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Abstract

This paper provides modal- and relational characterisatid may- and must-testing preorders for recursive CSP
processes with divergence, featuring probabilistic a$ agehondeterministic choice. May testing is characterised
terms of simulation, and must testing in terms of failurewdation. To this end we develop weak transitions between
probabilistic processes, elaborate their topologicaperties, and capture divergence in terms of partial distidins.
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1 Introduction

It has long been a challenge for theoretical computer ssisrib provide a firm mathematical foundation for process
description languages that incorporate both nondetestigraind probabilistic behaviour in such a way that processe
are semantically distinguished only if they can be told abgisome notion of testing.

In our earlier work [3, 2] a semantic theory was developedfor particular language with these characteristics, a
finite process calculus calledCSP: nondeterminism is present in the form of the standard ehoperators inherited
from CSP [9], that isP 1 @ and P O @, while probabilistic behaviour is added via a new choicerafze P ,& @
in which P is chosen with probability and@ with probability1—p. The intensional behaviour of @ SP process
is given in terms of a probabilistic labelled transitionteys [21, 3], or pLTS, a generalisation of labelled transitio
systems [17]. In a pLTS the result of performing an action given state results in probability distributionover
states, rather than a single state; thus the relatiods> ¢t in an LTS are replaced by relations—=- A, with A a
distribution. ClosegCSP expression$’ are interpreted as probability distributiohB] in the associated pLTS. Our
semantic theory [3, 2] naturally generalises the two prexdf standard testing theory [5] p&SP:

o P Cpmay Q indicates that) is at least as good a8 from the point of view ofpossiblypassing probabilistic
tests; and

o P Cpnust@ indicates instead tha} is at least as good d3 from the point of view oguaranteeingrobabilistic
tests.

The most significant result of [2] was an alternative chamasation of these preorders as particular forms of coin-
ductively definedsimulationsover the underlying pLTS. We also provided a charactedsaith terms of a modal
logic.

The object of the current paper is to extend the above resulisversion ofpCSP with recursive process de-
scriptions: we add a construeic x. P for recursion, and extend the intensional semantics of{2] straightforward
manner. We restrict ourselvesfinitary pCSP processes, having finitely many states and displaying fonaeching.



~ The simulation relations in [2] were defined in terms of we@sitions
=L between distributions, obtained as the transitive closfigerelation——
between distributions that allows part of a distributionmake ar-move,
whereas the remaining part remains in place. This definisibwwever inade-
guate for processes that can do an unbounded numbesteps. The problem
is highlighted by the proce€g, = recz. (1.x 1®a. 0) illustrated in Figure 1.
Process); is indistinguishable, using tests, from the simple proeess we
have Q1 ~pmay a.0 and Q1 ~pmust @.0. This is because the proce§s a
will eventually perform the action with probability 1. However, the action
[a.0] % [0] can not be simulated by a corresponding miyg] == —%-.
No matter which distributios\ we obtain from executing a finite sequence of-
internal moved@;] == A, part of it is unable to subsequently perform the
actiona.

To address this problem we propose a new relatior= ©, that indicates tha® can be derived fronAA by

performing an unbounded sequence of internal moves; w&®caaleak derivativef A. For examplga. 0] will turn
out to be a weak derivative ¢€);], [(Q1] = [a. 0], via the infinite sequence of internal moves

N[

igure 1: The pLTS of proces3,;

[Q1] 7 [Q13®a.0] 7 [Q1 38 a.0] T ...[Q1 4 ®a.0] To....

One of our contributions here is the significant use of “sabifiutions” that sum tmo more tharone [10, 16]. For
example, the empty subdistributierelegantly represents the chaotic behaviour of procesaemtESP and in must-
testing semantics is tantamount to divergence, becausawee k% ¢ for any actiorz, and a process likec x. x that
diverges via an infinite path gives rise to the weak transitiest z. + =—> . Our weak transitions relatioa=- can be
regarded as an extension of the one from Lynch, Segala & Yagrd[15] to partial distributions; the latter, although
defined in a very different way, can be obtained from ours loyirng weak derivatives to be total distributions.

We end this introduction with a brief glimpse at our proofstgy. In [2] the characterisations for finip€SP
processes were obtained using a probabilistic extensidgheoHennessy-Milner logic [17]. Moving to recursive
processes, we know that process behaviour can be capturadibiye modal logic only if the underlying LTS is
finitely branching, or at least image-finite [17]. Thus todakdvantage of a finite probabilistic HML we need a
property of pLTSs corresponding to finite branching in LTiBss is topological compactness.

Subdistributions over (derivatives of) finitapCSP processes inherit the standard (complete) Euclidean enetri
One of our key results is that

Theorem 1.1 For every finitarypCSP processP, the sef{ A | [P] = A} is convex and compact.

Indeed, using techniques from Markov Decision Theory [18] @&an show that the potentially infinite s\ |
[P] = A} is nevertheless the convex closure dfrate set of subdistributions, from which Theorem 1.1 follows
immediately. This in turn implies that the simulation preéer_ s is compact in the following sense:

Theorem 1.2 For every finitarypCSP processP, the sef{ A | [P] Cg A } is convex and compact.

This key result allows aimductivecharacterisation of the simulation preorder: we can canstt sequence of approx-
imationsC¥, for k& > 0 with the property that

Theorem 1.3 For finitary distributionsA and®© we haveA Cg O if and only if A g’g O for everyk > 0.

Our main characterisation results can then be obtained tepdixg the probabilistic modal logic used in [2], so that
for example

o it characteriseg’g for everyk > 0, and therefore it also characterises

e every probabilistic modal formula can be mimicked by a mestt
Similar results accrue for must testing: details are give8ection 7.
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Figure 2: Syntax opCSP

2 The languagepCSP

Let Act be a set of visible actions which a process can perform, dithtde an infinite set of variables. The language
pCSP is then given by the two-sorted syntax in Figure 2. It is eBaby the finite language of [2, 3], to which has
been added the recursive constrigetz. P in which z is a variable and® a term. Intuitivelyrec z. P represents the
solution of the fixed-point equation = P. The notions of free and bound variables are standard, éstiof the
substitution of terms for free occurrences of variablesinénaming if necessary). BY[z — P] we mean the result
of substituting the tern® for the variabler in Q.

We write pCSP for the set ofclosed termslefined by this grammar, theCSP processesandsCSP for its subset
of pCSP states the sub-sorf5 above.

The process ,® @, for 0 < p < 1, represents @robabilistic choicebetweenP and@: with probability p it
will act like P and with probabilityl—p it will act like Q.> Any process is a probabilistic combination of state-
based processes built by repeated application of the apegat The state-based processes have a CSP-like syntax,
involving the stopped proceBsaction prefixing:._ for a € Act, internal-andexternal choicesl andO, and gparallel
compositior| 4 for A C Act.

The proces? M @ will first do a so-callednternal actiont ¢ Act, choosingnondeterministicalljpetweenP
and@. Therefore, like a._, acts as guard in the sense that it converts any process arguments intitexlsased
process. The same applies¢o z. P as, following CSP [18], our recursion construct performgaernal action when
unfolding. As our testing semantics will abstract from it actions, these-steps are harmless and merely simplify
the semantics.

The process O ¢ on the other hand does not perform actions itself but rath@wvs its arguments to proceed,
disabling one argument as soon as the other has done a \asiib&. In order for this process to start from a state
rather than a probability distribution of states, we regits arguments to be state-based as well; the same requireme
applies tg 4.

Finally, the expressior |4 t, whereA C Act, represents processesand¢ running in parallel. They may
synchronise by performing the same action frdnsimultaneously; such a synchronisation results.iitn additions
and¢ may independently do any action fropct\A) U {7}.

Although formally the operatorsl and|4 can only be applied to state-based processes, informallyseeex-
pressions of the forn? O @ andP |4 @, whereP and( arenot state-based, as syntactic sugar for expressions in
the above syntax obtained by distributinigand|4 over,@&. Thus for example O (¢, ,® t2) abbreviates the term
(S O tl)p@ (S O t2).

The full language of CSP [1, 9, 18] has many more operatordiave simply chosen a representative selection,
and have added probabilistic choice. Our parallel opeiiatapt a CSP primitive, but it can easily be expressed in
terms of them — in particulaP |4 Q = (P|4aQ)\A, where| 4 and\A are the parallel composition and hiding
operators of [18]. It can also be expressed in terms of thallehcomposition, renaming and restriction operators of
CCS. We have chosen this (non-associative) operator faeco@nce in defining the application of tests to processes.

As usual we may elid®; the prefixing operatot._ binds stronger than any binary operator; and precedence
between binary operators is indicated via brackets or agaéhe will also sometimes use indexed binary operators,
such agp,; pi-P; with > ., p; = 1 and allp; > 0, and[],; P;, for some finite index set.

Our language is interpreted ageobabilistic labelled transition systeif3, 2]. Essentially the same model has
appeared in the literature under different names sudiRasystem§l 1], probabilistic processefL2], simple prob-
abilistic automatg20], probabilistic transition systemd.3] etc. Furthermore, there are strong structural siritidesr
with Markov Decision Processé$9, 4].

YIn our semantics we hayeP 0@ Q] = [Q] and[P 1@ Q] = [P], so without limitation of generality we could have requitbdt0<p<1.
In papers involving axiomatisations this is customaryhasmost natural formulation of the law of associativity iiwes dividing byp.
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Figure 3: Operational semanticsgESP

We now fix some notation. A (discrete) probabilgybdistributionover a setS is a functionA: S — [0, 1] with
> sesA(s) < 1; thesupportof such aA is [A] := {se€S | A(s) > 0}, and themassof A, written |A], is
> sera1 A(s). Asubdistribution is a (total, or fulllistributionif [A| = 1. We writes to denote the point distribution
assigning probabilityl to s and0 to all other elements af, so that[s] = {s}. With D(S) we denote the set of
subdistributions ovef, and withD, () its subset of full distributions. Fah € D(S) and f a function with domain
S, we write Exp, (f), theexpected valuef f overA € D(S), for Zse[m A(s)- f(s) whenever the range gfmakes
the right-hand side well defined. Far, © € D(S) we write A < O iff A(s) < O(s) forall s€ S.

WhenA,, for k € K is a collection, not necessarily finite, of subdistribusighen) , _ ;- Ay, is the subdistribution
given by (3", c x Ar)(s) := > ek Ar(s) — however because in general the sum could exceed 1 at semaenust
view this as a partial operation. If the index set is finitey §& - - - ,n}, we often write the suma&; + --- + A, .
Whenp is a real number fronf0, 1] we usep-A for the subdistributior{p-A)(s) := p-A(s). Finally we uses to
denote theemptysubdistribution of mass zero.

These operations on subdistributions do not readily adegmhselves to full distributions. But whenever the prob-
abilitiesp, sum to 1 and the\, are themselves full distributions, then alsd, . ;- pr.- Ay is a full distribution.

Definition 2.1 A probabilistic labelled transition syste(pLTS) is a triple(S, L, —), where

(i) Sis a set of states,
(i) L is a set of transition labels,
(iii) relation — is a subset of x L x Dy (S).

A (non-probabilistic) labelled transition system (LTS)yrize viewed as a degenerate pLTS — one in which only point
distributions are used. As with LTSs, we wriie*> A for (s, a, A) € —, as well as - for 3A : s % A ands—
for Ja: s .

The operational semantics pESP is defined by a particular pLT&CSP, Act, —), constructed by takingCSP to
be the set of states ardt, := Act U {7} to be the set of transition labels; we letange oveAct anda overAct..
We interpretpCSP processes as distributiong P] € D1 (sCSP) via the function]_] : pCSP — D, (sCSP) defined
below:

[s] = s forsesCSP

[P, Q] = p-[PI+(1-p)[QI.

5



The transition relation- is defined in Figure 3. This is a very slight extension of tHeswe used earlier [3, 2] for
finite processes: one new rule is required to interpret sdzeiprocesses. All rules are very similar to the standard
ones used to interpret CSP as a labelled transition syst8n jit are modified so that the result of an action is
a distribution. The rules for external choice and paral@hposition use an obvious notation for distributing an
operator over a distribution; for example O s represents the distribution given by

! H !
(ADS)(t)—{A(S) Ift—s. Os
0 otherwise.
We sometimes write. P for P 1 P, thus givingr.P —— [P].

The set of stategeachablefrom a subdistributiom\ is the smallest set that contaifA] and is closed under
transitions, meaning that if some statés reachable and % © then every state ifi©] is reachable as well. We
graphically depict the operational semantics lGSP expressiornP by drawing the part of the pLTS reachable from
[P] as a directed graph with states represented by filled ne@esl distributions by open nodes For any states
and distributionA with s -2+ A we draw an edge fromto A labelled witha; and for any distributiom\ and states
in [A], the support of\, we draw an edge from to s labelled withA(s). Sometimes we partially unfold this graph
by drawing the same nodes multiple times; in doing so, aljourty edges of a given instance of a node are always
drawn, but not necessarily all incoming edges.

Note that for eachP € pCSP the distribution[ P] has finite support. Moreover, our pLTSfisitely branchingn
the sense that for each state sCSP there are only finitely many paifg, A) € Act, x D1(sCSP)) with s % A.

In spite of[P]’s finite support, and the finite branching of our pLTS, it ispible for there to be infinitely many states
reachable fronjP]; when there are only finitely many, théhis said to be finitary [4].

Definition 2.2 A subdistributionA € D(S) in a pLTS (S, L, —) is finitary if only finitely many states are reachable
from A; apCSP expressiorP is finitary if [P] is.

3 Lifted transitions, and weak moves over distributions

Our intention is to define simulation relations on processééch are both sound and complete with respect to testing.
This has been accomplished in [2] for recursion-fs€S8P processes, where it was shown, for instance, that for such
processe® Cpmay Q if and only if @ can (recursively) simulate the ability éf to perform actions. It turns out that
to generalise these results requires a careful examinatioreak derivations in probabilistic systems of unbounded
depth; and that is the purpose of this section.

Recall for example the procesg$, defined in the introduction. It turns out that in our testimgniework this
process is indistinguishable from both processes can do nothing else than-aetion, possibly after some internal
moves, and in both cases the probability that the processiaikr do thes-action is 0. In [3, 2], where we didn’t
deal with recursive processes likg, we defined a weak transition relatieft> in such a way thaf> == iff there is
a finite number of--moves after which the entire distributig®] will have done aru-action. Lifting this definition
verbatim to a setting with recursion would create a diffeeshetween, andQ, for only the former admits such a
weak transition==>. The purpose of this section is to propose a new definitioneakatransitions, with which we can
capture the intuition that the proceQs can perform the actioa with probability 1, provided it is allowed to run for
an unbounded amount of time.

We construct our generalised definition of weak move by megisvhat it means for a probabilistic process to
execute an indefinite sequence of (intermafhoves. The key technical innovation is to change the foaus filistri-
butions tosubdistributions

First some relatively standard terminology. For any subsef D(S), with S a set, let[ X, theconvex closuref
X, be the least set satisfying:

(i) X X

(i) AelXifandonlyifA =" p;-A;, whereA; € X andp; € [0, 1], for some index sef such thaf) ~ p; = 1.
iel iel



In cases is a finite set, it makes no difference whether we resfriitt being finite or not; in fact, index sets of size 2
will suffice. However, in general they do not:

Example 3.1 LetS = {s; | i € N}. Then[{5; | i > 2} consists of all total distributions whose support is inelddh
{si | « > 2}. However, with a definition of convex closure that requiralydinary interpolations of distributions to
be included[{s; | i > 2} would merely consist of all such distributions with finitepport. O

Convex closure is a closure operator in the standard senggtiit satisfies

e X C IX

e X CYimplies]X C Y

o [IX =1X.
We say a seX is convexf [ X = X. Furthermore, we say that a relati®hC Y x D(S) is convex whenever the set
{A |y R A} is convex for every in Y, and] R denotes the smallest convex relation contairfihg

3.1 Lifted relations

In a pLTS actions are only performed by states, in that astane given by relations from states to distributions. But
pCSP processes in general correspond to distributions oversstab in order to define what it means for a process
to perform an action, we need lift these relations so that they also apply to distributionsfatt we will find it
convenient to lift them to subdistributions.

Definition 3.2 Let (S, L, —) be a pLTS andR C S x D(S) be a relation from states to subdistributions. Then
R C D(S) x D(S) is the smallest relation that satisfies:

(1) s R © impliess R ©, and

(2) (Linearity)A; R ©; foric I implies) ., pi- A R > icr Pi-©; foranyp; €[0,1] i e ) with >, p; < 1.
Remark 3.3 ForR;, Ry C S x D1(9), if R; C Ry thenR; C Ro.

By constructionR is convex. Moreover, becaus¢|R)© impliess R © we haveR=]R, which means that when
considering a lifted relation we can w.l.0.g. assume thgioai relation to have been convex. In fact wheris indeed
convex, we have tha&R © ands R © are equivalent.

An application of this notion is when the relation-#&- for o € Act,; in that case we also writé*s for -%. Thus,
as source of a relatior~ we now also allow distributions, and even subdistributiohsubtlety of this approach is

that for any actiony, we have
eS¢ (1)

simply by takingl = ( or >, _; p; = 0 in Definition 3.2. That will turn out to make especially useful for modelling
the “chaotic” aspects of divergence, in particular thahia inust-case a divergent process can simulate any other.
Definition 3.2 is very similar to our previous definition in][2lthough there it applied only to (full) distributions:

Lemma 3.4 A R © if and only if

() A=>,c;pi-5, wherelisanindexsetand,_ p; <1,

(i) Foreachi € I there is a subdistributio®; such thats; R ©;,
(i) © =3 ;e pi-i.
Proof: Straightforward. O

An important point here is that a single state can be split ggveral pieces: that is, the decompositiom\ointo
> ic1 Pi-5iis notunique. One important property of this lifting opésatis the following:

Lemma 3.5 Supposel R ©, whereR is any relation inS x D(S). Then
@) Al = O]



(i) If RisarelationinS x D(S) then|A| = |©].
Proof: This follows immediately from the characterisation in Lemf14. O

So for example it R © then0 = |¢| > |©], whenceO is alsoz.

Remark 3.6 From Lemma 3.4 it also follows that lifting enjoys the follmwg two properties:
(Scaling) IfA R ©,pc R and|p-A| < 1thenp-A R p-O.

(Additivity) If A; R ©; forie I and| Doicr Qi < 1thend A R > icr O

In fact, we could have presented Definition 3.2 using scaimdj additivity instead of linearity.

The lifting operation has yet another characterisatias,ttme in terms othoice functions

Definition 3.7 Let R C S x D(S) be a relation from states to subdistributions. Thkfen.S — D(S) is achoice
function forR, written f €gR, if s R f(s) for everys € S.

Proposition 3.8 SupposeR C S x D(S) is a convex relation. Then for any € D(S), A R © if and only if there
is some choice functiofi €;o1R such tha® = Exp, (f).

Proof: First suppos@® = Exp, (f) for some choice functiolf €a1R, thatis© = > A7 A(s)- f(s). It now

follows from Lemma 3.4 thaf\ R O sinces R f(s) for eachs.
Conversely suppos& R ©; we have to find a choice functiofi €;o1R such thato = Exp, (f). Applying
Lemma 3.4 we know that

() A=>,c;pi-5;, for some index sef, with > ., p; <1
(i) © =3 ,c;pi-O; for someo; satisfyings; R ©;.
Now define the functiorf : [A] — D(S) by letting

&= 3 (=)

{i€l|s;=s}

Note thatA(s) = 3¢ ,cr|,,—,) pi and therefore by convexityR f(s); so f is a choice function foRR. Moreover, a
simple calculation shows that EXpf) = >, ; p: - ©:, which by (ii) above i®. O

An important further property is the following:
Proposition 3.9 If }~,_, p;-A; R © then®=3"._; p;- O, for some subdistribution®; such that\; R ©; forie 1.

Proof: Let A R © where A = > ic1 Pi-Ai. By Proposition 3.8, using thd_E:I_R, there is a choice function
J€ra1 IR such tha®® = Exp, (f). Take®; := Exp, (f) fori e I. Using thatfA;| C [A], Proposition 3.8 yields
A; R ©; foricI. Finally,

Y opi®i= piry Ails)f(s)= Y D pi-Ails)f(s)= Y Als)-f(s) =Expa(f)=0. O

el i€l se[A;] se[A] iel s€[A]

The converse to the above is not true in general: ftoR (>_ic1 pi-©;) itdoes not follow that can correspondingly
be decomposed. For example, we hayé ; © ¢) ~ 5-b+ 3¢, yeta.(b ;@ ¢) cannot be written ag-A; + 5- Ao
such thatA\; % b andAy % c.

In fact a simplified form of Proposition 3.9 holds for un-ift relations, provided they are convex:

Corollary 3.10 If (3°,.; pi-5:) R © andR is convex, the® = >"._, p;-©; for subdistribution®; with s; R ©;
foriel.

Proof: TakeA; to bes; in Proposition 3.9, wheno® = )", _; p;-©; for some subdistribution®; such that; R O,
for i € I. Becauser is convex, we then havg R ©; from the remarks following Definition 3.2. O



Lifting satisfies the following monadic property with regp& composition.

Lemma 3.11 Let Ry, R2 C S x D(S). Then the forward relational compositi®y ; R is equal to the lifted compo-
sitionﬁ.

Proof: SupposeA R ;R, ®. Then there is som® such thatA R; © R, ®. By Lemma 3.4 we have the
decompositiol = 3", p;-5; and® = 3., p;-O; with s; Ry ©; for eachi € I. By Proposition 3.9 we obtain
® = . ;pi-®; with ©; Ry @,. It follows thats; R1;R> ®;, and thusA R1;R, ®. So we have shown that
R1;R2 C Ri;R». The other direction can be proved similarly. O

3.2 Weak transitions defined

Definition 3.12 (Weak moves to derivatives) Suppose we have subdistributiofts A;”, A/, for k& > 0, with the
following properties:

A = Ay + Af — The x component stops “here” (even if it could have moved),
Ay T AT + AT — but the— component moves on.

— T — X
Ay = A+ ALy,

Intotal: A" =37 Ay —Finally, all the stopped-somewhere components are summed

The - moves above with subdistribution sources are lifted in #ress of the previous section.
We call A’ := Y7 | A aderivativeof A, and writeA = A’ to mean that\ can make aveakr moveto its
derivativeA’.

There is always at least one derivative of any distributithe (distribution itself) and there can be many. Using
Lemma 3.5 it is easily checked that Definition 3.12 is welliuled in that derivatives do not sum to more than one.

Example 3.13 Let ——* denote the reflexive transitive closure of the relatién over subdistributions. By the judi-
cious use of the empty distributiarin the definition of—>, and property (1) above, it is easy to see that

A T* 0O implies A= 0.

For A ——* © means the existence of a finite sequence of subdistribufiors Ay, Ay,...,Ar = O, k > 0 for
which we can write

A = AQ—FE
Ag s Ay +e¢

Ag_1 £+ Ay

SN
€ = e+e
Intotal: ©

This implies that=>- is indeed a generalisation of the standard notion for naailistic transition systems of
performing an indefinite sequence of internahoves. O

In Definition 3.12 we can see that’ = ¢ iff A = ¢ forall k. ThusA = ¢ iff there is an infinite sequence of
subdistributiong\;, such thatA = Ay andA, — Ag41, thatis iff A can give rise to a divergent computation.



Example 3.14 Consider the processc z. z, which recall is a state, and for which we hagex. + - [recz. z] and
thus[recz. 2] - [recz. z]. Thenrecz. 2] = ¢ . O

Example 3.15 Recall the proces; = recz. (7.x 1@ a) from the introduction. We havg),] = [a] because

1
2

[@i] = [@i[+e
@l = @i+l
1 1
5'[[7'@1] - 3 [Qi] +¢
2ol T Qi+ gyl

1 1
27'[[@1] - W'[T-Q1H+W'M

which means that by definition we have
Q=+ ol
E>1
which is just]a] as claimed. O
Example 3.16 Consider states;, and probabilitiep;, for £ > 2 such that
s — [al,, ® sk51,

where we choosg;, so that starting from anyj, the probability of eventually taking a left-hand branchd ao reaching
[a] ultimately, is justl/k in total. Thusp, must satisfyl /k = py + (1—pg)/(k+1), whence by arithmetic we have
thatpy, := 1/k* will do. Therefore in particulas, = $[a], with the remaining} lost in divergence. O

Our final example demonstrates that derivatives of (inetgtions of)pCSP processes may have infinite support, and
hence that we can hay®] = A’ such that there is n&’ € pCSP with [P'] = A’.

Example 3.17 Let P denote the processcz.b & (z [y 0). Then we have the derivation:

[Pl = [Pl+e
.1
[F] = 5Pl 0'] +5-[8]
1 1 T 1 2 1 1
5'[[P|®01 — ﬁ'ﬂp|®0ﬂ+§'[[b|®0ﬂ
1 - 1 k1 k
[P0 T [Pl O 4 oy [ 10 0]
where0” represents instances 00 running in parallel. This implies that
[P] = ©
where
0= Z [b |g OF
k>1
a distribution with infinite support. O
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3.3 Elementary properties of weak derivations

Here we develop some properties of the weak move relatierwhich will be important later on in the paper; full
proofs and technical lemmas have in some cases been pladpgémdix B. We wish to use weak derivation as much
as possible in the same way as the lifted action relati®@asand therefore we start with showing that- enjoys two
of the most crucial properties ef-: linearity of Definition 3.2 and the decomposition propestyProposition 3.9.
Theorem 3.18 Letp; €[0, 1] fori e I with }*,_; p; < 1. Then

(I) If A, — 6, foralliel thenzielpi-Ai - Ziel Di -0;.

(i) If >,crpi-Ai = Othen® =3, _; p;-0O; for subdistribution®; such thatA; = ©; forall i € I.

Proof: See Lemma B.3. O

With Theorem 3.18, the relatica= C D(S) x D(S) can be obtained as the lifting of a relatiea-s from S to D(S),
which is defined by writing =g O just whens = ©.

Proposition 3.19 (=5) = (=).

Proof: ThatA =5 © impliesA = © is a simple application of Part (i) of Theorem 3.18. For theeotdirection,
supposeA — O: given thatA = Zse[m A(s)-3, Part (i) of the same lemma enables us to decomgbsato
> sera1 A(s)-O,s wheres = O, for eachs in [A]. But the latter actually means that—=>5 ©;, and so by
definition this impliesA =5 ©. |

Corollary 3.20 The relations=> is convex.

Proof: This is immediate from its being a lifting. O

We proceed with the important properties of reflexivity arahsitivity of weak derivations.

Theorem 3.21 (Reflexivity and transitivity of =) For anyA € D(S) we haveA — A. Moreover, ifA = O
and® = A thenA = A.

Proof: The first statement is trivial: just tak®;” := ¢ in Definition 3.12. For the second, see Theorem B.4. O

Finally, we need a property that is the converse of transitivif one executes a given weak derivation partly, by
stopping more often and moving on less often, one makes anathak transition that can be regarded as an initial
segment of the given one. We need the property that afterurgcsuch an initial segment, it is still possible to

complete the given derivation.

Definition 3.22 A weak derivationd —> T" is called aninitial segmenif a weak derivatiod — W if for £ > 0
there ard’,, I';7, T, Wy, U3, ¥, € D(S) such thafl’y = ¥y = ¢ and

Ty =T+ U=V 49 T <Y

Iy =Ty U = Ve Iy < Wy

P=Y0,T7 U= (U —T) 5 (Whyr — Deg):
Proposition 3.23 If ® = I" is an initial segment ob = ¥, thenl' = ¥,

Proof: To be placed in Appendix B. O

Further properties of weak derivations from finitary subtisitions are given in Section 5.
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4 Testing probabilistic processes

We follow our earlier approach [2, 3] to the testing of proitiatic processes. Aestis simply a process from the
languagepCSP except that it may use special “success” actions for reppttie outcome. Thus we assume alseff
fresh success actions not alreadyirt.. We refer to the augmented language@SP*, and the pLTS it generates as
plts;. Now formally a tesfl” is process from this language, and to apply it to prodesg form the proces¥ |a« P

in which all visible actions ofP must synchronise witli". Thus this gives rise to a pLTS in which the only possible
actions arer and elements df:

Definition 4.1 A pLTS of the form(S, ), —) is referred to as aomputation structure

To determine the outcome of applying a test to a process weftire have extract some result from a computation
structure. However because of the presence of recursipSR these may now be of infinite depth. Consequently
we can no longer use our earlier approach [2], because itresbboth processes and tests to be finite.

In the following two subsections we outline two differentysan which outcomes can be calculated from the
infinite (but finite-branching) computation structurelofa. P; for finite-state systems they will turn out to be equiv-
alent.

4.1 Extremal testing

Here we assume that tests are allowed to usiagle success actiow; thusQ? = {w}. Let .S be the set of states in

a computation structure. We view the unit inter{@l1] ordered in the standard manner as a complete lattice (with
least element), and this induces the same structure on the set of funcfons [0, 1]; the induced order is given
by f < g wheneverf(s) < g(s) foreverys € S. Now consider the function&®mi, : (S—[0,1]) — (S—0,1])
defined by:

1 if s =%

Rmin(f)(s) =<0 if s /=
min{ f(A) | s = A} otherwise

wheref(A) = Exp, (f). In a similar fashion we can define the functiof&hax : (S—10, 1]) — (S—[0, 1]) which
uses thenax function in place ofnin. Both these functions are monotonic, and therefore hagefizad points, which
we abbreviate t&/min, Vimax respectively. Furthermore, it can be shown that Rth, andRmax are continuous (see
Lemma 4.19 below) , so we have the characterisation

Vinin = Lpen Vmin™ and  Vmax=|,eny Vmax" (2)
where bothV i’ andVmax denote theottomfunction L defined byl (s) =0forall s € S, and
o V™ = Riin(Vinin®)
o V" = Rinax(Vimad")
Now for a testl” and a proces#, we have two ways of defining the outcome of the applicatiofi & P:

Aﬁ’lin(Ta P) = Vmin(T |Act P)
-A(renax(Ta P) = Vmax(T |Act P)

Here A%, (T, P) returns a single probability, estimating the minimal probability of success; it is a fregstic
estimate. On the other havtf,,. (T, P) is optimistic, in that it gives the maximal probability ofcess.

Definition 4.2
1. P Cfmay Q if for every testT’, Ap (T, P) < A (T, Q)

12
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(i) The process); (i) The computation structur@r.w |act Q1)

Figure 4: Testing the process

2. P Comyust @ if for every testT’, AR (T, P) < ARin(T, Q)
Example 4.3 Consider the proces3; = recz. (7.x 1® a), which is described graphically in Figure 4. When we
apply the tesf” = a.w to it we get the computation structure also described tHéoge that this is deterministic and
consequently the pessimistic and optimistic approachieeicke. That is, we hav® max(T |act Q1) = Vimin(T' |Act
1) = v wherew is the least probability —indeed the only probability, ifstbase— that satisfies

1 1
= —- — ,sothat =1.
VS gty
In general these solutions are unique just when the prosedsbst free of divergence, thatabnost (surely) conver-

gentso that the infinite internal paths have total probabilityozeln fact it is possible to show that

Q1 ~pmay a Q1 :Smusta-

4.2 Resolution-based testing

Here tests are allowed to uséinite collection of success actiong, = {wy, . ..w,}, although it will be convenient
to assume that in any given statemostone of the actionss; can be executed. Then, when calculating the result
of applying the tesf” to the process, we use the collection akesolutionsof T' |acc P; intuitively a resolution
represents aun of the combined procesB |a.: P, and as such gives exactly one probability for each sucatsma
So in general the application @fto P will be a setof probabilities vectorgesult vectorsnot necessarily finite.

Here we adapt the notion eésolutiondefined in [21, 4] for probabilistic automata, to pLTSs. A qartation
structure(S, Q2,, —) is calleddeterministicif for every s € S and everyn € Q. there is at most oné such that
s < Al

Definition 4.4 A resolutionof a computation structurs, (2., —) is a deterministic computation structure
(T, 2, —) such that there is a resolving functigne 7" — S which satisfies the following conditions:

1. ift = © for somew € Q thenf(t) = f(O©)
2. ift — Othenf(t) =4 forallw € Q andf(t) — f(©)
3. ift—Athenf(t) —
wheref(©) is the distribution defined by (©)(s) = > ;,)—, ©(t).

The reader is referred to Section 2 of [4] for a detailed dis@n of this concept of resolutions, and the manner in
which it representsomputation runs of a procesis particular in a resolution states mare allowed to be resolved
into distributions, and computation steps carpb@babilistically interpolated We often use the meta-variahfeto
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(i) The process)- (i) The computation structur@.w |act Q2)

Figure 5: Testing the procegs

refer to a resolution, with resolving functigfy, and the computation structure involved will usually be emstiood
from the context; in most cases it is that generatedltyy.

Let S denote the set of states in a deterministic computatioctstre. Then by analogy with the functiorf@hn
andRmax Of the previous subsection we can defe (S — [0,1]%) — (S — [0,1]) by

5 if s 24
R(f)(s) =40 if s /= 3)
f(A) ifs A

Here we use notation originally introduced in [4] for demngtresult vectors if0, 1]%; 0 is the vector which is every-
where0 while ; hasl in thew!" position, but is otherwis@. Once more this functional has a least fixed point, which
we denote byy. When the deterministic computation structure conceraggiven by a resolutiol?, we say thaiR
realisesthe functionV.

Now let A2(T, P) denote the set

{V(A) | fr(A) =T |a« P], R aresolution oplts; }. 4)
Definition 4.5
1. P Cfhay Q if for every Q-testT’, AX(T, P) <uo A%(T,Q)
2. P Cghust @ if for every Q-testT’, A(T, P) <gm A%(T, Q)

These preorders are abbreviatedt@ ymay Q, andP Cymyust @, when|Q|= 1.

Example 4.6 Consider the proces3; = recz. 7.(1.x 1® a)O7.(0 1@ a) and the application of the teft= a.w to

it; this is outlined in Figure 5. In the computation struetwf T |ac: QQ2, for eachk > 1 there is a resolutio®, such
thatV(Ry) = (1 — 5); intuitively it goes around the loofi: — 1) times before at last taking the right hanaction.
ThusA2(T, Q2) contains(1 — ) for everyk > 1. But it also containg, because of the resolution which takes the
left handr move every time. Thus

AT, Qa) = {(1 = 5), (L= g), o (L= o), 1)
Since A%(T, a) = {1} it follows that
AT, a) <po AX(T,Q2) AT, Q2) <sm AX(T, a)
Indeed it is possible to show that
a Epmay Q2 Q2 Cpmust@
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4.3 Comparison

In this section we compare the two approaches of testingdated in the previous two subsections. Our first result
is that in the most general setting they lead to differertirtggpreorders.

Example 4.7 [Monster B] Consider the infinite-state pLTS defined as follows: in &iddito the statea andO it has
the infinite seb;, bo, . . ., with each of these having two transitions:

o by — byt
) bk N [[Ozik@ GI.
Now let us compare the statig with the procesa. With the testi.w, using resolutions, we get:

A% (a.w,by) = {0, (1 — l), (1= 2%), ..

2 (5)
A (aw,a) = {1}

which means that Z{inay b1 .

However when we use extremal testing, the éestcan not distinguish these processes. It is straightforteesde
thatVimax(a.w |act a) = 1. Moreover for everyr > 0 once can calculat‘@fmax("“)(a.w |act bx) to be(1 — Q(k—in)),
which in turns means th&fmax(a.w |act b1) also evaluates to.

With some more work one can go on to show that no test can gissh between these processes using optimistic
extremal testing, meaning that_gmay b .

O

In the remainder of this section we show that provided sonitafinconstraints are imposed on the pLTS extremal
testing and resolution-based testing coincide. It is coi@ré to break the material up into three subsections. b thi
first we show, that for resolution-based testing it is su#fitito use a singleton set of success actifidlss 1. In the
second we examinmusttesting, which is easier than th@aycase, which in turn is treated in the final subsection.

4.3.1 Scalar versus Vector testing

In [4] it was shown that for finite-branching probabilististamata, and resolution-based testing, it is sufficiens® u
results set$) of sizel. We wish to apply this result in our setting, to obtain Thewre11 below; however to do so we
need to demonstrate that the manner in which the value @atdiom a resolution used in that paper coincides with
our use of least fixed points.

First of all, we recall the notion of occurrences of actiond the results-gathering functi® given in Definition
5 of [4].

Definition 4.8 Given a fully probabilistic automatoR = (S, A°, —), the probability that? starts with a sequence
of actionsX € ¥*, is given byPrg (R, A°), wherePrg : ¥* x S — [0, 1] is defined inductively:

Prr(N,A) if s 5 A

Prr(e, s) := 1 andPrgr(aR, s) := { 0 otherwise

wherePrr(R,A) = > a7 A(s) - Prr(R, s).  The notatiore denotes the empty sequence of actions ahdhe
sequence starting with € 3 and continuing withit € X*. The valuePrg (R, s) is the probability tha? proceeds
with sequenc® from states.

Let X** be the set of finite sequencesin that containsy just once, namely at the end. Then the probability that
that the fully probabilistic automatoR ever performs an actiom is given by, ... Prr(R, A°).

Definition 4.9 For a fully probabilistic automatoR, let its success tuplé&V.R < [0, 1]™ be such thatW.R); is the
probability thatR performs the actiow;.

Then for a (not necessarily fully probabilistic) automatihwe define the set of its success tuples to be those
resulting as above from all its resolutions:

W.M = {W.R| Ris aresolution of\/}.
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Proposition 4.10 If R = (S, A°, —) is a fully probabilistic automaton, théiy. R = V(A®).

Proof: We need to show thati : (W.R); = (V(A®));, i.€. Y yexes PTR(N, A®) = (V(A®));, for which it suffices
to show that
> Pra(R,s)=(V(s));  forallseS. (6)

NeX*wi

SinceV = | |, V", we have that(V(s)); = lim,, .. (V");. Letting® € X* be a sequence of actions, we wriite
for its length. The sequence of reéI‘ENezwi,Ngn Prr(R, s)}52, is increasing and bounded ltyso it converges
and we have .o, Prr(R, 5) = limp oo D newrwr nj<n PTR(R, ). We now prove by induction on that

> Prr(X,s)=(V'(s)); forallneN. (7)
ReT*i |R|<n
which will yield (6) immediately.
e The base caseis= 0. ThenVi : >y s, <, PTR(R, 5) = 0 andV°(s) = 0.

e Now supposing (7) holds for some we consider the case for+ 1. If s —4, then we have

> Prr(R,s) =0 = (V*(s)),.

ReD*wi, |R|<n+1
If s % A for some actiony and distributiord, then there are two possibilities:

— a = w;. We then havgV"T1(s)); = 1. Note that ifX is a finite non-empty sequence without any
occurrence of;, thenPrg (Rw;, s) = 0. In other words) e svw; |wj<nt1 PTR(N, 5) = Pre((wi), s) =
1. B

— a # w;. Then(V*1(s)); = (V*(A));. On the other han®rr ('R, s) = 0 if a # «'. Therefore,

erz*wi,m\gnﬂ Prr(R,s) = ZQNGE*wi,|O¢N|§n+1 Prr(aR, s)
Zaxezw,mmgnﬂ Prr(R, A)
ZNGE*W,Ngn Prr(R, A)

(V™ (A)); by induction

= (V**(s))i

a

As a corollary of Proposition 4.10, we hav (T, P) = W.(T |a« P) for any process and test". Therefore,
the testing preordeSinay, Cimustdefined in Section 4.2 coincides with those in Definition 64jf Now Theorem 4
of [4] (to be accurate, the variant of that theorem for staeed testing) tells us that when testing finite-state psEse
it suffices to use a single success action rather than usittgplalsuccess actions. That is,

Theorem 4.11 For finite-state processes:
o P Cihnay @ ifandonly if P Cpmay Q

o PCI @ ifandonlyif P Cpmust @ ’

4.3.2 Must testing

Here we show that provided we restrict our attention to fibit@nching processes there is no difference between
extremalmusttesting, and resolution-basetlsttesting. In view of Theorem 4.11, we will restrict our atfentto
resolution-based testing in which there is only one sucaeisnw, |Q|= 1.

Let us consider a computation structy® 2., —), obtained perhaps from applying a tdsto a process in
(T |act P). We have two ways of obtaining a result for a distributiontatss fromS, by applying the functio/mn,
or by using resolutions of the computation structure toisedl. Our first result says that regardless of the actual
resolution used, the value obtained from the latter willsleszdominate the former.
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Proposition 4.12 Vimin(fr(A)) < V(A), for any resolution’z.

Proof: SupposeR is a resolution of S, 2., —), giving the deterministic computation structyf® ., —). First we
show by induction om that for every state € T'

Vinin" (fR(2)) < V(1) (8)

Forn = 0, this is trivial. We consider the inductive step. Firsttif-*~ O, then fr(t) -~ f(©), and thus
Vi T (fr(t)) = 1 = V*+1(t). A similar argument applies if —%, and so let us assume-—> © for some
O, andt 4.

Vinin "V (fR(1)) min{ Vimin" (A)[fr(t) == A}

< Vo (fr(0))
= ZseSfR( )(8) - Vimin" (s)
= D per O) - Vmin" (fr(t))
> D ouerO) - V(t) by induction
= V*(9)
_ V(nJrl)(t)
Now by continuity we have from (8) that
Vinin(fr(1)) < V(t) )

and this result is then easily generalised to distributions

Vmin(fr(A)) = EsESfR(A)(S) Vimin(s)
Yter At) - Vimin(fr (1))
er A1) V() by (9)
V(A)

Al

O

Our next result says that in any finite-branching computegtoucture we can find a resolution which realises the
functionVnin. Moreover this resolution will be of a particularly simplerin.

This new material of Matthew’s should be used in the proofefima 5.3.
A resolutionR is said to bestatic if its resolving functionfr is injective. Again we refer the reader to [4] for a
discussion of power of this restriction. Static restrin8are particularly simple, in that they does not allow stabe
be resolving into distributions, or computation steps tanberpolated. Moreover they are very easy to describe.

Definition 4.13 A (static) policy for a computation structur&, Q,, —) is a partial functionpp : S — Dy (S5)
satisfying:

e s — impliespp(s) is defined

o s 5 impliess - pp(s)

o otherwise, ifs —— thens - pp(s)
Intuitively a policy pp decides between the choices available at a given stateawitbference for reporting success.
It is easy to see that a poligp determines a static resolution of the computation strecttihis is defined as the de-
terministic computation structure, 2, —,), where—, is determined by —, f(s), and note that the associated

resolving function is the identity. Indeed it is possiblestmw that every static resolution is determined in this neann
by some policy.

Proposition 4.14 In any finite-branching computation structure, there exestatic resolutior? such that
V(fr'(A)) = Vmin(A) for any distributionA.
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Proof: Let A be a distribution over the computation structyfe 2., —). We exhibit the required resolution by
defining a policy ove5. We say policypp(—) is min-seekingf its domainis{ s € S | s — } and it satisfies:

if s % buts —— thenVmin(pp(s)) < Vmin(A) wheneves - A
Note that by design a min-seeking policy satisfies:
if s-24 buts — thenVin(s) = Viin(pp(s)) (10)
In a finite-branching computation structure it is straightfard to define a min-seeking policy:

(i) If s =5 then letpp(s) be anyA such thats = A.

(i) Otherwise, ifs — let {Aq,...A,} be the finite non-empty s€tA | s = A }. Now letpp(s) be anyAy
satisfying the propert¥/min(Ax) < Vmin(4A,) for everyl < j < n; at least one such, must exist.

We now show that the static resolution determined by sucHiaypeatisfies the requirements of the proposition. For
the sake of clarity let us writ§,,(A) for the value realised foh in the resolution determined by the poligy(—).

We already know, from Proposition 4.12, th¥kin(A) < Vp,(A) and so we concentrate on the converse,
Vep(A) < Vmin(A). Recall that the functiofy,, is the least fixpoint of the functiona& defined in (3) above,
and interpreted in the resolution determinedplpy—). So the result follows if we can show that the functni, is
also a fixed point. Sincf|= 1 this amounts to proving

1 if s <%
Vmin(S) =40 if s 7L>
Vmin(pp(s)) otherwise

However this is a straightforward consequence of (10) above O
Theorem 4.15 For finite-branching processes, g, @ if and only if P s Q

Proof: This is a consequence of the two previous propositions.t BUBpose’ Cgmys - To ShowP Cymyst @
we must show that for any valuein A%(T, P), for any arbitrary test", there exists some’ € A%(T, Q) such
thatv’” < v. The valuev must be of the forn¥(A), where there is a resolutioR such thatfr(A) = [T |ac PJ.
From Proposition 4.12 we know th&in([7 |ac: P]) < v, and now from the hypothesi T, @ We have that
Vmin([@Q |act P]) < v. Now employing Proposition 4.14 we can find some other stagisolutionR’ and such that
V(O) = Vnin([Q |act P]), where@ is fr ([Q |ac P]). So we can take the requiretto beV(0©).

The conversel” Cpmyst @ implies P 55 @ Is equally straightforward, and is left to the reader.

4.3.3 May testing

Here we can try to apply the same proof strategy as in the que\8ection. The analogue to Proposition 4.12 goes
through:

Proposition 4.16 V(A) < Vmad fr(A)) for any resolutionR.
Proof: Similar to the proof of Proposition 4.12 O

However the proof strategy used in Proposition 4.14 can eaided to show thafax can be realised by some static
resolution, as the following example shows.
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Example 4.17 In analogy with the definition used in the proof of Propositib14, we say that a poligyp(—) is
max-seekingf its domain is preciselff s € S | s — }, and

if s-24 buts — thenViyax(A) < Vimax(pp(s)) wheneves —— A

This ensures thaVmax(s) = Vmax(pp(s)), whenevers —— ands %%, and again it is straightforward to define a
max-seeking policy in a finite-branching computation dinoe. However the resulting resolution does not in general
realise the functioWV nax.

To see this, let us turn the (finite-branching) pLTS used iarggle 4.7 into a computation structure. Here in
addition to the two states andO there is the infinite set;, . .. ¢, . . . and the transitions

® ¢ > Cpy1
e ¢ = [0,,® w], where agaimpk is the probability..

One can calculat® max(ck) to bel for everyk, and a max-seeking policy is given determinedplpyc,) = ci+1;
indeed this is essentially the only such policy. Howeves thisolution does not reali8&nay, asVyp(cr) = 0. O

Nevertheless we will show that if we restrict attention tdtérbranching, and finite-state, computation structures,
then there will always exist some static resolution whiclisesV .. The proof relies on techniques used in Markow
process theory [19], and unlike that of Proposition 4.1is-aonstructive; we simply prove that some such resolution
exists, without actually showing how to construct it.

Consider the set of all functions from a finite $gto [0, 1], denoted byFg, and the distance functiahover Fg
defined byd(f, g) = maz|f(s) — g(s)|ses. We can check thatFg, d) constitutes a complete metric space. Let
§ € (0,1) be a discount factor. The discounted version of the funati@in Section 4.2R° : Fs — Fg defined by

1 if s -

RO(f)(s)=14 0 if 5 — (11)
0- f(A) otherwise

wheref(A) = Exp,(f), is a contraction mapping with constantlt follows from the Banach fixed point theorem
thatR® has a unique fixed point when< 1, which we denote b{°. On the other hand, it can be shown ti
is a continuous function over the complete latti€e. SoV?, as the least fixed point G2°, has the characterisation
Vo = | ],en VO™, whereV?™ is then-th iteration of R? over L. Note that if there is no discount, i.6.= 1, we see
thatR?, V¢ coincides withR, V respectively. Similarly, we can defifiénin® andVmas .

Let R* be the set of non-negative real numbers. The following ptype very useful. It says that the directed
sup and countable sum can be interchanged. Later on, we erly the first clause since we restrict ourselves to
finite-state systems in this paper. The second clause ipatsed because it is interesting by itself.

Lemma 4.18 Let S be a set andS — R*) be the set of all functions frorff to R™. Suppose(f; | i € I} is any
directed subset af5 — R™).

1. If Sis finite, then

L) = LD fils):

seSiel i€l s€S
2. If S'is countable and the partial sus, := >~7_, | |,c; fi(s;) is bounded, i.e. there exists some R* such
that$,, < cfor anyn, then '
2 st = LD 5.
seSiel i€l s€S

Proof: 1. SinceS is finite, we can assume thit| = N for someN € N. Lete be any positive real number. For
eachs € S, there is some index suchthad <| |, fi(s) — fi(s) < « foralli > i,. Letis = max{i, | s €
S}. Foranys € S, we haved < | |,.; fi(s) — fi(s) < & forall i > i5. Summing up over al € S, we get
0 <> sesllicr fi(s) =2 s fi(s) < eforalli > ig. Therefore| |;.; > cg fi(s) = limi oo D g fils) =
ZSES Uiel fi(s).
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2. Since the sequengé,, } .y is increasing and bounded, it converge3 g | |;c; fi(s). Lete be any positive
real number. We can take a finite subSébf S which is large enough so that

€
0< ; —
<> s -> =3 (12)
seSiel seS’iel
With the same argument as in the proof the first clause, weltaose an indexs: so that

0< Y A =D fils)

seS’iel seS’

(13)

l\JIm

forall i > is. We observe thafi(s) < | |;c; fi(s), so the sequencE_"_, fi(s)}nen, for anyi € I, is
increasing and bounded, thus converges g ¢ fi(s). Therefore, there exists some € N such that

N
€
< —
0<) fils) =) _fils) <5 (14)
ses j=1
forall € I. Without loss of generality, we assume that, ..., sy} C S’. It follows from (14) that
€
—5 <2 fils) =D fils) <0 (15)

seS’ ses

forall i € 1. Take the sum of the three inequalities (12), (13) and (18)phtain

<A =Y fils <e (16)

seSiel seS

foralli > ig. Therefore| |;.; > . cq fi(s) = limi oo Y cq fi(5) = Do .cg Licr fi(s).

The functionalsR?® andR},,, have the following properties.
Lemma4.19 1. Foranys € (0, 1], the functionalsR® andR?,,, are continuous;
. 161,69 € (0,1] andd; < d, then we havR® < R22 andRL, < Rz
3. Let{d,}»>1 be a nondecreasing sequence of discount factors converging It holds thaq_|n€NR5n =R
and| |, cyRomy = Rmax

Proof: We only considefR, the case folRmax is Similar.

1. Letfy < f1 <...beanincreasing chain ifi — [0, 1]. We need to show that

n>0 n>0
For anys € S, we are in one of the following three cases:

(@) s <&, We have

Ré(unzo fa)(s) = 1 by (11)
Ln>o1
= l_|n>oR (fn)(s)
= (U0 RO(fu))(s)
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(b) s —~. Similar to last case. We have

RO £)(s) = 0= (| | R(f))(5).

n>0 n>0
(c) Otherwises - A for some actiorx and distributiorA € D;(S). Then we infer that

R (I_l'n,ZO fa)(s) = ¢- (I_l'n,ZO fa)(A) by (11)
Dserar Als) - (Lnso fr)(s)

) Zse[Al A(s) - (Unzo fn(s))

’ Zse[m UnZO A(s) - fn(s)

Unso 2oseray A(s) - fals)  bylemma4.18

’ l_anO fn(A)

n>0 g fn(A)

n>0 Ré(fn)(s)

= (Unzo RO(f))(s)

[ I
CCS > S S>>

2. Straightforward by the definition &2.

3. Foranyf € S — [0,1] ands € S we show that
_ 3n
R(E6) = (L, RIE)s). (18)
We focus on the non-trivial case that* A for some actiorx and distributionA € D, (.5).

(Unen®R)(A)(5) = LpenR™(f)(5)
l_lnEN(S"f(A)
= f(A) (Unendn)
f(a)-1
= R()s)

Lemma 4.20 Let {4, },,>1 be a nondecreasing sequence of discount factors conveaging

° V = I_lnGNVén
® Vinax = I_lneNVmax(s"

Proof: We only considelV; the case folVmax is similar. We use the notatiolfp(f) for the least fixed point of the
function f over a complete lattice. Recall thitand V- are the least fixed points & andR’~ respectively, so we
need to prove that

On
WwR) =[] _ R (19)
We now show two inequations.
For anyn € N, we haves,, < 1, so Lemma 4.19 (2) yieldR’» < R. It follows thatifp(R°") < Ifp(R), thus
Unenlfp(R") < ifp(R).
For the other directionifp(R) < | |,cylfp(R%"), it suffices to show thdt],, . ifp(R°") is a pre-fixed point oR,
i.e. R(L,enlfp(R?")) < U,enlfp(R°), which we derive as follows. L€, },,>1 be a nondecreasing sequence of
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discount factors converging fio

R(U,enlfp(RO))

(I_lmENRém)(l_lnGlep(Rén)) by Lemma 419 (3)
I_lmENR (l_lnelep(R(s"))

Umenllnen®Ro™ (ifp(R")) by Lemma 4.19 (1)
l_|7n€N|_1n>7n,R’(S (lfp(Ré ))

umENU5n>mR6 6(lfp( R)) by Lemma 4.19 (2)
L, en®R (Ufp(R°))

l_lnGlep (Rén)

This completes the proof of (19). i

Al

In the rest of this section, we consider probabilistic auttawith actions- andw only.
Lemma 4.21 Supposé € (0,1]. If (T, ©°, —) is a resolution of S, A°, —), then we hav&*"(0°) < Va2 ™ (A°).

Proof: Let f : T — S be the resolving function associated with the resolu{ibr©°, —), we show by induction on
n that
Vma " (f(t)) > Vo7 (t) foranyt € T (20)

The base case = 0 is trivial. We consider the inductive step.tlf- O, thenf(t) <= f(O), thusVma " (f(t)) =
1 = V%" (t). Now suppose =+ ©. Thenf(t) <4 andf(t) -~ f(©). We can infer that

Vmax&'(nJrl)(f(t)) = 4 max{vmaxén(Aﬂf( t) A}
> 5 Vima " (£(0))
= 5'Zsesf( )(s) - Vmax "(s)
= 02 perO)- Vina ™ (f(t'))
> -3, OF')-Von(t') by induction
= §-Vo"(O)
— VS,(n+1)(t)

So we have proved (20), from which it follows that
Viax (f(£)) > V(t) foranyt € T (21)

Therefore, we have that

Vmaxé(Ao) = Vmaxa(f(@o))
ZSES f(@O)(S) : Vma><6(5)
D ter ©°(1) - Vmax5(f(t))
ZteT e°(t)-V2(t) by (21)
Vo(0°)

vl

We say a resolution of a processisticif its associated resolving function is injective.

Lemma 4.22 Suppose < 1. Given a probabilistic automatd$, A°, —), there exists a static resoluti¢i, ©°, —)
such thatV e, (A°) = V9 (©°).

Proof: Let (T, ©°, —) be aresolution with an injective resolving functigisuch that it < © thenVna’ (f(0)) =
maz{Vmad (A) | f(t) = A}. The finite-branching assumption ensures the existendeedfitch resolving function
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Letg : T — [0,1] be the function defined by(t) = Vimad (f(t)) for all t € T. Below we show thay is a fixed
point of R%. If ¢ - thenf(t) . ThereforeR®(g)(t) = 1 = Vmax (f(t)) = g(t). Now suppose —— ©. By the
definition of f, we havef () %4, f(t) < f(©) with Ve (£(©)) = maz{Vmad (A) | f(t) < A}. Therefore,

Ro(g)(t) =

I
S >
g
M
N

I
<
3
[}
xOﬁ
e
~
—
=

= g(t)

SinceR? has a unique fixed poirif?, we derive thay coincides withV?, i.e. V°(t) = g(t) = Vmax (f(t)) for all
t € T, from which we can obtain the required reséifi(©°) = Vina,’ (A°). O

Theorem 4.23 Given a finite-state probabilistic automatéfi, A°, —), there exists a static resolutidf’, ©°, —)
SUCh thanax(Ao) = V(@O).

Proof: By Lemma 4.22, for every discount factére (0, 1) there exists a static resolution which achieves the maxi-
mum probability of success. Since there are finitely manigsta.S, there are finitely many static resolutions. There
must exist a static resolution that achieves the maximurhahitity of success for infinitely many discount factors.
In other words, for every nondecreasing sequdgé,,>1 converging tol, there exists a subsequer{@g, }1>1 and

a static resolutioT’, ©°, —) with resolving functionf, such thatV®« (t) = Vima'"* (fo(t)) for all t € T and
k=1,2,.... By Lemma 4.20, we have that, for everg T,

V() = l_lkeNV(;nk (t)
= UpenVma™ (fo(t))
= Vmax(fo(?))

It follows thatV(©°) = Viax(A°). O

Along the same line, we can obtain a similar theoren¥fgf,. However, the use of discount factors is not necessary
in this case.

Lemma 4.24 If (T, ©°, —) is a resolution of S, A°, —), then it holds tha¥/ ,in(A°) < V(©°).
Proof: Analogous to the proof of Lemma 4.21. i

Theorem 4.25 Given a finite-state probabilistic automat($) A°, —). There exists a static resolutidf, ©°, —)
such thatViin(A°) = V(©°).

Proof: Similar to the proof of Lemma 4.22. L&, ©°, —) be a resolution with an injective resolving functign
such that it — © thenVmin(f(0)) = min{Vmin(A) | f(t) — A}.

Letg : T — [0, 1] be the function defined by(t) = Vmin(f(t)). As in the proof of Lemma 4.22, we show that
is a fixed point ofR. SinceV is the least fixed point oR, it holds thatV(¢) < g(¢t) = Vmin(f(¢)) forall t € T, from
which we can obtaifV(0°) < Vnin(A°). Using Lemma 4.24, we derive th¥ltn(A°) = V(0°). O

From Lemmas 4.21 and 4.24 as well as Theorems 4.23 and 4.2ktai@ the following corollary.

Corollary 4.26 Let M = (S, A°, —) be a finitary probabilistic automaton.

Vmax(A°) = maxz{V(0°) | ©° is the initial distribution of a static resolution 8f }
Vmin(A°) = min{V(©°) | ©° is the initial distribution of a static resolution a1 }
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The following theorem states that for finitary processeseenél testing yields the same preorders as resolution-
based testing.

Theorem 4.27 For finite-state processes:
e P LCpmay@ ifand only if P Eppay Q
o P Chnust@ ifand only if P Epmyst @
Proof: An immediate consequence of Corollary 4.26. O

Because of Theorems 4.11 and 4.27, we can choose the vaétite testing preorders which are most convenient
to the task at hand. So to prove the soundness of the simulatgmrders we will usextremaltesting, while to prove
that modal formulae can be characterised by tests we usedbkition-basedesting.

4.4 Testing via weak-p derivatives

We now show how resolutions, used in Section 4.2 to deteritiaeoutcome of tests, can be realised as the
derivatives of a restrictive class of weak-p moves. Witk #iternative point of view, we can effectively test proesss
by comparing their possible derivatives directly: in efféte inductiveV is replaced by the induction implicit in
the definition of derivative, and the evaluationwimove possibilities is done directly on the subdistribnidhe
derivations produce.

Definition 4.28 In a pLTS a state is calledstableif s =4, and a subdistributio® is calledstableif every state in its
support is stable. We writh — A’ wheneverA —- A’ andA’ is stable, and call\’ anextremederivative ofA.

Referring to Definition 3.12, we see this means that in thévdton of A’ from A at every stage a state must move
on if it can, so that every stopping component can contaip states whichmuststop: we haves € A} if and now
alsoonly if s 4.

Lemma 4.29 [Existence of extreme derivatives]
(i) For every subdistributior\ there exists some (stablé) such thath = A’.

(i) In a deterministic pLTS we have thdt = A’ andA = A" impliesA’ = A”.

Proof: The construction of derivatives in Definition 3.12 is simppecialised by choosing at every stagg uniquely
to be A, restricted exactly to those states that must stop, i.eethésr which s 4. ThenA;” := A, — A and
Ajy1 is chosen arbitrarily so thak,” —— Aj;. That establishes (i).

For (ii) we observe that in a deterministic pLTS the abovei@hof Ay, ; is unique, so that the whole derivative
construction becomes unique. |

It is worth pointing out that the use of subdistributionghea than distributions, is essential here. For example if
diverges, that is if there is an infinite sequence of devst\ — A; - ... A, —— ..., then the only extreme
derivative ofA is the empty subdistribution

Lemma 4.30 Let A be a subdistribution in a fully probabilistic pLTS. X = A’ thenV?(A) = V(A).

Proof: Recall thafV* is defined over deterministic pLTSs (only), and that Ll,~o V" because its defining func-
tional is continuous, where we are now (in this proof) droypihe superscript’ to reduce clutter: th&™’s are
thenth approximants t6/. By inspection we have that-=» A impliesV"*!(s) = V*(A), whence by lifting and
linearity we get

If A = A’ thenV"T1(A) = V*(A') forall n > 0. (22)
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Now suppose\ = A’. Referring to Definition 3.12 and carrying out a straighifard induction based on (22),
we have

VEHA) = VO(An) + DoV AL = YTVRTA) (23)
k=0 k=0
for all n > 0, with the second step depending®fs being identically0.

Now becausé\’ is an extreme derivative we know that all th¢ 's are stable, whence immediately for edck n
we haveV"*+1(AX) = V(A)), simplifying the last step above to just,_, V(A ). We conclude by reasoning

V(A) = Unzovn(A) = UnZOVnH(A)

= Unzo ZZ:O V(A) (23) and immediately above
= Unso VO im0 AF) finite linearity of v
= V(Um0 >oreo A7) least fixed point of continuous functional is itself contius
= V(ZZO:O Al:)
= V(A).

O

Now according to (4) and Definition 4.5, the outcome of apmlya test to a process is determined by the values
V(©) for distributions® over particular deterministic pLTSs, namely resolutioFisen determinacy and Lemma 4.30
immediately above ensures ti&tO) coincides withV (O, ), where®.  is the unique extreme derivative & More-
over because of its stability the calculationBfo. ) is simply the weighted sum of all the successful states in its
support.

The final link between the resolution- and derivation vievidesting is that, in anvu-respecting computation
structure, resolutions and extreme derivatives are daflgrihe same thing.

Theorem 4.31 (Resolutions and extreme derivativesfonsider anv-respecting computation structufg, 2, —).
ThenA = A’ if and only if there is a resolutiofT, Q,, —) with resolving functionf and subdistributions
©,0": D(T) such that

i) f(©),f(0)=AA
(i) © =1 ©.

Proof: For only if, supposéT, 2., —r) is a resolution of S, Q2,., —), let© be a subdistribution ovéF, and suppose
© = ©’. By linearity we can apply to that whole derivation structure, preserving its vajigind establishing
f(©) =1 f(O).

Now we observe that each state in the suppoyt(é¥’) is stable: consider any state: [©, | foranyk > 0. Since
t is stable by assumption, eithers a deadlock state ar—- T" for some success actian € 2 and subdistribution
I'. By Definition 4.4, it must be the case th&() is a deadlock state in the first case, and tha) =~ f(T') in the
second. Additionally, sincéS, Act, —) is a “non-scooting” computation structure afi@d) € S, we havef (t) =4 in
the second case. Therefoyé) is stable in both cases. Thus, we have in f§@@) =1 f(©').

For if, consider an extreme derivatidh = A’, as given in Definition 3.12 where al\; are assumed to be
stable; for convenience we let;, denoteA;” + A;‘. To define the corresponding resoluti6h Q2., —r) we refer
to Definition 4.4. First let the set of statésbe S x N and the resolving functiofi: T — S be given byf(s, k) = s.
To complete the description we must define the two partiattions—, for « = w anda = 7. These are always
defined so that ifs, k) - T then the only states in the supportlofre of the form(s, & + 1). In the definition we
use®'*, for any subdistributio® over S, to be the subdistribution ovét given by

O (1) = {@(s) if t = (s, k)

0 otherwise

Note that by definition
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@ f(e'*) =6
(b) AF = A 4 A

The definition of-- is straightforward: its domain consists of statesk) wheres € [A; ] and is defined by
letting (s, k) - Al*+1 for some arbitrarily chosen - A,.

The definition of -+ is more complicated, and is determined by the ma¥gs — Ay, ,. For a givenk this
move means that

AZ:ZPi'S_i, Apt1 :sz"rz‘, s — Iy
i€l el
So for eachk we let
(s, k) —=r Zpi'lﬂfkﬂ
This definition ensures
Lo (A7) Tor (Apg)
2. (AX)k s stable.

This completes our definition of the resolution; it remaiosfind distributions®, ©’ over T' such thatf(0) =
A, f(©)=A"ando = ©'.
Because of (a) (c) and (d) we have the following extreme déan, which by Part (ii) of Lemma 4.29 is the unique
one fromAj™:
Al = (A7)0 + ()1
(A o (A7) + (A1)H

(A S (A + (AL

0" =3 oA

Letting © be A!°, we see that Note (a) above ensufé®) = A; the same note and the linearity sfapplied to
distributions also giveg(0') = A’.
O

Corollary 4.32 In anw-respecting computation structure, the following statetaé&old.
1. If A = A’ then there is a resolutiod of A such thatv*}(9) = V¥ (A").

2. For any resolutio® of A, there exists an extreme derivatidé such thatA = A’ andV*}(0) = VZ(A").

Proof: Supposel = A’. By Theorem 4.31, there is a resolutionAfwith resolving functionf and a subdistri-
bution® such thatd = ©’ and f(©’) = A’ and f(©) = A; this last statement means that by definit®ris a
resolution ofA. By Lemma 4.30, we havE®}(0) = V(0'). Since®’ andA’ are extreme derivatives, all the states
in their supports are stable. Therefore, for any [©’] we have that (if =~ with w € Q iff f(¢) 5, (i) ¢t — iff
f(t) —A. It follows thatV (@) = V2(A’). As a result, we obtain that}(0) = V(A").

To prove 2, suppos® is a resolution ofA; that is there is a resolution as in Definition 4.4 with a resa
function f such thatf (©) = ©’. We know from Lemma 4.29 that there exists a (unique) sufioligion ©’ such that
© = ©'. By Theorem 4.31 we have th&t = f(©) = f(0©’). The same arguments as in the other direction
show thatvV*}(0) = V(f(0")). O
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Definition 4.33 Let A be a subdistribution in a computation structure. We wvité A) for the set of testing outcomes
{V(T") | T is a resolution ofA} obtained fromA.

Lemma 4.34 Let A be a subdistribution in afn-respecting computation structure.
ThenV(A) = {VE(A") | A = A'}.

Proof: This is immediate from Corollary 4.32. O
Finally we have the basis of a derivation-style definitiotesfting.

Lemma 4.35 Let P be a process aritl a compatible test.
ThenAL(T, P) = {V(A") | [[T |ace P]] = A'}.

Proof: Thisis immediate from (4) and Lemma 4.34. O

5 Further properties of weak derivation

In this section we expose some less obvious properties ofadiens, relating to their behaviour at infinity. One
important property is that the set of derivations from a rgdarting point isclosedin the sense (from analysis) of
containing all its limit points where, in turn, limit depesidn a Euclidean-style metric defining the distance between
two distribuitions in a straightforward way. The other pedyy is “distillation of divergence,” allowing us to find in
any derivation that partially diverges (by no matter how Barmamount) a point at which the divergence is “distilled”
into a state which wholly diverges.

Both properties depend on our working witHinitary pLTSs — that is, ones in which the state space is finite
and the (unlifted) transition relation is finite-branchirf@ihe examples of Appendix A show this is necessary, for our
approach at least.) Again, some proofs and technical lenangedeferred to Appendix B.

5.1 Finite generability and closure

Now let us restrict our attention to finitary pLTSs. Here bfiniéion the sets- - are finite, for every anda. This
of course is no longer true for the lifted relatiors>; nevertheless the seis -2 can be finitely represented.

Definition 5.1 A resolutionR is said to bestaticif its resolving functionfx is injective. This means that the transition
used at a state is always the same one, no matter how ofteonomfhere the state is reached, and thatiugg that
is not interpolated.

Static resolutions are particularly easy to describe bezduwey are given effectively by subsets of the transition
relation of the original pLTS. For us a convenient formuatof this is in terms of the following definition.

Definition 5.2 A static derivative policyfor a computation structuréS, Act, —), or anSDP, is a partial function
pp : S — Dy (S) satisfying:

o If ppis defined at thens - pp(s), and
o If s T4 thenpp is undefined as.

Intuitively a policy pp decides for each state, once and for all, which of the aveilatthoices to take if any: since
it chooses a specific transition, or inaction, it does narimblate; and since it is a function of the state, it makes the
same choice on every visit.

There is a close relationship betwe®gbPs and static resolutions. One difference is that (here) ieecancerned
only with policies forr transitions (although clearly the idea generalises). Ttherddifference is that aBDP can
select a “do not take any-transition” option, even if some are available, which ieddy settingp to be undefined
at s even whers enables some transition. On the other hand, a static résolutust take a transition if it can. In this
respecSDPs are close to derivations, which also have the “stoppiagehoption.

The great importance for us 8DPs is that they give a particularly simple characterisatibderivatives, provided
the state-space is finite and the pLTS is finite-branchings Ehessentially a result of Markov Decision Processes
[19], which we now translate into our context.
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Lemma 5.3 (> realised by interpolation of finitely many static policies) Supposes = A’ for some state and
subdistributionA’. Then there is a finite index sét probabilitiesp; summing to 1 and static strategigs, such that
A" =3, pi- A where uniquelys =, A; for eachi.

Proof: See Lemma B.20 and its preceding material. O

Lemma 5.4 (Closure of—=>) For any state the set(s =) of derivatives ofs is closed.

Proof: From Lemma 5.3 that set is a subset of the convex closure adghef subdistributions reachable &>
using one of the finitely many static policies of the pLTS, &mal latter set is closed since it is the convex closure
of finitely many points. But each of those subdistribution#rivially a derivative itself; and the set of derivatives i
convex by Corollary 3.20. Hence the two sets are equal, arittie former is closed as well. O

Lemma 5.5 [Closure of==]  For any states the set{ A’ | s == A’} is closed.

Proof: The relation== is a composition of three stages: there mustYjeA), with s = A} - A, = A’. For
the first stage, from Lemma 5.3 we know any suchis the interpolation of fixed finite set of (other) subdistitions;
call them “principal” for that starting point] and type of transition=>).

For each state; in the support of some principal subdistributidn from the first stage, there are only a finite
number of distributions irfs; —%), because of finite branching. Becaug¥, | itself is finite, there are thus only
finitely many subdistributions necessary to generate a(ll&qf -%5); and because there are only finitely maAhy’s,
we still need only a finite number of principal subdistrilons A, to generate the results of the first and second stages.

For the third stage we make effectively the same argumerdratié second, except that instead of appealing to
finite branching of A, =) instead we use the finite generability that we appealed todrfitst stage.

Then Lemma 5.4 applies (analogously) for closure. O

Lemma 5.6 [Zero-one law, static case] If for some static derivativéiqgyopp over a finite-state pLTS there is for
somes a derivations =-,, A’ with |A’| < 1 then in fact for some (possibly different) statewe haves, =, «.

Proof: Suppose that for no statedo we haves =, €. This means that for every stat¢here is some other staté
(possibly depending os), some numbeN, > 0 (no matter how large) and probability > 0 (no matter how small)
such thats can follow policypp to reachs’ in N, transitions—— with aggregated probability, and then can go no
further becausep is undefined at’ — for if this were not true, policyyp would generate an unboundedree of
transitions rooted at with aggregate probability 1.

SetN > 0 to be the maximum ofV; over all states, angd > 0 to be the minimum op; over all states. (That
p > 0 is one place we use finiteness of the state space; the otlmethis existence of both th¥,’s in the first place,
and of their maximum.)

Now pick an arbitrarys and consider the (unique) derivatien=-,, A’. If it is finite, then|A’|=1 trivially. If
not, group the infinite sequence pf-generated—,, moves into blocks ofV. In any such block the probability of
reaching gp-undefined state is at legst> 0, and so the probability of eventually reaching@undefined state (by
taking manyN-blocks of moves in succession) is in fact 1. Thus=-,, A’ implies|A’| = 1.

Our lemma then is immediate from the contrapositive. O

5.2 Distillation of divergence

Although it is possible to have processes that diverge vaithesprobability strictly between zero and one, in a finitary
system it is possible to “distill” that divergence in the serthat in many cases we can limit our analyses to processes
that either wholly diverge (can do so with probability one)weholly converge (can diverge only with probability
zero). This property is based on the zero-one law for firii¢esprobabilistic systems, and in this section we present
the aspects of it that we need here.
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Lemma 5.7 [Distillation of divergence, static case]
If for some states and static derivative policyp over a finite-state pLTS there is a derivation=-,, A’ then
there is a probability and full distributionsA, AL such thatt = (A} ,® AL) andA’ = p- A} andAL = «.

Proof: See Lemma B.21. O

Lemma 5.8 [Distillation of divergence, general case] For any\’ in a finitary pLTS withs = A’ there is a
probabilityp and full distributionsAf, AL such thats = (A} ,& AL) andA’ = p- A} andA. = «.

Proof: From Lemma 5.3 we know that the derivatior=- A’ is an interpolation of a finite number of static deriva-
tions. Lemma 5.7 then applies to each separately, and th# febows by interpolating the derivations from each
static case. O

Corollary 5.9 If in a finitary pLTS we haveA, A’ with A = A’ and|A|>|A’| then there is some statéreachable
with non-zero probability fron\ such thats’ => . That s, the pLTS based ah must have a wholly diverging state
somewhere.

Proof: Assume at first thatA|=1; then the result is immediate from Lemma 5.8 since &y AL] will do. The
general result is obtained by dividing the given derivatignA|. O

6 The failure simulation preorder

This section is divided in four: the first subsection presehe definition of thdailure simulation preordein an
arbitrary pLTS, together with some explanatory examplegives two equivalent characterisations of this preorder:
a coinductive one as a largest relation between subdisiiigisatisfying certain transfer properties, and oneithat
obtained through lifting and an additional closure prop&dam a relation between states and subdistributions tleat w
call failure similarity. It also investigates some elementary properties of tteréasimulation preorder and of failure
similarity. In the second subsection we restrict attentofinitary processes, and on this realm characterise thedai
simulation preorder in terms afimple failure similarity All further results on the failure simulation preorder, in
particular precongruence for the operatorpG6P and soundness and completeness w.r.t. the must testinglpreo
are in terms in this characterisation, and hence pertaimi@aify processes only. The third subsection establishes
monotonicity of the operators @CSP with respect to the failure simulation preorder — in otherdg shows that
the failure simulation preorder is a precongruence witpeesto these operators — and the last subsection is devoted
to showing soundness with respect to must testing. Conmesas the subject of Section 7.

6.1 Two equivalent definitions and their rationale

We start with defining the weak action relatiods- for o € Act, and the refusal relationés for A C Act that are
the key ingredients in the definition of the failure simwatpreorder [6, 2].
Definition 6.1 Let A and its variants be subdistributions in a pLT$ Act-, —).

e Fora € Act write A == A’ wheneverA = AP™® -2, APt —. A’ Extend this toAct, by allowing as a
special case that= is simply=, i.e. including identity (rather than requiring at leasee#f-).

e ForA C Act ands € S write s 24 if s 24 for everya € A U {7}; write A 44 if s 24 for everys e[A].
o More generally writeA =24 if A = AP™ for someAP™ such thatAPe 44,

For example, referring to Example 3.15 we haga] == [0], while in Example 3.16 we havls,] == 1]0] as
well as[sy] =24 for any setB not containing:, because, —> 1]l

Proposition 6.2 The relation=, for a € Act, can be obtained as a lifting.
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Proof: Relation=% is in fact—> —% —. By Proposition 3.19 this equals>s - —>g which, by three applica-

tions of Lemma 3.11, equals> g % — g hence=g % —> g and finally—=g -% = O
Corollary 6.3 The relation==> is convex.

Proof: This is immediate from its being a lifting. O

Definition 6.4 (Failure Simulation Preorder) Define Jpg to be the largest relation i(S) x D(S) such that if
A Jdrs © then
1. wheneverA == (3, p;A}), for a € Act, and certainp; with (3", p;) < 1, then there ar®, € D(S) with
0 = (3, p:©}) andA; Jpg O/ for eachi, and
2. whenever\ —-44 then also® =44,

Naturally® Crg A just meansdA Jrg ©. We have chosen the orientation of the preorder symbol tehthit of
must testing, which goes back to the work of De Nicola & HesggS]. This orientation also matches the one used in
CSP [9] and related work, were we haveE® IFICATION C IMPLEMENTATION. At the same time, we like to stick to
the convention popular in the CCS community of writing thagiated process to the left of the preorder symbol and
the simulating process (that mimics moves of the simulateg) on the right. This helps when comparing with may
testing and the simulation preorder in Section 8. We achiggdy writing IMPLEMENTATION J zg SPECIFICATION.

In the first case of the above definition the summation is albwo be empty, which has the following useful
consequence.

Lemma 6.5 If A diverges and\ Jdgg O, then alsd® diverges.

Proof: Divergence ofA means thal\ —> ¢, whence withA Jps © we can take the empty summation in Defini-
tion 6.4 to conclude that alg® = ¢. O

Although the regularity of Definition 6.4 is appealing — foragnple it is trivial to see that rg is reflexive and
transitive, as it should be — in practice, for specific preessit is easier to work with a characterisation of the failu
simulation preorder in terms of a relation between betwstatesand distributions.

Definition 6.6 (Failure Similarity) Define<, to be the largest relation ifi x D(5) such that ifs <., © then
1. wheneveg == A/, for a € Act., then there is ®' € D(S) with © = ©’ andA’ I, ©/, and
2. wheneves —-44 then® —-24.

Any relationR C S x D(S) that satisfies the two clauses above is calléailare simulation

Obviously, for any failure simulatio® we haveR C <. The following two lemmas show that the lifted failure
similarity relation<., C D(S) x D(S) has simulating properties analogous to 1 and 2 above.

Lemma 6.7 Supposel <, © andA == A’ for a € Act,. Then® == ©' for some®’ such that\’ < ©'.

Proof: A J_ © implies by Lemma3.4that A = Zpi -5, $i <ys O, 0= Zpi - 0;.

icl iel
By Propositions 6.2 and 3.9 we know frafn = A’ thats; == A] for A} € D(S) such thatd’ = 37, p; - A,
For eachi € I we infer froms; <., ©; ands; == A/ that there is & € D(S) with ©, == O} andA’ I ©'. Let
O’ := 3", pi-O}. Then Definition 3.2(2) and Theorem 3.18(i) yiel < ©’ and® = ©'. ]

Lemma 6.8 Supposel <. © andA =44, Then® —-44.

Proof: Suppose\ < © andA — A’ 44, By Lemma 6.7 there exists sorfé such tha® —> ©’ andA’ < @',

From Lemma 3.4 we know that\’ = Zpi - 55, s; g O, e = Zpi -©;, withs; € [A"]foralliel.
iel iel

SinceA’ 44, we have that; 44 for all i € I. It follows from s; <. ©; that®; = ©’, 44, By Theorem 3.18(i) we

obtainthaty ;. pi - ©; = > ,c;pi - O] A% By the transitivity of=> we have tha® —-44. O
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The next result shows how the failure simulation preorderalgernatively be defined in terms of failure similarity.

Proposition 6.9 ForA, © € D(S) we haveA Jpg O just when there is @M with © = @MahandA I @™atch

Proof: Let <1/, C S x D(S) be the relation given by </, © iff 5 Jpg ©. Then</, is a failure simulation; hence
<fs € <. Now supposeé\ Jpg O. Let A := )", p;-5;. Then there ar®; with © = ", p;-©; ands Jpgs O, for
eachi, whences; <i’; ©;, and thuss; <1, ©;. Take@™3h:= S~ p,.0,. Definition 3.2 yieldsA <, ©Mach
For the other direction it suffices to show thaf; = ~! satisfies the two clauses of Definition 6.4, yielding
T ="' C Jrs. So suppose, for giveAr, © € D(S), there is DM Nwith © = @MhandA T, @Mach
Suppose =% 3. p;- A} for somea € Act,. By Lemma 6.7 there is son®’ such thato™ah = ©’ and
(> ierpi-A}) < ©'. From Proposition 3.9 we know th&' = 3, p;-©] for subdistributionsd; such that
A} <G O©ffori € I. Thus® == Y. p;- O/ by the transitivity of=> (Theorem 3.21) and\}(<.;; = ~')©), for each
1 € I by the reflexivity of—=-.
Suppose\ =44, By Lemma 6.8 we hav®™a°h —.44 |t follows that® =44 by the transitivity of—=>. O

Note the appearance of the “anterior stép’=- ©™M"in Proposition 6.9 immediately above; the following exaenpl
shows it necessary in the sense that defining simply to be< (i.e. without anterior step) would not have been
suitable.

Example 6.10 Compare the two processés:= a 1@ b and@ := 7.P. They are testing equivalent, and so for
.. to be complete we would have to hai®] <., EQ]. But we do not, for by Proposition 3.9 that would require
[a] < [Q], which must fail since the former’s mové- [ 0] cannot be matched by the latter.

We do however hav® Jrg () because of the anterior st¢p=> P and of cours¢P] <, [P]. O

Remark 6.11 Fors € .S and© € D(S) we haves <., © iff 5 Jpg ©; here no anterior step is needed. One direction
of this statement has been obtained in the beginning of theff Proposition 6.9; for the other note thaki_, ©
impliess <G, © by Definition 3.2(1) which implies Jrs © by Proposition 6.9 and the reflexivity ef-.

Example 6.10 shows thatrs cannot be obtained as the lifting of any relation: it lackes decomposition property of
Proposition 3.9. Neverthelesszs enjoys the property of linearity, as occurs in Definition:3.2

Lemma6.12If A; Jps ©; foric I'then) ., pi-A; Jrs D, pi-©; foranyp; €[0,1] (e I) with 3, p; < 1.
Proof: This follows immediately from the linearity 6fi_; and—=> (cf. Theorem 3.18(i)), using Proposition 6.9.0

Example 6.13 (Divergence)From Example 3.14 we know threc z. ] = e. This, together with (1) in Section 3.1,
and the fact that 24 for any set of actionsl, ensures that <. [rec z. 2] for anys, hence® T [rec z. z] for any
0, and thus tha® Jpg Jrecz. z]. Indeed similar reasoning applies to afiywith A = Ay — A 5 - D ...
because — as explained right before Example 3.14 — this alsores thah —> ¢. In particular, we have = ¢
and hencérec z. ] ~pgs €.

Yet [recz. x] Zrs 0, because the moyeec z. ] = ¢ cannot be matched by a corresponding move ff@h

— see Lemma 6.5. O

Example 6.13 shows again that the anterior move in Proposii9 is necessary: althoughdps [recz. z] we do
not haves < [rec z. z], since by Lemma 3.5 ar with ¢ <, © must have®| = 0.

Example 6.14 Referring to the procesq; of Example 3.15, with Proposition 6.9 we easily see thallps Q1
because we have <., [Q1]. Note that the movéQ,] = [a] is crucial, since it enables us to match the move
[a] -2 [0] with [Q:] = [a] -2 [O]. It also enables us to match refusalsfdf 24 then B can not contain the
actiona, and therefore alsfQ,] —-24.

The converse, that C rg 1, is also true because it is straightforward to verify thatitblation

{(Qu, la]), (7.Q1, [a]), (a, [a]), (0, [0])}

is a failure simulation and thus is a subsekgf. We therefore havg; ~rs a. O
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Example 6.15 Let P be the process , & recz. x and consider the statg introduced in Example 3.16. First note
that [P] <, 3-[a], sincerecz.z <. e. Then because, = 3-[a] we have[P] Jps s;. The converse, that

s dpg [P] holds, is true becausg < [P] follows from the fact that the relation

{ (s [al 1/x® [reca.a]) | k = 2} U{(a, [a]), (0,10])}
is a failure simulation that contains the pé&is, [P]). O

Our final examples pursue the consequences of the fact thatipty distribution is behaviourally indistinguishable
from divergent processes liKesc x. z].

Example 6.16 (Subdistributions formally unnecessary)For any subdistributiod\, let A¢ denote the (full) distri-
bution defined by
A¢ = A+ (1-|A])-[recz. a] .

Intuitively it is obtained fromA by padding the missing support with the divergent sfedex. z].

ThenA ~gg A°. This follows becaus&® —> A, which is sufficient to establish J g A¢; but alsoA® <, A
becausérecz. z] < €, and that implies the convergae Jpg A. The equivalence shows that formally we have no
need for subdistributions, and that our technical develaproould be carried out using (full) distributions only.O

But abandoning subdistributions comes at a cost: the definif A —> © on p.9 would be much more complex if
expressed with full distributions, as would syntactic npatétions such as those used in the proof of Theorem 3.21.

More significant, however, is that diverging processes leagpecial character in failure simulation semantics.
Placing them at the bottom of therg preorder — as we do — requires that they failure-simulateyepeocesses,
thus allowing all visible actions and all refusals and soawitg in a sense “chaotically”; yet applying the operationa
semantics of Figure 3 teec z. x literally would suggest exactly the opposite, simeezx. x allows no visible actions
(allits derivatives enable only) and no refusals (all its derivatives hawenabled). The case analyses that discrepancy
would require are entirely escaped by allowing subdistiims, as the chaotic behaviour of the diverginfipllows
naturally from the definitions, as we saw in Example 6.13.

We conclude with an example involving divergence and subbigions.

Example 6.17 For0 < ¢ < 1 let P, be the proces8 .® recx.z. We show thafP.] Crs [P.] just whene < ¢'.
(Refusals can be ignored, sinEgrefuses every set of actions, for al)
Suppose first that < ¢/, and split the two processes as follows:

[[Pc}] =
[[PC’H =

[0]+ (c'—c)-[recx.z] + (
[0]+(¢=c)-[O]  +(

)-[recz. x]

c 1-¢
c 1-c')-[recz. z]
Becaus® < [recz. z] (the middle terms), we have immediatély. | <. [P.], whence[P.] Crg [Pe].

For the other direction, note thgf. ] = ¢’-[0]. If [P.] Cps [P.] then from Definition 6.4 we would have to
have[P.] = ¢-©' for some subdistributio®’, a derivative of weight no more thafi But the smallest weigh®,

can reach via=> is justc, so that we must have in fact< ¢'. O

We end this subsection with two properties of failure sinifjathat will be useful later on.
Proposition 6.18 The relation< is convex.

Proof: Suppose <. ©; andp; € [0,1] forie I, with ), _; p; = 1. We need to show that<i >, ; pi-©;.

If s == A’, then there exis®) for i € I such that9, == ©} and A’ < ©). By Proposition 6.2 and Defini-
tion 3.2(2), we obtain that",_, pi-©; = >, pi- O andA’ I 3", pi- O]

If 5 =% for someA C Act, then®; = O <% for all i € I. By definition we have},_, p;-©; .
Theorem 3.18(i) yield$ ., pi-©; = >, pi- O

So we have checked thati_. > ., pi- ©;. It follows that< is convex. O

Proposition 6.19 The relation<d., C D(S) x D(S) is reflexive and transitive.

32



05"

(Ch or

X N X ’
@0 ‘\‘ @f ‘\\ @2 ; Z e @
4 4 v 4
s infinitary linearity - —— - <1_F5
A X A X AX o N
AF Ay Af YA

5= + S+ e e
A 4 A + ST

0o — 1 — 2 i

Figure 6: lllustration of Theorem 6.21

Proof: Reflexivity is easy; it relies on the fact thaki 5 for every states.

For transitivity, we first show thati_i; < is a failure simulation. Suppose<,; © < ®. If s == A’ then there
isa®’ suchtha = ©’ andA’ < ©’. By Lemma 6.7, there exists® such thatb == &’ and®’ < ®'. Hence,
A" ;< @' By Lemma 3.11 we know that

FS?

<]_Fs; <]_Fs = ey s (24)

Therefore, we obtaid\’ <1.; <J.c P'.
If s =44 for someA C Act, then® =24 and hencé =24 by Lemma 6.8.
So we established that.; I C <,.. It now follows from Remark 3.3 and (24) that; <, C <. 0

6.2 A simpler characterisation of failure similarity for fin itary processes

Here we present a simpler characterisation of failure sirityl, valid when considering finitary processes only. It is
in terms of this characterisation that we will establishreiness and completeness of the failure simulation preorder
with respect to the must testing preorder; consequentlyave these results for finitary processes only.

Definition 6.20 (Simple Failure Similarity) Let <?, be the largest relation if x D(.S) such that ifs <2, © then
1. whenevek = ¢ then alsd® = ¢, otherwise
2. wheneves - A/, for a € Act, then there is ®' with © == ©’ andA’ <5, ©/, and
3. wheneves 44 then® =44,

Theorem 6.21 (Equivalence of failure- and simple failure snilarity) For finitary distributionsA,© € D(S) in a
PLTS (S, Act,, —) we haveA <% O iff A < ©.

Proof: Becauses - A’ impliess % A’ ands 44 impliess =24 it is trivial that <, satisfies the conditions of
Definition 6.20, so that,; C <.
For the other direction we need to show thef satisfies Clause 1 of Definition 6.6 with= 7, that is

if s <%, © ands = A’ then there is som@’ € D(S) with © = 0’ A’ <&, ©'.

Once we have this, the relatiegy, clearly satisfies both clauses of Definition 6.6, so that wekd, C <...

So suppose that <2, © and thats = A’ where — for the moment — we assum®&’| = 1. Referring to
Definition 3.12, there must bA;, A" andA[ for k > 0 such thas = Ay, Ay = A + A, Ay T App
andA’ = Y7 AL SinceA; + Ay’ =5 g O, using Proposition 3.9 we can defife=: O + 6, so that
AP GR e 7 sinceAy <5 A, andAy I O we have®; = O, with A, <IF, ©;.
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Repeating the above procedure gives us inductively a syie®;", ©;° of subdistributions, fok: > 0, such that
By = 0, Ap I% O, O = O + 0, AL T5, 0, Ay 5, O, andO;” = Oy. We defined’ := Y, 0. By
Additivity (Remark 3.6) we havé\’ <2, ©’. It remains to be shown théd — ©’.

For that final step, becau$® —) is closed (Lemma 5.4) we can establ@h—- ©’ by exhibiting a sequence
©) with © = 0O/ for eachi and with the©!’s being arbitrarily close t®’. Induction establishes for ea¢tthat
0 = O :=(0;" + > ., 0;). Since|]A’| =1, we must havéim; ., | Y 7o, A;7| = 0 andlim; . [A;7] = 0,
whence by Lemma 3.5, using thAt~ g, ©;7, alsolim; . | >_r—; ©;7| = 0 andlim;_.~ |©;”| = 0. Thus these
©/’s form the sequence we needed.

That concludes the case fak’| = 1. If on the other hand\’ = ¢, i.e. we havdA’| = 0, then® = ¢ follows
immediately froms <2, ©, ande < ¢ trivially.

In the general case, ¥ = A’ then by Lemma 5.8 we have— A} ,® A’ for some probabilityp and full
distributionsA’, AL, with A’ = p-A} andA. = . From the mass-1 case above we h@ve=- ©] ,® O. with
Al oy <% O ¢y from the mass-0 case we haé —=> ¢ and henc®' ,® O, = p-© by Theorem 3.18(i); thus
transitivity yields© = p-0], with A’ = p- A} <, p- O as required, using Definition 3.2(2). O

Add the counterexample from Appendix A.2.3 here.

6.3 Precongruence

The purpose of this section is to show that the semanticioelal »s is preserved by the constructs @ESP. The
proofs follow closely the corresponding proofs in Sectiaf 2], but here there is a significant extra proof obligation
in order to relate two processes we have to demonstratef thatfirst diverges then so does the second. This is often
non-trivial; for example in the development of the testihgdry for non-probabilistic processes, this proof oblimyat
caused considerable difficulty and was only achieved by geado Konig’s Lemma (see Lemma 4.4.13 of [7]).

Here, in order to avoid such complications, we introduceayeither version of failure simulation; it modifies
Definition 6.20 by checking divergence co-inductively @ed of using a predicate.

Definition 6.22 Define<¢ to be the largest relation ifi x D(S) such that ifs <, © then

1. wheneves = ¢, there are som@’, ©’ such thats == A’ = ¢, 0 == 0’ andA’ ¢, ©’;
otherwise

2. wheneves % A/, for a € Act,, then there is ®' with © == ©’ andA’ <<, ©, and

3. wheneves 24 then® —-44.

Lemma 6.23 The following statements about divergence are equivalent.

1) A =-.

(2) There is an infinite sequende " A; — Ay T .. ..

(3) Thereis aninfinite sequente—=-">—= A} == Ay == . ...

Proof: By the definition of weak transition, it is immediate tHa) < (2). Clearly we havg2) = (3). To show
that(3) = (2), we introduce another characterisation of divergence ALbe a subdistribution in a pLTS. A pLTS
induced byA is a pLTS that had\ as initial subdistribution and whose states and transtaye subsets of those in

(4) Thereis a pLTS induced ¥ where all states have outgoimgransitions.

It holds that(3) = (4) because we can construct a pLTS whose states and transitiojisst those used in deriving
the infinite sequence i(8). For this pLTS, each state has an outgoirtgansition, which give$4) = (2). 0

The next lemma shows the usefulness of the relatifrby checking divergence in a co-inductive way.
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Lemma 6.24 SupposeA <¢, © and A = e. Then there exist\’, ©’ such thatA == A’ = ¢,
0 == 0, andA’ <¢, 0"

Proof: SupposeA <¢, © and A = . By Proposition 3.9(2), we can decompd3eas Zse[m A(s)-©, and
s <& O, for eachs € [A]. Now eachs must also diverge. So there exist, ©/, such thatt == Al = ¢,
0, == O andA| I O for eachs € [A]. LetA" = 3" 11 A(s) AL and®’ = 3 A1 A(s)-O5. By
Proposition 3.9(1), we hav&’ <¢, ©’, A == A’, and® — "= ©'. We also have tha\’ —> ¢ because
for each state in A’ it holds thats € [A’] for someA’ andA/, = ¢, which means = ¢. O

Lemma 6.25 <& coincides with<ig,.

Proof: We only need to check that the first clause in Definition 6.28jigivalent to the first clause in Definition 6.22.
For one direction, we consider the relation

R = {(50)]|s=¢60=¢}

and showR C «¢,. Suppose R ©. By Lemma 6.23 there are two infinite sequenge$- A; — A, ... and

0 - ©; - .... Then we have botlh; —> ¢ and®; —> . Note thatA; —> ¢ if and only if t = ¢ for each

t € [A1]. ThereforeA; R ©; as we have\; = Zteml] Ay(t)-t,0, = Zte[Al'\ Aq(t)-©1, andt R ©;. Here
|A1| = 1 because\, like s, is a distribution.

For the other direction, we show that <¢, © andA = ¢ imply © = ¢. Then as a special case, we get

s <% © ands = ¢ imply © = . By repeated application of Lemma 6.24, we can obtain twaitefisequences
A== A == ...ando0 == 0; == ... such thatp;, <¢, ©, foralli > 1. By
Lemma 6.23 this implie® — ¢. O

The advantage of this new relatietf, over < is that in order to check <¢, © whens diverges it is sufficient
to find a single matching mow@ —--"—=> ©’, rather than an infinite sequence of moves. However to aactgtris
matching move we can not rely on clause 2. in Definition 6.82ha move generated there might actually be empty,
as we have seen in Example 3.13. Instead we need a methochi&nagjag p-weak moves which contain at least one
occurrence of a-action.

Definition 6.26 [Productive moves] Let us write |4 ¢ ——, © whenever we can infes |4 t -, © from rule
(PAR.R) Or (PAR.I). In effect this means thatmust contribute to the action.
Theseproductiveactions are extended to subdistributions in the standartheragivingA ——, ©.

First let us recall the following lemma which appeared as iren®.12 in [3]; it still holds in our current setting.
The following lemma appeared as Lemma 6.12 in [3]. It stildsdn our current setting.

Lemma 6.27 (1) If » = &' then® |4 A = ' |4 AandA |4, D= A |4 P'.
(2 f® % d anda g Athen® |4 A 5 @' |4, AandA |4 & 2 Ay P,
() P ', A% A’anda € AthenA |4 & T A’ |4 P'.

(4) e pi-®i) la Cper @ Br) =2 jes 2per (Pi-ak) (5 [4 Ag).

(5) GivenrelationR, R’ C S x D(S) satisfyinguR¥ whenever, = s |4 t and¥ = © |4 t with s R’ © andt € S.
ThenA R’ © and® € D(S) implies(A |4 @) R (O |4 ®). |

Proposition 6.28 SupposeA <&, © andA |4 t =, T. Then® |4 t == ¥ for someV such tha" R ¥,
whereR is the relation given by (s |4 ¢,© |4 ) | s <5 ©}.

Proof: We first show a simplified version of the result. Suppssef; © ands |4 t —, I'; we prove this entails
O |4 t == ¥ such thal’ R ¥. There are only two possibilities for inferring the abovedhuictive move from
S |A t:
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(i) T' =5 s ®wheret — &
(i) orT'= A |4 ® where for some € A, s % A andt - .

In the first case we hav® |4 t —— O |4 ® by Lemma 6.27(2) ands |4 ®) R (© |4 ®) by Lemma 6.27(5),
whereas in the second case<?, © implies® — %= O’ for some®’ € D(S) with A <¢, ©', and we have

O st =-"= 0|4 by Lemma6.27(1) and (3), anfd\ |4 ) R (©' |4 @) by Lemma 6.27(5).
The general case now follows using a standard decompasémmposition argument. Sinée |4 ¢ ——, T,
Lemma 3.4 yields

AZZPi'S_i, silat —p Ty, FZZpi-Fi,
icl iel

for certains; € S, I'; € D(S) and ), ., p; < 1. For finitary processesi is convex by combination of Proposi-
tion 6.18, Theorem 6.21 and Lemma 6.25. Hence, sikcag, ©, Corollary 3.10 yields tha® = Ziel pi-©; for
someO,; € D(S) such thats;, <t ©; for : € I. By the above argument we ha@#® |4 t == ¥, for some
U, € D(S) such that®; R ¥;. The requiredl can be taken to b®,c; pi- ¥, as Definition 3.2(2) yield§ R ¥ and
Theorem 3.18(i) and Definition 3.2(2) yieldl |4, t == U. a

Our next result shows that we can always factor out prodectioves from an arbitrary action of a parallel process.
Lemma 6.29 Suppose\ |4 ¢ —= T'. Then there exists subdistributioAs™, AX, Arext| T'* (possibly empty) such
that

i) A=A7+ A%

(i) A=~ I Anext
(i) A*|at -, Tx

(iv) T = A=t |4 ¢4 T%

Proof: By Lemma 3.4A |4 ¢t = T implies that

A=>"pis,  silatT,  T=Y p-Ty
i€l icl

for certains; € S, T; € D(S) and) ., pi < 1. LetJ = {i€l | s; [at =, I'; }. Note that for each € (I — J)
T'; has the fornT; | 4 ¢, wheres; / I",. Now let

A7 = Z Di*Si, AX:ZPi'S_i

ie(I—J) ic€J
Ancxt: Z sz;, T :Zplrl
ie(I—J) icJ
By construction (i) and (iv) are satisfied, and (ii) and (i@)lows by property (2) of Definition 3.2. O

Lemma 6.30 If A |4 t = e thenthereis @’ € D(S) such thath = A’ andA’ |4 t T5,=> «.
Proof: Suppose&\, |4 t => . By Lemma 6.23 there is an infinite sequence
Aglat T 55 0y T . (25)

By induction onk > 0, we find distributiond" 1, A", A, Agiq, F,jﬂ such that
() A |at—Tgu

(i) Tpyr < Wpgq

(i) A=A +Af

(V) Ay > Ay
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(V) Alj lat "> F:H
(Vi) Tey1 = Appr [at+T7, .
Induction BaseTakel'; := ¥, and apply Lemma 6.30.

Induction Step:Assume we already havé,, Ay andF,j. SinceAg |4 t < Ty < ¥, and¥, - Uy, Propo-
sition 3.9 gives us &'y1 C Wiy such thatA, |4 ¢ —— Tgyr andTip1 < Uiiq. Now apply Lemma 6.30.

LetA’:= 3", AJ. By (iii) and (iv) above we obtain a weakmoveA, = A’. SinceA’ |4t = 37 ((A) [a t),
by (v) and Definition 3.2 we hava’ |4 ¢ =, > I'. Note that here it does not matter&' = . Since
Iy <Ty < ¥, and¥, = ¢ it follows by Theorem 3.18(ii) that’;, = . Hence Theorem 3.18(i) yields
Yoo I = e O

We are now ready to prove the main result of this section, hathat C s is preserved by the parallel operator.
Proposition 6.31 If A Jpg © thenA |4 @ Jps O |4 D.
Proof: We first construct the following relation

R ={(slat,©]at)|s <0}

and check thakR C <&. As in the proof of Proposition 4.6 in [2], one can check thettestrong transition from
s |a t can be matched up by a transition fr@in| 4 ¢, and the matching of failures can also be established. So we
concentrate on the requirement involving divergence.

Suppose <1, © ands |4 t = ¢. We need to find somE, ¥ such that
@ sjat="=T=c¢,
(b) © |4t =-T+= Tandl' R V.
By Lemma 6.30 there ard’,I' ¢ D(S) such thats = A’ andA’ |4 t —, I' = e. Since < coincides
with <% and <., there must be ®’ € D(S) such thatdo = ©’ andA’ g, ©'. By Proposition 6.28 we have
O’ |4 t =-Ts=> U for someV such thal" R ¥. Nows |4t = A’ [at T = candO |4 t = O’ |4
t =-T+= ¥ with ' R ¥, which had to be shown.

Therefore, we have shown th&tC <¢.. Now let us focus our attention on the statement of the priiposwhich
involvesJpg.

Suppose\ Jrg ©. By definition this means that there is so@&2"such thatd — @™ and A Jg, @Mach
By Lemma 6.25 we hava <, @™ and Lemma 6.27(5) yield&A |4 ®) R (O™ |, ). Therefore, we have
(A |4 @) <G (O™ |4 @), ie.(A |4 ) <5 (O™ |, &) by Lemma 6.25. By Lemma 6.27(1) we also have
(O |4 @) = (O@Ma€N| 4 &), which had to be established. O

Proposition 6.32 (Precongruence)f P Jpg Q thena.P Jpg a.Q) for a€ Act, and similarly if P, o Jpg Q12
respectively thel?, ©® P, Jpg Q1 © Q2 for ® any of the operators, O, 4 and| 4.

Proof: The most difficult case is the closure of failure simulatiorder parallel composition, which is proved in
Lemma 6.31. The other cases are simpler, thus omitted. O
Lemma 6.33 If P Cpg @ then for any test” it holds that{P |act T] Crs [Q |act T
Proof: We first construct the following relation

R o= {(s|act 1, O [acc 1) | s <55 O}
wheres |act tis a state ifP |ace T] @and© |a« ¢ is @ subdistribution ifQ |act 7], and show thaR C <.

1. The matching of divergence betweera.. t and© |ac: t is almost the same as the proof of Lemma 6.31,
besides that we need to check the requiremefi#s andl’ -4 are always met there.
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2. We now consider the matching of transitions.

e If s |act t == then this action is actually performed bySupposé <~ I'. Thens [act t =2 s |ace 'and
O |act t %= O |ac I'. Obviously we havés [ac I, © |act T') €R.

e If s |act t = then we must have |ac: t 2%, otherwise the- transition would be a “scooting” transition.
It follows thatt -24. There are three subcases.
— t I T. So the transition |act t —— s |act I' can simply be matched up 8y [act t —— © |act T

— s - A. Sinces <g, ©, there exists som@’ such thab = 0’ andA <&, ©’. Note that in this case
t 4. It follows that® |ace t = O’ |act ¢ Which can match up the transition|ac t — A |act t
becauséA |act t, 0’ |act t) ER.

- s % A andt % T for some actiomn € Act. Sinces <t O, there exists som®’ such that
0 == ©’ andA g, ©’. Note that in this case-2. It follows that® |acc t = O’ |ac I Which can
match up the transitios [act t — A |ace I becauséA [ac T', O’ |ace I') €R.

e SUPPOSE |ac t 24 forany A C Act U {w}. There are two possibilities.

—If s |ac t 24, thent -4 and there are two subsets, A; of A such thats %, t éb and
A = A; U A,y. Sinces <&, O there exists som@®’ such that® — ©’ and©’ Ay, Therefore, we
haveO |act t = O |act t .

— If s |act t = thent =5 andw ¢ A. Therefore, we hav® |a t =~ and© |aq t 4 because there
is no “scooting” transition ir® | t. It follows that® |ac ¢ Az,

Therefore, we have shown tHRIC <€, from which our expected result can be establishing usimijai arguments in
the last part of the proof of Lemma 6.31. O

6.4 Soundness

In this section we prove that failure simulations are sowraghowing that processes are related via the failure-based
testing preorder. We assume initially that we are using only success actian, so thaf2| = 1.

Because we prune our computation structures before extgacilues from them, we will be concerned mainly
with w-respecting structures. For those we have the following

Lemma 6.34 Let A and© be subdistributions in an-respecting computation structure. If subdistributidis stable
andA <, O, thenV(A) € V(0).

Proof: We first show that ifs is stable and <3, © thenV(s) € V(©). Sinces is stable, we have only two cases:

(i) s -4 HereV(s)=0 and sinces <%, © we have® = ©’ with ©®’ —#4, whence in fac® = ©’ and
V(©') = 0. Thus from Lemma 4.34 we ha¥s) = 0 € V(O).

(i) s = A’ for someA’ HereV(s)=1 and® — ©’ - with V(©’)=1. Because the pLTS is-respecting,
in fact® = ©’ and so agaiiV(s) =1 € V(0).

Now for the general case we suppdseds, ©. Use Proposition 3.9 to decompd3ento Zsem A(s)-O4 such
thats <2, ©, for eachs € [A], and recall each such statés stable. From above we have théts) € V(©,) for
thoses, and soV(A) = > 141 A(s)-V(s) € X cpag As)-V(Os) = V(O). 0

Lemma 6.35 Let A be a subdistribution in an-respecting computation structure Af=- A’ thenV(A’) C V(A).

Proof: Note that ifA’ = A” thenA = A’ =% A", so that every extreme derivative &f is also an extreme
derivative ofA. The result follows from Lemma 4.34. O

Lemma 6.36 Let A and© be subdistributions in an-respecting computation structure. Af <2, ©, then we have
V(A) CV(O).
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Proof: SinceA g, ©, foranyA = A’ we have the matching transitiéh = ©’ such thath\’ g, ©'. It follows
from Lemmas 6.34 and 6.35 thdtA’) € V(©') C V(O). By Lemma 4.34 we obtaiti(A) C V(0O). 0

Lemma 6.37 Let A and® be subdistributions in an-respecting computation structure.@f Cgg A, then it holds
thatV(0) D V(A).

Proof: Suppose® Crs A. By Proposition 6.9 and Theorem 6.21, there exists s@hsuch that® — ©’ and
A <3, ©'. By Lemmas 6.36 and 6.35 we obtaliA) C V(0') C V(0). O

Theorem 6.38If P Cps Q thenP Cpmust Q.

Proof: We reason as follows.

PCrsQ
implies [P |act T] Ers [Q |act T Lemma 6.33, for any test
implies V([P |act T]) 2 V(IQ |act T)) [-] is w-respecting; Lemma 6.37
iff A(T, P) 2 A(T, Q) (4)
implies  A(T, P) <gm A(T,Q) Def. Smyth order
iff P Cpmust @ - Definition 4.5
O

Corollary 6.39 If P Cpg Q thenP Cih 6 Q.

Proof: Section 4.3.1 recalled our earlier result thatesting is reducible to scalar testing. O

7 Failure simulation is complete for must testing

This section establishes the completeness of the failarelation preorder w.r.t. the must testing preorder. It d®s

in three steps. First we provide a characterisation of teengler relatiorC z¢ by finite approximations. Secondly,
using this, we develop a modal logic which can be used to ckeriae the failure simulation preorder on finitary
pLTSs. Finally, we adapt the results of [2] to show that thelaidormulae can in turn be characterised by tests; again
this result depends on the underlying pLTS being finiteestatom this, completeness follows.

7.1 Inductive characterisation

<5<k <l <l The relation<?, of Definition 6.20 is given coinductively: it is the largestgint of an equation
R= F(R). An alternative approach is to use ti¥af—) to define<?, as a limit of approximants:

Definition 7.1 For everyk > 0 we define the relations®.C S x D(S) as follows:
(i) <% = SxD(9)
(i) <kl .= F(<k)

Finally let <22 := (N2, <&,

A simple inductive argument ensures tkat, C <, for everyk > 0, and therefore thati}, C <. The converse is
however not true in general.

A (non-probabilistic) example is well-known in the litevag: it makes essential use of an infinite branching. Let
P be the process:c x. a.x ands a state in a pLTS which starts by making an infinitary choieenaly for eactk > 0
it has the option to perform a sequenceko& actions in succession and then deadlock. This can be deddoip
the infinitary CCS expressiop. ;- , a*. Then[P] ﬁFS s, because the movig?’] % [P] can not be matched by
However an easy inductive argument shows {4t <X, a* for everyk, and therefore thdtP] <
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Once we restrict our non-probabilistic systems to finitetgrithing state spaces, however, a simple counting
argument will show thaki?, coincides with<Y; see [8, Theorem 2.1] for the argument applied to bisimoitati
equivalence. In the probabilistic case we restrict to bathefistateand finite-branching -systems, and the effect of
that is captured by topologicabmpactnessFiniteness is lost unavoidably when we remember that fangte the
processr.a + 7.b can move via=> to a distribution[a] ,& [b] for any of the non-denumerably many probabilities
p€[0, 1] — and that is hardly finite. Even worse, in probabilistic syss one can have infinite branching over a finite-
state system (not possible without probability), just &ygpicking some infinite subset ¢, 1] to be the alloweg’s
in the example above; that is why we must now impose finite diveng explicitly. The effect is what one could call
“finitely generated” transitions (in this case by arbitramjerpolation of the two extreme possibilitiesandb, two
being a finite number), and that is the key structural proptéet compactness captures.

Because compactness follows from closure and boundedwesapproach this topic via closure.

Note that the metric spadeD(S),d;) with di(A,0) = mazses|A(s) — O(s)| and (S — D(S),ds) with
da(f,9) = mazsesdi(f(s),g(s)) are complete. LeX be a subset of eitheP(S) or S — D(S). Clearly, X is
bounded. SoifX is closed, it is also compact.

Definition 7.2 ArelationR C S x D(S) is closedif for every s € S the sets- R is closed.

Two examples of closed relations are- and== for anya, as shown by Lemmas 5.4 and 5.5.
Our next step is to show that each of the relatierisare closed. This requires some results to be first estatlishe

Lemma 7.3 LetRC S x D(S) be closed. Then its set of choice functigng: S — D(S) | f €sR }is also closed.

Proof: Straightforward. Need to say what definition of closure weising wrt a set of functions. O

Corollary 7.4 LetRC S x D(S) be closed and convex. Th&is also closed.

Proof: For anyA € D(S), we know from Proposition 3.8 thak- R= {Exp,(f) | f €;a7R}. The function
Exp, (—) is continuous. By Lemma 7.3 the set of choice function®d$ closed, and it is also bounded, thus being
compact. Its image is also compact, thus being closed. O

Lemma 7.5 LetR C S x D(S) be closed and convex, addd C D(S) be closed. Thenthe séA | A- R NC #
0 } is also closed.

Proof: First define€ : D(S) x (S — D(S)) — D(S) by £(O, f) = Expg(f), which is obviously continuous.
ThenletF = { f | f €ra1R }, which by the previous lemma is closed. Finally let

Z =m(E1C) N (D(S) x F))

where is the projection on to the first component of a pair. We obséhnat the continuity of ensures that the
inverse image of the closed s€tis closed. Furthermore=1(C) N (D(S) x F) is compact because it is both
closed and bounded. Its image under the continuous funetida also compact. It follows thaf is closed. But
Z={A| A RNC +#0} because
A€ Z iff (A, f) € E71(C) for somef €a1R

iff £(A, f) € C forsomef €ra1R

iff Exp (f) € C forsomef €ra1R

iff A R A’ forsomeA’ € C

The last line is an application of Proposition 3.8, whichuiegs convexity ofR. a

An immediate corollary of this last result is:
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Corollary 7.6 In afinitary pLTS the following sets are closed:
i) {A]A=¢}
(i) {A] A=)

Proof: By Lemma 5.4 and Corollary 3.20 we know that- is closed and convex. Therefore, we can apply the
previous lemma withC' = {¢} to obtain the first result. To obtain the second we apply ih@it= {© | © 44},
which is easily seen to be closed. O

The result is also used in the proof of:

Proposition 7.7 For everyk > 0 the relation<iX, is closed and convex.

Proof: By induction onk. Fork = 0 it is obvious. So let us assume tha, is closed and convex. We have to show
that

(k+1)

5+ <lps is closed and convex, for every state (26)

If s => ¢ then this follows from the corollary above, since in thiseas<* ™) coincides with{ A | A=-¢}. So
let us assume that this is not the case.

ForeveryAd C Actlet R4 = { A | A =4}, which we know by the corollary above to be closed and is almslip
convex. Also for ever, aletGe . = {A | (A- =%)N (0. <k) # 0 }. By Proposition 6.2, the relatios is
lifted from a closed convex relation. By Corollary 7.4, tresamption thatX, is closed and convex implies th@
is also closed. So we can appeal to Lemma 7.5 and concludeablt:s ,, is closed. By Definition 3.2(2) it is also

easy to see thafe . is convex. But it follows thas - <§§“) is also closed and convex as it can be written as

M{Ra|s2} N N{Gou|s-20}

Before the main result of this section we need one more teahresult.

Lemma 7.8 Let S be a finite set_of states. SuppdRé C S x D(S) is a sequence of closed convex relations such
thatR(*+1) C RE. Then(ne, R¥) C (N2, RF).

Proof: Let R> denote(N2 , R¥), and supposa R¥ © for everyk > 0. We have to show thaA R=0.

LetG ={f:S — D(S) | ©=Exp,(f)}, whichis easily seen to be a closed set. For gatgt F* = { f :
S —D(S) | f€ra1R* }, which by Lemma 7.3 we also know to be closed. Finally consikercollection of closed
setsH* = F* N @, sinceA R ©, Proposition 3.8 assures us that all of these are non-emfsty. H 1) C H*
and therefore by the finite-intersection property [04} , H* is also non-empty.

Let f be an arbitrary element of this intersection. For any statend for everyk > 0, s RF f(s), that is
s R f(s). Sof is a choice function foR*>, f €ro1R>°. From convexity and Proposition 3.8 it follows that
A R> Exp, (f). But from the definition of the& we know that® = Exp, (f), and the required result follows. O

Theorem 7.9 In a finitary pLTS,s <%, © if and only if s <% ©.

Proof: Since<?, C <X it is sufficient to show the opposite inclusion, which by diiiim holds if < is a failure
simulation, viz. if <2 C F(<2). Supposes < O, which means that <% © for everyk > 0. According to
Definition 6.20, in order to show F (<) © we have to establish three properties, the first and last afhwdre
trivial (for they are independent on the argumenfof

So suppose -% A’. We have to show th& == ©’ for some®’ such thatA’ < ©'.
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For everyk > 0 there exists some), such tha® =% ©) andA’ < ©). Now construct the sets
DF={0 | =% © andA’ <k O'}.

From Lemma 5.4 and Proposition 7.7 we know that these ared!dEhey are also non-empty ah ™! C D*. So
by the finite-intersection property the §8f- , D* is non-empty. For an®’ in it we know® == ©’ andA’ <%, ©’
for everyk > 0. By Proposition 7.7, the relatiors’, are all closed and convex. Therefore, Lemma 7.8 may be applie
to them, which enables us to conclufié < ©'. O

Analogously to what we did forig,, we also give an inductive characterisationfs: For everyk > 0letA Jk. ©
if there exists ® = ©@Ma"such thatA <%, OMah and letd%, denotey , Jk..

Corollary 7.10 In a finitary pLTS,A Jrg © if and only if A 3% ©.

Proof: Since<it, C < for everyk > 0, it is straightforward to prove one directiotk Jrg © implies A 1% ©.
For the converse)d 1%, © means that for every we have som®* satisfying® = ©* andA <k, ©F. By

Proposition 6.9 we have to find som¥° such thal® — 0> andA q_’gs ©°°. This can be done exactly as in the
proof of Theorem 7.9. O

7.2 The modal logic

Let F be the set of modal formulae defined inductively as follows:
o div, T € F

ref(A) € F whenA C Act,

(ayp € F wheng € F anda € Act,

o 1 A2 € Fwheny, 3 € F,
® ©1,B 3 € Fwheny,pe € Fandp € [0,1].

This generalises the modal language used in [2] by the additi the new constanrtiv, representing the ability of a

process to diverge. In [2] there is the probabilistic chaiperatord,; p; - i, wherel is a non-empty finite index

set, andd_,_; p; = 1. This can be simulated in our language by nested use of tiaeybmobabilistic choice.
Relative to a given pLT3S, Act,, —) thesatisfaction relatior= C D(S) x F is given by:

e AT foranyA € D(S),

e AEdiviff A = ¢,

A = ref(A) iff A =24,

A [ (a)y iff there is aA’ with A == A’ andA’ = ¢,

o AE 1 Ao iff Al ¢ andA | o,
o A Ep,® ¢ iffthere areA;, Ay € D(S) with A; | 1 andAgy = o, such thath = p-A; + (1—p) - As.

We write A 37 © whenA = ¢ implies© = ¢ for all p € F — note the opposing directions. This is because the
modal formulae express “bad” properties of our procesdémately divergence and refusal: th@s =F A means
that any bad thing implementatiak does must have been allowed by the specificafion

For pCSP processes we use C7 ) to abbreviatd P] C7 [Q] in the pLTS given in Section 2.

The set of formulae used here is obtained from that in Segtioh[2] by adding one operatodiv, and relaxing
the constraint on the construction of probabilistic chdigemulae. But the interpretation is quite different, as it
uses the new silent move relatien>. As a result our satisfaction relation no longer enjoys airatand expected,
property. Recall that if a recursive CCS procéssatisfies a modal formula from HML, then there is a recurgreer-
finite unwinding of P which also satisfies it. Intuitively this reflects the facathf a non-probabilistic process does a
bad thing, then at some (finite) point it must actually do itut Bhis is not true in our new, probabilistic setting: for
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example@; given in Example 4.3 can do anand then refuse anything; but all finite unwindings of it sei that
with probability strictly less than one. That is, wheré@s] = (a) T, no finite unwinding o, will satisfy (a)T.
Our first task is to show that the interpretation of the logicansistent with the operational semantics of processes.

Theorem 7.111f A Jpg © thenA J7 6.

Proof: We must show that i Jp¢ © then wheneveA | ¢ we have® = . The proof proceeds by induction on
©:
e The case whep = T is trivial.

e Supposep isdiv. ThenA = div means that\ —> ¢ and we have to show —> ¢, which is immediate from
Lemma 6.5.

e Supposep is (a)p,. In this case we havA == A’ for someA’ satisfyingA’ = ¢,. The existence of a
corresponding’ is immediate from Definition 6.4 Case 1 and the induction hiypsis.

e The case whep isref(A) follows by Definition 6.4 Clause 2, and the caseA 2 by induction.

e Wheng is 1 ,@ 2 we appeal again to Definition 6.4 Case 1, using= 7 to infer the existence of suitable
O 51+ O
{1,2}

We proceed to show that the converse to this theorem alss tsadhat the failure simulation preordefs coincides
with the logical preorder”.

The idea is to mimic the developmentin Section 7 of [2], byigieisg characteristic formulaevhich capture the
behaviour of states in a pLTS. But here the behaviour is nataztierised relative tai’,, but rather to the sequence of
approximating relationsi®,.

Definition 7.12 In afinitary pLTS(S, Act,, —), thek*" characteristic formulae”*, ©X of statess € S and subdistri-
butionsA € D(S) are defined inductively as follows:

o oV =TandpQ =T,

o pi*! = div, provideds = ¢,

o oftl =ref(A) AN, a,\(a)pk whereA = {a € Act | s 24}, provideds 24,

o oMl = A__a ,(a)pk AN, A ¢k otherwise,

. A(s
° and<p2+1 = (div) ,_;a1® (@SE[AW %"plswrl) .

Lemma 7.13 For everyk > 0, s € S andA € D(S) we haves = ¢F andA | ¢k.

Proof: By induction onk, with the case wheh = 0 being trivial. The inductive case of the first statement peats
by an analysis of the possible moves frepirom which that of the second statement follows immedyatel O

Lemma 7.14 Fork > 0,
(i) © = ¢ impliess <X, ©,
(i) © = ¢k implies® — @Mahsych thath <k @mach
(i) © = ok implies® Jkg A,
Proof: For everyk part (iii) follows trivially from (ii). We prove (i) and (ii)simultaneously, by induction ok, with
the casé = 0 being trivial. The inductive case, fér+ 1, follows the argument in the proof of Lemma 7.3 of [2].

(i) First suppos& = ¢. Thenyp®*+! = div and therefor® = div, which gives the require® — «.

S

Now suppose —— A. Here there are two cases,; if in additior=- ¢ we have already seen that—> ¢ and
this is the required matching move frofn sinceA <k €. So let us assume that£ . Then by the definition
of "1 we must have tha® = (X, and we obtain the required matching move frénfrom the inductive

hypothesis: induction on part (ii) gives soi®ésuch tha® — ©’ andA <k ©'.
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(ii)

The matching move fas -~ © is obtained in a similar manner.

Finally suppose 34. Since this implies 24, by the definition ofo" ! we must have thab |= ref(A), which
actually means thad —-24.

By definition okt = (div) \_(a1® (D,e1a) TP ¢t and thu®d = (1-[A])-Oaiv+ X ,c1a) Als) O,
such tha®g;, E div andO, E <p’;+1. By definition,©4;, = ¢, so by Theorem 3.18(i) and the reflexivity

and transitivity of—- we obtain® —- Zse[m A(s)-©4. By part (i) we know that <%+ O for everys in
[A], which in turn means thak <& 3° 141 A(s)- O O

Theorem 7.15 In a finitary pLTS,A 37 © ifand only if A Jrg ©.

Proof: One direction follows immediately from Theorem 7.11. Foe thpposite direction suppoge 27 ©. By
Lemma 7.13 we havA |= ¢, and henc® = X, for all k > 0. By part (iii) of the previous lemma we thus know
thatA 3% ©. ThatA Jrs © now follows from Corollary 7.10. O

7.3
The

Characteristic tests for formulae

import of Theorem 7.15 is that we can obtain completenésise failure simulation preorder with respect to

the must-testing preorder by designing for each formukatest which in some sense characterises the property of
a process of satisfying. This has been achieved for the pLTS generated by the reouirgie fragment opCSP in
Section 8 of [2]. Here we generalise this technique to theSgi€nerated by the set of finitasZSP terms.

As in [2], the generation of these tests depends on crucbderistics of the testing functiofi(—, —), which
are summarised in the following two lemmas 7.16 and 7.19esponding to Lemmas 6.7 and 6.8 in [2] respectively.

Lemma 7.16 Let A be apCSP process, and’, T; be tests.

1. o€ A(w,A)iff o = |A]-&.

2. 0€ A(tw, A) iff A = e,

3.0 € A([,c 4 0w, A) iff A =24,

4. Suppose the actian does not occur in the te§t. Theno € A(r.w Oa.T, A) with o(w) = 0 iff there is a
A’ € D(sCSP) with A = A’ ando € A(T, A).

5. 0€ ATy ,® Tr, A) iff 0o =p-01 + (1—p)-05 for certaino; € A(T;, A).

6. 0 € A(Th N Ty, A) ifthere are @ € [0,1] andA;, Ay € D(sCSP) such thatAh = ¢-A; + (1—¢)- Az and
o= q-01 + (1—q)-0o for certaino; € A(T;, A;).

Proof:

1. Sincew |act P =, the states in the support pf |a: A] have no other outgoing transitions thanTherefore
[w |act Al is the unique extreme derivative of itself, and$@s |act A] = |A|-J we haved(w, A) = {|A]-&}.

2. (&) AssumeA = ¢. By Lemma 6.27(1) we havew |[acc A = T.w |act €. All states involved in this

derivation (that is, all states in the support of the intermediate distributioAs” andA* of Definition 3.12)
have the formr.w |ac s, and thus satisfy, <24 for all w € Q2. Therefore we haver.w |acc A] = [T.w |Act £]-
Trivially, [7.w |ac €] = € is stable, and hence an extreme derivativérab |a A]. Moreover,$c = 0, so
0e A(tw,A).

(=) Supposé € A(r.w, A), i.e., there is some extreme derivativef [1.w |ac: A] such thaT' = 0. Given the
operational semantics pCSP, all statesu € [T'] must have one of the forms= [r.w |act t] OFu = [w |act ]
As $T' = 0, the latter possibility cannot occur. If follows that alafrsitions contributing to the derivation
[T.w |acc A] = T are obtained by means of the rylesr.r), and in factl’ has the forn{r.w |aec A’] for
some distributiom\’ with A = A’. AsT must be stable, yet none of the states in its support areatf®
that[I'] =0,i.e.A’ =e.
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3. LetT =[], 4 a.w.

(<) AssumeA = A’ 44 for someA’. ThenT |ae A => T |ac A’ by Lemma 6.27(1), and by the
same argument as in the previous cd#ejac: A] = [T |acc A']. All states in the support of |ac A” are
deadlocked. SE" |act A] = [T |act A] @and$(T |ace A) = 0. Thus we have € A(T, A).

(=) Supposd € A(T, A). By the very same reasoning as in Case 2 we findAhat> A’ for someA’ such
thatT |ace A’ is stable. This implies\’ 44,

4. LetT be atest in which the success actiodoes not occur, and |&f := 7.w O a.T'.

(<) Assume there is &’ € D(sCSP) with A == A’ ando € A(T,A’). W.l.o.g. we may assume Why?
that A = AP % A’. Using Lemma 6.27(1) and (3), and the same reasoning as ipréwéous cases,
[U |act Al = [U |act AP™] = [T |ac A'] = T for a stable subdistributioll with $T" = o. It follows that
o€ AU, A).

(=) Suppose € A(U, A) with o(w) = 0. Then there is a stable subdistributBrsuch thafU |act A] =T
and$T = o. Sinceo(w) = 0 there no state in the support Bfof the formw |ac: . Hence there must be a
A" € D(sCSP) such thath =% A’ and[T" |ace A’] = T. It follows thato € A(T, A’).

5. (&) Assumeo; € A(T;,A) fori = 1,2, Then[T; |ac A] = T; for some stabld’; with $T'; = o;. By
Theorem 3.18(i) we havigT: ,® T3) |act Al = p-[T1 |act A]+ (1—p)-[T2 |ac A] = p-T'1 + (1—p) T, and
p-T'1 4+ (1—p)-Ty is stable. Moreovefi(p-I'y + (1—p)-T'2) = p-o1 + (1—p)-02, S00 € A(T1,® To, A).

(=) Suppose € A(Ty ,® T»,A). Then there is a stablé with $T" = o such that(T} ,® T3) |ac A] =
p[T1 |ace Al + (1—=p)-[T2 |acc A] = T'. By Theorem 3.18(ii) there arg; for ¢ = 1,2, such thaiT; |ac
Al = T;andl’ = p-T'; +(1—p)-T's. AsT'; andl'; are stable, we hawd"; € A(T;, A) fori = 1, 2. Moreover,
0=8 =p-$T1 + (1—p)-$T2.

6. Suppose < [0,1] andAq, Ag € D(pCSP) with A => ¢-Ay + (1—¢)- Az ando; € A(T;, A;). Then there
are stabld’; with [T} |[ac A;] = T; and$T; = o;. Now [(T1 M T3) |ac A] = ¢-[(Th N T2) |ac A1)
+ (1—(])-[(T1 M Tg) |Act Ag] = q-[Tl |Act Al] + (1—q)'[T2 |Act AQ] = q-I'y + (1—q)-F2. The latter
subdistribution is stable and satisfigg-I'y + (1—¢)-I's) = g-01 + (1—¢)-02. Henceq-01 + (1—q)-02 €
.A(Tl M TQ,A). O

We also have the converse to part (6) of this lemma, againckimg Lemma 6.8 of [2]. For that purpose, we use two
technical lemmas whose proofs are similar to those for Les®#29 and 6.30 respectively.

Lemma 7.17 SupposeA |4 (71 M T») —= T'. Then there exist subdistributiods™, A, A, A"' (possibly
empty) such that

() A=A7+ AT +AS
(”) A— T Ancxt
(iii) F:AHCthA(TlﬂTg)—FAf |AT1+A5< |AT2

Proof: By Lemma 3.4A |4 (71 M Tz) = T implies that

A=>"pis,  sila(MinT) ST,  T=> p-Ti
i€l icl

for certains; € S, I'; € D(sCSP) and} .., p; < 1. LetJy ={icl | i =s;|[aTi}andJo = {icl | T =5, |a
T, }. Note that for each € (I — J; — J3) we havel'; in the formI'; |4 (T4 M T%), wheres; —— T';. Now let

A= Y wm o M =Tam A Y

ie(I—J1—J2) 1€J ie(I—J1—J2)

wherek = 1, 2. By construction (i) and (iii) are satisfied, and (ii) follevay property (2) of Definition 3.2. a
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Lemma 7.18 If A |4 (Th M Tz) = ¥ then there ar®, and®, such that
(i) A = &, + Dy
(i) @1 |aTh+ P2 |aTo =T

Proof: Suppose\ |4 (T1 M 1) = ¥. We know from Definition 3.12 that there is a collection of digtributions
Uy, Wy, U, for k > 0, satisfying the properties

Ao la(TiNTy) = Uy = WF—}-QQ?
|\ =z U, = U+ U
v - Uy = \Ijal + \I/,:Jrl
U= ZZO:O \I}l:

andV is stable.
Takel'y := W¥y. By induction onk > 0, we find distributiond™, 1, A;”, A,jl, AJy, Apy such that
() Ak |a (T1NT2) T Thga
(i) Tpyr < Wpgq
(i) A=Ay +AL +AL
(V) Ay 5 Agqr
(V) Trhy1 =Appr |a (MM T) + AL [a Ty + A |a T

Induction Step:Assume we already haud&, andA;. Note thatAy, |4 (T3 M Tz) < Ty < ¥ = ¥” + ¥ and
T, M T, can make a move. SinceV is stable, we know that eithdr,j =cor \IJ; 4. In both cases it holds that
Ay |a (Th N T3) < ¥;”. Proposition 3.9 gives a subdistributibp;, < Uyyq suchthath, |4 (Th M 1) — T,
Now apply Lemma 7.17.

Let®; = > 00, A and®y = Y77 Af,. By (iii) and (iv) above we obtain a weak move A = ®; + ®,.
Fork > 0, letT;” == Ay |a (T2 N To), letT'§ := c and letl';, | := A} [a Th + A, [a T2. Moreover,
L:=®; |4 T1+ P2 |4 T>. Now all conditions of Definition 3.22 are fulfilled, sy |4 (77 M T2) = T is an initial
segment ofAg |4 (71 M T2) = ¥. By Proposition 3.23 we haw@; |4 T + $2 |4 To = V. O

Lemma7.191f o € A(Ty M T»,A) then there are a € [0,1] andA;, Ay € D(sCSP) such thatAh = ¢-A; +
(1—¢)-Ay ando = q-01 + (1—¢q) - 09 for certaino, € A(T;, A;).

Proof: If o € A(Ty M T, A) then there is an extreme derivatibeof [(T7 M Ts) |ac 4A] such thatt¥ = o. By
Lemma 7.18 there ar®; , such that
(I) A= & + Dy
(II) and [Tl |Act (I)l] + [TQ |Act @2] — V.
By Theorem 3.18(ii) there are some subdistributi@nsand ¥, such thatl = ¥, + ¥y andT; |acc ©; = V; for
i=1,2. Leto, = $¥,. As ¥, is stable we obtain, € A(T;, ¥;). We also have = $T = $§U; + $¥y = o] + 05.
We now distinguish two cases:
o If U} = ¢, then we takeh; = &;, 0, = o} fori = 1,2 andq = 0. Symmetrically, ifU; = &, then we take
A, =®;,0, =0} fori =1,2andq = 1.
o If Uy 75 5and\112 75 e, then we Ie'q = %, A = %(I)l, Ay = ﬁ@g, 01 = %Oll andoz = ﬁOIQ

Itis easy to check that- Ay + (1—¢) - Az = @1 + P2, q-01 + (1—q)-02 = 0} + 0y, ando; € A(T;, A;) fori=1,2.0
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Proposition 7.20 For every formulap € F there exists a paifZ,,, v,,) with T, anQ-test andb,, € [0, 1]* such that
A = gifandonlyif3o € A(T,, A) : 0 < v,,. (27)

T, is called acharacteristic tesof ¢ anduv,, its target value

Proof: The proof is adapted from that of Lemma 8.1 in [2], from whem take the following remarks: A€ is
countable and-tests are finite expressions, for evéhytest there is an € Q2 not occurring in it. Furthermore, if a
pair (T,,, v,,) satisfies requirement (27), then any pair obtained f(®m v,,) by bijectively renaming the elements of
Q2 also satisfies that requirement. Hence two given charatitetésts can be assumed to{balisjoint, meaning that
now € €2 occurs in both of them.

Our modal logicF is identical to that used in [2], with the addition of one extonstantliv. So we need a new
characteristic test and target value for this latter foanahd reuse those from [2] for the rest of the langfage:

o Letyp = T. TakeT,, := w for somew € €2, andv,, := &.

o Lety = div. TakeT,, := 7.w for somew € Q, andv,, := 0.

e Lety = ref(A) with A C Act. TakeT,, := ], , a.w for somew € , andv,, := 0.

e Lety = (a)y. By induction,i) has a characteristic te#}, with target valuev,,. TakeT,, := 7.w Oa.T,, where
w € Q2 does not occur iy, andv, := vy,.

e Lety = ¢1 A ¢o. Choose &2-disjoint pair(7;, v;) of characteristic test$; with target values;, fori = 1,2.
Furthermore, lep € (0, 1] be chosen arbitrarily, and take, := 71 ,® T» andv,, := p-v1 + (1—p)-va.

o Lety = p1,® ¢2. Again choose &-disjoint pair(7;, v;) of characteristic tests; with target values;, i = 1,2,
this time ensuring that there are two distinct success B&ti9, w, that do not occur in any of these tests. Let
T =T, 10 w; andv; := %vi + %wj Note that fori = 1,2 we have thaf is also a characteristic test of with
target value)]. TakeT,, := T} M T3 andv, := p-v} + (1—p)-v}.

Note thatv, (w) = 0 whenevetw € Q2 does not occur iff,.

As in the proof of Lemma 8.1 of [2] we now check by inductiongithat (27) above holds; the proof relies on
Lemmas 7.16 and 7.19.

e Letyo = T. ForallA € D(sCSP) we haveA = ¢ as well asdo € A(T,,, A) : 0 < v, using Lemma 7.16(1).

e Lety = div. Suppose\ |= . Then we have thah — . By Lemma 7.16(2)) € A(T,,, A).
Now supposélo € A(T,, A) : 0 < v,. This implieso = 0, so by Lemma 7.16(2A => ¢. HenceA = ¢.

e Lety = ref(A) with A C Act. Suppose\ = ¢. ThenA =44, By Lemma 7.16(3)) € A(T,,, A).
Now supposéo € A(T,,A) : o < v,. This implieso = 0, s0A =44 by Lemma 7.16(3). HencA = o.

e Letp = (a)y with a € Act. Supposel = ¢. Then there is &\’ with A == A’ andA’ | +. By induction,
Joe A(Ty,A’) : 0 < vy. By Lemma 7.16(4)p € A(T,, A).
Now supposélo € A(T,,, A) : o < v,. Thisimplieso(w) = 0, so by Lemma 7.16(4) there i’ with A == A/
ando € A(T,, A’). By induction,A’ =1, SOA = .

o Letyp = p1Aps and supposa | ¢. ThenA [ ¢, fori=1,2and hence, by inductiolp;, € A(T;, A) : 0; < v;.
Thuso :=p-01 + (1-p)-02 € A(T,,, A) by Lemma 7.16(5), and < v,,.
Now supposedo€ A(T,,A) : o < wv,. Then, using Lemma 7.16(5), = p-o1 + (1—p)-0. for certain
0; € A(T;, A). Recall thatT}, T areQ)-disjoint tests. One has < v; for bothi = 1, 2, for if 0;(w) > v;(w) for
somei = 1 or 2 andw € (Q, thenw must occur inl; and hence cannot occur #_;. This impliesvs_;(w) = 0
and thuso(w) > v, (w), in contradiction with the assumption. By inductiah, = ¢; for i = 1,2, and hence
AE .

o Lety = p1,® pa. SUPPOSEN = ¢. Then there aré\;, Ay € D(sCSP) with A; | p; andA, = o9 such that
A = p-A; + (1—p)-As. By induction, fori = 1,2 there aren; € A(T;, A;) with o; < v;. Hence, there are
o; € A(T], A;) with o < v}. Thuso := p-0} + (1—p)-05 € A(T,, A) by Lemma 7.16(6), and < v,,.

2However, because we employ state-based testing here, asaspf action-based testing in [2], we translate the adtised test O a.Ty
for the action modalitya) into the state-based testv O a.Ty,.
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Now supposelo € A(T,,, A) : 0 < v,. Then, by Lemma 7.19, there age= [0, 1] andA;, A, € D(sCSP) such
thatA = ¢- A1+ (1—q)-Az ando = -0} + (1—q) -0} for certaino € A(T}, A;). NowVi: o} (w;) =v}(w;) =1,
so, using thafly, T, areQ-disjoint tests 1q = ¢-0f(w1) = o(w1) < vy(w1) = p-vf(w1) = 3p and likewise
1(1—q) = (1—q) - 0h(w2) = o(w2) < vp(w2) = (1—p)-vh(w2) = +(1—p). Together, these inequalities say that
g = p. Exactly as in the previous case one obtains v} for bothi = 1,2. Given thatT} = T; 10 wi, using
Lemma 7.16(5), it must be thaf = %01- + %wﬁ for someo; € A(T;, A;) with o; < v;. By induction,A; | ¢;
fori = 1,2, and hence\ = . O

Theorem 7.211f A J% O thenA 237 ©.

Proof: SupposeA J%,,:© andA | ¢ for someyp € F. LetT,, be a characteristic test gf with target valuey,,.
Then Proposition 7.20 yield$ € A(T,,A) : o < v,, and hence, given that I3, ©, by the Smyth preorder we
have3o’ € A(T,,0): 0 < wv,. Thus® = o. O

8 Simulations and may testing

In this section we follow the same strategy as for failureuidations and testing (Section 6) except that we restrict our
treatment to full distributions: this is possible becauadipl distributions are not necessary for this case; aml it
desirable because the approach becomes simpler as a result.

Definition 8.1 [Simulation Preorder] DefinE g to be the largest relation i, (S) x D1(S) such that ifA Cgs ©
then

wheneverA =% (3. p;A}), for finitely manyp; with >~ p; = 1, there ared) with © == (3>°. p;0!)
andA Cg ©/ for eachi.

Note that, unlike for Definition 8.1, this summation cannetdmpty.
Again it is trivial to see that_gs is reflexive and transitive; and again it is sometimes edsiavork with an
equivalent formulation based on a state-level “simuldtaefined as follows.

Definition 8.2 [Simulation] Define<y to be the largest relation if x D;(S) such that ifs < © then whenever
s -2 A’ there is @’ with © == ©’ andA’ I, ©'.

Definition 8.2 differs from the analogous Definition 6.20lmege ways: it is missing the clause for divergence, and
for refusal; and it is (implicitly) limited to==>-transitions that simulate by producing full distributganly. Without
that latter limitation, any simulation relation could bakd down uniformly without losing its simulation propesi
for example allowing counter-intuitively to be simulated by , & e.

Lemma 8.3 The above preorder and simulation are equivalent in thevatlg sense: for distributiona, © we have
A Cs O just when there is @M " with © = @Machand A J_ @mach

Proof: The proof is as for the failure case, except that in Theoréth &e can assume total distributions, and so do
not need the second part of its proof where divergence itetlea O

8.1 Soundness

In this section we prove that simulations are sound for shguhat processes are related via the may-testing preorder.
We assume initially that we are using only one success actieo that2| = 1.

Because we prune our computation structures before eixtgazalues from them, we will be concerned mainly
with w-respecting structures, and for those we have the following
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Lemma 8.4 Let A and®© be two distributions. IfA is stable and\ <, ©, thenV(A) <y, V(O).
Proof: We first show that ifs is stable and <1 © thenV(s) <y, V(0). Sinces is stable, we have only two cases:
(i) s HereV(s)={0} and sinceV(0) is not empty we hav¥’(s) <p, V(O).

(i) s = A’ for someA’ HereV(s)={1} and® = ©' =% with V(©’)={1}. By Lemma 6.35 specialised to
full distributions, we havé € V(©). Therefore)(s) <u, V(0).

Now for the general case we suppased, ©. Use Proposition 3.9 to decompd3&nto Zse[m A(s)-©4 such
thats <, ©, for eachs € [A], and recall each such statés stable. From above we have thgts) <y, V(O;) for
thoses, and soV(A) = "¢ a1 A(s)-V(s) <o Dosera) A(5)-V(Os) = V(O). O

Lemma 8.5 Let A and © be distributions in anv-respecting computation structure. & <, O, then we have
V(A) <no V(O).

Proof: SinceA <, ©, we consider subdistributions” with A = A”’; by distillation of divergence (Lemma 5.8)
we have full distributions\” and A} , and probabilityp such thats = A" = (A} ,® Aj) andA” = p-Af and
A, = e. There is thus a matching transitiéh — ©’ such thatA’ <J_ ©’. By Proposition 3.9, we can find
distributions©/, ©5 such tha®’ = 0} ,® 05 andA , I, 01 ».

Since[A]] = [A”] we have thatA] is stable. It follows from Lemma 8.4 that(A]) <m, V(©}). Thus we
finish off with

V(A//)
= V(p-AY) A" =p-A}
= p-V(A)) linearity of V
<Ho p-V(0)) above argument based on distillation
= V(p-0}) linearity of V
<Ho V(©') ©'= 61,5 05
<Ho V(0) Lemma 6.35 specialised to full distributions
SinceA” was arbitrary, we have our result. O

Lemma 8.6 Let A and© be distributions in am-respecting computation structure. Af Cg ©, then it holds that
V(A) <uo V(O).

Proof: SupposeA Cg ©. By Lemma 8.3, there exists sor®"°" such thatd — @M and A I, @mach By
Lemmas 8.5 and 6.35 we obtaiffA) <y, V(0') C V(0O). O

Theorem 8.7 1f P Cs Q thenP Cpmay Q.

Proof: We reason as follows.

PCs @

implies [P |ac T] Cs [@Q |act T the counterpart of Lemma 6.33 for simulation, for any fEst

implies V([P |act T]) <uo V(@ |act T)) [-] is w-respecting; Lemma 8.6

iff A(Ta P) SHO A(Ta Q) (4)

iff P Cpmay @ - Definition 4.5
0

Corollary 8.8 If P Cg Q thenP Cihay Q.

Proof: Section 4.3.1 recalled our earlier result thatesting is reducible to scalar testing. O
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8.2 Completeness

Let £ be the subclass of by skipping thediv andref(A) clauses. We writd® C* @ just when[P] = ¢ implies
[Q] E ¢. We have the counterparts of Theorems 7.15 and 7.21, wititesiproofs.

Theorem 8.9 In a finitary pLTSA C*© ifand only if A Cg O.
Theorem 8.10 If P Cinay Q thenP C- Q.
Corollary 8.11 If P Epnay @ thenP Cg Q.

Proof: From Theorems 8.9 and 8.10 we know thaPifC{ha, Q thenP Cg Q. Section 4.3.1 recalled our earlier
result that)-testing is reducible to scalar testing. So the requiredltésllows. O

9 Conclusion and Related Work

In this paper we continued our previous work [3, 4, 2] in ouesfufor a testing theory for processes which exhibit
both nondeterministic and probabilistic behaviour. Weehgeneralised our results in [2] of characterising the may
preorder as a simulation relation and the must preorderaikiad-simulation relation, from finite processes to finjita
processes. To do this it was necessary to investigate fuenl@istructural properties of derivation sets (finite gen-
erability) and similarities (infinite approximations), weh are of independent interest. The use of Markov Decision
Processes and Zero-One laws was essential in obtainingsuits.

Segala [21] defined two preorders called trace distribyti@tongruenceX p) and failure distribution precon-
gruence Crp). He proved that the former coincides with an action-basadion ofg{}may and that for “probabilis-
tically convergent” systems the latter coincides with atiomebased version (Iig’must The condition of probabilistic
convergence amounts in our framework to the requiremenfaeha\ € D;(S) andA = A’ we have|A’| = 1. In
[15] it has been shown that p coincides with a notion of simulation akin f0g. Other probabilistic extensions of
simulation occurring in the literature are reviewed in [B, 2
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A Assorted counter-examples

A.1 Finite state space is necessary; otherwise. ..
A.1.1 Distillation of divergence

Distillation of divergence is the notion that if a system t@ns any divergence, no matter how small, it can be “détitbut” into
an equivalent presentation in which states either wholiweogge or wholly diverge; the relevant lemma is Lemma 5!8.uked to
show the equivalence of failure simulation and failureratgation (Theorem 6.21), and to justify the full-distritart approach in
the may-case (Section 8).

Example 3.16 is an infinite-state system over staies... where the probability of convergenceligk from any states, thus
a situation where distillation of divergence fails becaabighe states partially diverge, yet there is no singleestattich wholly
diverges.

In spite of that, there is an infinite-state version of Lemn (Ehe underlying fact on which Lemma 5.8 depends). In it the
assumption is that the partial divergences lawanded away from zera.e. there is some > 0 such that every state converges
with probability at least. But Example 3.16 fails this assumption, becausé ftieprobabilities of convergence become arbitrarily
small.

A.1.2 Transitivity of failure simulation

| think Section A.2.4 below can be adapted to provide a catexample here: replace the intermediate infinitely brargibut
finite-state process (28) by the finitely branching but indirsitate process Example 3.16.

A.1.3 Equivalence of finite and infinite interpolation

Let the state space be the positive integers and considefihiée interpolanty_, 7/2° of the set{i | i > 1}. It cannot be realised
by any finite interpolation, thus invalidating Lemma B.1 witbe state space is infinite.

A.1.4 Soundness of failure simulation

See Section A.2.5 below.

A.1.5 Pre-congruence of simple failure similarity

We use a modification of Example 3.16 which as before hassstatwith k£ > 2, but we add an extra-looping states,, to give all
together the system

fork >2 Sk —— (E%@ Skt1) and Sa -2 5q .
k

There is a failure simulatioB, <% (Sa 1® 0) because the move, — (5a Flz@ Sk+1) can be matched by a move to
(52 k%@ (52 S 0)) which simplifies to jusi(ss 1@ 0) again — i.e. a sufficient™ -simulating move would be the identity
resolution of=-.

Now s2 |« sq diverges even thougk itself does not, and (recall from above) we have<Zs (E%@ 0).

Yet (E%@ 0) |« sa does not diverge, which is a contra-indication for the troithemma 6.31 unless it uses finiteness of the
state space somewhere. The role of the infinitely many statess to be to escape distillation of divergence in the systo

get this kind of counter-example, we want to “trick” our cbmstions into allowing the failure-simulation of an unmledly deep
T-tree by deadlock. But in a finite-state system such a tree diverge either with probability one (in which case the dgence
clause of<igs kicks in, and prevents the tricky simulation because dekditmes not diverge), or with probability zero (in which
case it has no substantive effect anyway). Example 3.16infeisely many states to avoid the two extremes.

Note that this counter-example does not go through if we aderé similarity <i.5 instead of simple failure similaritydss,
sincess Ags (E%@ 0) — the former has, = s, 1®¢, but this move cannot be matched;b,y%@ 0.
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A.2 Finite branching is necessary; otherwise. . .

In the non-probabilistic world, it's not possible to havédinite branching if the state space is finite; so finite branghias a

restriction, is imposed only when the state space is infinitethe probabilistic world, even a two-element state spatmvs

infinite branching of an associated pLTS: consider the pLar@aining transitions: —— (s2,® s3) for all p in some infinite set.
Here are some examples of what happens if we don't impose bréinching as well as finiteness of the state space.

A.2.1 Closure of derivatives

An obvious outcome is that we lose the guaranteed closurerdfadives: just take the example above wheretiecome from
some open set likg), 1).

A.2.2 Distillation of divergence

We also lose distillation of divergence without finite braimg. The essence of the counter-example here is that wapsellall the
sk-states of Example 3.16 onto a single state, which then besamfinitely branching: we take a system comprising justdtetes
and ak-indexed set of transitions

s T ([0], )20 5) fork >2, (28)

as illustrated in Figure 7. As we have seen, by taking tramsitt 5 - k11 - —— K42 --- We can achieve divergence with
probabilityl — 1/K for arbitrary X' > 2; but (contradicting distillation) neither of the two staite 0 wholly diverges.

The zero-one law Lemma 5.6 is not affected by infinite bramghibecause it is restricted to the deterministic casetlieecase
of no branching at all). What fails is the combination of a fmemof deterministic distillations to make a non-deteristiigione, in
Lemma 5.8: it depends on Lemma 5.3, which in turn requiretefimianching.

For those with some knowledge of sequential probabilidgicionic semantics, there is an instructive comparison todue.
Straightforward generalisation of the invariant/varipribciple for loop correctness to probabilistic progrartieves a direct proof
of the zero-one law in the fully nondeterministic case [16¢.32.6], even in an infinite state space, yet there seemsrto egplicit
mention of finite branching. This is explained by the factt theobabilistic/demonic sequential programs are guaeshte be
continuous (as predicate transformers) only when finitaditang is imposed (by analogy with the well known connectietween
continuity and bounded nondeterminism for standard pragyaand failure of that continuity invalidates the sourginproof of
the loop-correctness rule referred to above, since it &ffibie definition of loop itself-limit, or not).

Finally —pursuing this point— note that deterministic (pubbabilistic) outcomes with infinite support are unprohdgic: for
example the sequential prograinn := true, 0; while b do n := n+1;b := true ,,.® false endis perfectly legitimate (i.e.
continuous), even though it has infinitely many potentialifialues ofn.

A.2.3 Equivalence of failure simulation and extended failue simulation

By relating boths and0 (simulated states) t0 (simulating state) we can see thafrom (28) above is failure-simulated by just
itself. Yet we have for example=> [0] .,.® ¢, a move which cannot be matched by any extended failurelating=>-move
from 0 — and that means that Theorem 6.21 fails in this case. As wgdd, its proof refers to Lemma 5.8 which in turn refers
to Lemma 5.3 where finite branching is assumed.

A.2.4 Transitivity of failure simulation

Define a procesty —— (0.,.® t1) andt; - %1, and argue thaty <1is 5 from (28) above; but also —as observed there— we have

s <Iis 0. Yet we do not have, <ii5 0.

A.2.5 Soundness of failure simulation

Given Section A.2.4, failure simulation and the failurstieg preorder cannot coincide for infinitary processes;esthe preorder
is transitive trivially. Is it soundness, or completendsat fails? If we compare (28) witl, we have failure simulation of the
former by the latter (Appendix A.2.3). But the testv gives (0, 1] as an outcome set for the former and j{i} for the latter,
breaking the preorder.
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!

1/9

The overall probability of
escape, starting at k and
continuing with successive
transitions k+1,k+2,... is
eventually 1/k.

.\
1/16

There are two states(large black node) an@d (small black nodes); the white nodes indicate probalilistioice; and
all transitions are internal. To diverge frosiwith probabilityl — 1/ K, start at “petal’K and take successiveloops
anti-clockwise from there.

Yet, although divergence with arbitrarily high probalyilis present, complete probability-1 divergence is nowhere
possible. Either infinite states or infinite branching isewsary for this anomaly.

Example starting fronk = 3

Loop last used 3 4 5 6 7 8 9 10 ---15 1 ---20 | ---30 | ---40
Overall escape probability 0.11 | 0.17 | 0.20 | 0.22 | 0.24 | 0.25 | 0.26 | 0.27 0.29 0.30 0.31 0.32

Figure 7: Infinitely branching flower, from Section A.2.2.
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A.2.6 Coincidence of failure simulation and the limit of itsapproximation
Rob used the following example to show the necessity of thieefimanching condition.
Consider a PLTS with four statest, u, v, 0 and the transitions are
o 5s-50,®5
et %0,t-%1
e u LT
e v Sy, dtforallpe (0,1).

This is a finite-state but not finitely branching system, duthe infinite branch in. We have thas <% @ for all & > 0 but we do
not haves <ifs @.

We first observe that <iZs v does not hold becausewill eventually deadlock with probability, whereas a fraction af will
go tow and never deadlock.

We now show that < 7 for all k > 0. For anyk we start the simulation by choosing the mave”™- (@

induction onk we show that

& 1). By

zr"“

2
s Q{:ﬁs (H%@ 7). (29)
2

The base caske = 0 is trivial. So suppose we already have (29). We now showdha,iﬁ“) (u - @ 7). Neithers nort noru
2

can diverge or refuséa}, so the only relevant move is themove. We know that can do the move -2 0 15 This can be

matched upbyz _._ @ 1) - (0,6 (T, 1))

1
2k+1 2k

B Technical lemmas and proofs for Section 3

B.1 Infinitary properties of lifting

Lemma B.1 [Infinite interpolation in finite dimensional space] In fimidimensional Euclidean space, infinite interpolation cedu
to finite interpolation.

Proof: Suppose we have a s&tin N-dimensional Euclidean space and a pairstuch thate is an infinite interpolation of points
in X but is not a finite interpolation of any such points. Sincegbeof finite interpolants ok is convex (in the usual sense), the
pointx can therefore be non-strictly separated from it: there igeetplaneH (thus of dimensionV—1) containingz such that all
the finite interpolants oK lie non-strictly on one side aff. Sincezx is however an (infinite) interpolant of, and is inH with all
of X on one side ofd, in factz must be an (infinite) interpolant of N H. But z is not, of course, finiteinterpolant ofX N H
(since otherwise it would have been a finite interpolankah the first place).

SinceX N H is a space of (at least) one dimension lower than our origihalargument reduces eventually to a simple line,
where it holds trivially. |

Lemma B.2 [Infinitary linearity of lifting] Let R be a relation betweefi andD(S) and, as usual, I6R be its lifted version, thus
arelation inD(S) x D(S). LetI be an index set, possibly infinite. Thén R ©; for all s implies that(} ", pi- Ai) R (3, pi-©:)
where} . p; < 1.

Proof: This is immediate from the current definition of lifting. _
We note first thas R © just when® = ijj -©7 for j ranging over dinite index setJ such thats R ©7 for each indexj

andl =3 g p?. Because we are in a finite state space, however, we can by a@rhallow.J to be infinite.

Now more generally we have that R © justwhen® = 3" st p’s-©’ for j, ranging over a (possibly infinite) index set
Js, ands itself ranging over the support &, such that R ©’¢ for eachjs andA(s) = >°, p”*.

The result then follows by straightforward (if intricat&arrangement of absolutely convergent series:

A; RO; foralli

iff 0=, pis.@d:
and s R O for eachs in the support ofA;
and Ai(s) =Y, p”*
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implies S0 =33 pi-pJt O
and s R ©% _ for eachs in the support of somé&;
and X, pi-A(s) = X, 5 piop”

implies , , some cheating here. .. rearrangement; suitable definitiopd and©7s
Zzplel = Zs st pjs -0’
and s R ©7 _ for eachs in the support of . p;-©;
and  (3_; pi-Ai)(s) =22, p”

implies (3, pi-As) R (3, pi-©4) .

B.2 Elementary properties of weak derivations

Lemma B.3 Suppose: + p2 < 1. Then
(i) A1z = Al,implies(pi-A1 4 p2-A2) = (p1-A] + pa2-Ab).
(i) f (p1-A1+p2-Ag) = A’ thenA’ = p;- A} + p2- A for subdistributions\] , such thatA; » = A ,.

Proof: For (i) we note that lifted transitions™— have that property directly from Clause (2) of Definition.3Thus the structures
whose existence is implied by Definition 3.12 far = A} and A, = A} separately can be added with thg p. scaling
given to form a single composite structure establisifing A1 + p2-As) = (p1- Al + p2-A)).

For (ii) we use an inductive argument, here presented irdlyniTo avoid confusion of subscripts we will effect someaming
and simplification in the demonstrandum, making it read

If T + A = ITthenIl = IT" + II* with I, A = 11", (30)

(Thep1,2 will be re-introduced further below.)
Now from Definition 3.12 we hav€ + A = Iy = I1§ + II;” for somelly, IT;” with, further, thafll;” —— II; for somell;.
Define

r~ .= ramng
™ = T-T—
A = AN (1)
A~ = A—AX,

and then check these elementary facts: that+ '™ = I'andA* + A~ = A, and that all the introduced subdistributions
are in their proper ranges. What remains is to show that theybmne properly, and for that we fix a statend distinguish two
cases: either (a)lg".s > I'.s or (b) II;".s < I'.s. In Case (a) the definitions (31) simplify .5, I'*.s, A*.5,A".5 1=
I.s,0,II5 s, (A.s — II§ .s), whence immediately —.s + A~ .s = II5".s andT'*.s + A*.s = II .s. Case (b) is similar.

Becausdl;’ is —— -enabled, we see that~4 impliesII; .s = 0 whence als@~.s = A~ .s = 0, so that botT"~ , A~ are
- -enabled also. Thus we appeal to Proposition 3.9 tolfind\; withI'™ Iy andA™ —— A; andIl; = T'; + A;.

Being now in the same position wilfi; as we were witHI,, we can continue this procedure (here the informal indagtio
induce derivation structures foY, A separately that establish (30) when added together asftifiRafrthis lemma.

Finally, we letT", A, T be p1 - A1, p2- Ao, A’, and scale the induced derivation structures ug by, 1/p2 respectively. Be-
cause later subdistributions in those structures can rewdiigger than earlier ones, the proper bounding\ef. themselves
guarantees that the up-scaling does not make any subseyetistributions too big. a

Theorem B.4 [Transitivity of =] In afinite-state pLTS, iiA = © and® = A thenA = A.

Proof: By definition A = © means that som&, A, Ay~ exist for allk > 0 such that

A=2No, A=A +AY, AT DA, =) AL (32)

k=0

Since® = Af + >, A and® = A, by Theorem 3.18 there ar®), A12 such that

A =>No, D AF=A7,  A=Ag+AT.

k>1
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Using Theorem 3.18 again, we haie, A2Z such that

Af = A, DY A= A7, AT =AM +AF,
k>2
thus in combinatioml\ = Ag + A1 + A§. Continuing this process we have that

k
A=Ay, D A= AL, A=) N+HAD, (33)

>k j=0

for all ¥ > 0. Lemma 3.5 and Proposition 3.19 ensure that= © implies|A| > |©| for any subdistributiong\ and©, and
therefore that =, AX| > |A,§+1| forall k > 0. But since® = >7.2 A/ from (32), we know that the tail su,_, A

converges t@ whenk approacheso, and therefore thdimy_. o, Af = . Thus by taking that limit we conclude that

A = ZAk. (34)

k=0

Now for eachk > 0, we know thatA ;¢ = A, gives us someé\y;, A}, Az for ! > 0 such that

Ay = Ao, Ay = A + Ayl Akl == Apapr A= ZAZI. (35)

1>0

Therefore we can put all this together with

A= A= Yan - Z( > A) (36)

k=0 k,1>0 i>0 \ k,l|k+l=i

where the last step is a straightforward diagonalisation.
Now from the decompositions above we re-compose an alteertadjectory ofA’;’s to takeA via=-to A directly. Define

N =NJHANT,  AN= > AL ANT=()) AD)+AT, 37)

K, k+l=i k,lk+l=i

so that from (36) we have immediately that

A= DA (38)

i>0
We now show that
(i) A=A
(i) A7 T Alipa
from which, with (38), we will haveA = A as required. For (i) we observe that

A
= Ao (32)
= AS + Ay (32)
= Ago + Ay’ (35)
= Ago + oo + Ao’ (35)
= (Zk,l\kﬂzo A;@-(L) + (Zk,l\k+l:o Ag) + Ay index arithmetic
= N (37)
= Ay . (37)

For (ii) we observe that

AN
= (Zk,l\k+l:i Ail) + A7 (37)
- (Cktprimi Arir1) + Aiga (32), (35), Proposition 3.9
= b= (Qripr T Aki)) + A% + A (32), (35)
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= (Zk,l\kJrl:i A:,l+1) + AiXJrl + (Zk,l\kJrl:i AZZH) + Aﬁ'l rearrange
= itz D) + Airo + g yesims D) + Aida (35)
= (O thtimi A HAN o F AT 0+ (i Dripn) + Aiga (35)
= (Zk,L\kH:iJrl AR+ (Zk,z\k+12i+1 Ay + AT index arithmetic
= Alaz><+1 + A/ijrl (37)
= Ay, (37)
which concludes the proof. O

B.3 Structural properties of weak derivations

Definition B.5 [Reward function] Let aeward functionbe a function: S — [—1, 1] from the state space into the real interval
[-1,1].3

Define empty suprema over sets of reward-like values tede This is only a convenience in the middle of calculations; th
infinities always disappear in the end. Writeé\ for the expected value of reward functi®rover distributionA. Write (s =) for
{A" | s = A’} and writeWn.$.s for 1{$A" | s = A’}. Write (s =) for the single subdistribution that results from using
policy pp to constructs =>); note that(—=>,,) is a function (and is total), where&s=>) is in general a relation (also total). This
function is made precise in Definition B.8 below.

Lemma B.6 [Linearity of W andW_] For any reward functio$ the associatetV-.$ andW,.$ are linear.

Proof: We prove the binary case f&¥: extension to any finite linear combination is straightfard, and the argument f&¥,
is the same.

SupposeA = A; ,& Aj for somep and Ay oy. Definemyy oy := Wn.8.A 2y respectively. Then for any > 0 there
are A’ o With Agy 9y = Al 5y and$.AY, 5y < my 9y + €. By linearity of = we therefore have\’ := A} ,@ Aj with
A = A"and$.A’ < (m1,® me) + . Sincee is arbitrary, the result follows. O

Our overall aim is to establish that every elementdin=>) is the interpolation of a finite number of static derivativeg that
is in each case =, A}. In order to do that, however, we must introduce the notiodistounted derivatives.

Definition B.7 [Discounted derivatives] Define =5 A’ for discount0 < § < 1 by analogy with our earlier definition
Definition 3.12 of derivative except that each--move discounts its outcome ldy That is, we revise that earlier definition by
including multiplications by at the appropriate points:

A = Ay + Af — The x component stops “here,”
0-Ay — AT + AT — but the— component moves on, discounteddy

§-Ay T Ay + A(Xkﬂ)
Intotal: A’ — Finally, all the stopped components are summed.

Thenwe calA’ := 327 | A ad-discounted derivativef A, and writeA =5 A’ to mean that\ can make aveaks-discounted
7 moveto ad-discounted derivative\'.

Note that(=>1) and(=>) agree trivially.
Finally, we combine the two notions of static policy and diset:

Definition B.8 [DiscountedSDP-derivatives] Defines =5 ,, A" as follows:

Ao = A
Af.s = 0if ppdefined ats elseAy.s
Apy1 = Z - pp(s)

s € [A)J

pp defined ats

3In later sections we will restrict reward functions to thexreegatives [0,1]; but here we need the more general ranggb®more explanations
for the reason of needing this general range?
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Then, as usual, we sum the stopped distributions to define= "7 A/,
Note that(s =), Wwhich we defined informally above, is given by =1 pp).

Definition B.9 [discounted payoff] For reward functiof and discounts define the discounted maximising payoff function
WP 8.5 := U{SA’ | s =5 A}

The payoff functionW?,, applied tos, thus gives the supremal expected reward determinekidwer all distributions reached by
starting ats and using—=>s. Pre-calculating this function is the key technique in dafijimportant policies: for us, they will be
the maximising ones.

For the moment we will just show that the functiti,.$ (over.S) is a fixed point.

Lemma B.10 [W?,.$ as a fixed point] In the usual context (suitalsley, $, underlying pLTS and € S) we have
W$s = $s U 6 U{W) A |s - A},

that isW{,.$ for anyd, $ (includingd = 1) is a fixed point of the functiofAW.(As.$s LI §- LI {W.A’ | s = A'})).
Note that ifs =4 on the right-hand side (for some argument) then the supreimempty, giving—oo, as we mentioned above;
multiplied by it is still —oo; thenL'd with $s the —co disappears. (Doing this avoids a case analysis in at leagplaces.)

Proof: We rely on splitting—>s up in a “first one step, and then the rest” -style. This giveBras

(8 :>5)
= {AL +0-A|5=A + Ay A A7 5 Ay A AL =5 A’ forsomeAS, Ay, A},

which allows us to calculate further as follows:

Wo,.$.s
= L{SA" | s =5 A"} definition
= L{$.(AJ +6-A) |53=AL + A7 A Ay 5 Ar A Ay =5 A’ forsomeAy”, A} above

L{S.AJ +8-SA" |5=AF +Ac A Ay T A A Ay =5 A’ forsomeAy”, A}
= L{S.AJ + 8- U{SA" |5=A0+A5 AN Ay = A1 A Ay =5 A" forsomeAy”, Ar}}

- lift W?,.$; linearity of =5
U{S.AF +3-U{W).8.A1 |5=A + Ay A Ay = A, forsomeAg }}

= U{$s ,® - U {W.$.A, | s = Ay} forsomed < p <1} 3 can be splitonly intG,® s
= $s U - U{WE.$.A1 | s T A}, LI over interpolation of scalars must be one or the other
as required. |

Given that Lemma B.10 expressé¥,.$ as a fixed point, and works f&¥_,.$ in particular, one could ask why we bother with
thed. The answer is that in the=1 case it's not clear which fixed point we have, whereasifot the fixed point is unique, as we
will see by considering optimal discounted policies.

Definition B.11 [max-seeking policy] Given a pLTS, reward functi$and discound say that E8DPgiven bypp is max-seeking
just when for alls we have

1. if pp is undefined at then$s > 6-W,.$.A’ for all A’ with s = A,
2. if ppis defined ak then both
(@) 6-W?.$.(pp.s) > $s and
(b) WS .$.(pp.s) > W2 .$.A forall A’ with s == A’ .
What a max-seeking policy does is to evalu#if&.$ “in advance” (giver$, §), and then label every stasewith the expected
payoff valueW? .$.s thatW?,.$ assigns to it. The policy at any state s is then to comparesthiard$s at s itself with the expected
label valuesW?,.$.s" over each distribution of state$ that are successors sf and then to select the greatest among all those.

(Note the use of finite branching.) We will see that in a prbpdiscounted system (i.e. with < 1) such a policy maximises the
payoff.
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In case that seems obvious, we now give an undiscounted icase<1) where a max-seeking policy doesn’t work. Take the
system
so — 3o
S0 — S01/2P 51

S1 ﬁé
with $sg = 0 and$s; = 1,

and observe that from both states a payoff of 1 is attainalgataally; that is, we havéV?.$.s0.; = 1 and both states will be
W?¢,.$ -labelled with 1. Ats, therefore the policy compares “stay here,” yielding imnagelipayoff$so = 0, with “move toso”
with W-label 1 and “move tGo 1,.@® 51" also with W-label 1. Clearly one of the latter two is chosen — but which ik the
first, then in fact the overall payoff will be 0 because of dgence — the maximum is not attained, and the policy hasdfaile

On the other hand, with a proper discount the payoff@tvould be given byW? .$.so = &-(W?.$.50 1,2® 1), that is
§/(2 — 6). Then the reward (immediate payoff)satis still 0, the expected payoff for taking —— so has becomé?/(2 — §) and
the expected payoff for takingy —— (501,2® S1) has becomé/(2 — ¢). Although the two expressions are equaldefl, when
0 < § < 1 the last choice is strictly greatest, and so the policy setedy taking that choice every time (therefore being gtatic
Note that although here there is a unique max-seeking patigeneral there could be many.

We will now show that in a properly discounted systefr:{), choosing one of the max-seekil®PPs and following it
consistently will achieve the maximum expected reward assimmediately above. (One cannot cha®i@Ps “mid-stream,”
however.) The proof relies on showing two expressions aeslfpoints of the same function, and on then using the disdount
argue via contraction that in fact the function’s fixed paéganique.

We begin by noting that following a policy cannot increase playoff.

Definition B.12 [Policy-following payoff] DefineW?®? $.s to be$A’ wheres =5, A’. Note thatA’ is unique.
Lemma B.13 [Policy-following does not increase payoff] For any polisy and discount we haveW?®PP < W? .

Proof: Trivially s =>5,, A’ impliess =5 A’, whence we havaVoP §.s < Wﬂ.$.s becauséV,, is defined as a supremum.
The desired inequality follows because$, s are arbitrary. |

Additionally we can develop a fixed-point characterisatitV>"" in the style of Lemma B.10.
Lemma B.14 [W°PP as fixed point] For any discoustand policypp we have
WoP$s = $sif ppundefined at elses- WP .$.(pp.s) . (39)
Proof: We proceed as in Lemma B.10, noting first that we have
s =>s,0p (3 if pp undefined at elses-A") where(pp.s) =>spp A, (40)

where again we exploit thak’ is unique. Then we calculate

WoPP .5
= $.(s if pp undefined at elses-A’) where(pp .s) =>s5,pp A’ Definition B.12, (40)
= $s if pp undefined as elsed-$A’ where(pp .s) =>s,pp A’

= $s if pp undefined at elses-W.$.(pp .s) .
m

Now we concentrate on max-seeking policies, and showlifas$ satisfies the fixed-point equation (39) provided the policy
pp it refers to is max-seeking.

Lemma B.15 [fixed-point for max-seeking policy] Legip be a max-seeking policy. Then
W .$.s = S$sif ppisundefined at elses- W .$.(pp .s) . (41)
Proof: We calculate

$s if pp is undefined ak elses- W?’,.$.(pp .s)
= $s U 6- LU {W.8.A" | s =5 A'} pp is max-seeking
= W .$.s. Lemma B.10
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Putting the above together, and exploiting contractioregus our first important proposition concerning max-seggblicies.

Proposition B.16 [discounted max-seeking policies are optimal] pgfis a max-seeking policy with respectd@nd$, ands < 1,
thenWo PP § = W9,.$.

Proof: We use the results above to recall that each side is a fixed qfdtime equation
Wss = (Xs. $sif pp undefined as elsed-Ws s.(pp .s)) , (42)

and then argue that the fixed point is unique because of atimtneand completeness. The first point is immediate from éhtl
(39).

For the second, we recall that we are working with functioositS into [—1, 1] and show that (42) is a contraction mapping.
Write Wj ¢ for Equation 42's right-hand side applied to somé ;. Then we have

distWig, W2s)

U{abgWis.s — W2g.5) | s € S} definition of metric dist
= u{abs(Vv\gﬁ.s - )7V\§7$.s) | s € S A pp defined ats} equal ifpp undefined at
= §- L {abgW;s.(pp.s) — Wis.(pp.s)) | s € S A pp defined ats} (42)
< §5- U {abgW;g.s' —Wig.s') | s’ € S} arithmetic;pp .s is a subdistribution
= §-dist(W; g, W§7$) definition of metric dist
< distWs s, Wis) §<1
which gives us the contraction, whence the uniqueness aaiti/fthe equality. m|

The last step is to show that we can achieve optimality wiiib®even without discounting; the argument closely follows the
MDP approach [19, p284]. First we need to investigate thewielr of discounted outcomes as the discalt@nds to 1.

Lemma B.17 Suppose we have=>- A’ for givens, A" and thusA’ = Y, A for some properly related sequence of subdistri-
butionsA . Then for any reward functiof we have$A’ = lims_1 Y, 6*-SA.

Proof: Note that, since$ and theA are fixed, this series is of the forfn); a;6* with 3°. |a;| < 1 — that is, although the
coefficientsa; can individually be negative as well as positive, as a sdhieg are absolutely convergent.
Taking limits in§ on both sides then gives us

lims_1 3, 6°-$A

= >, lims g 6°-8AS absolute convergence
= Zz $Ai><
= 5.0, A7)
= $A".
o

That leads immediately to this corollary.

Corollary B.18 For any$, pp we havelims ., WoPP.§ = WieP g,

Proof: Givend, let the sequencA* be generated as in Definition B.8 by—>5 ,,, and apply Lemma B.17 immediately above.
O

Now fix the rewards and suppose we have an infinite sequence of discounts tetadind-rom Proposition B.16 we know that
for each of these discounts there is an opti8iaP, but we also know from the fact the state space is finite thetthre only a finite
number ofSDPs to choose from along the sequence. Thus at least one dofimigely often in connection with our sequence of
discounts: let that optimal policy g and letd, 2, - - - be the infinite (sub-)sequence of discounts associateditwittote that
lim, 6, = 1.

With that preparation we now have our main theorem concgrexistence of optimal strategies.

Theorem B.19 In a finitary pLTS we have for any reward functi§rthat W .$ = WPP.$ for some static policyp. Note thatpp
can depend of.
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Proof: By definition we have for any thatW,.$.s = LI{$A’ | s = A’}. Pick one such\’ and suppose that it is>-generated
asy_, A. We now reason as follows:

$A’
= limp—oo Y, 65 - SAS Lemma B.17
< limy, oo WORPP $.5 from above: that samgp is optimal for alln
= WhPP s Corollary B.18
= WPP.$.s .
SinceA’ was chosen arbitrarily we have therefdfg,.$.s < WPP.$.s, and the other direction is trivial. O

Lemma B.20 [=> realised by interpolation of finitely many static policiespupposes = A’ for some state and subdistri-
bution A’. Then there is a finite index sét probabilitiesp; summing to 1 and static strategigs; such thatA’ = 3~ p;- A}
where uniquelys =>,, Aj for eachi.

Proof: For simplicity let] indexall static policies in our pLTS: this is possible because frontdiress of the state-space and finite
branching we know there are only finitely many such stragegiad it loses no generality.

Suppose for a contradiction that—=- A’ for someA’ that does not lie in the closed and convex set of interpolants the
finite set{A] | s =, Aj}. ThusA’ can be separated frofi by a hyperplang? whose normal can be scaled irfte1, 1]
because we are in finitely many dimensions. Use that scaladaido define a reward functiody; such that$z.A’ > c but
$u.Ax < cforall A’y € X andin particula . A} < cfor all A}, wherec is the constant term of the hyperplane.

Since$y.A’ > cwe must havéV,.$x .5 > c also; yetW??:.$5.s < ¢ for all 4, contradicting Theorem B.19. Thus there can
be no suchy’. O

Lemma B.21 [Distillation of divergence, static case] If for some statand static derivative policpp over a finite-state pLTS
there is a derivations =, A’ then there is a probability and full distributionsA7, AL such thats = (A} ,® AL) and
A’ =p-Al andAL = «.

Proof: Make a modified policypp’ by settingpp’.s = pp.s except whens =, ¢, in which case makep’ undefined at.
Recalling the definition Definition B.8 6f=,,/, determine the uniquA” so thats =,y A”.

Now use Lemma 5.6 to observe that’|=1 because no state wholly diverges. We conclude by splitNfigip into A + A”
so that the support ah” is all thepp-diverging states and\/ is supported by all the rest, and finally determihg, A~ andp by
normalisation of those. m|
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