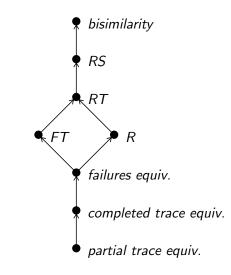
Just Testing

Rob van Glabbeek

University of Edinburgh, Scotland

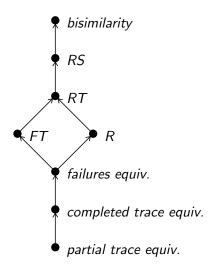
27 April 2023

This talk is about *behavioural equivalence relations* on processes.



This talk is about *behavioural equivalence relations* on processes.

 $P \sim Q$ means that P can safely be replaced by Q in an appropriate context.

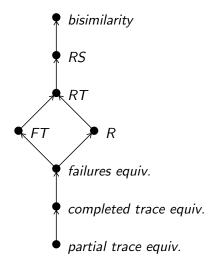


This talk is about *behavioural equivalence relations* on processes.

 $P \sim Q$ means that P can safely be replaced by Q in an appropriate context.

De Nicola & Hennessy:

 $P \not\sim Q$ if and only if they react differently on certain tests.

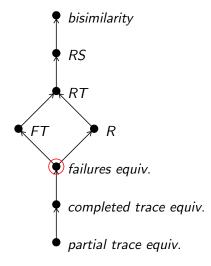


This talk is about *behavioural equivalence relations* on processes.

 $P \sim Q$ means that P can safely be replaced by Q in an appropriate context.

De Nicola & Hennessy:

 $P \not\sim Q$ if and only if they react differently on certain tests.



 $P \not\sim Q$ if and only if they react differently on certain tests.

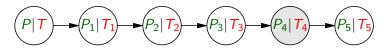
 $P \not\sim Q$ if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested) but with a notion of *success state*.

 $P \not\sim Q$ if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested) but with a notion of *success state*.

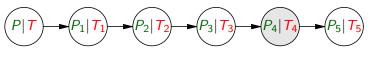
Process P must pass test T if each complete execution path of the parallel composition P|T is successful.



 $P \not\sim Q$ if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested) but with a notion of *success state*.

Process P must pass test T if each complete execution path of the parallel composition P|T is successful.

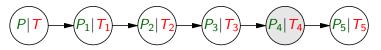


Write $P \sqsubseteq_{\text{must}} Q$ iff Q must pass any test that P must pass. Write $P \equiv_{\text{must}} Q$ if $P \sqsubseteq_{\text{must}} Q$ and $Q \sqsubseteq_{\text{must}} Q$.

 $P \not\sim Q$ if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested) but with a notion of *success state*.

Process P must pass test T if each complete execution path of the parallel composition P|T is successful.



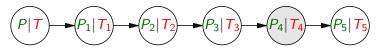
Write $P \sqsubseteq_{\text{must}} Q$ iff Q must pass any test that P must pass. Write $P \equiv_{\text{must}} Q$ if $P \sqsubseteq_{\text{must}} Q$ and $Q \sqsubseteq_{\text{must}} Q$.

Process P may pass test T if some execution path of the parallel composition P|T is successful.

 $P \not\sim Q$ if and only if they react differently on certain tests.

A test T if a normal process (like the processes P, Q being tested) but with a notion of *success state*.

Process P must pass test T if each complete execution path of the parallel composition P|T is successful.

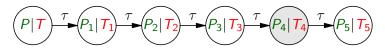


Write $P \sqsubseteq_{\text{must}} Q$ iff Q must pass any test that P must pass. Write $P \equiv_{\text{must}} Q$ if $P \sqsubseteq_{\text{must}} Q$ and $Q \sqsubseteq_{\text{must}} Q$.

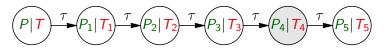
Process P may pass test T if some execution path of the parallel composition P|T is successful.

Write $P \sqsubseteq_{may} Q$ iff Q may pass any test that P may pass. Write $P \equiv_{may} Q$ if $P \sqsubseteq_{may} Q$ and $Q \sqsubseteq_{may} Q$.

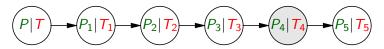
Process P must pass test T if each complete execution path of the parallel composition P|T is successful.



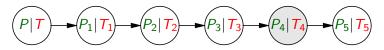
Process *P* must pass test *T* if each complete execution path of the parallel composition $(P|T) \setminus A$ is successful.



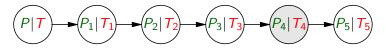
Process *P* must pass test *T* if each complete execution path of the parallel composition $(P|T) \setminus A$ is successful.



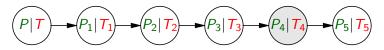
Process *P* must pass test *T* if each complete execution path of the parallel composition $(P || T) \setminus A$ is successful.



Process P must pass test T if each complete execution path of the parallel composition $P \| T$ is successful.



Process *P* must pass test *T* if each complete execution path of the parallel composition $(P || T) \setminus A$ is successful.



Does each complete execution path of a given process reach a success state?

Does each complete execution path of a given process reach a success state?

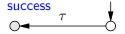
What does it mean for a path to be complete?

Does each complete execution path of a given process reach a success state?

Does each complete execution path of a given process reach a success state?

Does each complete execution path of a given process reach a success state?

Does each complete execution path of a given process reach a success state?

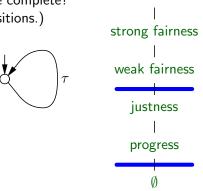


Does each complete execution path of a given process reach a success state?

What does it mean for a path to be complete? (Assume for simplicity: only τ -transitions.)

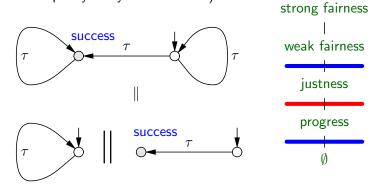
success

 τ



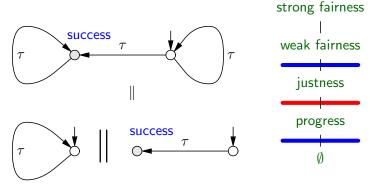
Does each complete execution path of a given process reach a success state?

What does it mean for a path to be complete? (Assume for simplicity: only τ -transitions.)



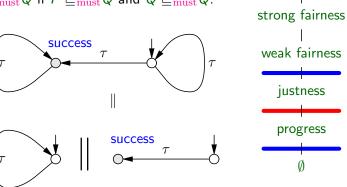
Process P must pass test T if each complete execution path of P|T is successful.

 $P \sqsubseteq_{\text{must}} Q$ iff Q passes any test that P does. Write $P \equiv_{\text{must}} Q$ if $P \sqsubseteq_{\text{must}} Q$ and $Q \sqsubseteq_{\text{must}} Q$.



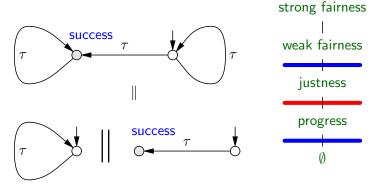
Process P must pass test T if each complete execution path of P|T is successful.

 $P \sqsubseteq_{\text{must}} Q$ iff Q passes any test that P does. Write $P \equiv_{\text{must}} Q$ if $P \sqsubseteq_{\text{must}} Q$ and $Q \sqsubseteq_{\text{must}} Q$.



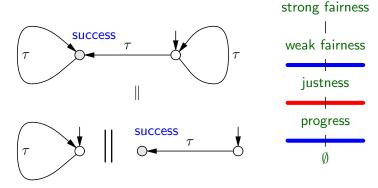
Process P must pass test T if each progressing execution path of P|T is successful.

 $P \sqsubseteq_{\text{must}} Q$ iff Q passes any test that P does. Write $P \equiv_{\text{must}} Q$ if $P \sqsubseteq_{\text{must}} Q$ and $Q \sqsubseteq_{\text{must}} Q$.



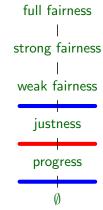
Process P must pass test T if each just execution path of P|T is successful.

 $P \sqsubseteq_{\text{must}}^{J} Q \text{ iff } Q \text{ passes any test that } P \text{ does.} \qquad \text{full fairness}$ Write $P \equiv_{\text{must}}^{J} Q \text{ if } P \sqsubseteq_{\text{must}}^{J} Q \text{ and } Q \sqsubseteq_{\text{must}}^{J} Q.$



Process *P* must pass test *T* if each weakly fair execution path of P|T is successful.

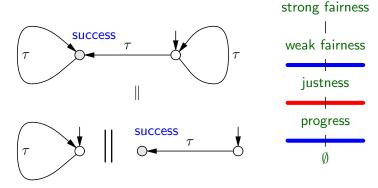
 $P \sqsubset_{\text{must}}^{WF} Q$ iff Q passes any test that P does. Write $P \equiv \frac{WF}{must}Q$ if $P \sqsubseteq \frac{WF}{must}Q$ and $Q \sqsubset \frac{WF}{must}Q$.

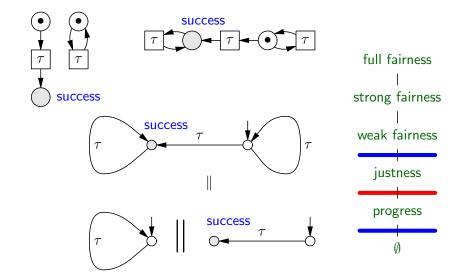


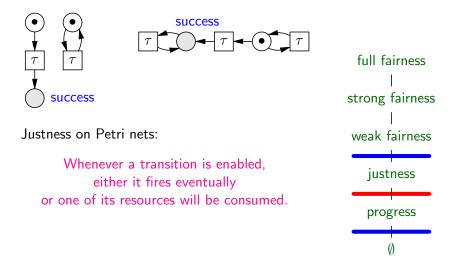


Process P must pass test T if each just execution path of P|T is successful.

 $P \sqsubseteq_{\text{must}}^{J} Q \text{ iff } Q \text{ passes any test that } P \text{ does.} \qquad \text{full fairness}$ Write $P \equiv_{\text{must}}^{J} Q \text{ if } P \sqsubseteq_{\text{must}}^{J} Q \text{ and } Q \sqsubseteq_{\text{must}}^{J} Q.$







Just must-testing

This defines just must-testing equivalence \equiv_{must}^{J} .

Just must-testing

This defines just must-testing equivalence \equiv_{must}^{J} .

Main results:

Just must-testing

This defines just must-testing equivalence \equiv_{must}^{J} .

Main results:

$$\equiv_{\text{must}}^{J}$$
 is a congruence for all operators of CSP.

Just must-testing

This defines just must-testing equivalence \equiv_{must}^{J} .

Main results:

 \equiv_{must}^{J} is a congruence for all operators of CSP.

 $\equiv^J_{\rm must}$ preserves all linear time properties, when taking justness as the underlying completeness criterion.

Just must-testing

This defines just must-testing equivalence \equiv_{must}^{J} .

Main results:

 \equiv_{must}^{J} is a congruence for all operators of CSP.

 \equiv_{must}^{J} preserves all linear time properties, when taking justness as the underlying completeness criterion.

 \equiv_{must}^{J} is the coarsest congruence (for parallel composition, concealment and injective relabelling) that preserves LT properties.

Just must-testing

This defines just must-testing equivalence \equiv_{must}^{J} .

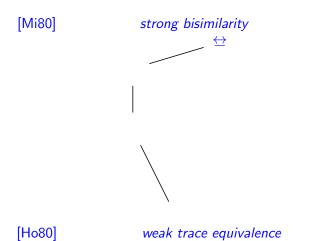
Main results:

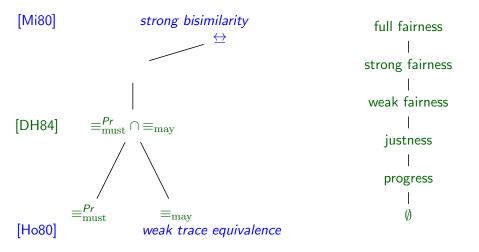
 \equiv_{must}^{J} is a congruence for all operators of CSP.

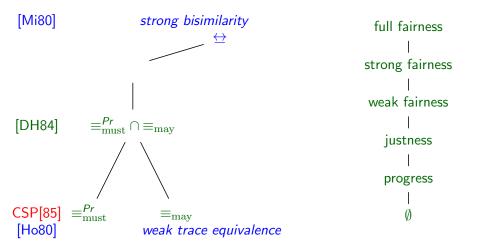
 $\equiv_{\rm must}^{J}$ preserves all linear time properties, when taking justness as the underlying completeness criterion.

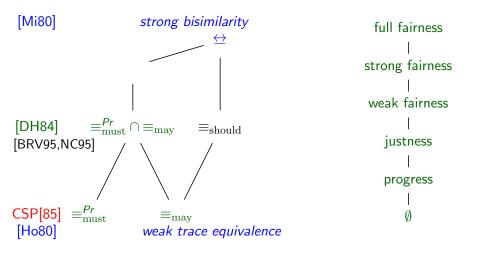
 \equiv_{must}^{J} is the coarsest congruence (for parallel composition, concealment and injective relabelling) that preserves LT properties.

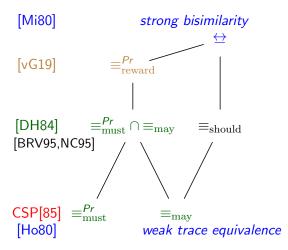
 \equiv_{must}^{J} coincides with the *fair failure equivalence* defined on Petri nets by Walter Vogler in 2002. However, Vogler did not obtain this equivalence through a (must-)testing scenario.

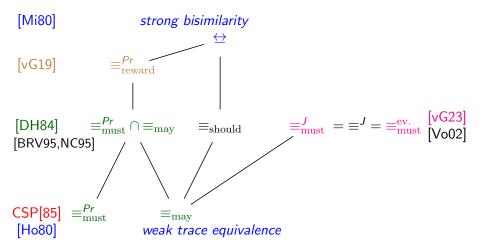


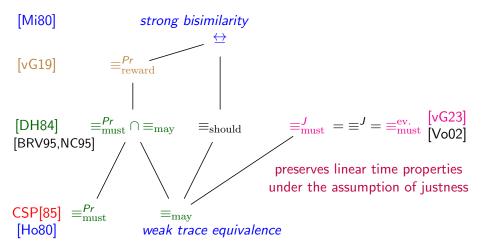


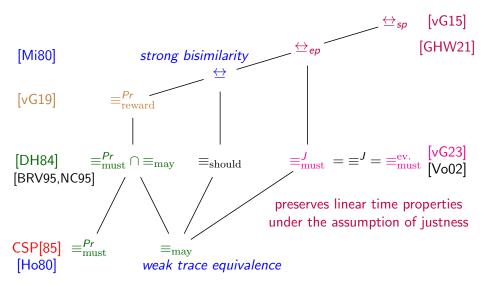




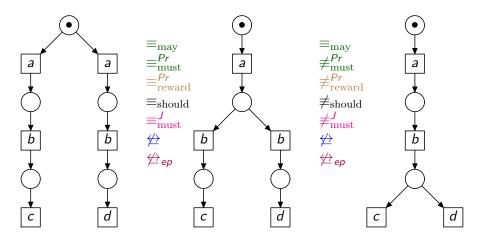




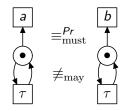




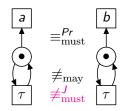
Examples – branching time



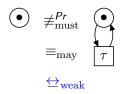
Examples – must testing cannot see past divergence



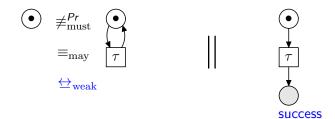
Examples – must testing cannot see past divergence



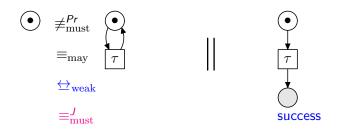
Examples - must testing tells apart deadlock and divergence



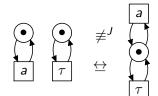
Examples - must testing tells apart deadlock and divergence



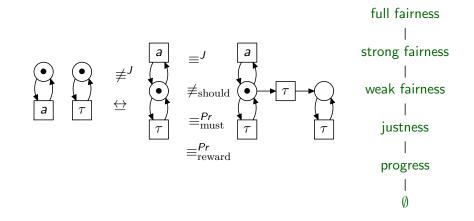
Examples - must testing tells apart deadlock and divergence



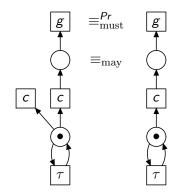
Examples - justness and full fairness



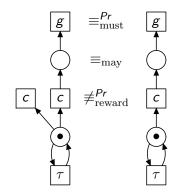
Examples – justness and full fairness



Examples – conditional liveness



Examples – conditional liveness



Examples – conditional liveness

