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◮ If I had to pick just one semantic preorder with a good scope
of useful applications, I’d say it should be the coarsest
semantics that respects all safety and (conditional) liveness
properties, and is compositional for hiding operators and
parallel composition.

◮ This semantics has not be characterised before, so I contribute
it here. It is very close in spirit to the may-and-must testing
preorder of De Nicola & Hennessy, or the failures semantics of
CSP, but I deviate from these works on 3 counts.

There are three design decisions I would change.
As these are orthogonal, I will present them one by one.

◮ Time permitting, at the end of my talk I will make some
comments on the rest of the semantic lattice, and my current
view on the linear time branching time spectrum.



Labelled Transition Systems

I focus on processes modelled as states in an LTS (P ,→), where P

is a set of states (or processes) and → ⊆ P × Actτ × P the
transition relation for some set of visible actions Act augmented
with the invisible action τ 6∈ Act.

Thus, I abstract from
probabilistic choice,
real-time, etc.

a τc

τ

Let a, b, c , . . . range over Act and α, β, . . . over Actτ .
An α-labelled transition from process (state) p to q is denoted
p

α
−→ q.

However, when explaining the difference between parallel
composition and interleaving operators, I implicitly use Petri Nets
or an enriched form of LTS as my system model.



Partially synchronous parallel composition
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as in CSP.



Hiding operators

Abstraction from the action b:

•

a

b

c

→

•

a

τ

c

≡

•

a

c

rename b into the hidden action τ .



Semantic equivalences

A useful semantic equivalence ∼ between processes (e.g. states in
an LTS) has to satisfy two crucial requirements:

(1) Let Φ be the set of properties of processes that are important
in applications.
If p ∼ q and p satisfies some property from Φ, then so does q.
In order words,
equivalent processes should have the same important properties.
Or,
if p has an important property that q does not have, they

better be distinguished by ∼.

(2) If applications can be build by putting a process p in a
context C [p] (such as a parallel composition p‖r), then

p ∼ q ⇒ C [p] ∼ C [q].
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Preorders

◮ Two crucial requirements of useful ∼:

(1) respect important properties ϕ ∈ Φ:
p ∼ q ⇒ p |= ϕ ⇔ q |= ϕ

(2) compositionality (or congruence):
p ∼ q ⇒ C [p] ∼ C [q].

◮ Following Hoare and De Nicola & Hennessy I write S ⊑ I

if I is a correct implementation of the specification S .

◮ The crucial property (1) now becomes

(1) ⊑ respects good properties ϕ ∈ Φ:
p ⊑ q ⇒ p |= ϕ ⇒ q |= ϕ

(Note: if ϕ is a good property, then ¬ϕ is a bad property.)

◮ The second property becomes monotonicity:
p ⊑ q ⇒ C [p] ⊑ C [q].
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We can order semantic equiva-
lences by distinguishing power,
drawing the “strongest”, “most
discriminating”, or “finest”
above.
They form a complete lattice:
any collection of equivalences
has a least upperbound and a
greatest lowerbound.



Full abstraction
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(1) respect important properties ϕ ∈ Φ:
p ⊑ q ⇒ p |= ϕ ⇒ q |= ϕ

(2) compositionality:
p ⊑ q ⇒ C [p] ⊑ C [q].
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satisfying (1) and (2).
Given by p ⊑ q ⇔ ∀C [ ].∀ϕ.

C [p] |= ϕ ⇒ C [q] |= ϕ.
Is called fully abstract.

◮ above the red line:
all satisfying (1) and (2).

•



Safety and liveness properties

The good properties to consider are

◮ Safety properties:

Something bad will never happen

◮ Liveness properties:

Something good will happen eventually

◮ Conditional liveness properties (to be explained).
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◮ A general safety property is a set B of sequences of actions,
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unhappy for whatever reason.
A process satisfies this general safety property iff it allows no
traces in B .

◮ Theorem: A congruence for hiding and parallel composition
respects every general safety property iff it respects the
specific safety property above.

◮ The preorder which is fully abstract w.r.t. safety properties
and parallel composition and hiding is reverse trace inclusion:

p ⊑safety q ⇔ traces(p) ⊇ traces(q)
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Liveness properties
◮ Let g be a special action, saying that something good happens.

A trace is completed it is the visible context of a maximal

execution, that is either infinite, or ends in a deadlock state,
from which no further transitions are possible.
Now my specific liveness property says that in every completed
trace of p the action g occurs. g will eventually happen

◮ A general liveness property is a set G of sequences of actions,
thought of as all those traces that are good for us, or make us
happy for whatever reason.
A process satisfies this general liveness property iff it allows
only completed traces in G .

◮ Theorem: A congruence for hiding and parallel composition
respects every general liveness property iff it respects the
specific liveness property above.

◮ The preorder which is fully abstract w.r.t. liveness properties
and a form of parallel composition and hiding has been
characterised by De Nicola & Hennessy as the must-testing
preorder; it the CSP failures and divergences preorder.
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◮ [DH84] defines the may-testing preorder ⊑may, which
amounts to trace inclusion, and the must-testing preorder
⊑must. Then the combined testing preorder is given by

p ⊑testing q iff p ⊑may q and p ⊑must q.

◮ My program is essentially the same, but I deviate from the
[DH84]-approach in 3 ways.

◮ First of all, the safety preorder is the reverse of the
may-testing preorder.
The process ab + ac may do the action b. In may-testing
semantics ab + ac is a good implementation of ab, because
everything that ab + ac may do, also ab may do.
In the safety preorder, the ability to do b is a bad thing, which
reverses the preorder.

◮ Therefore, my first modification of the testing preorder is that
I take ⊒may ∩ ⊑must rather than ⊑may ∩ ⊑must.
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◮ In must-testing semantics these two processes are identified:

•

τ

i g
≡must •

τ

i

In neither case can we be sure that the good action g will
eventually happen.
These two processes satisfy the same liveness properties.

◮ Now think of the action i as an investment, that costs us
$10.000, and of g as the investment paying off...

◮ The must-testing preorder does not respect
conditional liveness properties.
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Now my specific liveness property says that in every
completed trace of in which the action i occurs, g occurs as
well. provided i occurs, g will eventually happen

◮ A general conditional liveness property is a function from the
set of finite sequences of actions to the real numbers,
This function indicates for each occurrence of an action in a
complete trace how much profit or loss ones makes by
executing this action, namely the value associated to the
sequence of visible actions seen so far.
A process satisfies this general liveness property iff each of its
completed traces sums to a positive value. Reward testing
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respects the specific conditional liveness property above.
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Conditional liveness properties

◮ The preorder which is fully abstract w.r.t. these conditional
liveness properties is also a congruence for normal liveness
properties as well as safety properties.

◮ It coincides with the coarsest congruence respecting combined
deadlock and divergence traces.

◮ The latter has been characterised by Antti Puhakka: a process
is determined by its:

◮ divergence traces
◮ eventually nondivergent infinite traces
◮ and nondivergent failure pairs.

◮ p ⊑cond. liveness q ⇔ div .traces(p) ⊇ divtraces(q)
e.nd .inf .tr(p) ⊇ e.nd .inf .tr(q)
nd .fail(p) ⊇ nd .fail(q) .
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Parallel composition versus interleaving

◮ In [DH84] must-testing semantics, or in [BHR84] failures
semantics, livelock and deadlock are distinguished:

•

τ

6≡must •

◮ The reason: when interleaving both process with the process a

we get:

•

τ

τ a

6≡must •

a

and those processes should be distinguished, because only the
second one will certainly do an a.

◮ It is not possibly to distinguish the original two processes
when using parallel composition instead of interleaving!
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Must-testing without interleaving

◮ To define testing semantics with parallel composition instead
of interleaving, we take any model of concurrency that
administers which transitions originates from the same
component in a parallel composition. A trace now counts
as completed only if it is completed in each parallel component.

•

τ

‖ •

a

= •

τ

τ a

This parallel composition does not have a completed trace
without the a action.
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◮ These two processes were identified in must-testing semantics,
although they are distinguished by a cond. liveness property:

•

τ

i g
≡must •

τ
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•
i g

ω ω

‖{i ,g} =

•

τ
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τ

i

ω

◮ On sequential processes resulting preorder exactly as before,
but with extra identification of deadlock and livelock.
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◮ respects important properties of processes
◮ is compositional w.r.t important composition operators

◮ Given agreement on these properties and operators, the above
two requirements determine a unique best semantics
This semantics is fully abstract w.r.t. the given collection of
properties and operators.

◮ The role of other requirements, such as
◮ complexity of decision procedures
◮ good algebraic properties

guarded fixed point equations have unique solutions

is debatable.

◮ Different applications require different properties and
operators; there is no canonical choice.

◮ In the absence of agreement on which properties and operators
to use, the finest (branching time) semantics are best.



Conclusions / Position statement

◮ A good semantics should respect the following properties
◮ Safety properties
◮ Liveness properties (possibly assuming fairness)
◮ Conditional liveness properties (possibly assuming fairness)
◮ (perhaps) AGEF properties

Many other properties, such as preservation of deadlock
behaviour, are not really important.



Conclusions / Position statement

◮ A good semantics should respect the following properties
◮ Safety properties
◮ Liveness properties (possibly assuming fairness)
◮ Conditional liveness properties (possibly assuming fairness)
◮ (perhaps) AGEF properties

Many other properties, such as preservation of deadlock
behaviour, are not really important.

◮ Compositionality is often required for
◮ abstraction from internal activity
◮ (partially synchronous) interleaving operator

I believe it makes sense to use a (partially synchronous)
parallel composition instead (while employing interleaving
semantics by abstracting from causality etc).



Conclusions / Position statement

◮ A good semantics should respect the following properties
◮ Safety properties
◮ Liveness properties (possibly assuming fairness)
◮ Conditional liveness properties (possibly assuming fairness)
◮ (perhaps) AGEF properties

Many other properties, such as preservation of deadlock
behaviour, are not really important.

◮ Compositionality is often required for
◮ abstraction from internal activity
◮ (partially synchronous) interleaving operator

I believe it makes sense to use a (partially synchronous)
parallel composition instead (while employing interleaving
semantics by abstracting from causality etc).

◮ Other operators may be needed depending on the application.
A good example are priority operators.
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◮ Priority calls for ready-trace (or failure-trace) semantics.
◮ Probabilistic contexts pushes us up into the branching time

side of the spectrum: the failure simulation preorder.
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Conclusions / Position statement

◮ Due to the use of interleaving operators, must-testing and
related semantics make distinctions that are wholly
unobservable when using merely parallel composition.

◮ I propose a new semantics that is fully abstract for safety and
(conditional) liveness properties w.r.t. hiding and parallel
composition.


