] in our quest for a testing theory for processes which exhibit
both nondeterministic and probabilistic behaviour. We have generalised our results in [2] of characterising the may
preorder as a simulation relation and the must preorder as a failure-simulation relation, from finite processes to finitary
processes. To do this it was necessary to investigate fundamental structural properties of derivation sets (finite gen-
erability) and similarities (infinite approximations), which are of independent interest. The use of Markov Decision
Processes and Zero-One laws was essential in obtaining our results.

Segala [21] defined two preorders called trace distributionprecongruence (⊑TD) and failure distribution precon-
gruence (⊑FD). He proved that the former coincides with an action-based version of⊑Ω

pmay and that for “probabilis-
tically convergent” systems the latter coincides with an action-based version of⊑Ω

pmust. The condition of probabilistic
convergence amounts in our framework to the requirement that for ∆∈D1(S) and∆ =⇒ ∆′ we have|∆′| = 1. In
[15] it has been shown that⊑TD coincides with a notion of simulation akin to⊑S . Other probabilistic extensions of
simulation occurring in the literature are reviewed in [3, 2].

References
[1] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984):A theory of communicating sequential processes.Journal of the ACM

31(3), pp. 560–599.

[2] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2008): Characterising testing preorders for finite probabilistic
processes.Logical Methods in Computer Science4(4:4).

[3] Y. Deng, R.J. van Glabbeek, M. Hennessy, C.C. Morgan & C. Zhang (2007): Remarks on testing probabilistic processes.
ENTCS172, pp. 359–397.

[4] Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang (2007):Scalar outcomes suffice for finitary probabilistic testing.In
Proc.ESOP’07, LNCS 4421, Springer, pp. 363–378.

[5] R. De Nicola & M. Hennessy (1984):Testing equivalences for processes.Theoretical Computer Science34, pp. 83–133.

[6] R.J. van Glabbeek (1993):The linear time – branching time spectrum II; the semantics of sequential systems with silent
moves.In Proc.CONCUR’93, LNCS 715, Springer, pp. 66–81.

[7] M. Hennessy (1988):An Algebraic Theory of Processes. MIT Press.

[8] M. Hennessy & R. Milner (1985):Algebraic Laws for Nondeterminism and Concurrency.Journal of the ACM32(1), pp.
137–161.

[9] C.A.R. Hoare (1985):Communicating Sequential Processes. Prentice-Hall.

[10] C. Jones (1990)Probabilistic Non-determinism.Ph.D. Thesis, University of Edinburgh.

[11] B. Jonsson, C. Ho-Stuart & Wang Yi (1994):Testing and refinement for nondeterministic and probabilistic processes.In
Proc.FTRTFT’94, LNCS 863, Springer, pp. 418–430.

50

[12] B. Jonsson & Wang Yi (1995):Compositional testing preorders for probabilistic processes.In Proc.LICS’95, IEEE Computer
Society Press, pp. 431–441.

[13] B. Jonsson & Wang Yi (2002):Testing preorders for probabilistic processes can be characterized by simulations.Theoretical
Computer Science282(1), pp. 33–51.

[14] S. Lipschutz (1965):Schaum’s outline of theory and problems of general topology. McGraw-Hill.

[15] N. Lynch, R. Segala & F.W. Vaandrager (2007):Observing Branching Structure through Probabilistic Contexts. SIAM
Journal on Computing37(4), pp. 977–1013.

[16] A.K. McIver & C.C. Morgan (2005):Abstraction, Refinement and Proof for Probabilistic Systems. Springer.

[17] R. Milner (1989):Communication and Concurrency. Prentice-Hall.

[18] E.-R. Olderog & C.A.R. Hoare (1986):Specification-oriented semantics for communicating processes.Acta Informatica23,
pp. 9–66.

[19] M. Puterman (1994):Markov Decision Processes. Wiley.

[20] R. Segala (1995):Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis, MIT.

[21] R. Segala (1996):Testing probabilistic automata.In Proc.CONCUR’96, LNCS 1119, Springer, pp. 299–314.

[22] Wang Yi & K.G. Larsen (1992):Testing probabilistic and nondeterministic processes.In Proc.PSTV’92, IFIP Transactions
C-8, North-Holland, pp. 47–61.

51

A Assorted counter-examples

A.1 Finite state space is necessary; otherwise. . .

A.1.1 Distillation of divergence

Distillation of divergence is the notion that if a system contains any divergence, no matter how small, it can be “distilled out” into
an equivalent presentation in which states either wholly converge or wholly diverge; the relevant lemma is Lemma 5.8. It’s used to
show the equivalence of failure simulation and failure e-simulation (Theorem 6.21), and to justify the full-distribution approach in
the may-case (Section 8).

Example 3.16 is an infinite-state system over statess2,3,··· where the probability of convergence is1/k from any statesk, thus
a situation where distillation of divergence fails becauseall the states partially diverge, yet there is no single state which wholly
diverges.

In spite of that, there is an infinite-state version of Lemma 5.6 (the underlying fact on which Lemma 5.8 depends). In it the
assumption is that the partial divergences arebounded away from zero, i.e. there is someε > 0 such that every state converges
with probability at leastε. But Example 3.16 fails this assumption, because the1/k probabilities of convergence become arbitrarily
small.

A.1.2 Transitivity of failure simulation

I think Section A.2.4 below can be adapted to provide a counter-example here: replace the intermediate infinitely branching but
finite-state process (28) by the finitely branching but infinite-state process Example 3.16.

A.1.3 Equivalence of finite and infinite interpolation

Let the state space be the positive integers and consider theinfinite interpolant
P
i
i/2i of the set{i | i ≥ 1}. It cannot be realised

by any finite interpolation, thus invalidating Lemma B.1 when the state space is infinite.

A.1.4 Soundness of failure simulation

See Section A.2.5 below.

A.1.5 Pre-congruence of simple failure similarity

We use a modification of Example 3.16 which as before has statessk with k ≥ 2, but we add an extraa-looping statesa to give all
together the system

for k ≥ 2 sk
τ−→ (sa 1

k2
⊕ sk+1) and sa

a−→ sa .

There is a failure simulationsk �
s
FS (sa 1

k
⊕ 0) because the movesk τ−→ (sa 1

k2
⊕ sk+1) can be matched by a move to

(sa 1
k2

⊕ (sa 1
k+1

⊕ 0)) which simplifies to just(sa 1
k
⊕ 0) again — i.e. a sufficientτ−→ -simulating move would be the identity

resolution of=⇒.
Now s2 |a sa diverges even thoughs2 itself does not, and (recall from above) we haves2 �

s
FS (sa 1

2
⊕ 0).

Yet (sa 1
2
⊕ 0) |a sa does not diverge, which is a contra-indication for the truthof Lemma 6.31 unless it uses finiteness of the

state space somewhere. The role of the infinitely many statesseems to be to escape distillation of divergence in the system. To

get this kind of counter-example, we want to “trick” our constructions into allowing the failure-simulation of an unboundedly deep
τ -tree by deadlock. But in a finite-state system such a tree must diverge either with probability one (in which case the divergence
clause of�s

FS kicks in, and prevents the tricky simulation because deadlock does not diverge), or with probability zero (in which
case it has no substantive effect anyway). Example 3.16 usesinfinitely many states to avoid the two extremes.

Note that this counter-example does not go through if we use failure similarity�FS instead of simple failure similarity�s
FS,

sinces2 6�FS (sa 1
2
⊕ 0) — the former hass2 =⇒ sa 1

2
⊕ ε, but this move cannot be matched bysa 1

2
⊕ 0.

52

A.2 Finite branching is necessary; otherwise. . .
In the non-probabilistic world, it’s not possible to have infinite branching if the state space is finite; so finite branching, as a
restriction, is imposed only when the state space is infinite. In the probabilistic world, even a two-element state spaceallows
infinite branching of an associated pLTS: consider the pLTS containing transitionss1

τ−→ (s2 p⊕ s3) for all p in some infinite set.
Here are some examples of what happens if we don’t impose finite branching as well as finiteness of the state space.

A.2.1 Closure of derivatives

An obvious outcome is that we lose the guaranteed closure of derivatives: just take the example above where thep’s come from
some open set like(0, 1).

A.2.2 Distillation of divergence

We also lose distillation of divergence without finite branching. The essence of the counter-example here is that we collapse all the
sk-states of Example 3.16 onto a single state, which then becomes infinitely branching: we take a system comprising just twostates
and ak-indexed set of transitions

s τ−→k ([0 ℄1/k2⊕ s) for k ≥ 2, (28)

as illustrated in Figure 7. As we have seen, by taking transitionss τ−→K · τ−→K+1 · τ−→K+2 · · · we can achieve divergence with
probability1 − 1/K for arbitraryK ≥ 2; but (contradicting distillation) neither of the two statess, 0 wholly diverges.

The zero-one law Lemma 5.6 is not affected by infinite branching, because it is restricted to the deterministic case (i.e.the case
of no branching at all). What fails is the combination of a number of deterministic distillations to make a non-deterministic one, in
Lemma 5.8: it depends on Lemma 5.3, which in turn requires finite branching.

For those with some knowledge of sequential probabilistic/demonic semantics, there is an instructive comparison to bemade.
Straightforward generalisation of the invariant/variantprinciple for loop correctness to probabilistic programs allows a direct proof
of the zero-one law in the fully nondeterministic case [16, Sec. 2.6], even in an infinite state space, yet there seems to beno explicit
mention of finite branching. This is explained by the fact that probabilistic/demonic sequential programs are guaranteed to be
continuous (as predicate transformers) only when finite branching is imposed (by analogy with the well known connectionbetween
continuity and bounded nondeterminism for standard programs); and failure of that continuity invalidates the soundness proof of
the loop-correctness rule referred to above, since it affects the definition of loop itself (ω-limit, or not).

Finally –pursuing this point– note that deterministic (butprobabilistic) outcomes with infinite support are unproblematic: for
example the sequential programb, n := true, 0; while b do n := n+1; b := true 1/2⊕ false end is perfectly legitimate (i.e.
continuous), even though it has infinitely many potential final values ofn.

A.2.3 Equivalence of failure simulation and extended failure simulation

By relating boths and0 (simulated states) to0 (simulating state) we can see thats from (28) above is failure-simulated by just0
itself. Yet we have for examples =⇒ [0 ℄ 1/2⊕ ε, a move which cannot be matched by any extended failure-simulating=⇒-move
from 0 — and that means that Theorem 6.21 fails in this case. As we’d expect, its proof refers to Lemma 5.8 which in turn refers
to Lemma 5.3 where finite branching is assumed.

A.2.4 Transitivity of failure simulation

Define a processt0 τ−→ (0 1/2⊕ t1) andt1
τ−→ t1, and argue thatt0 �

s
FS s from (28) above; but also –as observed there– we have

s �
s
FS 0. Yet we do not havet0 �

s
FS 0.

A.2.5 Soundness of failure simulation

Given Section A.2.4, failure simulation and the failure-testing preorder cannot coincide for infinitary processes, since the preorder
is transitive trivially. Is it soundness, or completeness that fails? If we compare (28) with0, we have failure simulation of the
former by the latter (Appendix A.2.3). But the testτ.ω gives(0, 1] as an outcome set for the former and just{1} for the latter,
breaking the preorder.

53

T h e o v e r a l l p r o b a b i l i t y o fe s c a p e , s t a r t i n g a t k a n dc o n t i n u i n g w i t h s u c c e s s i v et r a n s i t i o n s k + 1 , k + 2 , . . . i se v e n t u a l l y 1 / k .
ss 1 / 4

1 / 9
1 / 1 6

1 / 2 5 1 / 3 6
k = 2

34 5 6
3 / 4

There are two statess (large black node) and0 (small black nodes); the white nodes indicate probabilistic choice; and
all transitions are internal. To diverge froms with probability1− 1/K, start at “petal”K and take successiveτ -loops
anti-clockwise from there.
Yet, although divergence with arbitrarily high probability is present, complete probability-1 divergence is nowhere
possible. Either infinite states or infinite branching is necessary for this anomaly.

Example starting fromk = 3

Loop last used 3 4 5 6 7 8 9 10 · · · 15 · · · 20 · · · 30 · · · 40
Overall escape probability 0.11 0.17 0.20 0.22 0.24 0.25 0.26 0.27 0.29 0.30 0.31 0.32

Figure 7: Infinitely branching flower, from Section A.2.2.

54

A.2.6 Coincidence of failure simulation and the limit of itsapproximation

Rob used the following example to show the necessity of the finite branching condition.
Consider a PLTS with four statess, t, u, v, 0 and the transitions are

• s a−→ 0 1
2
⊕ s

• t a−→ 0, t a−→ t

• u a−→ u

• v τ−→ up⊕ t for all p ∈ (0, 1).

This is a finite-state but not finitely branching system, due to the infinite branch inv. We have thats �
k
FS v for all k ≥ 0 but we do

not haves �
s
FS v.

We first observe thats �
s
FS v does not hold becauses will eventually deadlock with probability1, whereas a fraction ofv will

go tou and never deadlock.
We now show thats �

k
FS v for all k ≥ 0. For anyk we start the simulation by choosing the movev τ−→ (u 1

2k
⊕ t). By

induction onk we show that
s �

k
FS (u 1

2k
⊕ t). (29)

The base casek = 0 is trivial. So suppose we already have (29). We now show thats �
(k+1)
FS (u 1

2k+1
⊕ t). Neithers nor t nor u

can diverge or refuse{a}, so the only relevant move is thea-move. We know thats can do the moves a−→ 0 1
2
⊕ s. This can be

matched up by(u 1
2k+1

⊕ t) a−→ (0 1
2
⊕ (u 1

2k
⊕ t)).

B Technical lemmas and proofs for Section 3

B.1 Infinitary properties of lifting
Lemma B.1 [Infinite interpolation in finite dimensional space] In finite dimensional Euclidean space, infinite interpolation reduces
to finite interpolation.

Proof: Suppose we have a setX in N -dimensional Euclidean space and a pointx such thatx is an infinite interpolation of points
in X but is not a finite interpolation of any such points. Since theset of finite interpolants ofX is convex (in the usual sense), the
pointx can therefore be non-strictly separated from it: there is a hyperplaneH (thus of dimensionN−1) containingx such that all
the finite interpolants ofX lie non-strictly on one side ofH . Sincex is however an (infinite) interpolant ofX, and is inH with all
of X on one side ofH , in factx must be an (infinite) interpolant ofX ∩ H . But x is not, of course, afinite interpolant ofX ∩ H
(since otherwise it would have been a finite interpolant ofX in the first place).

SinceX ∩ H is a space of (at least) one dimension lower than our original, the argument reduces eventually to a simple line,
where it holds trivially. 2

Lemma B.2 [Infinitary linearity of lifting] Let R be a relation betweenS andD(S) and, as usual, letR be its lifted version, thus
a relation inD(S)×D(S). LetI be an index set, possibly infinite. Then∆i R Θi for all i implies that(

P
i
pi ·∆i) R (

P
i
pi ·Θi)

where
P
i
pi ≤ 1.

Proof: This is immediate from the current definition of lifting.
We note first thats R Θ just whenΘ =

P
j
p j ·Θj for j ranging over afinite index setJ such thats R Θj for each indexj

and1 =
P
j
p j. Because we are in a finite state space, however, we can by Lemma B.1 allowJ to be infinite.

Now more generally we have that∆ R Θ just whenΘ =
P
s

P
js

p js ·Θjs for js ranging over a (possibly infinite) index set

Js, ands itself ranging over the support of∆, such thats R Θjs for eachjs and∆(s) =
P
js

p js .
The result then follows by straightforward (if intricate) rearrangement of absolutely convergent series:

∆i R Θi for all i

iff Θi =
P
s

P
ji
s
p j

i
s ·Θji

s

and s R Θji
s for eachs in the support of∆i

and ∆i(s) =
P
ji
s
p j

i
s

55

implies
P
i pi ·Θi =

P
i

P
s

P
ji
s
pi ·p

ji
s ·Θji

s

and s R Θji
s for eachs in the support of some∆i

and
P
i
pi ·∆i(s) =

P
i

P
ji
s

pi ·p
ji
s

implies some cheating here. . . rearrangement; suitable definitionsof p js andΘjs

P
i
pi ·Θi =

P
s

P
js

p js ·Θjs

and s R Θjs for eachs in the support of
P
i
pi ·Θi

and (
P
i
pi ·∆i)(s) =

P
js

p js

implies (
P
i
pi ·∆i) R (

P
i
pi ·Θi) .

2

B.2 Elementary properties of weak derivations
Lemma B.3 Supposep1 + p2 ≤ 1. Then

(i) ∆1,2 =⇒ ∆′
1,2 implies(p1 ·∆1 + p2 ·∆2) =⇒ (p1 ·∆

′
1 + p2 ·∆

′
2).

(ii) If (p1 ·∆1 + p2 ·∆2) =⇒ ∆′ then∆′ = p1 ·∆
′
1 + p2 ·∆

′
2 for subdistributions∆′

1,2 such that∆1,2 =⇒ ∆′
1,2.

Proof: For (i) we note that lifted transitionsτ−→ have that property directly from Clause (2) of Definition 3.2. Thus the structures
whose existence is implied by Definition 3.12 for∆1 =⇒ ∆′

1 and∆2 =⇒ ∆′
2 separately can be added with thep1, p2 scaling

given to form a single composite structure establishing(p1 ·∆1 + p2 ·∆2) =⇒ (p1 ·∆
′
1 + p2 ·∆

′
2).

For (ii) we use an inductive argument, here presented informally. To avoid confusion of subscripts we will effect some renaming
and simplification in the demonstrandum, making it read

If Γ + Λ =⇒ Π thenΠ = ΠΓ + ΠΛ with Γ, Λ =⇒ ΠΓ,Λ. (30)

(Thep1,2 will be re-introduced further below.)
Now from Definition 3.12 we haveΓ + Λ = Π0 = Π×

0 + Π→
0 for someΠ×

0 , Π→
0 with, further, thatΠ→

0
τ−→ Π1 for someΠ1.

Define
Γ→ := Γ ⊓ Π→

0

Γ× := Γ − Γ→

Λ× := Λ ⊓ Π×
0

Λ→ := Λ − Λ× ,

(31)

and then check these elementary facts: thatΓ× + Γ→ = Γ andΛ× + Λ→ = Λ, and that all the introduced subdistributions
are in their proper ranges. What remains is to show that they combine properly, and for that we fix a states and distinguish two
cases: either (a)Π→

0 .s ≥ Γ.s or (b) Π→
0 .s ≤ Γ.s. In Case (a) the definitions (31) simplify toΓ→.s, Γ×.s, Λ×.s, Λ→.s :=

Γ.s, 0, Π×
0 .s, (Λ.s − Π×

0 .s), whence immediatelyΓ→.s + Λ→.s = Π→
0 .s andΓ×.s + Λ×.s = Π×

0 .s. Case (b) is similar.
BecauseΠ→

0 is τ−→ -enabled, we see thats 6τ−→ impliesΠ→
0 .s = 0 whence alsoΓ→.s = Λ→.s = 0, so that bothΓ→, Λ→ are

τ−→ -enabled also. Thus we appeal to Proposition 3.9 to findΓ1, Λ1 with Γ→ τ−→ Γ1 andΛ→ τ−→ Λ1 andΠ1 = Γ1 + Λ1.
Being now in the same position withΠ1 as we were withΠ0, we can continue this procedure (here the informal induction) to

induce derivation structures forΓ, Λ separately that establish (30) when added together as in Part (i) of this lemma.
Finally, we letΓ, Λ, Π bep1 ·∆1, p2 ·∆2, ∆

′, and scale the induced derivation structures up by1/p1, 1/p2 respectively. Be-
cause later subdistributions in those structures can neverbe bigger than earlier ones, the proper bounding of∆1,2 themselves
guarantees that the up-scaling does not make any subsequentsubdistributions too big. 2

Theorem B.4 [Transitivity of =⇒] In a finite-state pLTS, if∆ =⇒ Θ andΘ =⇒ Λ then∆ =⇒ Λ.

Proof: By definition∆ =⇒ Θ means that some∆k, ∆
×
k , ∆→

k exist for allk ≥ 0 such that

∆ = ∆0, ∆k = ∆×
k + ∆→

k , ∆→
k

τ−→ ∆k+1, Θ =

∞X

k=0

∆×
k . (32)

SinceΘ = ∆×
0 +

P
k≥1 ∆×

k andΘ =⇒ Λ, by Theorem 3.18 there areΛ0, Λ
≥
1 such that

∆×
0 =⇒ Λ0,

X

k≥1

∆×
k =⇒ Λ≥

1 , Λ = Λ0 + Λ≥
1 .

56

Using Theorem 3.18 again, we haveΛ1, Λ
≥
2 such that

∆×
1 =⇒ Λ1,

X

k≥2

∆×
k =⇒ Λ≥

2 , Λ≥
1 = Λ1 + Λ≥

2 ,

thus in combinationΛ = Λ0 + Λ1 + Λ≥
2 . Continuing this process we have that

∆×
k =⇒ Λk,

X

j>k

∆×
j =⇒ Λ≥

k+1, Λ =
kX

j=0

Λj + Λ≥
k+1 (33)

for all k ≥ 0. Lemma 3.5 and Proposition 3.19 ensure that∆ =⇒ Θ implies |∆| ≥ |Θ| for any subdistributions∆ andΘ, and
therefore that|

P
j>k

∆×
j | ≥ |Λ≥

k+1| for all k ≥ 0. But sinceΘ =
P∞
k=0 ∆×

k from (32), we know that the tail sum
P
j>k

∆×
j

converges toε whenk approaches∞, and therefore thatlimk→∞ Λ≥
k = ε. Thus by taking that limit we conclude that

Λ =
∞X

k=0

Λk . (34)

Now for eachk ≥ 0, we know that∆×
k =⇒ Λk gives us some∆kl, ∆×

kl, ∆
→
kl for l ≥ 0 such that

∆×
k = ∆k0, ∆kl = ∆×

kl + ∆→
kl , ∆→

kl
τ−→ ∆k,l+1 Λk =

X

l≥0

∆×
kl. (35)

Therefore we can put all this together with

Λ =

∞X

k=0

Λk =
X

k,l≥0

∆×
kl =

X

i≥0

0
@ X

k,l|k+l=i

∆×
kl

1
A , (36)

where the last step is a straightforward diagonalisation.
Now from the decompositions above we re-compose an alternative trajectory of∆′

i’s to take∆ via =⇒ to Λ directly. Define

∆′
i = ∆′×

i + ∆′→
i , ∆′×

i =
X

k,l|k+l=i

∆×
kl, ∆′→

i = (
X

k,l|k+l=i

∆→
kl) + ∆→

i , (37)

so that from (36) we have immediately that
Λ =

X

i≥0

∆′×
i . (38)

We now show that

(i) ∆ = ∆′
0

(ii) ∆′→
i

τ−→ ∆′
i+1

from which, with (38), we will have∆ =⇒ Λ as required. For (i) we observe that

∆
= ∆0 (32)
= ∆×

0 + ∆→
0 (32)

= ∆00 + ∆→
0 (35)

= ∆×
00 + ∆→

00 + ∆→
0 (35)

= (
P
k,l|k+l=0 ∆×

kl) + (
P
k,l|k+l=0 ∆→

kl) + ∆→
0 index arithmetic

= ∆′×
0 + ∆′→

0 (37)
= ∆′

0 . (37)

For (ii) we observe that

∆′→
i

= (
P
k,l|k+l=i∆

→
kl) + ∆→

i (37)
τ−→ (

P
k,l|k+l=i∆k,l+1) + ∆i+1 (32), (35), Proposition 3.9

= (
P
k,l|k+l=i(∆

×
k,l+1 + ∆→

k,l+1)) + ∆×
i+1 + ∆→

i+1 (32), (35)

57

= (
P
k,l|k+l=i∆

×
k,l+1) + ∆×

i+1 + (
P
k,l|k+l=i∆

→
k,l+1) + ∆→

i+1 rearrange
= (

P
k,l|k+l=i∆

×
k,l+1) + ∆i+1,0 + (

P
k,l|k+l=i∆

→
k,l+1) + ∆→

i+1 (35)
= (

P
k,l|k+l=i∆

×
k,l+1) + ∆×

i+1,0 + ∆→
i+1,0 + (

P
k,l|k+l=i∆

→
k,l+1) + ∆i+1 (35)

= (
P
k,l|k+l=i+1 ∆×

kl) + (
P
k,l|k+l=i+1 ∆→

kl) + ∆→
i+1 index arithmetic

= ∆′×
i+1 + ∆′→

i+1 (37)
= ∆′

i+1 , (37)

which concludes the proof. 2

B.3 Structural properties of weak derivations
Definition B.5 [Reward function] Let areward functionbe a function$: S → [−1, 1] from the state space into the real interval
[−1, 1]. 3

Define empty suprema over sets of reward-like values to be−∞. This is only a convenience in the middle of calculations; the
infinities always disappear in the end. Write$.∆ for the expected value of reward function$ over distribution∆. Write (s =⇒) for
{∆′ | s =⇒ ∆′} and writeW⊓.$.s for ⊓{$∆′ | s =⇒ ∆′}. Write (s =⇒pp) for the single subdistribution that results from using
policy pp to construct(s =⇒); note that(=⇒pp) is a function (and is total), whereas(=⇒) is in general a relation (also total). This
function is made precise in Definition B.8 below.

Lemma B.6 [Linearity of W⊓ andW⊔] For any reward function$ the associatedW⊓.$ andW⊔.$ are linear.

Proof: We prove the binary case forW⊓: extension to any finite linear combination is straightforward, and the argument forW⊔

is the same.
Suppose∆ = ∆1 p⊕ ∆2 for somep and∆{1,2}. Definem{1,2} := W⊓.$.∆{1,2} respectively. Then for anyε > 0 there

are∆′
{1,2} with ∆{1,2} =⇒ ∆′

{1,2} and$.∆′
{1,2} ≤ m{1,2} + ε. By linearity of=⇒ we therefore have∆′ := ∆′

1 p⊕ ∆′
2 with

∆ =⇒ ∆′ and$.∆′ ≤ (m1 p⊕ m2) + ε. Sinceε is arbitrary, the result follows. 2

Our overall aim is to establish that every element in(s =⇒) is the interpolation of a finite number of static derivatives∆′
i, that

is in each cases =⇒ppi
∆′
i. In order to do that, however, we must introduce the notion ofdiscounted derivatives.

Definition B.7 [Discounted derivatives] Defines =⇒δ ∆′ for discount0 ≤ δ ≤ 1 by analogy with our earlier definition
Definition 3.12 of derivative except that eachτ−→-move discounts its outcome byδ. That is, we revise that earlier definition by
including multiplications byδ at the appropriate points:

∆ = ∆→
0 + ∆×

0 — The× component stops “here,”
δ ·∆→

0
τ−→ ∆→

1 + ∆×
1 — but the→ component moves on, discounted byδ.

...
...

δ ·∆→
k

τ−→ ∆→
(k+1) + ∆×

(k+1)
...

In total: ∆′ — Finally, all the stopped components are summed.

Then we call∆′ :=
P∞
k=0 ∆×

k aδ-discounted derivativeof ∆, and write∆ =⇒δ ∆′ to mean that∆ can make aweakδ-discounted
τ moveto aδ-discounted derivative∆′.

Note that(=⇒1) and(=⇒) agree trivially.
Finally, we combine the two notions of static policy and discount:

Definition B.8 [DiscountedSDP-derivatives] Defines =⇒δ,pp ∆′ as follows:

∆0 = ∆
∆×
k .s = 0 if pp defined ats else∆k.s

∆k+1 =
X

s ∈ ⌈∆k⌉
pp defined ats

δ · pp(s)

3In later sections we will restrict reward functions to the non-negatives [0,1]; but here we need the more general range. Maybe more explanations
for the reason of needing this general range?

58

Then, as usual, we sum the stopped distributions to define∆′ :=
P∞
k=0 ∆×

k .

Note that(s =⇒pp), which we defined informally above, is given by(s =⇒1,pp).

Definition B.9 [discounted payoff] For reward function$ and discountδ define the discounted maximising payoff function
W
δ
⊔.$.s := ⊔{$∆′ | s =⇒δ ∆′}.

The payoff functionWδ
⊔, applied tos, thus gives the supremal expected reward determined by$ over all distributions reached by

starting ats and using=⇒δ. Pre-calculating this function is the key technique in defining important policies: for us, they will be
the maximising ones.

For the moment we will just show that the functionW
δ
⊔.$ (overS) is a fixed point.

Lemma B.10 [Wδ
⊔.$ as a fixed point] In the usual context (suitableS, δ, $, underlying pLTS ands ∈ S) we have

W
δ
⊔.$.s = $s ⊔ δ · ⊔ {W

δ
⊔.$.∆′ | s τ−→ ∆′} ,

that isW
δ
⊔.$ for anyδ, $ (includingδ = 1) is a fixed point of the function(λW.(λs.$s ⊔ δ · ⊔ {W.∆′ | s τ−→ ∆′})).

Note that ifs 6τ−→ on the right-hand side (for some argument) then the supremumis empty, giving−∞, as we mentioned above;
multiplied byδ it is still −∞; then⊔’d with $s the−∞ disappears. (Doing this avoids a case analysis in at least two places.)

Proof: We rely on splitting=⇒δ up in a “first one step, and then the rest” -style. This gives usfirst

(s =⇒δ)
= {∆×

0 + δ ·∆′ | s = ∆×
0 + ∆→

0 ∧ ∆→
0

τ−→ ∆1 ∧ ∆1 =⇒δ ∆′ for some∆×
0 , ∆→

0 , ∆1} ,

which allows us to calculate further as follows:

W
δ
⊔.$.s

= ⊔{$∆′ | s =⇒δ ∆′} definition
= ⊔{$.(∆×

0 + δ ·∆′) | s = ∆×
0 + ∆→

0 ∧ ∆→
0

τ−→ ∆1 ∧ ∆1 =⇒δ ∆′ for some∆→
0 , ∆1} above

= ⊔{$.∆×
0 + δ ·$∆′ | s = ∆×

0 + ∆→
0 ∧ ∆→

0
τ−→ ∆1 ∧ ∆1 =⇒δ ∆′ for some∆→

0 , ∆1}
= ⊔{$.∆×

0 + δ · ⊔ {$∆′ | s = ∆×
0 + ∆→

0 ∧ ∆→
0

τ−→ ∆1 ∧ ∆1 =⇒δ ∆′ for some∆→
0 , ∆1}}

= lift W
δ
⊔.$; linearity of=⇒δ

⊔{$.∆×
0 + δ · ⊔ {W

δ
⊔.$.∆1 | s = ∆×

0 + ∆→
0 ∧ ∆→

0
τ−→ ∆1 for some∆→

0 }}

= ⊔{$s p⊕ δ · ⊔ {W
δ
⊔.$.∆1 | s τ−→ ∆1} for some0 ≤ p ≤ 1} s can be split only intosp⊕ s

= $s ⊔ δ · ⊔ {W
δ
⊔.$.∆1 | s τ−→ ∆1} , ⊔ over interpolation of scalars must be one or the other

as required. 2

Given that Lemma B.10 expressesW
δ
⊔.$ as a fixed point, and works forW1

⊔.$ in particular, one could ask why we bother with
theδ. The answer is that in theδ=1 case it’s not clear which fixed point we have, whereas forδ<1 the fixed point is unique, as we
will see by considering optimal discounted policies.

Definition B.11 [max-seeking policy] Given a pLTS, reward function$ and discountδ say that aSDPgiven bypp is max-seeking
just when for alls we have

1. if pp is undefined ats then$s ≥ δ ·Wδ
⊔.$.∆′ for all ∆′ with s τ−→ ∆′.

2. if pp is defined ats then both

(a) δ ·Wδ
⊔.$.(pp .s) ≥ $s and

(b) W
δ
⊔.$.(pp .s) ≥ W

δ
⊔.$.∆′ for all ∆′ with s τ−→ ∆′ .

What a max-seeking policy does is to evaluateW
δ
⊔.$ “in advance” (given$, δ), and then label every states with the expected

payoff valueW
δ
⊔.$.s thatWδ

⊔.$ assigns to it. The policy at any state s is then to compare the reward$s ats itself with the expected
label valuesWδ

⊔.$.s′ over each distribution of statess′ that are successors ofs, and then to select the greatest among all those.
(Note the use of finite branching.) We will see that in a properly discounted system (i.e. withδ < 1) such a policy maximises the
payoff.

59

In case that seems obvious, we now give an undiscounted case (i.e. δ=1) where a max-seeking policy doesn’t work. Take the
system

s0
τ−→ s0

s0
τ−→ s0 1/2⊕ s1

s1 6−→

with $s0 = 0 and$s1 = 1,

and observe that from both states a payoff of 1 is attainable eventually; that is, we haveWδ
⊔.$.s0,1 = 1 and both states will be

W
δ
⊔.$ -labelled with 1. Ats0 therefore the policy compares “stay here,” yielding immediate payoff$s0 = 0, with “move tos0”

with W-label 1 and “move tos0 1/2⊕ s1” also with W-label 1. Clearly one of the latter two is chosen — but which? If it is the
first, then in fact the overall payoff will be 0 because of divergence — the maximum is not attained, and the policy has failed.

On the other hand, with a proper discount the payoff ats0 would be given byWδ
⊔.$.s0 = δ ·(Wδ

⊔.$.s0 1/2⊕ 1), that is
δ/(2− δ). Then the reward (immediate payoff) ats0 is still 0, the expected payoff for takings0

τ−→ s0 has becomeδ2/(2− δ) and
the expected payoff for takings0

τ−→ (s0 1/2⊕ s1) has becomeδ/(2 − δ). Although the two expressions are equal forδ=1, when
0 < δ < 1 the last choice is strictly greatest, and so the policy succeeds by taking that choice every time (therefore being static).
Note that although here there is a unique max-seeking policy, in general there could be many.

We will now show that in a properly discounted system (δ<1), choosing one of the max-seekingSDP’s and following it
consistently will achieve the maximum expected reward, just as immediately above. (One cannot changeSDP’s “mid-stream,”
however.) The proof relies on showing two expressions are fixed points of the same function, and on then using the discountto
argue via contraction that in fact the function’s fixed pointis unique.

We begin by noting that following a policy cannot increase the payoff.

Definition B.12 [Policy-following payoff] DefineW
δ,pp.$.s to be$∆′ wheres =⇒δ,pp ∆′. Note that∆′ is unique.

Lemma B.13 [Policy-following does not increase payoff] For any policypp and discountδ we haveWδ,pp ≤ W
δ
⊔.

Proof: Trivially s =⇒δ,pp ∆′ impliess =⇒δ ∆′, whence we haveWδ,pp.$.s ≤ W
δ
⊔.$.s becauseW⊔ is defined as a supremum.

The desired inequality follows becauseδ, $, s are arbitrary. 2

Additionally we can develop a fixed-point characterisationof W
δ,pp in the style of Lemma B.10.

Lemma B.14 [Wδ,pp as fixed point] For any discountδ and policypp we have

W
δ,pp.$.s = $s if pp undefined ats elseδ ·Wδ,pp.$.(pp .s) . (39)

Proof: We proceed as in Lemma B.10, noting first that we have

s =⇒δ,pp (s if pp undefined ats elseδ ·∆′) where(pp .s) =⇒δ,pp ∆′ , (40)

where again we exploit that∆′ is unique. Then we calculate

W
δ,pp.$.s

= $.(s if pp undefined ats elseδ ·∆′) where(pp .s) =⇒δ,pp ∆′ Definition B.12, (40)
= $s if pp undefined ats elseδ ·$∆′ where(pp .s) =⇒δ,pp ∆′

= $s if pp undefined ats elseδ ·Wδ,pp.$.(pp .s) .

2

Now we concentrate on max-seeking policies, and show thatW
δ
⊔.$ satisfies the fixed-point equation (39) provided the policy

pp it refers to is max-seeking.

Lemma B.15 [fixed-point for max-seeking policy] Letpp be a max-seeking policy. Then

W
δ
⊔.$.s = $s if pp is undefined ats elseδ ·Wδ

⊔.$.(pp .s) . (41)

Proof: We calculate

$s if pp is undefined ats elseδ ·Wδ
⊔.$.(pp .s)

= $s ⊔ δ · ⊔ {W
δ
⊔.$.∆′ | s τ−→ ∆′} pp is max-seeking

= W
δ
⊔.$.s . Lemma B.10

60

2

Putting the above together, and exploiting contraction, gives us our first important proposition concerning max-seeking policies.

Proposition B.16 [discounted max-seeking policies are optimal] Ifpp is a max-seeking policy with respect toδ and$, andδ < 1,
thenW

δ,pp.$ = W
δ
⊔.$.

Proof: We use the results above to recall that each side is a fixed point of the equation

Wδ,$ = (λs. $s if pp undefined ats elseδ ·Wδ,$.(pp .s)) , (42)

and then argue that the fixed point is unique because of contraction and completeness. The first point is immediate from (41) and
(39).

For the second, we recall that we are working with functions from S into [−1, 1] and show that (42) is a contraction mapping.
Write cWi

δ,$ for Equation 42’s right-hand side applied to someWi
δ,$. Then we have

dist(cW1
δ,$, cW2

δ,$)

= ⊔{abs(cW1
δ,$.s − cW2

δ,$.s) | s ∈ S} definition of metric dist
= ⊔{abs(cW1

δ,$.s − cW2
δ,$.s) | s ∈ S ∧ pp defined ats} equal ifpp undefined ats

= δ · ⊔ {abs(W1
δ,$.(pp .s) −W2

δ,$.(pp .s)) | s ∈ S ∧ pp defined ats} (42)
≤ δ · ⊔ {abs(W1

δ,$.s
′ −W2

δ,$.s
′) | s′ ∈ S} arithmetic;pp .s is a subdistribution

= δ ·dist(W1
δ,$,W

2
δ,$) definition of metric dist

< dist(W1
δ,$,W

2
δ,$) , δ < 1

which gives us the contraction, whence the uniqueness and finally the equality. 2

The last step is to show that we can achieve optimality with aSDPeven without discounting; the argument closely follows the
MDP approach [19, p284]. First we need to investigate the behaviour of discounted outcomes as the discountδ tends to 1.

Lemma B.17 Suppose we haves =⇒ ∆′ for givens, ∆′ and thus∆′ =
P
i
∆×
i for some properly related sequence of subdistri-

butions∆×
i . Then for any reward function$ we have$∆′ = limδ→1

P
i δ
i ·$∆×

i .

Proof: Note that, since$ and the∆×
i are fixed, this series is of the form

P
i
aiδ

i with
P
i
|ai| ≤ 1 — that is, although the

coefficientsai can individually be negative as well as positive, as a seriesthey are absolutely convergent.
Taking limits inδ on both sides then gives us

limδ→1

P
i
δi ·$∆×

i

=
P
i
limδ→1 δi ·$∆×

i absolute convergence
=

P
i
$∆×

i

= $.(
P

i
∆×
i)

= $∆′ .

2

That leads immediately to this corollary.

Corollary B.18 For any$, pp we havelimδ→1 W
δ,pp.$ = W

1,pp.$.

Proof: Givenδ, let the sequence∆×
i be generated as in Definition B.8 bys =⇒δ,pp, and apply Lemma B.17 immediately above.

2

Now fix the reward$ and suppose we have an infinite sequence of discounts tendingto 1. From Proposition B.16 we know that
for each of these discounts there is an optimalSDP; but we also know from the fact the state space is finite that there are only a finite
number ofSDP’s to choose from along the sequence. Thus at least one occursinfinitely often in connection with our sequence of
discounts: let that optimal policy bepp and letδ1, δ2, · · · be the infinite (sub-)sequence of discounts associated withit. Note that
limn δn = 1.

With that preparation we now have our main theorem concerning existence of optimal strategies.

Theorem B.19 In a finitary pLTS we have for any reward function$ thatW⊔.$ = W
pp.$ for some static policypp. Note thatpp

can depend on$.

61

Proof: By definition we have for anys thatW⊔.$.s = ⊔{$∆′ | s =⇒ ∆′}. Pick one such∆′ and suppose that it is=⇒-generated
as

P
i
∆×
i . We now reason as follows:

$∆′

= limn→∞

P
i
δin ·$∆

×
i Lemma B.17

≤ limn→∞ W
δn,pp.$.s from above: that samepp is optimal for alln

= W
1,pp.$.s Corollary B.18

= W
pp.$.s .

Since∆′ was chosen arbitrarily we have thereforeW⊔.$.s ≤ W
pp.$.s, and the other direction is trivial. 2

Lemma B.20 [=⇒ realised by interpolation of finitely many static policies]Supposes =⇒ ∆′ for some states and subdistri-
bution∆′. Then there is a finite index setI , probabilitiespi summing to 1 and static strategiesppi such that∆′ =

P
i∈I pi ·∆

′
i

where uniquelys =⇒ppi
∆′
i for eachi.

Proof: For simplicity letI indexall static policies in our pLTS: this is possible because from finiteness of the state-space and finite
branching we know there are only finitely many such strategies; and it loses no generality.

Suppose for a contradiction thats =⇒ ∆′ for some∆′ that does not lie in the closed and convex set of interpolantsX of the
finite set{∆′

i | s =⇒ppi
∆′
i}. Thus∆′ can be separated fromX by a hyperplaneH whose normal can be scaled into[−1, 1]

because we are in finitely many dimensions. Use that scaled normal to define a reward function$H such that$H .∆′ > c but
$H .∆′

X < c for all ∆′
X ∈ X and in particular$H .∆′

i < c for all ∆′
i, wherec is the constant term of the hyperplane.

Since$H .∆′ > c we must haveW⊔.$H .s > c also; yetWppi .$H .s < c for all i, contradicting Theorem B.19. Thus there can
be no such∆′. 2

Lemma B.21 [Distillation of divergence, static case] If for some states and static derivative policypp over a finite-state pLTS
there is a derivations =⇒pp ∆′ then there is a probabilityp and full distributions∆′

1, ∆
′
ε such thats =⇒ (∆′

1 p⊕ ∆′
ε) and

∆′ = p ·∆′
1 and∆′

ε =⇒ ε.

Proof: Make a modified policypp′ by settingpp′ .s = pp .s except whens =⇒pp ε, in which case makepp′ undefined ats.
Recalling the definition Definition B.8 of=⇒pp′ , determine the unique∆′′ so thats =⇒pp′ ∆′′.

Now use Lemma 5.6 to observe that|∆′′|=1 because no state wholly diverges. We conclude by splitting∆′′ up into∆′′
1 + ∆′′

ε

so that the support of∆′′
ε is all thepp-diverging states and∆′′

1 is supported by all the rest, and finally determine∆′
1, ∆

′
ε andp by

normalisation of those. 2

62

