
Just Testing

Rob van Glabbeek

University of Edinburgh, Scotland

27 April 2023

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

P ∼ Q means that
P can safely be replaced by Q

in an appropriate context.

De Nicola & Hennessy:

P 6∼ Q if and only if
they react differently on certain tests.

partial trace equiv.

completed trace equiv.

failures equiv.

R

RT

FT

RS

bisimilarity

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

P ∼ Q means that
P can safely be replaced by Q

in an appropriate context.

De Nicola & Hennessy:

P 6∼ Q if and only if
they react differently on certain tests.

partial trace equiv.

completed trace equiv.

failures equiv.

R

RT

FT

RS

bisimilarity

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

P ∼ Q means that
P can safely be replaced by Q

in an appropriate context.

De Nicola & Hennessy:

P 6∼ Q if and only if
they react differently on certain tests.

partial trace equiv.

completed trace equiv.

failures equiv.

R

RT

FT

RS

bisimilarity

Semantic equivalences

This talk is about behavioural equivalence relations on processes.

P ∼ Q means that
P can safely be replaced by Q

in an appropriate context.

De Nicola & Hennessy:

P 6∼ Q if and only if
they react differently on certain tests.

partial trace equiv.

completed trace equiv.

failures equiv.

R

RT

FT

RS

bisimilarity

The theory of testing [DH84]

P 6∼ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P,Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the
parallel composition P|T is successful.

P|T P1|T1 P2|T2 P3|T3 P4|T4

success

P5|T5

Write P vmust Q iff Q must pass any test that P must pass.
Write P ≡must Q if P vmust Q and Q vmust Q.

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

Write P vmay Q iff Q may pass any test that P may pass.
Write P ≡may Q if P vmay Q and Q vmay Q.

The theory of testing [DH84]

P 6∼ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P,Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the
parallel composition P|T is successful.

P|T P1|T1 P2|T2 P3|T3 P4|T4

success

P5|T5

Write P vmust Q iff Q must pass any test that P must pass.
Write P ≡must Q if P vmust Q and Q vmust Q.

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

Write P vmay Q iff Q may pass any test that P may pass.
Write P ≡may Q if P vmay Q and Q vmay Q.

The theory of testing [DH84]

P 6∼ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P,Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the
parallel composition P|T is successful.

P|T P1|T1 P2|T2 P3|T3 P4|T4

success

P5|T5

Write P vmust Q iff Q must pass any test that P must pass.
Write P ≡must Q if P vmust Q and Q vmust Q.

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

Write P vmay Q iff Q may pass any test that P may pass.
Write P ≡may Q if P vmay Q and Q vmay Q.

The theory of testing [DH84]

P 6∼ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P,Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the
parallel composition P|T is successful.

P|T P1|T1 P2|T2 P3|T3 P4|T4

success

P5|T5

Write P vmust Q iff Q must pass any test that P must pass.
Write P ≡must Q if P vmust Q and Q vmust Q.

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

Write P vmay Q iff Q may pass any test that P may pass.
Write P ≡may Q if P vmay Q and Q vmay Q.

The theory of testing [DH84]

P 6∼ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P,Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the
parallel composition P|T is successful.

P|T P1|T1 P2|T2 P3|T3 P4|T4

success

P5|T5

Write P vmust Q iff Q must pass any test that P must pass.
Write P ≡must Q if P vmust Q and Q vmust Q.

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

Write P vmay Q iff Q may pass any test that P may pass.
Write P ≡may Q if P vmay Q and Q vmay Q.

The theory of testing [DH84]

P 6∼ Q if and only if they react differently on certain tests.

A test T if a normal process (like the processes P,Q being tested)
but with a notion of success state.

Process P must pass test T if each complete execution path of the
parallel composition P|T is successful.

P|T P1|T1 P2|T2 P3|T3 P4|T4

success

P5|T5

Write P vmust Q iff Q must pass any test that P must pass.
Write P ≡must Q if P vmust Q and Q vmust Q.

Process P may pass test T if some execution path of the parallel
composition P|T is successful.

Write P vmay Q iff Q may pass any test that P may pass.
Write P ≡may Q if P vmay Q and Q vmay Q.

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the
parallel composition

(

P|

|

T

)\A

is successful.

P|T P1|T1
τ

P2|T2
τ

P3|T3
τ

P4|T4
τ

success

P5|T5
τ

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the
parallel composition (P|

|

T)\A is successful.

P|T P1|T1
τ

P2|T2
τ

P3|T3
τ

P4|T4
τ

success

P5|T5
τ

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the
parallel composition (P|

|

T)\A is successful.

P|T P1|T1

τ

P2|T2

τ

P3|T3

τ

P4|T4

τ

success

P5|T5

τ

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the
parallel composition (P||T)\A is successful.

P|T P1|T1

τ

P2|T2

τ

P3|T3

τ

P4|T4

τ

success

P5|T5

τ

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the
parallel composition

(

P||T

)\A

is successful.

P|T P1|T1

τ

P2|T2

τ

P3|T3

τ

P4|T4

τ

success

P5|T5

τ

CCS versus CSP parallel composition in may-/must-testing

Process P must pass test T if each complete execution path of the
parallel composition (P||T)\A is successful.

P|T P1|T1

τ

P2|T2

τ

P3|T3

τ

P4|T4

τ

success

P5|T5

τ

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?

(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each complete

completeprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

complete

complete

progressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecomplete

progressing

justweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressing

just

weakly fair

execution path of P|T is successful.

P vJ

WF

mustQ iff Q passes any test that P does.
Write P ≡J

WF

mustQ if P vJ

WF

mustQ and Q vJ

WF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjust

weakly fair
execution path of P|T is successful.

P v

J

WF
mustQ iff Q passes any test that P does.

Write P ≡

J

WF
mustQ if P v

J

WF
mustQ and Q v

J

WF
mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressing

just

weakly fair

execution path of P|T is successful.

P vJ

WF

mustQ iff Q passes any test that P does.
Write P ≡J

WF

mustQ if P vJ

WF

mustQ and Q vJ

WF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Completeness criteria

Does each complete execution path of a given
process reach a success state?

What does it mean for a path to be complete?
(Assume for simplicity: only τ -transitions.)

τ

success
τ

τ

τ

‖

‖ success
τ

Process P must pass test T if each

completecompleteprogressingjustweakly fair

execution path of P|T is successful.

P v

JWF

mustQ iff Q passes any test that P does.
Write P ≡

JWF

mustQ if P v

JWF

mustQ and Q v

JWF

mustQ.

•

τ

success

•

τ

•τ τ

success

τ

Justness on Petri nets:

Whenever a transition is enabled,
either it fires eventually

or one of its resources will be consumed.

∅

progress

justness

weak fairness

strong fairness

full fairness

Just must-testing

This defines just must-testing equivalence ≡J
must.

Main results:

≡J
must is a congruence for all operators of CSP.

≡J
must preserves all linear time properties,

when taking justness as the underlying completeness criterion.

≡J
must is the coarsest congruence (for parallel composition,

concealment and injective relabelling) that preserves LT properties.

≡J
must coincides with the fair failure equivalence defined on Petri

nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.

Just must-testing

This defines just must-testing equivalence ≡J
must.

Main results:

≡J
must is a congruence for all operators of CSP.

≡J
must preserves all linear time properties,

when taking justness as the underlying completeness criterion.

≡J
must is the coarsest congruence (for parallel composition,

concealment and injective relabelling) that preserves LT properties.

≡J
must coincides with the fair failure equivalence defined on Petri

nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.

Just must-testing

This defines just must-testing equivalence ≡J
must.

Main results:

≡J
must is a congruence for all operators of CSP.

≡J
must preserves all linear time properties,

when taking justness as the underlying completeness criterion.

≡J
must is the coarsest congruence (for parallel composition,

concealment and injective relabelling) that preserves LT properties.

≡J
must coincides with the fair failure equivalence defined on Petri

nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.

Just must-testing

This defines just must-testing equivalence ≡J
must.

Main results:

≡J
must is a congruence for all operators of CSP.

≡J
must preserves all linear time properties,

when taking justness as the underlying completeness criterion.

≡J
must is the coarsest congruence (for parallel composition,

concealment and injective relabelling) that preserves LT properties.

≡J
must coincides with the fair failure equivalence defined on Petri

nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.

Just must-testing

This defines just must-testing equivalence ≡J
must.

Main results:

≡J
must is a congruence for all operators of CSP.

≡J
must preserves all linear time properties,

when taking justness as the underlying completeness criterion.

≡J
must is the coarsest congruence (for parallel composition,

concealment and injective relabelling) that preserves LT properties.

≡J
must coincides with the fair failure equivalence defined on Petri

nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.

Just must-testing

This defines just must-testing equivalence ≡J
must.

Main results:

≡J
must is a congruence for all operators of CSP.

≡J
must preserves all linear time properties,

when taking justness as the underlying completeness criterion.

≡J
must is the coarsest congruence (for parallel composition,

concealment and injective relabelling) that preserves LT properties.

≡J
must coincides with the fair failure equivalence defined on Petri

nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]

≡Pr
must

CSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]
≡Pr

must

CSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]
≡Pr

mustCSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]
≡Pr

mustCSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]
≡Pr

mustCSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]
≡Pr

mustCSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]
≡Pr

mustCSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

A spectrum of testing preorders and bisimilarities

≡should

[BRV95,NC95]

≡J
must = ≡J = ≡ev.

must
[vG23]
[Vo02]

≡may

weak trace equivalence[Ho80]
≡Pr

mustCSP[85]

≡Pr
must ∩ ≡may[DH84]

≡Pr
reward[vG19]

↔
strong bisimilarity[Mi80]

preserves linear time properties
under the assumption of justness

↔ep [GHW21]

↔sp [vG15]

∅

progress

justness

weak fairness

strong fairness

full fairness

Examples – branching time

•

a

b

c

a

b

d

≡may

≡Pr
must

≡Pr
reward

≡should

≡J
must

6↔
6↔ep

•

a

b

c

b

d

≡may

6≡Pr
must

6≡Pr
reward

6≡should

6≡J
must

6↔
6↔ep

•

a

b

c d

Examples – must testing cannot see past divergence

•

a

τ

≡Pr
must

6≡may

6≡J
must

•

b

τ

Examples – must testing cannot see past divergence

•

a

τ

≡Pr
must

6≡may

6≡J
must

•

b

τ

Examples – must testing tells apart deadlock and divergence

• 6≡Pr
must

≡may

↔weak

≡J
must

•

τ

‖
•

τ

success

Examples – must testing tells apart deadlock and divergence

• 6≡Pr
must

≡may

↔weak

≡J
must

•

τ ‖
•

τ

success

Examples – must testing tells apart deadlock and divergence

• 6≡Pr
must

≡may

↔weak

≡J
must

•

τ ‖
•

τ

success

Examples – justness and full fairness

•

a

•

τ

6≡J

↔
•

a

τ

≡J

6≡should

≡Pr
must

≡Pr
reward

•

a

τ

τ

τ

∅

progress

justness

weak fairness

strong fairness

full fairness

Examples – justness and full fairness

•

a

•

τ

6≡J

↔
•

a

τ

≡J

6≡should

≡Pr
must

≡Pr
reward

•

a

τ

τ

τ

∅

progress

justness

weak fairness

strong fairness

full fairness

Examples – conditional liveness

c

•

c

g

τ

≡Pr
must

≡may

6≡Pr
reward

6≡should

6≡J

•

c

g

τ

Examples – conditional liveness

c

•

c

g

τ

≡Pr
must

≡may

6≡Pr
reward

6≡should

6≡J

•

c

g

τ

Examples – conditional liveness

c

•

c

g

τ

≡Pr
must

≡may

6≡Pr
reward

6≡should

6≡J

•

c

g

τ

