Just Testing

Rob van Glabbeek

University of Edinburgh, Scotland

27 April 2023

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

bisimilarity

RS

RT

failures equiv.
completed trace equiv.

partial trace equiv.

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

bisimilarity

P ~ @ means that RS

P can safely be replaced by @

in an appropriate context. RT

failures equiv.
completed trace equiv.

partial trace equiv.

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

bisimilarity

P ~ @ means that RS

P can safely be replaced by @

in an appropriate context. RT

De Nicola & Hennessy:

P+ Q if and only if
they react differently on certain tests.

failures equiv.
completed trace equiv.

partial trace equiv.

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

bisimilarity

P ~ @ means that RS

P can safely be replaced by @

in an appropriate context. RT

De Nicola & Hennessy:

P+ Q if and only if
they react differently on certain tests.

failures equiv.
completed trace equiv.

partial trace equiv.

The theory of testing [DH84]

P+ Q if and only if they react differently on certain tests.

The theory of testing [DH84]

P+ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested)
but with a notion of success state.

The theory of testing [DH84]

P+ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the

parallel composition P|T is successful.
success

D~~~

The theory of testing [DH84]

P+ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the

parallel composition P|T is successful.
success

D~~~

Write P C st Q iff @ must pass any test that P must pass.
Write P =must Q |f P Emust Q and Q Emust Q

The theory of testing [DH84]

P+ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the

parallel composition P|T is successful.
success

D~~~

Write P C st Q iff @ must pass any test that P must pass.
Write P =must Q |f P Emust Q and Q Emust Q

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

The theory of testing [DH84]

P+ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the

parallel composition P|T is successful.
success

D~~~

Write P C st Q iff @ must pass any test that P must pass.
Write P =must Q |f P Emust Q and Q Emust Q

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

Write P T,y Q iff Q may pass any test that P may pass.
Write P =may Q if P Emay Q and Q Emay Q

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the

parallel composition P| T is successful.
success

.T.T.T.T.T.

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the

parallel composition (P| T)\.A is successful.
success

.T.T.T.T.T.

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the

parallel composition (P| T)\.A is successful.
success

(D=~~~

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the

parallel composition (P| T)\.A is successful.
success

(D~~~

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the

parallel composition P|T is successful.
success

(D~~~

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the

parallel composition (P| T)\.A is successful.
success

(D~~~

Completeness criteria

Does each complete execution path of a given
process reach a success state?

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only 7-transitions.)

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only 7-transitions.)

full fairness

strong fairness

weak fairness

justness

progress

I
0

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only 7-transitions.)

success
T

full fairness

strong fairness

weak fairness

justness

progress

I
0

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete? full fairness

(Assume for simplicity: only 7-transitions.) | _
strong fairness

success .
T weak fairness

justness

progress

*
0

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete? full fairness

(Assume for simplicity: only 7-transitions.) | _
strong fairness

T weak fairness

*

justness

progress

*
0

success

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete? full fairness

(Assume for simplicity: only 7-transitions.) | _
strong fairness

T weak fairness

*

justness

*

progress

H success
0

success

Completeness criteria

Process P must pass test T if each complete
execution path of P|T is successful.

P st Q iff Q passes any test that P does. full fairness
Write P EmustQ |f P EmustQ and Q Emust Q |
strong fairness

T weak fairness

*

justness

I

progress

H success
0

success

Completeness criteria

Process P must pass test T if each eemplete
execution path of P|T is successful.

P st Q iff Q passes any test that P does. full fairness
Write P EmustQ |f P EmustQ and Q Emust Q |
strong fairness

T weak fairness

*

justness

I

progress

H success
0

success

Completeness criteria

Process P must pass test T if each progressing
execution path of P|T is successful.

P st Q iff Q passes any test that P does. full fairness
Write P EmustQ |f P EmustQ and Q Emust Q |
strong fairness

T weak fairness

*

justness

I

progress

H success
0

success

Completeness criteria

Process P must pass test T if each just
execution path of P|T is successful.

P T« Q iff Q passes any test that P does. full fairness
Write P E'rlnustQ |f P EilrlllstQ and Q Eijrlllst Q |
strong fairness

T weak fairness

*

justness

I

progress

H success
0

success

Completeness criteria

Process P must pass test T if each weakly fair
execution path of P|T is successful.

PCWF.Q ifF Q@ passes any test that P does. full fairness
erte P = —must |f P EmustQ and Q Emust |
strong fairness

T weak fairness

*

justness

I

progress

H success
0

success

Completeness criteria

Process P must pass test T if each just
execution path of P|T is successful.

P T« Q iff Q passes any test that P does. full fairness
Write P E'rlnustQ |f P EilrlllstQ and Q Eijrlllst Q |
strong fairness

T weak fairness

*

justness

I

progress

H success
0

success

Completeness criteria

success

5O omid

success
T

success

full fairness

strong fairness

weak fairness

*

justness

*

progress

*
0

Completeness criteria

success
O (1 7]
full fairness
. success strong fairness
Justness on Petri nets: weak fairness
Whenever a transition is enabled, st
) o ustness
either it fires eventually]
or one of its resources will be consumed.
progress

0

Just must-testing

This defines just must-testing equivalence =, ..

Just must-testing

This defines just must-testing equivalence =, ..

Main results:

Just must-testing

This defines just must-testing equivalence =, ..
Main results:

=7 . is a congruence for all operators of CSP.

Just must-testing

This defines just must-testing equivalence =, ..
Main results:
=7 . is a congruence for all operators of CSP.

E;ﬁum preserves all linear time properties,
when taking justness as the underlying completeness criterion.

Just must-testing

This defines just must-testing equivalence =, ..
Main results:
=7 . is a congruence for all operators of CSP.

E;ﬁum preserves all linear time properties,
when taking justness as the underlying completeness criterion.

=/ . is the coarsest congruence (for parallel composition,
concealment and injective relabelling) that preserves LT properties.

Just must-testing

This defines just must-testing equivalence =, ..
Main results:
=7 . is a congruence for all operators of CSP.

E;ﬁum preserves all linear time properties,
when taking justness as the underlying completeness criterion.

=/ . is the coarsest congruence (for parallel composition,
concealment and injective relabelling) that preserves LT properties.

=7 . coincides with the fair failure equivalence defined on Petri
nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.

A spectrum of testing preorders and bisimilarities

[Mi80] strong bisimilarity
g

/

[Ho80] weak trace equivalence

A spectrum of testing preorders

[Mi80] strong bisimilarity
g

/

_P _
[DH84] =ust () =may
:Pr pr—
—must —Inay

and bisimilarities

full fairness

strong fairness

weak fairness

justness

progress

I
0

[Ho80] weak trace equivalence

A spectrum of testing preorders

[Mi80] strong bisimilarity
/ ﬁ
[DH84] =P N =y
CSP[85] =i =may

[Ho80]

and bisimilarities

full fairness

strong fairness

weak fairness

justness

progress

I
0

weak trace equivalence

A spectrum of testing preorders and bisimilarities

[Mi80] strong bisimilarity full fairness
= |
— strong fairness
|
‘ weak fairness
[DH84] =l N=nay =shoud o
[BRV95,NC95] justness
|
/ \ / progress
|
CSP[85] Egllhst =may [D

[Ho80] weak trace equivalence

A spectrum of testing preorders and bisimilarities

[Mi80] strong bisimilarity
ya
posl =
[DH84] =l N=may =shoud
[BRV95,NC95]/ \ /
CSP[85 Eglrust =may

[Ho80] weak trace equivalence

A spectrum of testing preorders and bisimilarities

[Mi80] strong bisimilarity
ya
vas) =
. ov. |vVG23
[[DH84]]EII;USt M =may =should EJmust ==J= =must {VOOJ
BRV95,NC95 / \ //
CSP[85 Eglrust =may

[Ho80] weak trace equivalence

A spectrum of testing preorders and bisimilarities

[Mi80] strong bisimilarity
o
vas) =
vG23
[DH84] Erllgnrust N Ema}’ =should EJmust = EJ = Egﬁst {VOOJ
[BRV95,NCO5]
preserves linear time properties
under the assumption of justness
CSP[85] =i =may

[Ho80] weak trace equivalence

A spectrum of testing preorders and bisimilarities

/ t>Sp [VG15]
[Mi80] strong bisimilarity/ Sep [GHW21]
o
vas) =
vG23
[[BDRF:/%L};] NC95]ZQUSt e T S === Sk {Vooz%
preserves linear time properties
under the assumption of justness
CSP[85] =i =may

[Ho80] weak trace equivalence

Examples — branching time

=may =may
—Pr Pr
—must must
—Pr Pr
—reward reward
=should Fshould
—J J
—must iémust

b4
Lep

b=
Lep

Examples — must testing cannot see past divergence

—Pr
—must
) Fmay |

Examples — must testing cannot see past divergence

—Pr
—must

Py 4)
J
must

WO,

Examples — must testing tells apart deadlock and divergence

® #r. ()
must
=y

<

L weak

Examples — must testing tells apart deadlock and divergence

® #r. ()
must
=y

<

weak

success

Examples — must testing tells apart deadlock and divergence

® #r. ()
must
=y

<

weak

=7 et success

Examples — justness and full fairness

Examples — justness and full fairness

full fairness

strong fairness

(&) (9 # |
' ' weak fairness

5] 7 e |
justness

I
progress

I
0

Examples — conditional liveness

Examples — conditional liveness

—Pr
—must

=may

P
7‘érerward

Examples — conditional liveness

—Pr
—must

=may
Pr
ireward

Fshould

?_gJ

