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Process P may pass test T if some execution path of the parallel
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Completeness criteria

success
O (1 7]
full fairness
. success strong fairness
Justness on Petri nets: weak fairness
Whenever a transition is enabled, st
) o ustness
either it fires eventually ]
or one of its resources will be consumed.
progress
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This defines just must-testing equivalence =, ..
Main results:
=7 . is a congruence for all operators of CSP.

E;ﬁum preserves all linear time properties,
when taking justness as the underlying completeness criterion.

=/ . is the coarsest congruence (for parallel composition,
concealment and injective relabelling) that preserves LT properties.

=7 . coincides with the fair failure equivalence defined on Petri
nets by Walter Vogler in 2002. However, Vogler did not obtain this
equivalence through a (must-)testing scenario.
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