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Abstract. The concept of must testing is naturally parametrised with
a chosen completeness criterion, defining the complete runs of a sys-
tem. Here I employ justness as this completeness criterion, instead of
the traditional choice of progress. The resulting must-testing preorder is
incomparable with the default one, and can be characterised as the fair
failure preorder of Vogler. It also is the coarsest precongruence preserving
linear time properties when assuming justness.

As my system model I here employ Petri nets with read arcs. Through
their Petri net semantics, this work applies equally well to process alge-
bras. I provide a Petri net semantics for a standard process algebra ex-
tended with signals; the read arcs are necessary to capture those signals.

1 Introduction

May- and must-testing was proposed by De Nicola & Hennessy in [9]. It yields
semantic equivalences where two processes are distinguished if and only if they
react differently on certain tests. The tests are processes that additionally fea-
ture success states. A test T is applied to a process N by taking the CCS
parallel composition T |N , and implicitly applying a CCS restriction operator to
it that removes the remnants of unsuccessful communication. Applying T to N
is deemed successful if and only if this composition yields a process that may,
respectively must, reach a success state. It is trivial to recast this definition using
the CSP parallel composition ‖A [39] instead of the one from CCS.

It is not a priori clear how a given process must reach a success state. For all
we know it might stay in its initial state and never take any transition leading
to this success state. To this end one must employ an assumption saying that
under appropriate circumstances certain enabled transitions will indeed be taken.
Such an assumption is called a completeness criterion [19]. The theory of testing
from [9] implicitly employs a default completeness criterion that in [25] is called
progress. However, one can parameterise the notion of must testing by the choice
of any completeness criterion, such as the many notions of fairness classified in
[25]. Here I employ justness, a completeness criterion that is better justified than
either progress or fairness [25].
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The resulting must-testing equivalence is incomparable to the progress-based
one from [9]. On the one hand, it no longer distinguishes deadlock and livelock,
i.e., the Petri nets N and N ′ of Ex. 3; on the other hand, it keeps recording
information past a divergence. I characterise the corresponding preorder as the
fair failure preorder of Vogler [43], which using my terminology ought to be
called the just failures preorder. I show that it also is the coarsest precongruence
preserving linear time properties when assuming justness. Finally I show that
the same preorder originates from the timed must-testing framework explored
in [43], but only if all quantitative information is removed from that approach.

I carry out this work within the model of Petri nets extended with read arcs
[35,7], so that it also applies to process algebras through their standard Petri
net semantics. The extension with read arcs is necessary to capture signalling, a
process algebra operator that cannot be adequately modelled by standard Petri
nets. Signalling, or read arcs, can be used to accurately model mutual exclusion
without making a fairness assumption [43,8,11]. This is not possible in standard
Petri nets [31,43,24], or in process algebras with a standard Petri net semantics
[24]. Here I give a Petri net semantics of signalling, and illustrate its use in
modelling a traffic light, interacting with passing cars.

Acknowledgement I am grateful to Weiyou Wang for valuable feedback.

2 Labelled Petri nets with read arcs

I will employ the following notations for multisets.

Definition 1 Let X be a set.

– A multiset over X is a function A : X → N, i.e. A ∈ NX.
– x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.
– For multisets A and B over X I write A ⊆ B iff A(x) ≤ B(x) for all x ∈X;
A ∪B denotes the multiset over X with (A ∪B)(x) := max(A(x), B(x)),
A ∩B denotes the multiset over X with (A ∩B)(x) := min(A(x), B(x)),
A+B denotes the multiset over X with (A+B)(x) := A(x) +B(x),
A−B is given by (A−B)(x) := max(A(x)−B(x), 0), and
for k ∈N the multiset k ·A is given by (k ·A)(x) := k ·A(x).

– The function ∅ : X → N, given by ∅(x) := 0 for all x ∈ X, is the empty
multiset over X.

– The cardinality |A| of a multiset A over X is given by |A| :=
∑
x∈X A(x).

– A multiset A over X is finite iff |A| <∞, i.e., iff the set {x | x∈A} is finite.

With {x, x, y} I denote the multiset over {x, y} with A(x)=2 and A(y)=1, rather
than the set {x, y} itself. A multiset A with A(x) ≤ 1 for all x is identified with
the set {x | A(x) = 1}.

I employ general labelled place/transition systems extended with read arcs [35,7].
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Definition 2 Let A be a set of visible actions and τ 6∈ A be an invisible action.

Let Aτ :=A
.
∪ {τ}. A (labelled) Petri net (over Aτ ) is a tuple (S, T, F,R,M0, `)

where
– S and T are disjoint sets (of places and transitions),
– F : ((S × T ) ∪ (T × S))→ N (the flow relation including arc weights),
– R : S × T → N (the read relation),
– M0 : S → N (the initial marking), and
– ` : T → Aτ (the labelling function).

Petri nets are depicted by drawing the places as circles and the transitions as
boxes, containing their label. Identities of places and transitions are displayed
next to the net element. When F (x, y) > 0 for x, y ∈ S ∪ T there is an arrow
(arc) from x to y, labelled with the arc weight F (x, y). Weights 1 are elided. An
element (s, t) of the multiset R is called a read arc. Read arcs are drawn as lines
without arrowhead. When a Petri net represents a concurrent system, a global
state of this system is given as a marking, a multiset M of places, depicted by
placing M(s) dots (tokens) in each place s. The initial state is M0.

The behaviour of a Petri net is defined by the possible moves between mark-
ings M and M ′, which take place when a finite multiset G of transitions fires.
In that case, each occurrence of a transition t in G consumes F (s, t) tokens
from each place s. Naturally, this can happen only if M makes all these tokens
available in the first place. Moreover, for each t ∈ G there need to be at least
R(s, t) tokens in each place s that are not consumed when firing G. Next, each
t produces F (t, s) tokens in each place s. Definition 4 formalises this notion of
behaviour.

Definition 3 Let N = (S, T, F,R,M0, `) be a Petri net. The multisets t̂, •t, t• :
S → N are given by t̂(s) = R(s, t), •t(s) = F (s, t) and t•(s) = F (t, s) for all s∈S.
The elements of t̂, •t and t• are called read-, pre- and postplaces of t, respectively.
These functions extend to finite multisets G: T → N by Ĝ :=

⋃
t∈G t̂, •G :=∑

t∈T G(t) · •t and G• :=
∑
t∈T G(t) · t•.

Definition 4 ([7]) Let N=(S, T, F,R,M0, `) be a Petri net, G∈NT non-empty
and finite, and M,M ′ ∈ NS . G is a step from M to M ′, written M [G〉N M ′, iff

– •G+ Ĝ ⊆M (G is enabled) and
– M ′ = (M − •G) +G•.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the
same transition can occur multiple times in a single step. One writes M [t〉N M ′

for M [{t}〉N M ′, whereas M [t〉N abbreviates ∃M ′. M [t〉N M ′. The subscript
N may be omitted if clear from context.

In my Petri nets transitions are labelled with actions drawn from a set
A
.
∪ {τ}. This makes it possible to see these nets as models of reactive sys-

tems that interact with their environment. A transition t can be thought of as
the occurrence of the action `(t). If `(t)∈A, this occurrence can be observed and
influenced by the environment, but if `(t) = τ , it cannot and t is an internal or
silent transition. Transitions whose occurrences cannot be distinguished by the
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environment carry the same label. In particular, since the environment cannot
observe the occurrence of internal transitions at all, they are all labelled τ .

In [31,43,24] it was established that mutual exclusion protocols cannot be
correctly modelled in standard Petri nets (without read arcs, i.e., satisfying
R(s, t) = 0 for all s ∈ S and t ∈ T ), unless their correctness becomes contin-
gent on making a fairness assumption. In [24] it was concluded from this that
mutual exclusion protocols can likewise not be correctly expressed in standard
process algebras such as CCS [34], CSP [6] or ACP [4], at least when sticking to
their standard Petri net semantics. Yet Vogler showed that mutual exclusion can
be correctly modelled in Petri nets with read arcs [43], and [8,11] demonstrate
how mutual exclusion can be correctly modelled in a process algebra extended
with signalling [3]. Thus signalling adds expressiveness to process algebra that
cannot be adequately modelled in terms of standard Petri nets. This is my main
reason to use Petri nets with read arcs as system model in this paper.

In many papers on Petri nets, the sets of places and transitions are required
to be finite, or at least countable. Here I need a milder restriction, and will limit
attention to nets that are finitary in the following sense.

Definition 5 A Petri net N = (S, T, F,R,M0, `) is finitary if M0 is countable,
t• is countable for all t ∈ T , and moreover the set of transitions t with •t = ∅ is
countable.

3 A Petri net semantics of CCSP with signalling

CCSP [37] is a natural mix of the process algebras CCS [34] and CSP [6], often
used in connection with Petri nets. Here I will present a Petri net semantics
of a version CCSPS of CCSP enriched with signalling [3]. This builds on work
from [29,44,27,10,37,38]; the only novelty is the treatment of signalling. Petri
net semantics of other process algebras, like CCS [34], CSP [6] or ACP [4], are
equally well known. This Petri net semantics lifts any semantic equivalence on
Petri nets to CCSPS, or to any other process algebra, so that the results of this
work apply equally well to process algebras.

CCSPS is parametrised by the choice of sets A of visible actions and K of
agent identifiers. Its syntax is given by

P,Q, Pi ::=
∑
i∈I

aiPi | a .
∑
i∈I

aiPi | P‖AQ | τA(P ) | f(P ) | K

with a, ai∈A, A⊆A, f : A → A and K ∈ K. Here the guarded choice
∑
i∈I aiPi

executes one of the actions ai, followed by the process Pi. The process a . P
behaves as P , except that in its initial state it it is sending the signal a.1 2

The process P‖AQ is the partially synchronous parallel composition of processes

1 The notation a . P follows [8]; in [3,11] this is denoted Pˆa.
2 Here I require P to be a guarded choice in order to avoid the need for a root condition

[13] to make the equivalences of this paper into congruences. This is also the reason
my language features a guarded choice, instead of action prefixing and general choice.
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P and Q, where actions from A can take place only when both P and Q can
engage in such an action, while other actions of P and Q occur independently.
The abstraction operator τA hides action from A from the environment by re-
naming them into τ , whereas f is a straightforward relabelling operator (leaving
internal actions alone). Each agent identifier K comes with a defining equation

K
def
= P , with P a guarded CCSPS expression; it behaves exactly as the body of

its defining equation. Here P is guarded if each occurrence of an agent identifier
within P lays in the scope of a guarded choice

∑
i∈I aiPi or a .

∑
i∈I aiPi.

A formal Petri net semantics of CCSPS, and of each of the operators
∑

, .,
‖A, τA and f , appears in Appendix A. Here I give an informal summary.

Given nets Ni for i∈I, the net
∑
i∈I aiNi is obtained by taking their disjoint

union, but without their initial markings (M0)i, and adding a single marked
place r, and for each i ∈ I a fresh transition ti, labelled ai, with •ti = {r}, t̂i = ∅
and (

•
ti) = (M0)i.

The parallel composition N‖AN ′ is obtained out of the disjoint union of N
and N ′ by dropping from N and N ′ all transitions t with `(t) ∈ A, and instead
adding synchronisation transitions (t, t′) for each pair of transitions t and t′ from
N and N ′ with `(t) = `(t′) ∈ A. One has

•
(t, t′) :=

•
t +

•
t′, and similarly for̂(t, t′) and (t, t′)

•
, i.e., all arcs are inherited.

τA and f are renaming operators that only affect the labels of transitions.
The net a . N adds to the net N a single transition u, labelled a, that may

fire arbitrary often, but is enabled in the initial state of N only. To this end, take
•u = u• = ∅ and û = M0, the initial marking of N . I apply this construction
only to nets for which its initially marked places have no incoming arcs.

Example 1 A traffic light can be modelled by the recursive equation

TL
def
= tr .tg .(drive . ty .TL).

Here the actions tr , tg and ty stand for “turn red”, “turn green” and “turn
yellow”, and drive indicates a state where it is OK to drive through. A sequence
of two passing cars is modelled as Traffic

def
= drive.drive.0. Here 0 stands for

the empty sum
∑
i∈∅ ai.Ei and models inaction. In the parallel composition

TL ‖{drive} Traffic the cars only drive through when the light is green. All three
processes are displayed in Fig. 1.

4 Justness and other completeness criteria

Definition 6 Let N = (S, T, F,R,M0, `) be a Petri net. An execution path π
is an alternating sequence M0t1M1t2M2 . . . of markings and transitions of N ,
starting with M0, and either being infinite or ending with a marking, such that
Mi [ti+1〉N Mi+1 for all i < length(π). Here length(π) ∈ N∪ {∞} is the number
of transitions in π.

Let `(π) ∈ A∞τ be the string `(t1)`(t2) . . .. Here A∞τ denotes the collection
of finite and infinite sequences of actions. Moreover, trace(π) ∈ A∞ is obtained
from `(π) by dropping all occurrences of τ .
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•
yellow

tr

red

tg

greenty

drive

The traffic light

•

drive

drive

The passing cars

•

tr

tg

ty

•

drive

drive

The cars passing the traffic light

Fig. 1. Traffic passing traffic light

The execution path π is said to enable a transition t, notation π[t〉, if Mk[t〉
for some k ∈ N∧ k ≤ length(π) and for all k ≤ j < length(π) one has tj 6= t and
(•t+ t̂ ) ∩ •tj+1 = ∅.

Path π is B-just, for some B ⊆ A, if `(t) ∈ B for all t ∈ T with π[t〉.

In the definition of π[t〉 above one also has Mj+1[t〉 for all k ≤ j < length(π).
Hence, a finite execution path enables a transition iff its final marking does so.

Informally, π[t〉 holds iff transition t is enabled in some marking on the path
π, and after that state no transition of π uses any of the resources needed to
fire t. Here the read- and preplaces of t count as such resources. The clause
tj 6= t moreover counts the transition itself as one of its resources, in the sense
that a transition is no longer enabled when it occurs. This clause is redundant
for transitions t with •t 6= ∅. One could interpret this clause as saying that a
transition t with •t = ∅ comes with implicit marked private preplace pt, and arcs
(pt, t) as well as (t, pt).

In [19] I posed that Petri nets or transition systems constitute a good model
of concurrency only in combination with a completeness criterion: a selection of
a subset of all execution paths as complete executions, modelling complete runs
of the represented system. The default completeness criterion, called progress
in [25], declares an execution path complete iff it either is infinite, or its final
marking enables no transition. An alternative, called justness in [25], declares an
execution path complete iff it enables no transition. Justness is a stronger com-
pleteness criterion than progress, in the sense that it deems fewer execution paths
complete. The difference is illustrated by the Petri net of Fig. 2(a). There, the
execution of an infinite sequence of b-transitions, not involving the a-transition,

•

a

•

b

•a b • τ b

Fig. 2. (a) Progress vs. justness; (b) Justness vs. fairness; (c) {b}-progress vs. ∅-progress
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is complete when assuming progress, but not when assuming justness. In the
survey paper [25], 20 different completeness criteria are ordered by strength:
progress, justness, and 18 kinds of fairness. Most of the latter are stronger than
justness: in Fig. 2(b) the infinite sequence of b-transitions is just but unfair—i.e.
incomplete according to these notions of fairness. Whereas justness was a new
idea in the context of transition systems [25], it was used as an unnamed default
assumption in much work on Petri nets [40]. That justness is better warranted in
applications than other completeness criteria has been argued in [25,19,24,18].

The mentioned completeness criteria from [25] are all stronger than progress,
in the sense that not all infinite execution paths are deemed complete; on the fi-
nite execution paths they judge the same. An orthogonal classification is obtained
by varying the set B ⊆ A of actions that may be blocked by the environment.
This fits the reactive viewpoint, in which a visible action can be regarded as a
synchronisation between the modelled system and its environment. An environ-
ment that is not ready to synchronise with an action b ∈ A can be regarded
as blocking b. Now B-progress is the criterion that deems a path complete iff
it is either infinite, or its final marking M enables only transitions with labels
from B. When the environment may block such transitions, it is possible for
the system to not progress past M . In Fig. 2(c) the execution that performs
only the τ -transition is complete when assuming {b}-progress, but not when
assuming ∅-progress. Definition 6 defines B-justness accordingly, and [25] fur-
thermore defines 18 different notions of B-fairness, for any choice of B ⊆ A. The
internal action τ /∈ B can never be blocked by the environment. The default
forms of progress and justness described above correspond with ∅-progress and
∅-justness. In [40] blocking and non-blocking transitions are called cold and hot,
respectively.

Two subtly different computational interpretations of Petri nets appear in the
literature [14]: in the individual token interpretation multiple tokens appearing
in the same place are seen as different resources, whereas in the collective token
interpretation only the number of tokens in a place is semantically relevant. The
difference is illustrated in Fig. 3.

•• a

ta

b
tb

•
s

Fig. 3. Run a∞ is just under the individual token interpretation of Petri nets

The idea underlying justness is that once a transition t is enabled, eventually
either t will fire, or one of the resources necessary for firing t will be used by
some other transition. The execution path π in the net of Fig. 3 that fires the
action a infinitely often, but never the action b, is ∅-just by Def. 6. Namely,
tb is not enabled by π, as (•tb + t̂b) ∩ •ta 6= ∅. This fits with the individual
token interpretation, as in this run it is possible to eventually consume each
token that is initially present, and each token that stems from firing transition
ta. This way any resource available for firing tb will eventually be used by some
other transition.
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When adhering to the collective token interpretation of nets, execution path
π could be deemed ∅-unjust, since transition tb can fire when there is at least one
token in its preplace, and this state of affairs can be seen as a single resource that
is never taken away. This might be formalised by adapting the definition of π[t〉, a
path enabling a transition, namely by changing the condition (•t+ t̂ )∩•tj+1 = ∅
from Def. 6 into •t+ t̂+•tj+1 ⊆Mj . However, this formalisation doesn’t capture
that after dropping place s from the net of Fig. 3 there is still an infinite run
in which b does not occur, namely when regularly firing two as simultaneously.
This contradicts the conventional wisdom that firing multiple transitions at once
can always be reduced to firing them in some order. To avoid that type of
complication, I here stick to the individual token interpretation. Alternatively,
one could restrict attention to 1-safe nets [40], on which there is no difference
between the individual and collective token interpretations, or to the larger class
of structural conflict nets [23,22], on which the conditions (•t + t̂ ) ∩ •tj+1 = ∅
and •t+ t̂+ •tj+1 ⊆Mj are equivalent [22, Section 23.1], so that Def. 6 applies
equally well to the collective token interpretation.

5 Feasibility

A standard requirement on fairness assumptions, or completeness criteria in
general, is feasibility [2], called machine closure in [33]. It says that any finite
execution path can be extended into a complete one. The following theorem
shows that B-justness is feasible indeed.

Theorem 1 For any B ⊆ A, each finite execution path of a finitary Petri net
can be extended into a B-just path.

Proof. Without loss of generality I restrict attention to nets without transitions
t with •t = ∅. Namely, an arbitrary net can be enriched with marked private
preplaces pt for each such t, and arcs (pt, t) and (t, pt). In essence, this enrichment
preserves the collection of execution path of the net, ordered by the relation “is
an extension of”, the validity of statements π[t〉, and the property of B-justness.

I present an algorithm extending any given path M0t1M1t2 . . . tk−1Mk into
a B-just path π = M0t1M1t2M2 . . .. The extension only uses transitions ti with
`(ti) /∈ B. As data structure my algorithm employs an N × N-matrix with
columns named i, for i ≥ k, where each column has a head and a body. The
head of column k contains Mk and its body lists the places s ∈ Mk, leaving
empty most slots if there are only finitely many such places. Since the given net
is finitary, Mk has only countable many elements, so that they can be listed in
the N slots of column k.

The head of each column i > k with i−1 < length(π) will contain the pair
(ti,Mi) and its body will list the places s ∈Mi, again leaving empty most slots
if there are only finitely many such places. Once more, finitariness ensures that
there are enough slots in column i.
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An entry in the body of the matrix is either (still) empty, filled in with a
place, or crossed out. Let f : N → N ×N be an enumeration of the entries in
the body of this matrix.

At the beginning only column k is filled in; all subsequent columns of the
matrix are empty. At each step i > k I first cross out all entries s in the body of
the matrix for which there is no transition t with `(t) /∈ B, Mi−1[t〉 and s ∈ •t.
In case all entries of the matrix are crossed out, the algorithm terminates, with
output M0t1M1t2 . . .Mi−1. Otherwise I fill in column i as follows and cross out
some more places occurring in body of the matrix.

I take n to be the smallest value such that entry f(n) ∈ N × N is already
filled in, say with place r, but not yet crossed out. By the previous step of the
algorithm, Mi−1[ti〉 for some transition ti with `(ti) /∈ B and r ∈ •ti. I now
fill in (ti,Mi) in the head of column i; here Mi is the unique marking such
that Mi−1[ti〉Mi. Subsequently I cross out all entries in the body of the matrix
containing a place r′ ∈ •ti. This includes the entry f(n). Finally, I fill in the
body of column i with the places s ∈Mi.

In case the algorithm doesn’t terminate, the desired path π is the sequence
π = M0t1M1t2M2 . . . that is constructed in the limit. It remains to show that π
is B-just.

Towards a contradiction, suppose π[t〉 for a transition t with `(t) /∈ B. By
Def. 6 there is an m ∈ N∧m ≤ length(π) such that Mm[t〉 and (•t+t̂ )∩•tj+1 = ∅
for all m ≤ j < length(π). Let h be the smallest such m with m ≥ k. Then there
is a place r ∈ •t appearing in column h. Here I use that •t 6= ∅. This place was
not yet crossed out when column h was constructed. Since r /∈ •tj+1 and Mj+1[t〉
for all h ≤ j < length(π), place r will never be crossed out. It follows that π
must be infinite. The entry r in column h is enumerated as f(n) for some n ∈ N,
and is eventually reached by the algorithm and crossed out. In this regard the
matrix acts as a priority queue. This yields the required contradiction. ut

The above proof is a variant of [19, Thm. 1], which itself is a variant of [25,
Thm. 6.1]. The side condition of finitariness is essential, as the below counterex-
ample shows.

Example 2 Let N = (S, T, F,R,M0, `) be the net with T = {tr | r ∈ R},
S = {sr | r ∈ R}, M0(sr) = 1, `(tr) = τ , •tr = {sr} and t̂r = t•r = ∅
for each r ∈ R. It contains uncountably many action transitions, each with a
marked private preplace. As each execution path π contains only countably many
transitions, many transitions remain enabled by π.

6 The coarsest preorders preserving linear time properties

A linear time property is a predicate on system runs, and thus also on the
execution paths of Petri nets. One writes π |= ϕ if the execution path π satisfies
the linear-time property ϕ. As the observable behaviour of an execution path π
of a Petri net is deemed to be trace(π), in this context one studies only linear
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time properties ϕ such that

trace(π) = trace(π′) ⇔ (π |= ϕ⇔ π′ |= ϕ) . (1)

For this reason, a linear time property can be defined or characterised as a subset
of A∞.

Linear time properties can be used to formalise correctness requirements on
systems. They are deemed to hold for (or be satisfied by) a system iff they
hold for all its complete runs. Following [21] I write D |=CC ϕ iff property
ϕ holds for all runs of the distributed system D—and N |=CC ϕ iff it holds
for all execution paths of the Petri net N—that are complete according to the
completeness criterion CC. Prior to [21], |= was a binary predicate predicate
between systems—or system representations such as Petri nets—and properties;
in this setting the default completeness criterion of Section 4 was used. When
using a completeness criterion B-C, where C is one of the 20 completeness criteria
classified in [25] and B ⊆ A is a modifier of C based on the set B of actions
that may be blocked by the environment, N |=B-C ϕ is written N |=C

B ϕ [21].
In this paper I am mostly interested in the values Pr and J of C, standing
for progress and justness, respectively. To be consistent with previous work on
temporal logic, N |= ϕ is a shorthand for N |=Pr

∅ ϕ.

For each completeness criterion B-C, let vCB be the coarsest preorder that
preserves linear time properties when assuming B-C. Moreover, vC is the coars-
est preorder that preserves linear time properties when assuming completeness
criterion C in each environment, meaning regardless which set of actions B can
be blocked.

Definition 7 Write N vCB N ′ iff N |=C
B ϕ ⇒ N ′ |=C

B ϕ for all linear time
properties ϕ. Write N vC N ′ iff N vCB N ′ for all B ⊆ A.

It is trivial to give a more explicit characterisation of these preorders. To preserve
the analogy with the failure pairs of CSP [6], instead of sets B ⊆ A I will record
their complements B := A\B. As B = B, such sets carry the same information.
Since B contains the actions that may be blocked by the environment, meaning
that we consider environments that in any state may decide which actions from
B to block, the set B ∪ {τ} contains actions that may not be blocked by the
environment. This means that we only consider environments that in any state
are willing to synchronise with any action in B.

Definition 8 For completeness criterion C, B ranging over P(A), and Petri
net N , let

FC(N) := {(σ,B) |N has a B-C-complete execution path π with σ=trace(π)}
FC
B (N) := { σ |N has a B-C-complete execution path π with σ=trace(π)}.

An element (σ,X) of FC(N) could be called a C-failure pair of N , because it
indicates that the system represented by N , when executing a path with visible
content σ, may fail to execute additional actions from X, even when all these
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actions are offered by the environment, in the sense that the environment is
perpetually willing to partake in those actions. Note that if (σ,X) ∈ FC(N)
and Y ⊆ X then (σ, Y ) ∈ FC(N).

Proposition 1 N vCB N ′ iff FC
B (N)⊇FC

B (N ′).
Likewise, N vC N ′ iff FC(N)⊇FC(N ′).

Proof. Suppose N vCB N ′ and σ /∈ FC
B (N). Let ϕ be the linear time property

satisfying π |= ϕ iff trace(π) 6= σ. Then N |=C
B ϕ and thus N ′ |=C

B ϕ. Hence
σ /∈ FC

B (N ′).
Suppose N 6vCB N ′. There there exists a linear time property ϕ such that

N |=C
B ϕ, yet N ′ 6|=C

B ϕ. Let π′ be a B-C-complete execution path of N ′ such
that π′ 6|= ϕ, and let σ = trace(π′). By (1) π 6|= ϕ for any execution path π (of
any net) such that trace(π) = σ. Hence σ ∈ FC

B (N ′), yet σ /∈ FC
B (N). It follows

that FC
B (N) 6⊇ FC

B (N ′).
The second statement follows as a corollary of the first, using that FC(N) ⊇

FC(N ′) iff FC
B (N) ⊇ FC

B (N ′) for all B ⊆ A. ut

The preorders vCB can be classified as linear time semantics [12], as they are
characterised through reverse trace inclusions. The preorders vC on the other
hand capture a minimal degree of branching time. This is because they should
be ready for different choices of a system’s environment at runtime.

Note that vC is contained in vCB for each B ⊆ A, in the sense that N vC N ′

implies N vCB N ′. There is a priori no reason to assume inclusions between
preorders vC and vD when D is a stronger completeness criterion than C.

To relate the preorders vCB and vC with ones established in the literature, I
consider the case C = Pr , i.e., taking progress as the completeness criterion C.
The preorder vPr

∅ is characterised as reverse inclusion of complete traces, where
completeness is w.r.t. the default completeness criterion of Section 4. These
complete traces include

– the infinite traces of a system,
– its divergence traces (stemming from execution paths that end in infinitely

many τ -transitions), and
– its deadlock traces (stemming from finite execution paths that end in a mark-

ing enabling no transitions).

Deadlock and divergence traces are not distinguished. This corresponds with
what is called divergence sensitive trace semantics (Tλ) in [12]. The above con-
cept of complete traces of a process p is the same as in [15], there denoted CT (p).

The preorder vPr
A is characterised as reverse inclusion of infinite and partial

traces, i.e., the traces of all execution paths. This corresponds with what is
called infinitary trace semantics (T∞) in [12]. It is strictly coarser (making more
identifications) than Tλ.

To analyse the preorder vPr , one has (σ,X) ∈ FPr (N) if either

– σ is an infinite trace of N—the set X plays no rôle in that case,
– σ is a divergence trace of N , or
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– σ is the trace of a finite path of N whose end-marking enables no transition
t with `(t) ∈ X.

The resulting preorder does not occur in [12]—it can be placed strictly between
divergence sensitive failure semantics (F∆) and divergence sensitive trace se-
mantics (Tλ).

The entire family of preorders vCB and vC proposed in this section was
inspired by its most interesting family member, vJ (i.e., taking justness as the
completeness criterion C), proposed earlier by Walter Vogler [43, Def. 5.6], also
on Petri nets with read arcs. Vogler [43] uses the word fair for what I call just.
I believe the choice of the word “just” is warranted to distinguish the concept
from the many other kinds of fairness that appear in the literature, which are
all of a very different nature. Accordingly, Vogler calls the semantics induced
by vJ the fair failure semantics, whereas I call it the just failures semantics.
My set F J(N) is called FF (N) in [43], and Vogler addresses wJ simply as
FF -inclusion, thereby defining it via the right-hand side of Prop. 1.

7 Congruence properties

A preorder v is called a precongruence for an n-ary operator Op, if Ni v N ′i
for i = 1, . . . , n implies that Op(N1, . . . , Nn) v Op(N ′1, . . . , N

′
n). In this case the

operator Op is said to be monotone w.r.t. the preorder v. Being a precongru-
ence for important operators is known to be a valuable tool in compositional
verification [41].

I write ≡ for the kernel of v, that is, N ≡ N ′ iff N v N ′ ∧ N ′ v N . Here
I also imply that ≡CB is the kernel of vCB . If v is a precongruence for Op, then
≡ is a congruence for Op, meaning that Ni ≡ N ′i for i = 1, . . . , n implies that
Op(N1, . . . , Nn) ≡ Op(N ′1, . . . , N

′
n).

The preorder vPr
A , characterised as reverse inclusion of infinite and partial

traces, is well-known to be precongruence for the operators of CCSP. However,
none of the other preorders vPr

B , nor vPr , is a precongruence for parallel com-
position.

Example 3 Let N = • , N ′ = • τ and T = • w . Then Def. 12

yields T ‖∅N = • • w and T ‖∅N ′ = • τ • w . One has

N ≡Pr N ′, and thus also N ≡Pr
B N ′, for each B ⊆ A. Namely FPr (N) =

FPr (N ′) = {(ε,X) | X ⊆ A}. Here ε denotes the empty string. When fixing B
such that B 6= A one may choose w /∈ B. Now ε ∈ FPr

B (T ‖∅N ′), for this process
has an infinite execution path that avoids the w-transition, which generates a
divergence trace ε. Yet ε /∈ FPr

B (T ‖∅N). Hence T ‖∅N 6vPr
B T ‖∅N ′, and thus

also T ‖∅N 6vPr T ‖∅N ′. So neither vPr
B nor vPr are precongruences for ‖∅.

A common solution to the problem of a preorder v not being a precongruence
for certain operators is to instead consider its congruence closure, defined as the
largest precongruence contained in v.
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In [30,15] the congruence closure of vPr is characterised as the so-called
NDFD preorder vNDFD . Here N vNDFD N ′ iff N vPr N ′ (characterised in
the previous section) and moreover the divergence traces of N ′ are included in
those of N . As remarked in [15], here it does not matter whether one requires
congruence closure merely w.r.t. parallel composition and injective relabelling,
or w.r.t. all operators of CSP (or CCSP, or anything in between).

Unlike vPr , the preorder vJ is a precongruence for parallel composition.
Although this has been proven already by Vogler [43], in Appendix B I provide
a proof that bypasses the auxiliary notion of urgent transitions, and provides
more details.

Proposition 2 ([43]) vJ is a precongruence for relabelling and abstraction.

Proof. This follows since F J(f(N)) = {(f(σ), X) | (σ, f−1(X)) ∈ F J(N)} and
moreover F J(τI(N)) = {(τI(σ), X) | (σ,X ∪ I) ∈ F J(N)}. Here τI(σ) is the
result of pruning all I-actions from σ ∈ A∞. ut

Trivially, vJ also is a precongruence for
∑
aiPi and a .

∑
aiPi.

The preorder vJ
A can be seen to coincide with vPr

A , characterised as reverse
inclusion of infinite and partial traces, and thus is a precongruence for the op-
erators of CCSP. Leaving open the case |A\B| = 1, the preorders vJ

B with
|A\B| ≥ 2 fail to be precongruences for parallel composition.

Example 4 Take b, c /∈ B. Let N , N ′ and T be as shown in Fig. 4. Then

•

a

b c

N

•

a

b

a

c

N ′

•

a

c

T

•

a

c

T ‖AN

•

a a

c

T ‖AN ′

Fig. 4. The preorders vJB with |A\B| ≥ 2 fail to be precongruences for parallel comp.

N ≡JB N ′, as F J
B(N) = F J

B(N ′) = {ε, ab, ac}. (Whether ε is included depends on
whether a∈B.) Yet T ‖AN 6≡JB T ‖AN ′, as a∈F J

B(T ‖AN ′), yet a /∈F J
B(T ‖AN).

Moreover, as illustrated below, the preorders vJ
B with B 6= ∅ and |A\B| ≥ 1 fail

to be precongruences for abstraction. In the next section I will show that, for
A infinite and B 6= A, the congruence closure of vJB for parallel composition,
abstraction and relabelling is vJ .

Example 5 Take b ∈ B and c /∈ B. Let N and N ′ be as shown in Fig. 5. Then
N ≡JB N ′, as F J

B(N) = F J
B(N ′) = {ε, bc}. Yet τ{b}(N) 6≡JB τ{b}(N

′), since
ε ∈ F J

B(τ{b}(N
′)), yet ε /∈ F J

B(τ{b}(N)).
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•

τ

b

c

N

•

τ τ

b

c

N ′

•

τ

τ

c

τ{b}(N)

•

τ τ

τ

c

τ{b}(N ′)

Fig. 5. The preorders vJB with ∅ 6= B 6= A fail to be precongruences for abstraction

8 Must Testing

A test is a Petri net, but featuring a special action w /∈ Aτ , not used elsewhere.
This action is used to mark success markings: those in which w is enabled. If
T is a test and N a net then τA(T ‖AN) is also a test. An execution path of
τA(T ‖AN) is successful iff it contains a success marking.

Definition 9 A Petri net N may pass a test T , notation N may T , if τA(T ‖AN)
has a successful execution path. It must pass T , notation N must T , if each
complete execution path of τA(T ‖AN) is successful. It should pass T , notation
N should T , if each finite execution path of τA(T ‖AN) can be extended into a
successful execution path.

Write N vmust N
′ if N must T implies N ′ must T for each test T . The

preorders vmay and vshould are defined similarly.

The may- and must-testing preorders stem from De Nicola & Hennessy [9],
whereas should-testing was added independently in [5] and [36].

In the original work on testing [9] the CCS parallel composition T |N was
used instead of the concealed CCSP parallel composition τA(T ‖AN); moreover,
only those execution paths consisting solely of internal actions mattered for
the definitions of passing a test. The present approach is equivalent. First of
all, restricting attention to execution paths of T |N consisting solely of internal
actions is equivalent to putting T |N is the scope of a CCS restriction operator \A
[34], for that operator drops all transitions of its argument that are not labelled
τ or w. Secondly, CCS features a complementary action ā for each a ∈ A, and
one has ¯̄a = a. For T a test, let T denote the complementary test in which
each action a ∈ A is replaced by ā; again T = T . It follows directly from the
definitions of the operators involved that τA(T ‖AN) is identical3 to (T |N)\A.
This proves the equivalence of the two approaches.

3 The standard definition of | on Petri nets [28] is given only up to isomorphism.
By choosing the names of places and transitions similar to Def. 12 one can obtain
τA(T ‖AN) = (T |N)\A.
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Unlike may- and should-testing, the concept of must-testing is naturally
parametrised with a completeness criterion, deciding what counts as a complete
execution. To make this choice explicit I use the notation vCmust, where C could
be any of the completeness criteria surveyed in [25]. Since processes τA(T ‖AN)
(or (T |N)\A) do not feature any actions other than τ and w, where w is used
merely to point to the success states, the modifier B ⊆ A of a completeness
criteria B-C has no effect, i.e., any two choices of this modifier are equivalent.

In the original work of [9] the default completeness criterion progress from
Section 4 was employed. Interestingly, vPr

must is a congruence for the operators
of CCSP that does not preserve all linear time properties. It is strictly coarser
than vNDFD . In fact, it is the coarsest precongruence for the CCSP parallel
composition and injective relabelling that preserves those linear time properties
that express that a system will eventually reach a state in which something
[good] has happened [15]. (In [15], following [32], but deviating from the standard
terminology of [1], such properties are called liveness properties.)

In this paper I investigate the must-testing preorder when taking justness as
the underlying completeness criterion, vJ

must. Thm. 2 below shows that it can
be characterised as the just failures preorder vJ of Section 6.

First note that Def. 9 can be simplified. When dealing with justness as com-
pleteness criterion, the word “complete” in Def. 9 is instantiated by “just” or
“B-just”, for some B ⊆ A (not including w). As the result is independent of B,
one may take B := ∅. Since the labelling of a net has no bearing on its execution
paths, or on whether such a path is ∅-just, or successful, one may now drop the
operator τA from Def. 9 without affecting the resulting notion of must testing.

Theorem 2 N vJ
must N

′ iff N vJ N ′.

Proof. The “if” direction is established in Appendix C.
For “only if”, suppose N vJ

must N
′. Using Prop. 1, it suffices to show that

F J(N) ⊇ F J(N ′). Let (σ,X) ∈ F J(N ′), where σ = a1a2 . . . ∈ A∞ is a finite or
infinite sequence of actions. Let T be the test displayed in Fig. 6. The drawing
is for the case that σ = a1a2 . . . an finite; in the infinite case, there is no need
to display an separately. Now K must T , for any net K, when using justness
as completeness criterion, iff each ∅-just execution path of T ‖AK is successful,
which is the case iff (σ,X) /∈ F J(K). (In other words, T ‖AK has an unsuccessful
∅-just execution path iff (σ,X) ∈ F J(K). For the meaning of (σ,X) ∈ F J(K) is
thatK has an execution path π with trace(π) = σ such that `K(t) ∈ X ⇒ ¬π[t〉.)
Hence N ′ must not T and thus N must not T , and thus (σ,X) ∈ F J(N). ut

Proposition 3 Let A be infinite and B 6= A. Then vJ is the congruence closure
of vJB for parallel composition, abstraction and injective relabelling.

Proof. Pick an action w ∈ A\B. Assume N 6vJ N ′. By applying an injective re-
labelling, one can assure that w does not occur in N or N ′. Let (σ,X) ∈ F J(N ′),
yet (σ,X) /∈ F J(N), with w /∈ X. Let T be the net of Fig. 6. Then, writing A :=
A\{w}, (σ,A) ∈ F J(T ‖AN ′), yet (σ,A) /∈ F J(T ‖AN). Moreover, (ρ,A) /∈
F J(T ‖AN ′) and (ρ,A) /∈ F J(T ‖AN) for any ρ 6= σ not containing the action
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•

τ

a1

τ

a2

τ

. . . an

τ

w

•

b w

b′ w


for each b, b′, . . . ∈ X

. . .

Fig. 6. Universal test for just must testing

w. Hence, applying the proof of Prop. 2, using that A∪B = A, one has (ε,B) ∈
F J(τA(T ‖AN ′)), yet (ε,B) /∈ F J(τA(T ‖AN)). Thus ε ∈ F J

B(τA(T ‖AN ′)), yet
ε /∈ F J

B(τA(T ‖AN)). It follows that τA(T ‖AN) 6vJB τA(T ‖AN ′). ut

9 Timed must-testing

A timed form of must-testing was proposed by Vogler in [43]. Justness says that
each transition that gets enabled must fire eventually, unless one of its necessary
resources will be taken away. In Vogler’s framework, each transition t must fire
within 1 unit of time after it becomes enabled, even though it can fire faster.
The implicit timer is reset each time t becomes disabled and enabled again, by
another transition taken a token and returning it to one of the replaces of t.
Since there is no lower bound on the time that may elapse before a transition
fires, this view encompasses the same asynchronous behaviour of nets as under
the assumption of justness.

Vogler’s work only pertains to safe nets: those with the property that no
reachable marking allocates multiple tokens to the same place. Here a marking
is reachable if it occurs in some execution path. Transitions t with •t = ∅ are
excluded. Although he only considered finite nets, here I apply his work un-
changed to finitely branching nets: those in which only finitely many transitions
are enabled in each reachable marking.

Definition 10 ([43]) A continuous(ly timed ) instantaneous description (CID)
of a net N is a pair (M, ξ) consisting of a marking M of N and a function
ξ mapping the transitions enabled under M to [0, 1]; ξ describes the residual
activation time of an enabled transition.

The initial CID is CID0 = (M0; ξ0) with ξ0(t) = 1 for all t with M0[t〉.
One writes (M, ξ)[η〉(M ′, ξ′) if one of the following cases applies:
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(1) η = t ∈ T , M [t〉M ′, ξ′(t) := ξ(t) for those transitions t enabled under M−•t
and ξ′(t) := 1 for the other transitions enabled under M ′.

(2) η = r ∈ R+, r ≤ min(ξ), M ′ = M and ξ′ = ξ − r.
A timed execution path π is an alternating sequence of CIDs and elements t ∈ T
or r ∈ R+, defined just like an execution path in Def. 6. Let ζ(π) ∈ R∪{∞} be
the sum of all time steps in a timed execution path π, the duration of π.

A timed test is a pair (T , D) of a test T and a duration D ∈ R+
0 . A net must

pass a timed test (T , D), notation N must (T , D), if each timed execution
path π with ζ(π) > D contains a transition labelled w. Write N vtimed

must N ′ if
N must (T , D) implies N ′ must (T , D) for each timed test (T , D).

Vogler shows that the preorder vtimed
must is strictly finer than vJ . In fact, although

τ.a.0 ≡J a.0, one has τ.a.0 6≡timed
must a.0, since only the latter process must pass

the timed test (a.w, 2). Here I use that each of the actions τ , a and w may take
up to 1 unit of time to occur. A statement N vtimed

must N ′ says that N ′ is faster
than N , in the sense that composed with a test it is guaranteed to reach success
states in less time than N .

Here I show that when abstracting from the quantitative dimension of timed
must-testing, it exactly characterises vJ .

Definition 11 A net must eventually pass a test T if there exists a D ∈ R+
0

such that N must (T , D). Write N vev.
must N

′ if when N must eventually pass a
test T , then so does N ′.

Theorem 3 Let N,N ′ be finitely branching safe nets. Then N vev.
must N

′ iff
N vJ N ′.

A proof can be found in Appendix D.

10 Conclusion

The just failures preorder vJ was introduced by Walter Vogler [43] in 2002. Since
then it has not received much attention in the literature, and has not been used
as the underlying semantic principle justifying actual verifications. In my view
this can be seen as a fault of the subsequent literature, as vJ captures exactly
what is needed—no more and no less—for the verification of safety and liveness
properties of realistic systems.

I substantiate this claim by pointing out that vJ is the coarsest preorder
preserving safety and liveness properties when assuming justness, that is a con-
gruence for basic process algebra operators, such as the partially synchronous
parallel composition, abstraction from internal actions, and renaming. As argued
in [25,19,24,18], justness is better motivated and more suitable for applications
than competing completeness criteria, such as progress or the many notions of
fairness surveyed in [24].

Moreover, I adapt the well-known must-testing preorder of De Nicola & Hen-
nessy [9], by using justness as the underlying completeness criterion, instead of
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the traditional choice of progress. By showing that the resulting must-testing
preorder vJ

must coincides with vJ I strengthen the case that this is a natural
and fundamental preorder.

This conclusion is further strengthened by my result that it also coincides
with a qualitative version vev.

must of the timed must-testing preorder vtimed
must of

Vogler [43]. (Although vtimed
must and vJ stem from the same paper [43], this con-

nection was not made there.)
All this was shown in the setting of Petri nets extended with read arcs, and

therefore also applies to the settings of standard process algebras such as CCS,
CSP or ACP. Since I cover read arcs, it also applies to process algebras enriched
with signalling, an operator that extends the expressiveness of standard process
algebras and is needed to accurately model mutual exclusion. I leave it for future
work to explore these matters for probabilistic models of concurrency, or other
useful extensions.

vshould vJ
must = vJ = vev.

must

wmayvPr
must

vPr
must ∩ wmay

vPr
reward

↔
↔ep

↔sp

Fig. 7. A spectrum of testing preorders and bisimilarities preserving liveness properties

Fig. 7 situates vJ
must w.r.t. the some other semantic preorders from the literature.

The lines indicate inclusions. Here vPr
must, vmay and vshould are the classical

must-, may- and should-testing preorders from [9] and [5,36]—see Def. 9—and
vPr

reward is the reward-testing preorder introduced by me in [20]. The failures-
divergences preorder of CSP [6,42], defined in a similar way as vJ

must, coincides
with vPr

must [9,20]. ↔ denotes the classical notion of strong bisimilarity [34], and
↔ep , ↔sp are essentially the only other preorders (in fact equivalences) that
preserve linear time properties when assuming justness: the enabling preserving
bisimilarity of [26] and the structure preserving bisimilarity of [16].

The inclusions follow directly from the definitions—see refs.
—and counterexamples against further inclusions appear below.
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A Petri net semantics of CCSPS

Here I interpret the operators of CCSPS in terms of Petri nets with read arcs.
The definition of ‖A below is based on the one from [43]. When introducing a
net Ni, its components are understood to be (Si, Ti, Fi, Ri,M0i, `i).

Definition 12 Let N1 and N2 be Petri nets and A ⊆ A. The parallel composi-
tion N = N1‖AN2 with synchronisation over A is defined by

– S := {(s1, ∗) | s1 ∈ S1} ∪ {(∗, s2) | s2 ∈ S2},
– T := {(t1, t2) | t1 ∈ T1 ∧ t2 ∈ T2 ∧ `1(t1) = `2(t2) ∈ A} ∪

{(t1, ∗) | t1 ∈ T1 ∧ `1(t1) /∈ A} ∪ {(∗, t2) | t2 ∈ T2 ∧ `2(t2) /∈ A}

– F ((x1, x2), (y1, y2)) :=

F (x1, y1) if x1 6= ∗ 6= y1
F (x2, y2) if x2 6= ∗ 6= y2
0 otherwise

 for
((x1, x2), (y1, y2))
∈ S × T ∪ T × S

– R((s1, s2), (t1, t2)) :=

R(s1, t1) if s1 6= ∗ 6= t1
R(s2, t2) if s2 6= ∗ 6= t2
0 otherwise

 for
((s1, s2), (t1, t2))
∈ S × T

– M0((s1, s2)) :=

{
M01(s1) if s1 ∈ S1

M02(s2) if s2 ∈ S2
and `((t1, t2)) :=

{
`1(t1) if t1 ∈ T1
`2(t2) if t2 ∈ T2 .

Definition 13 Let f : A → A be a relabelling function; it is extended to Aτ by
f(τ)=τ . Given a netN = (S, T, F,R,M0, `), the net f(N) = (S, T, F,R,M0, f◦`)
differs only in its labelling function. Each label a ∈ A is replaced by f(a).

Let I⊆A. The function τI : Aτ → Aτ is given by τI(a)=τ if a∈I and τI(a)=a
otherwise. Given N = (S, T, F,R,M0, `), the net τI(N) = (S, T, F,R,M0, τI ◦ `)
differs only in its labelling function. Each label a ∈ I is replaced by τ .

Definition 14 Given nets Ni and actions ai ∈ A for i ∈ I 63 ∗, the Petri net
N = a .

∑
i∈i aiNi is defined by

– S := {(s, i) | i ∈ I ∧ s ∈ Si} ∪ {(r, ∗)}
– T := {(t, i) | i ∈ I ∧ t ∈ Ti} ∪ {(ti, ∗) | i ∈ I} ∪ {(u, .)}

– F ((x, i), (y, j)) :=


F (x, y) if i = j ∈ I
1 if x = r ∧ i = j = ∗
M0i(y) if (x, i) = (tj , ∗) ∧ j ∈ I
0 otherwise

 for
((x, i), (y, j))
∈ S × T ∪ T × S

– R((s, i), (t, j)) :=

R(s, t) if i = j ∈ I
1 if i = ∗ ∧ j = .
0 otherwise

 for ((s, i), (t, j)) ∈ S × T

– M((r, ∗)) := 1 and M((s, i)) := 0 for each i ∈ I and s ∈ Si
– `(t, i) := `i(t) for i∈ I and t∈ Ti, `(u, .) = a and `(ti, ∗) := ai for each i∈ I.

The definition of N =
∑
i∈i aiNi is the same, but skipping the blue parts.

To give a semantic interpretation of recursion I follow the operational approach
of Degano, De Nicola & Montanari [10] and Olderog [37,38].4 The standard

4 When aiming for a semantics in terms of Petri nets modulo ≡J , the algebraic ap-
proach of [17] is an alternative.
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operational semantics of process algebras like CCSPS or CCS [34] yields one
big labelled transition system for the entire language.5 Each individual CCSPS
expression P appears as a state in this LTS. If desired, a process graph—an
LTS enriched with an initial state—for P can be extracted from this system-
wide LTS by appointing P as the initial state, and optionally deleting all states
and transitions not reachable from P . In the same vein, an operational Petri
net semantics yields one big Petri net for the entire language, but without an
initial marking. I call such a Petri net unmarked. Each CCSPS expression P
corresponds with a marking dex(P ) of that net. If desired, a Petri net [[P ]] for P
can be extracted from this system-wide net by appointing dex(P ) as its initial
marking, and optionally deleting all places and transitions not reachable from
dex(P ).

The set SCCSPS of places in the net is the smallest set including:∑
i∈I aiPi guarded choice a .

∑
i∈I aiPi signalling guarded choice

µ‖A left component A‖µ right parallel component
τI(µ) abstraction f(µ) relabelling

for a, ai∈A, Pi CCSPS expressions, A, I ⊆ A, µ, ν∈SCCSPS and relabelling func-
tions f . The mapping dex from CCSPS expressions to P(SCCSPS) decomposing
and expanding a process expression into a set of places is inductively defined by:

dex(
∑
i∈I aiPi) = {

∑
i∈I aiPi}

dex(a .
∑
i∈I aiPi) = {a .

∑
i∈I aiPi}

dex(P‖AQ) = dex(P )‖A ∪ A‖dex(Q)
dex(τI(P )) = τI(dex(P ))
dex(f(P )) = f(dex(P ))
dex(K) = dex(P ) when K

def
= P .

Here H‖A, A‖H, τI(H) and f(H) for H,K ⊆ SCCSPS are defined element by
element; e.g. f(H) = {f(µ) | µ∈H}. Binding matters, so (A‖H)‖B 6= A‖(H‖B).
Since I deal with guarded recursion only, dex is well-defined.

Following [37], I construct the unmarked Petri net (S, T, F,R, `) of CCSPS
with S := SCCSPS, specifying the tuple (T, F,R, `) as a quaternary relation
→ ⊆ NS × NS × A × NS . An element H,V a−→ J of this relation denotes a
transition t∈T with `(t) = a such that •t=H, t̂=V and t•=J . The transitions
H,V, α−→ J are derived from the rules of Table 1.

Note that there is no rule for recursion. The transitions of an agent iden-
tifier K are taken care of indirectly by the decomposition dex(K) = dex(P ),
which expands the decomposition of a recursive call into a decomposition of an
expression in which each agent identifier occurs within a guarded choice.

Trivially, the Petri net [[P ]] associated to any CCSPS expression P is finitary,
provided that all index sets I for guarded choices occurring in P are countable.

Olderog [38] shows that this operational semantics is consistent with the
denotational one of Defs. 12, 13 and 14, in the sense that [[P‖AQ]] ≡ [[P ]]‖A[[Q]]—
here the left-hand side follows the operational semantics, and the right-hand side

5 A labelled transition system (LTS) is given by a set S of states and a transition
relation T ⊆ S ×Aτ × S.
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Table 1. Operational Petri net semantics of CCSPS

{a .
∑
i∈I aiPi}, ∅

ai−→ dex(Pi) {
∑
i∈I aiPi}, ∅

ai−→ dex(Pi) (i ∈ I)

∅, {a .
∑
i∈I aiPi}

a−→ ∅ H, V a−→ J K, W a−→ L

H‖A∪A‖K, V ‖A∪A‖W a−→ J‖A∪A‖L
(a∈A)

H, V a−→ J

H‖A, V ‖A a−→ J‖A
(a /∈A)

H, V a−→ J

A‖H, A‖V a−→ A‖J
(a /∈A)

H, V a−→ J

τI(H), τI(V ) τI(a)−−−→ τI(J)

H, V a−→ J

f(H), f(V ) f(a)−−→ f(J)

employs the denotational semantics of ‖A—and similarly for the other operators.
Moreover [[K]] ≡ [[P ]] for each agent identifier with defining equation K

def
= P .

Olderog’s proof generalises smoothly to the addition of read arcs. Here ≡ is a
non-transitive relation that Olderog calls strong bisimilarity.

In [16] I define structure preserving bisimilarity on nets, and show that it con-
tains Olderog’s strong bisimilarity. I also show that structure preserving bisimi-
larity is congruence for the operators of CCSP that respects inevitability when
using justness as completeness criterion. This means that if two systems are
equivalent, and in one the occurrence of a certain action is inevitable, then so
is it in the other, This implies that structure preserving bisimilarity is included
in just must-testing equivalence ≡Jmust. Hence [[P‖AQ]] ≡Jmust [[P ]]‖A[[Q]], and
similarly for the other operator, i.e., the consistency of the operational and de-
notational semantics of Petri nets also holds up to just must-testing equivalence.

B The just failures preorder is a congruence for ‖A

Theorem 4 ([43]) vJ is a precongruence for parallel composition.

Proof. Let σ, ρ ∈ A∞ and A ⊆ A. Then σ‖Aρ ⊆ A∞ denotes the set of sequences
of actions for which is it possible to mark each action occurrence as left, right or
both, obeying the restriction that an occurrence of action a is marked both left
and right iff a∈A, such that the subsequence of all left-labelled action occurrences
is σ and the subsequence of all right-labelled action occurrences is ρ.

Obviously, ν ∈ A∞ is the trace of an execution path π of a net N1‖AN2 iff
ν ∈ σ‖Aρ for some traces σ and ρ of execution paths π1 and π2 of N1 and N2,
respectively.

Let π = M0t1M1t2 . . .. Each transition tj has the form (uj , ∗), (uj , vj) or
(∗, vj). Moreover, each marking Mi has the form ML

i

.
∪MR

i , where ML
i is a

marking of N1 and ML
2 is a marking of N2. If tj+1 = (∗, vj+1) then ML

j = ML
j+1.

Now π1 can be obtained from π by dropping all entries (∗, vj)Mj , and replacing
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the remaining tj by uj and the remaining Mi by ML
i —I call it the projection of

π on N1. Likewise π2 can be obtained from π by dropping all entries (uj , ∗)Mj ,
and replacing the remaining tj by vj and the remaining Mi by MR

i .

Claim 1: If π[t〉 and t = (u, ∗) or t = (u, v) then π1[u〉.
Claim 2: If π[t〉 and t = (∗, v) or t = (u, v) then π2[v〉.
Claim 3: If π1[u〉 and `1(u) /∈ A then π[(u, ∗)〉.
Claim 4: If π2[v〉 and `2(v) /∈ A then π[(∗, v)〉.
Claim 5: If π1[u〉, π2[v〉 and `1(u) = `2(v) ∈ A then π[(u, v)〉.
Proof of Claim 1. Suppose π[t〉 and t = (u, ∗) or t = (u, v). Then Mk[t〉 for some
k and (•t+ t̂ ) ∩ •tj+1 = ∅ for all k ≤ j < length(π). Now ML

k [u〉. Moreover, for
each k ≤ j < length(π) such that tj has the form (uj , ∗) or (uj , vj) it follows
that (•u+ û ) ∩ •uj+1 = ∅. This implies that π1[u〉.
The proof of Claim 2 follows by symmetry. The remaining claims are obvious.

Claim 6: F J(N1‖AN2)=

{
(ν,B)

∣∣∣∣∃(σ,C) ∈F J(N1). ∃(ρ,D) ∈ F J(N2).
ν ∈ σ‖Aρ∧C ∩D∩A⊆B ∧(C ∪D)\A⊆B

}
.

Proof. Let (ν,B) ∈ F J(N1‖AN2). Then ν = trace(π) for an execution path π
of N1‖AN2, such that whenever π[t〉 then `(t) ∈ B. Define π1 and π2 as above,
and let σ := trace(π1), ρ := trace(π2), C := {`1(u) | π1[u〉} and D := {`2(v) |
π2[v〉}. By Defs. 6 and 8, (σ,C) ∈ F J(N1) and (ρ,D) ∈ F J(N2). Furthermore
ν ∈ σ‖Aρ.

Now suppose a ∈ C ∩D ∩A. Then there are transitions u and v with π1[u〉,
π2[v〉 and `1(u) = `2(v) = a ∈ A. By Claim 5, π[(u, v)〉. Thus a = `((u, v)) ∈ B.

Finally suppose b ∈ (C ∪D)\A. By symmetry I may restrict attention to the
case that b ∈ C\A. Then there is a transition u with π1[u〉 and `1(u) = b /∈ A.
By Claim 3, π[(u, ∗)〉. Thus b = `((u, ∗)) ∈ B.

Now let (σ,C) ∈F J(N1), (ρ,D) ∈F J(N2), ν ∈ σ‖Aρ and B ⊆A satisfying
C ∩D∩A⊆B and (C ∪D)\A ⊆ B. Let π1 and π2 be execution paths of N1 and
N2, respectively, such that trace(π1) = σ, trace(π2) = ρ, π1[u〉 ⇒ `1(u) ∈ C and
π2[v〉 ⇒ `2(v) ∈ D. Let π be an execution path of N1‖AN2 with trace(π) = ν,
such that its projections are π1 and π2. Suppose π[t〉. It remains to show that
`(t) ∈ B.

First suppose t has the form (u, ∗). Then `1(u) /∈ A and π1[u〉 by Claim 1. It
follows that `(t) = `1(u) ∈ C\A ⊆ B.

The case that t has the form (∗, v) proceeds likewise.
Finally suppose that t = (u, v). Then `(t) = `1(u) = `2(v) ∈ A. By Claims 1

and 2, one obtains π1[u〉 and π2[v〉. Thus `(t) ∈ C ∩D ∩A ⊆ B.

The theorem follows immediately from Claim 6 and Prop. 1. ut

C The just must-testing preorder contains the just
failures preorder

Proposition 4 N vJ
must N

′ if N vJ N ′.
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Proof. Suppose N vJ N ′ and let T be a test. Let π′ be an unsuccessful ∅-just
execution path of T ‖AN ′. It suffices to find an unsuccessful ∅-just execution
path of T ‖AN .

Let πT and πN ′ be the projections of π to execution paths of T and N , re-
spectively, as defined in the proof of Thm. 4. Let σ := trace(πT ), ρ := trace(πN ′),
C := {`T (u) | πT [u〉} and D := {`N ′(v) | πN ′ [v〉}. By Defs. 6 and 8, (σ,C) ∈
F J(T ) and (ρ,D) ∈ F J(N ′). As in the first part of the proof of Claim 6 in the
proof of Thm. 4, but taking B := ∅, one obtains C∩D∩A = ∅ and (C∪D)\A = ∅.
Moreover, ν := trace(π) ∈ σ‖Aρ.

By Prop. 1, F J(N) ⊇ F J(N ′), so (ρ,D) ∈ F J(N). Let πN be a execution
path of N such that trace(πN ) = ρ and πN [v〉 ⇒ `N (v) ∈ D. Now compose
πT and πN into an execution path π of T ‖AN , such that trace(π) = ν and its
projections are πT and πN . As in the second part of the proof of Claim 6 in the
proof of Thm. 4, but taking B := ∅, one obtains π[t〉 ⇒ `(t) ∈ ∅. It follows that
π is ∅-just. Moreover, as π′ is unsuccessful, so is πT , and hence also π. ut

D Qualitatively timed must-testing

Let N be a finitely branching safe net. For each execution path π of N , I define
the slowest timed execution path π̃ through the following algorithm, which uses
the variable π̂ to store the suffix of π that still needs to be executed. π̃ starts
out empty, and π̂ := π.

(1) Let 1 unit of time pass, i.e., add a time step 1 to π̃. Now finitely many
transitions are enabled in the current marking. Store those in the set Ten .

(2) As long as Ten 6= ∅, fire the first transition of π̂, i.e., add it to π̃; and remove
this first transition from π̂; remove from Ten all transitions that are no longer
enabled.

(3) When Ten = ∅, go to (1).

The constructed path π̃ arises in the limit.

Lemma 1 If π is just, then ζ(π̃) =∞.

Proof. In case π is infinite, this is obvious, since the algorithm keeps adding time-
1 steps regularly. In case π in finite, in its final marking no further transitions
are enabled. The algorithm will now continue to add time-1 steps forever. ut

Given a finite execution path π, let π̃∗ be obtained from π̃ by leaving out all
trailing time-steps. When calculating π̃∗, the algorithm simple stops as soon as
the last transition of π̂ has been fired.

Lemma 2 Let |π| denotes the number of transitions in π. Then ζ(π̃∗) ≤ |π|.

Proof. This follows because at least one transition must be scheduled between
each two time steps. ut
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Lemma 3 Each timed execution path χ, ending with a transition, can be trans-
formed in an untimed execution path θ, namely by omitting the lapses of time
that are recorded in χ. Now ζ(θ̃∗) ≥ ζ(χ).

Proof. This follows because when sticking to the order of transitions in χ, the
timed execution path θ̃∗ schedules each transition as late as possible. ut

Lemma 4 Let N be a finitely branching safe net. Then each just execution path
of N contains a transition labelled w iff there is a duration D ∈ R+

0 such that a
transition labelled w occurs in each timed execution path χ of N with ζ(χ) > D.

Proof. Suppose there is a duration D ∈ R+
0 such that a w-transition occurs in

each timed execution path χ of N with ζ(χ) > D. Let π be a just execution
path of N . Then ζ(π̃) =∞ by Lemma 1, so w occurs in π̃, and hence in π.

Now suppose each just execution path of N contains a w-transition. For each
just execution path π of N , let π the prefix of π up to and including the first
occurrence of a w-transition, and let |π| be the number of transitions in π. By
König’s Lemma, using that N is finitely branching, there exists a finite upper
bound D on all the values |π|. Now ζ(π̃

∗
) ≤ |π| ≤ D by Lemma 2.

Let χ′ be a timed execution path of N with ζ(χ′) > D. Then there is a finite
prefix χ of χ′ with ζ(χ) > D. By Thm. 1 its untimed version θ must be a prefix
of a just execution path π, and since ζ(θ̃∗) ≥ ζ(χ) > D by Lemma 3, it follows
that π̃

∗
must be a prefix of θ̃∗. Since a w-transition occurs in π̃∗, it also occurs

in θ̃∗, and hence in χ. ut

Proof of Thm. 3. Let N,N ′ be finitely branching safe nets.
“Only if”: Suppose N 6vJ N ′. By Prop. 1 there is an (σ,X) ∈ F (N ′)\F (N).

Let T be the universal test for the just failure pair (σ,X), displayed in Fig. 6.
Then N must T but ¬(N ′ must T ). Hence each just execution path of T ‖AN
is successful, but there is a just execution path of T ‖AN ′ that is unsuccessful.
Since N,N ′ are finitely branching safe nets, so are T ‖AN and T ‖AN ′.

Each just execution path π of T ‖AN will reach a marking where a transition
t labelled w is enabled. Given the shape of T , no other transition of T ‖AN can
remove the token from the unique preplace of t. Hence π must contain transition
t. Thus Lemma 4 implies that N must eventually pass T . On the other hand,
T ‖AN ′ has a just execution path that does not contain a transition labelled w,
so Lemma 4 denies that N ′ must eventually pass T . It follows that N 6vev.

must N
′.

“If”: Suppose N 6vev.
must N

′. Then there is a finitely branching safe test T ′,
such that N must eventually pass T ′, yet N ′ does not. Modify T ′ into T by
replacing each w-transition by a sequence of a τ - and a w-transition, with a
single place in between. If each timed execution path of T ′‖AN will reach a
w-transition within time D, then each timed execution path of T ‖AN will reach
a w-transition within time D+1. Hence N must eventually pass T , yet N ′ does
not.

Since N,N ′ and T are finitely branching safe nets, so are T ‖AN and T ‖AN ′.
By Lemma 4, each just execution path of T ‖AN contains a w-transition, and
thus N must T . On the other hand, T ‖AN has a just execution path π that
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does not contain a w-transition. Given the shape of T , path π does not contain
a marking where a w-transition is enabled, for it it did, justness would force that
transition to occur in π. It follows that N 6vJmust N

′, and hence N 6vJ N ′. ut
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