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Abstract. To prove liveness properties of concurrent systems, it is of-
ten necessary to postulate progress, fairness and justness properties.
This paper investigates how the necessary progress, fairness and just-
ness assumptions can be added to or incorporated in a standard process-
algebraic specification formalism. We propose a formalisation that can
be applied to a wide range of process algebras. The presented formalism
is used to reason about route discovery and packet delivery in the setting
of wireless networks.

1 Introduction

In a process-algebraic setting, safety properties of concurrent systems are usu-
ally shown by the use of invariants on a labelled transition system (LTS). This
does not require any assumptions about the behaviour of concurrent systems
beyond their modelling as states in an LTS. In order to prove liveness properties
on the other hand it is usually necessary to postulate certain progress, fairness
and justness properties as part of the specification of the systems under investi-
gation. This paper investigates how the necessary progress, fairness and justness
properties can be added to or incorporated in a standard process-algebraic spec-
ification formalism. Liveness properties are formalised in terms of a temporal
logic interpreted on complete paths in the LTS of the process algebra. Progress,
fairness and justness properties are captured by fine-tuning the definition of what
constitutes a complete path.

Section 2 introduces an Algebra of Broadcast Communication (ABC)—a
variant of the process algebra CBS [20]—that is essentially CCS [16] augmented
with a formalism for broadcast communication. ABC is given a structural opera-
tional semantics [18] that interprets expressions as states in an LTS. We develop
our approach for formalising liveness properties as well as progress, fairness and
justness assumptions in terms of this process algebra. However, the presented
approach can be applied to a wide range of process algebras. ABC is largely
designed to be a convenient starting point for transferring the presented theory
to such algebras; it contains all the features for which we are aware that the
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application of our theory poses non-trivial problems, and, at the same time, is
kept as simple as possible. In [8] we apply the same approach to a more involved
process algebra called AWN (Algebra for Wireless Networks).

Section 3 recalls Linear-time Temporal Logic (LTL) [19] and describes a way
to interpret it on a labelled transition system that arises as the semantic inter-
pretation of a process algebra like ABC. This yields a way to represent desirable
properties of concurrent systems specified in such a process algebra by means
of LTL properties. We illustrate this by formulating packet delivery, a liveness
property studied in [8] in the context of wireless mesh network protocols. The
presented development applies just as well to desirable properties of concurrent
systems specified in branching time temporal logics such as CTL and CTL∗.

In Section 4.1 we formulate an elementary progress assumption on the be-
haviour of processes, without which no useful liveness property of a system will
hold. In the standard interpretation of temporal logic [19,7] a stronger progress
assumption is built in, but we argue that this stronger version is not a valid
assumption in the context of reactive systems. In order to derive a progress
assumption that is both necessary and justifiable in the reactive context we en-
vision, we introduce the concept of an output action, which cannot be blocked by
the context in which a process is running. Although output actions are common-
place in many specification formalisms, their use in process algebra is limited at
best, and we have not seen them used to define progress properties. The main
reason for working with a language that is richer than CCS, is that restricted to
CCS the set of output actions would be empty.

In Section 4.2 we discuss weak and strong fairness assumptions and propose
a formalisation in the context of process algebras like ABC by augmenting a
process-algebraic specification P with a fairness specification, which is given as
a collection of temporal logic formulas. This follows the traditional approach
of TLA [13] and other formalisms [9], “in which first the legal computations
are specified, and then a fairness notion is used to exclude some computations
which otherwise would be legal” [1]. However, in order to do justice to the
reactive nature of the systems under consideration, we need a more involved
consistency requirement between the process-algebraic specification of a system
and its fairness specification.

In Section 4.3 we propose a justness assumption for parallel-composed tran-
sition systems, essentially assuming progress of all the component processes. In
the literature, such justness properties are typically seen as special cases of weak
fairness properties, and the term justice is often used as a synonym for weak
fairness. Here we consider justness to be a notion distinct from fairness, and
propose a completely different formalisation. Fairness is a property of schedulers
that repeatedly choose between tasks, whereas justness is a property of parallel-
composed transition systems. Nevertheless, we show that our notion of justness
coincides with the original notion of justice of [14]—a weak fairness property.
This requires an interpretation of the work of [14] applied to LTSs involving a
more precise definition—and decision—of what it means for a transition to be
continuously enabled.
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Table 1. Structural operational semantics of ABC

α.P α−→ P (Act)
P

α−→ P ′

P +Q
α−→ P ′

(Sum-l)
Q

α−→ Q′

P +Q
α−→ Q′

(Sum-r)

P
η−→ P ′

P |Q η−→ P ′|Q
(Par-l)

P
c−→ P ′, Q

c̄−→ Q′

P |Q τ−→ P ′|Q′
(Comm)

Q
η−→ Q′

P |Q η−→ P |Q′
(Par-r)

P
b♯1−−→ P ′, Q

b?−6→

P |Q b♯1−−→ P ′|Q
(Bro-l)

P
b♯1−−→ P ′, Q

b♯2−−→ Q′

P |Q b♯−→ P ′|Q′
(Bro-c)

P
b?−6→, Q

b♯2−−→ Q′

P |Q b♯2−−→ P |Q′
(Bro-r)

♯1◦♯2=♯ 6= with
◦ ! ?

! !

? ! ?

P ℓ−→ P ′

P [f ]
f(ℓ)−−→ P ′[f ]

(Rel)
P ℓ−→ P ′

P\c ℓ−→ P ′\c
(c 6=ℓ6=c̄) (Res)

P ℓ−→ P ′

A
ℓ−→ P ′

(A
def
= P ) (Rec)

Finally, Section 5 addresses the question whether system specifications con-
sisting of a process-algebraic and a fairness specification allow implementations
that can be described entirely process-algebraic, i.e., without fairness component.
Here an ‘implementation’ allows the replacement of nondeterministic choices by
(more) deterministic choices following a particular scheduling policy. In the con-
text of CCS we conjecture a negative answer by showing an extremely simple fair
scheduling specification—given as a CCS expression augmented with a fairness
specification—that could not be implemented by any CCS expression alone. This
specification does allow an implementation in ABC without fairness component,
which takes advantage of justness properties for output actions.

2 ABC—An Algebra of Broadcast Communication

The Algebra of Broadcast Communication (ABC) is parametrised with sets A

of agent identifiers, B of broadcast names and C of handshake communication
names ; each A ∈ A comes with a defining equation A

def
= P with P being a

guarded ABC expression as defined below.
The collections B! and B? of broadcast and receive actions are given by

B♯ := {b♯ | b ∈ B} for ♯ ∈ {!, ?}. The set C̄ of handshake communication co-
names is C̄ := {c̄ | c ∈ C }, and the set H of handshake actions is H := C ∪· C̄ ,
the disjoint union of the names and co-names. The function .̄ is extended to H

by declaring ¯̄c = c.
Finally, Act := B! ∪· B? ∪· H ∪· {τ} is the set of actions. Below, A,B,C range

over A, b over B, c over H , η over H ∪{τ} and α, ℓ over Act. A relabelling is a
function f : (B →B)∪ (C →C ). It extends to Act by f(c̄) = f(c), f(b♯)= f(b)♯
and f(τ) := τ . The set ExABC of ABC expressions is the smallest set including:

0 inaction α.P prefixing P +Q choice
P |Q parallel composition P\c restriction P [f ] relabelling
A agent identifier
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for P,Q ∈ ExABC and relabellings f . An expression is guarded if each agent
identifier occurs within the scope of a prefixing operator. The semantics of ABC
is given by the labelled transition relation →ABC ⊆ ExABC×Act×ExABC, where
the transitions P

ℓ−→ Q are derived from the rules of Table 1.
ABC is basically the Calculus of Communicating Processes (CCS) [16] aug-

mented with a formalism for broadcast communication taken from the Calculus
of Broadcasting Systems (CBS) [20]. The syntax without the broadcast and re-
ceive actions and all rules except (Bro-l), (Bro-c) and (Bro-r) are taken ver-
batim from CCS. However, the rules now cover the different name spaces; (Act)
for example allows labels of broadcast and receive actions. The rule (Bro-c)—
without rules like (Par-l) and (Par-r) with label b!—implements a form of
broadcast communication where any broadcast b! performed by a component
in a parallel composition is guaranteed to be received by any other component
that is ready to do so, i.e., in a state that admits a b?-transition. In order to
ensure associativity of the parallel composition, one also needs this rule for com-
ponents receiving at the same time (♯1=♯2=?). The rules (Bro-l) and (Bro-r)
are added to make broadcast communication non-blocking : without them a com-
ponent could be delayed in performing a broadcast simply because one of the
other components is not ready to receive it.

Theorem 2.1. Strong bisimilarity [16] is a congruence for all operators of ABC.

Proof. This follows immediately from the observation that all rules of Table 1
are in the GSOS format of Bloom, Istrail & Meyer, using [3, Theorem 5.1.2]. ⊓⊔

To establish the associativity of parallel composition of ABC up to strong bisim-
ilarity (↔), we will employ a general result of Cranen, Mousavi & Reniers [5].
However, for this result to apply, we need a structural operational semantics of
the language in the De Simone format [22]—so without negative premises.

To this end, let B: := {b: | b ∈ B} be the set of broadcast discards, and
L := B: ∪· Act the set of transition labels. We enrich the transition relation of
ABC with transitions labelled with discard communications, by adding the rules

0
b:−→ 0 (Dis0) α.P

b:−→ α.P (α 6=b?) (Dis1)
P

b:−→ P ′, Q
b:−→ Q′

P +Q
b:−→ P ′ +Q′

(Dis2)

to Table 1, allowing ♯1=♯2=♯=: in (Bro-c),1 and letting ℓ range over all of L .

Lemma 2.2. [20] P
b:−→Q iff Q=P ∧ P b?−6→ , for P,Q∈ExABC and b∈B.

Proof. A straightforward induction on derivability of transitions. ⊓⊔

Because of this, a negative premise P
b?−6→ can be replaced by a

positive premise P
b:−→ P ′ and all rules (Bro) in Table 1 can be

unified into the single rule (Bro-c), where ♯1, ♯2, ♯ range over {!, ?, :}
and ◦ is defined by the table on the right. The resulting rules are
all in the De Simone format.

◦ ! ? :
! ! !
? ! ? ?
: ! ? :

1 The remaining cases are still undefined, i.e, ♯1◦ : = : ◦♯2 = (for ♯1, ♯2 6= :).
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Corollary 2.3. The original and modified structural operational semantics of
ABC yield the same labelled transition relation →ABC when transitions labelled
b: are ignored.

In fact, our ‘modified’ operational semantics stems directly from CBS [20].

Theorem 2.4. In ABC, parallel composition is associative up to↔.

Proof. The associativity depends on the generated transition relation only, and is
preserved when ignoring transitions with a particular label. So by Corollary 2.3 it
suffices to investigate the modified semantics. The modified operational rules of
ABC fit the ASSOC-De Simone rule format of [5], which guarantees associativity
up to↔. The detailed proof that our rules fit this format is similar to the proof
of Theorem 4.4 in [8]. ⊓⊔

3 Formalising Temporal Properties

We will use Linear-time Temporal Logic (LTL) [19] to specify properties that
one would like to establish for concurrent systems. For the purpose of this paper,
any other temporal logic could have been used as well.

We briefly recapitulate the syntax and semantics of LTL; a thorough and
formal introduction to this logic can be found e.g. in [11]. The logic is built from
a set of atomic propositions that characterise facts that may hold in some state
of a (concurrent) system. A classical example is that a ‘transition ν is enabled’,
denoted by en(ν).

LTL formulas are interpreted on paths in a transition system,2 where each
state is labelled with the atomic propositions that hold in that state. A path π
is a finite or infinite sequence of states such there is a transition from each state
in π to the next, except the last one if π is finite. An atomic proposition p holds
for a path π if p holds in the first state of π.

LTL [19] uses the temporal operators X, G, F and U.3 The formulas Xφ,
Gφ and Fφ mean that φ holds in the second state on a given path, globally in
all states, and eventually in some state, respectively; φUψ means that ψ will
hold eventually, and φ holds in all states until this happens.4 Here a formula
φ is deemed to hold in a state on a path π iff it holds for the remainder of π
when starting from that state. LTL formulas can be combined by the logical
connectives conjunction ∧, disjunction ∨, implication ⇒ and negation ¬.

An LTL formula holds for a process, modelled as a state in a transition
system iff it holds for all complete paths in the system starting from that state.5

A path is complete iff it leaves no transitions undone without a good reason; in
the original work on LTL [15] the complete paths are exactly the infinite ones,
but in Section 4 we propose a different concept of completeness: a path will be

2 A transition system is given by a set S of states and a set T ⊆ S × S of transitions.
3 X and U were not introduced in the original paper [19]; they were added later on.
4 G and F can be expressed in terms of U: Fφ ≡ trueUφ and Gφ ≡ ¬F¬φ.
5 A path staring from a state s is also called a path of s.
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considered complete iff it is progressing, fair and just, as defined in Sections 4.1,
4.2 and 4.3, respectively.6

Below we will apply LTL to the labelled transition system T generated by
the structural operational semantics of ABC.7 Here, the most natural atomic
propositions are the transition labels: they tell when an action takes place. These
propositions hold for transitions rather than for states. Additionally, one can
consider state-based propositions such as en(ν). In languages that maintain data
variables,8 propositions such as ‘x ≤ 7’ that report on the current value of such
variables can also be associated to the states.

To incorporate the transition-based atomic propositions into the framework
of temporal logic, we perform a translation of the transition-labelled transition
system T into a state-labelled transition system S , and apply LTL to the latter. A
suitable translation, proposed in [6], introduces new states halfway the existing
transitions—thereby splitting a transition ℓ into ℓ; τ—and attaches transition
labels to the new ‘midway’ states. If we also have state-based atomic propositions
stemming from T , we furthermore declare any atomic proposition except en(ν)

that holds in state Q to also hold for the new state midway a transition P
ℓ−→ Q.

LTL formulas are interpreted on the paths in S . Such a path is a sequence of
states of S , and thus an alternating sequence of states and transitions from T .
Here we will only consider paths that are infinite or end in a state of T ; paths
ending ‘midway a transition’ will not be complete, progressing, fair or just.

Below we use LTL to formalise properties that say that whenever a pre-
condition φpre holds in a reachable state, the system will eventually reach a
state satisfying the postcondition φpost . Such a property is called an eventuality
property in [19]; it is formalised by the LTL formula G

(
φpre ⇒ Fφpost

)
.

Example 3.1. In a language like ABC we can model a network by means of a
parallel composition of processes running on the nodes in the network. Each
of those processes Ai, for 1 ≤ i ≤ n, could be specified by a defining equation
Ai

def
= Pi, where Pi always ends with a recursive call to Ai. This way, the be-

haviour specified by Pi is repeated forever. The processes Ai send messages to
each other along shared channels. Here a message m transmitted along a broad-
cast or handshake channel is modelled by a name cm ∈ B or cm ∈ C .

Suppose the process A0 can receive messages m ∈ {1, ..., k} from the envi-
ronment. This could be modelled by A0

def
= c1.P

1
0 + · · ·+ ck.P

k
0 . The behaviour

of the nodes in the network could be specified so as to guarantee that such a
message will eventually reach the node running the process An, which will de-
liver it to the environment by performing the broadcast dm!. We may assume
that no other nodes can perform the actions cm or dm!.

6 We declare a formula Xφ false on any path that lacks a second state.
7 A labelled transition system (LTS) is given by a set S of states and a transition
relation T ⊆ S × L × S for some set of labels L . The LTS generated by ABC has
S := ExABC and T := →ABC.

8 such as the algebra for wireless networks AWN [8]; see below
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A useful property that this network should have is packet delivery : any mes-
sage received from the environment by A0 will eventually be delivered back to
the environment by An. In LTL it can be formulated as G(cm ⇒ Fdm!).

In [8] we model a routing protocol in a process algebra for wireless networks
(AWN) that captures dynamic topologies, where nodes drift in and out of trans-
mission range, and communication between two nodes is successful only when
they are within transmission range of each other. In this context a packet de-
livery property is formulated that can be obtained from a property like the one
above by incorporating a number of side conditions.

4 Progress, Fairness and Justness

In [8, Sect. 9], as well as above, we formalise properties that say that under
certain conditions some desired activity will eventually happen, or some desired
state will eventually be reached. As a simple instance consider the transition
systems in Figures 1(a)–(c), where the double-circled state satisfies a desired
property φ. The formula G(a⇒ Fφ) says that once the action a occurs, eventu-
ally we will reach a state where φ holds. We investigate reasons why this formula
might not hold, and formulate assumptions that guarantee it does.

4.1 Progress

The first thing that can go wrong is that the process of Figure 1(a)9 performs
a, thereby reaching the state s, and subsequently remains in the state s without
ever performing the internal action τ that leads to the desired state t, satisfying
φ. If there is the possibility of remaining in a state even when there are enabled
internal actions, no useful liveness property about processes will ever be guar-
anteed. We therefore make an assumption that rules out this type of behaviour.

A process in a state that admits an internal action10 will eventually
perform an action.

(P1)

(P1) is called a progress property. It guarantees that the process depicted in
Figure 1(a) satisfies the LTL formula G(a ⇒ Fφ). We cannot assume progress
when only external actions are possible. For instance, the process of Figure 1(a)
will not necessarily perform the action a, and hence need not satisfy the formula
Fφ. The reason is that external actions could be synchronisations with the en-
vironment, and the environment may not be ready to synchronise. In ABC this
can happen if a is a handshake action c ∈ H or a receive action b? ∈ B?. Here it
makes sense to distinguish two kinds of external actions: those whose execution
requires cooperation from the environment in which the process runs, and those

9 Following the approach of CCS [16] we identify processes and states, and do not
use a notion of an initial state. When speaking of a process depicted graphically, by
default we mean the state indicted by the short arrow in the figure.

10 ABC offers only one internal action τ . Any other action is called external.
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r s t

a τ

(a) Progress
r s t

a τ

τ

(b) Fairness

a τ ‖
τ

=

r s t

a τ

τ τ τ

(c) Justness

Fig. 1. Progress, Fairness and Justness

that do not. We call the latter kind output actions. As far as progress properties
go, output actions can be treated just like internal actions:

A process in a state that admits an output action will eventually
perform an action.

(P2)

In case a is an output action, which can happen independent of the environment,
the formula Fφ holds for the process of Figure 1(a). In the remainder we treat
internal actions and output actions together; we call them non-blocking actions.

We formalise (P1) and (P2) through a suitable modification of the definition
of a complete path. In early work on temporal logic, formulas were interpreted
on Kripke structures: transition systems with unlabelled transitions, subject to
the condition of totality, saying that each state admits at least one outgoing
transition. In this context, the complete paths are defined to be all infinite paths
of the transition system. When giving up totality, it is customary to deem com-
plete also those paths that end in a state from which no further transitions are
possible [6]. Here, we go a step further, and consider paths that are either infinite
or end in a state from which no further non-blocking actions are possible. Those
paths are called progressing. This definition exactly captures (P1) and (P2).

This proposal is a middle ground between two extremes. Dropping all progress
properties amounts to defining each path to be complete. This yields a temporal
logic that is not powerful enough to establish nontrivial eventuality properties.
Defining a path to be complete only when it cannot be further extended, on
the other hand, incorporates progress properties that do not hold for reactive
systems. It would give rise to the unwarranted conclusion that the property Fφ
holds for the process of Figure 1(a), regardless of the nature of a.

As we will show, progressing paths do not capture fairness and justness prop-
erties; hence they should not be called complete. In Sections 4.2 and 4.3 we will
propose a notion of a complete path that is progressing and also captures such
properties. This restriction concerns the infinite paths only; for finite paths com-
plete will coincide with progressing.

It remains to decide which of the external actions generated by the structural
operational semantics of a language should be classified as output actions. Some
actions cannot be output, since they can be blocked by the environment. In
ABC, any handshake action c ∈ H can be blocked by restriction. Since (c.0)\c
cannot perform any action, c cannot be output. For the remaining external
actions, the user can decide whether they are output or not. For ABC we decide
that a broadcast (b!) is an output action, whereas a receive (b?) is not. Informal
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intuition explains the reason: a process that broadcasts a message should be able
to perform this action independent of whether other processes are receiving it.
On the other hand, a process should only be able to receive a message that is
sent by another process.

The above analysis assumes the original operational semantics of ABC, with
negative premises. For the modified semantics with discard-transitions, the ques-
tion arises whether b: should count as an output action. Here the right answer
is that b: is a transition label that does not count as an action at all. The rea-
son is that we want our progress property (P2) to imply that the ABC process
b1!.b2!.0 will eventually execute the broadcast action b2. However, a potentially
complete path that invalidates this property consists of b1! followed by infinitely
many broadcast discards b1: (or b2:). In the original operational semantics such
a path does not exist, and the property is satisfied. To obtain the same result
in the modified operational semantics, we classify b: as a non-action. This way,
(P2) says that after b1: the process will eventually perform a transition that is
not a discard; this must be b2!. Formally, this is achieved by excluding from
the definition of progressing path all paths that end in infinitely many discard-
transitions (all looping in the final state), where the final state in the path admits
a non-blocking action. To avoid further encounters with this complication, we
will henceforth assume the original operational semantics.

4.2 Fairness

With the progress requirements (P1) and (P2) embedded in our semantics of LTL,
the process of Figure 1(a) satisfies the formula G(a ⇒ Fφ). Yet, the process of
Figure 1(b) does not satisfy this formula. The reason is that in state s a choice is
made between two internal transitions. One leads to the desired state satisfying
φ, whereas the other gives the process a chance to make the decision again. This
can go wrong in exactly one way, namely if the τ -loop is chosen every time.

For some applications it is warranted to make a global fairness assumption,
saying that in verifications we may simply assume our processes to eventually
escape from a loop such as in Figure 1(b) and do the right thing. A process-
algebraic verification approach based on such an assumption is described in [2].
Moreover, a global fairness assumption is incorporated in the weak bisimula-
tion semantics employed in [16]. Different global fairness assumptions in process
algebra appear in [4].

An alternative approach, which we follow here, is to explicitly declare cer-
tain choices to be fair, while leaving open the possibility that others are not. A
strong fairness assumption requires that if a task is enabled infinitely often,11

but allowing interruptions during which it is not enabled, it will eventually be
scheduled. Such a property is expressed in LTL as G(GFψ ⇒ Fφ),12 or equiva-
lently GFψ ⇒ GFφ; here ψ is the condition that states that the task is enabled,

11 or in the final state of a run, although for many tasks this is a logical impossibility
12 These properties were introduced in LTL in [10] under the name ‘responsiveness to

persistence’.
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whereas φ states that it is being executed. A weak fairness assumption requires
that if a task, from some point onwards, is perpetually enabled, it will eventu-
ally be scheduled. In LTL this is expressed as G(Gψ ⇒ Fφ),13 or equivalently
FGψ ⇒ GFφ.

If a formula ψ holds in state s of Figure 1(b), and φ in t, then the strong
fairness assumption G(GFψ ⇒ Fφ) ensures the choice at s to be fair. If ψ even
holds in (or during) the transition that constitutes the τ -loop, the weak fairness
assumptionG(Gψ ⇒ Fφ) suffices. If this property is part of the specification, the
process of Figure 1(b) will satisfy the desired eventually property G(a⇒ Fφ).

In general, we propose a specification framework where a process is specified
by a pair of a process expression P (for instance in the language ABC) and a
fairness specification F , consisting of a collection of LTL formulas (where for
instance the actions of ABC are allowed as atomic propositions). Typically, F

contains strong or weak fairness properties.

The semantics of such a specification is again a pair. The first component is
the state P in the LTS generated by ABC, and the second component, the set
of fair paths, is a subset of the progressing paths starting from P , namely those
that satisfy the formulas in F .

We require the state P in the LTS and the fairness specification to be con-
sistent with each other. By this we mean that from P one cannot reach a state
from where, given a sufficiently uncooperative environment, it is impossible to
satisfy the fairness specification—in other words [12], ‘the automaton can never
“paint itself into a corner”’. In [12,13] this requirement is called machine closure,
and demands that any finite path in the LTS, starting from P , can be extended
to a path satisfying F. Since we deal with a reactive system here, we need a
more involved consistency requirement, taking into account all possibilities of
the environment to allow or block transitions that are not fully controlled by the
specified system itself. This requirement can best be explained in terms of a two
player game between a scheduler and the environment.

The game begins with any finite path π starting from P , ending in a state
Q ∈ ExABC, chosen by the environment. In each turn, first the environment
selects a set next(Q) of transitions originating from Q; this set has to include
all transitions labelled with non-blocking actions originating from Q, but can
also include further transitions starting from Q. If next(Q) is empty, the game
ends; otherwise the scheduler selects a transition from this set, which is, together
with its target state, appended to π, and a new turn starts with the prolonged
finite path. The result of the game is the finite path in which the game ends,
or—if it does not—the infinite path that arises as the limit of all finite paths
encountered during the game. The game is won by the scheduler iff the result
is a progressing14 path that satisfies F . Now P is consistent with F iff there
exists a winning strategy for the scheduler.

13 These properties were introduced in LTL in [10] under the name ‘responsiveness to
insistence’, and deemed ‘the minimal fairness requirement’ for any scheduler.

14 When adopting our proposal of Section 4.3, the resulting path should even be just.
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4.3 Justness

Now suppose we have two concurrent systems that work independently in par-
allel, such as two completely disconnected nodes in a network. One of them is
modelled by the transition system of Figure 1(a), and the other is doing internal
transitions in perpetuity. The parallel composition is depicted on the left-hand
side of Figure 1(c). According to our structural operational semantics, the over-
all transition system resulting from this parallel composition is the one depicted
on the right. In this transition system, the LTL formula G(a⇒ Fφ) is not valid,
because, after performing the action a, the process may do an infinite sequence
of internal transitions that stem from the ‘right’ component in the parallel com-
position, instead of the transition to the desired success state. Yet the formula
G(a⇒ Fφ) does hold intuitively, because no amount of internal activity in the
right node should prevent the left component from making progress. That this
formula does not hold can be seen as a pitfall stemming from the use of in-
terleaving semantics. The intended behaviour of the process is captured by the
following justness property:

If a combination of components in a parallel composition is in a state
that admits a non-blocking action, then one (or more) of them will
eventually partake in an action.

(J)

Thus justness guarantees progress of all components in a parallel composition,
and of all combinations of such components. In the ABC expression ((P |Q)\a)|R
for instance, we might reach a state where P admits an action c ∈ H with
c 6= a and R admits c̄. Thereby, the combination of these components admits an
action τ . Our justness assumption now requires that the combination of P and
R will eventually perform an action. This could be the τ -action obtained from
synchronising c and c̄, but it also could be any other action from either P or R.

Note that progress is a special case of justness, obtained by considering any
process as the combination of all its parallel components.

We now formalise the justness requirement (J).
Any transition P |Q ℓ−→ R derives, through the rules of Table 1, from

– a transition P
ℓ−→ P ′ and a state Q, where R = P ′|Q ,

– two transitions P
ℓ1−→ P ′ and Q

ℓ2−→ Q′, where R = P ′|Q′ ,
– or from a state P and a transition Q

ℓ−→ Q′, where R = P |Q′.

This transition/state, transition/transition or state/transition pair is called a
decomposition of P |Q ℓ−→ R; it need not be unique. Now a decomposition of a
path π of P |Q into paths π1 and π2 of P and Q, respectively, is obtained by
decomposing each transition in the path, and concatenating all left-projections
into a path of P and all right-projections into a path of Q—notation π ∈ π1|π2.
Here it could be that π is infinite, yet either π1 or π2 (but not both) are finite.
Again, decomposition of paths need not be unique.

Likewise, any transition P [f ]
ℓ−→ R stems from a transition P

ℓ1−→ P ′, where
R = P ′[f ]. This transition is called a decomposition of P [f ]

ℓ−→ R. A decom-
position of a path π of P [f ] is obtained by decomposing each transition in the
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path, and concatenating all transitions so obtained into a path of P . In the same
way one defines a decomposition of a path of P\c.

We now define a path of a process to be just if it models a run that can
actually occur in some environment, even when postulating (J); we call it Y-just,
for Y ⊆ H , if it can occur in an environment that from some point onwards
blocks all actions in Y ∪ B?.

Definition 4.1. Y-justness, for Y ⊆ H , is the largest family of predicates on
the paths in the transition system S associated to the LTS T of ABC such that

– a finite Y-just path ends in a state of T that admits actions from Y ∪B? only;
– a Y-just path of a process P |Q can be decomposed into an X-just path of P

and a Z-just path ofQ such that Y ⊇X∪Z andX∩Z̄=∅—here Z̄ :={c̄ | c∈Z};
– a Y-just path of P\c can be decomposed into a Y ∪{c, c̄}-just path of P ;
– a Y-just path of P [f ] can be decomposed into an f−1(Y )-just path of P ;
– and each suffix of a Y-just path is Y-just.

A path is just if it is Y-just for some Y ⊆ H .

The last clause in the second requirement prevents an X-just path of P and a
Z-just path of Q to compose into an X∪Z-just path of P |Q when X contains an
action c and Z the complementary action c̄. The reason is that no environment
can block both actions for their respective components, as nothing can prevent
them from synchronising with each other. The fifth requirement helps character-
ising processes of the form b.0+ (A|b.0) and a.(A|b.0), with A

def
= a.A. Here, the

first transition ‘gets rid of’ the choice and of the leading action a, respectively,
and reduces the justness of paths of such processes to their suffixes.

If Y ⊆ Z then any Y-just path is also Z-just. As a consequence, a path is
just iff it is H -just. In Appendix A we show that a finite path is just iff it does
not end in a state from which a non-blocking action is possible, i.e., iff it is
progressing as defined in Section 4.1.

A path is called complete if it is fair as well as just, and hence also progressing.
The above definition of a just path captures our (progress and) justness

requirement, and ensures that the formula G(a ⇒ Fφ) holds for the process
of Figure 1(c). For example, the infinite path π starting from r that after the
a-transition keeps looping through the τ -loop at s can only be derived as π1|π2,
where π1 is a finite path ending right after the a-transition. Since π1 fails to be
just (its end state admits a τ -transition), π fails to be just too, and hence does
not count when searching for a complete path that fails to satisfy G(a⇒ Fφ).

4.4 Justness versus Justice

The concept of justice was introduced in [14]: ‘A computation is said to be just
if it is finite or if every transition which is continuously enabled beyond a certain
point is taken infinitely many times.’ In LTL this amounts to FG en(ν)⇒GF ν
for each transition ν, thus casting justice as a weak fairness property.

In [14] the identity of a transition, when appearing in a parallel composition,
is not affected by the current state of the parallel component. For instance, the
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two transitions c.0|d.0 c−→ 0|d.0 and c.0|0 c−→ 0|0 —they differ in their source and
target states—are seen as the same transition of the process c.0|d.0, stemming
from the left component and scheduled either before or after the d-transition of
the right component. In Appendix D, to be read after B and C, we introduce the
notion of an abstract transition—an equivalence class of concrete transitions—to
formalise the transitions intended in [14].

In the context of reactive systems, an (abstract) transition ν typically is
a synchronisation between the system and its environment. In case the envi-
ronment does not synchronise, ν cannot happen, even when it is continuously
enabled. For this reason, here justice is only reasonable for abstract transitions
ν labelled with non-blocking actions.

In applying the concept of justice from [14] to LTSs, there is potential am-
biguity in what counts as ‘continuously’. Consider the ABC system specified by
B

def
= c.B + b!.0. By Definition 4.1, the computation consisting of cs only is just;

it satisfies (J). However, it could be argued that b! is continuously enabled. This
would make the computation unjust in the sense of [14]. On the other hand, the
choice between c and b! may be non-deterministic, and could always be resolved
in favour of c. Therefore we do not consider this computation unjust, and adopt
the principle of ‘noninstantaneous readiness’ [1], stating that the enabledness
of the b! is interrupted when performing the c-transition. In our model, this is
implemented by the midway states corresponding with transitions. As a result,
we judge the specified execution just, and hence do not claim that b! will happen
eventually.

On the other hand, in our vision the enabledness of a transition cannot be
interrupted by performing a concurrent transition. For instance, the execution
cω of the process C|b!.0, where C

def
= c.C, is unjust, because the b!-transition νb!

is continuously enabled and never taken. In Appendices C and D we formalise
this by a novel definition of the predicates en(ν), such that en(νb!) holds during

the transition C|b!.0 c−→ C|b!.0.
In doing so, we have to overcome a problem illustrated by the process C|B

with B and C as above. Whether the path C|B c−→ C|B c−→ . . . counts as be-
ing just by the mantra of [14] depends on whether en(νb!) holds during each
transition C|B c−→ C|B in that path. This, in turn, depends on whether these
transitions originate from C, so that they are concurrent with νb!, or from B. We
formalise this by using a richer transition system U in which the two transitions
C|B c−→ C|B are distinguished. The states of U are the states of T together
with the derivations of transitions of T from the rules of Table 1—the latter are
the concrete transitions alluded to above. The transitions of U are P → χ and
χ → Q, for any derivation χ of a transition P

α−→ Q. The predicates en(ν) are
defined on the states of U . The transition system S associated to the LTS T of
ABC can be obtained from U by consistently identifying multiple derivations of
the same transition. Now, any path π in U projects onto a path π̂ in S , and any
path in S is of the form π̂. Details can be found in Appendix B.

In the literature [7,15], the concept of weak fairness often occurs as a synonym
for “justice”. At the same time, the potential ambiguity in what counts as being
continuously enabled is resolved differently from the approach we take here:
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a transition that from some point onwards is enabled in every state cannot be
ignored forever. Under this notion of weak fairness, the system B discussed above
will surely perform the b!-action. It would be useful to have different names for a
concept of justice or weak fairness that adopts the principle of noninstantaneous
readiness and one that does not.

The following theorem states that the former concept of justice is in perfect
agreement with our notion of justness of Section 4.3. Its proof can be found in
Appendix E.

Theorem 4.2. A path of an ABC process is just in the sense of Definition 4.1 iff
it is of the form π̂ for a path π in U that satisfies the LTL formulas FG en(ν) ⇒
GF ν for each abstract transition ν with ℓ(ν) ∈ Act a non-blocking action.

5 Implementing Fairness Specifications

For certain properties of the form (
∨

iGFai) ⇒ (
∨

j GFbj) where the ai and
bi are action occurrences—hence for specific strong fairness properties—one can
define a fairness operator that transforms a given LTS into a LTS that satisfies
the property [21]. This is done by eliminating all the paths that do not satisfy
the property via a carefully designed parallel composition. In the same vein,
we ask whether any process specification involving a fairness specification can
be implemented by means of a process-algebraic expression without fairness
component. Here we give an example that we believe cannot be implemented in
standard process algebras like CCS. To make this more precise, let CCS! be the
fragment of ABC without receive actions; equivalently, this is the fragment of
CCS in which certain names b induce no co-names b̄ and no restriction operators
\b. These actions are deemed output actions, meaning that we do not consider
environments that can prevent them from occurring.

Consider the CCS! process (I1 |G | I2)\c1\c2, where

Ii
def
= ri.c̄i.Ii (i ∈ {1, 2}) and G

def
= c1.t1.e.G + c2.t2.e.G

augmented with the fairness specification
∧

i=1,2G(ri ⇒ F(ti!)).
Here t1, t2, e are output actions. This process could be called a fair scheduler.

The actions r1 and r2 can be seen as requests received from the environment
to perform tasks t1 and t2, respectively. Each ri triggers a task ti. Moreover,
between each two occurrences of ti and tj an action e needs to be scheduled.

Conjecture 1. There does not exist a CCS ! expression G such that the process
(I1 |G | I2)\c1\c2, with I1 and I2 as above, has the following properties:

1. On each complete (= just) path, each ri is followed by a ti.
2. On each finite path no more tis than ris occur.
3. Between each pair of occurrences of ti and tj (i, j∈{1, 2}) an action e occurs.

We use CCS! rather than CCS to prevent the environment invalidating 1. by
disallowing ti. We believe that there is no way to encode a fair scheduler with
these properties in CCS! without the help of a fairness specification.
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However, we can do it in ABC:

I1
def
= r1.c1!.I1 I2

def
= r2.c2!.I2

G
def
= c1?.G1 + c2?.G2 G′ def

= e.G+ c1?.G
′
1 + c2?.G

′
2

Gi
def
= cj?.Gij + ti.G

′ G′
i

def
= e.Gi + cj?.G

′
ij

Gij
def
= ti.G

′
j G′

ij

def
= e.Gij

with i, j ∈ {1, 2} and i 6= j. This scheduler satisfies the fairness specification
since the justness properties for output actions require that once ri occurs, ci!
must follow, and then ti will eventually happen, at the latest whenGij is reached.

Currently, it is an open question whether arbitrary fairness specifications can
be implemented in ABC.

6 Conclusion and Outlook

In this paper we have investigated how progress, fairness and justness assump-
tions can be handled within a process-algebraic specification formalism. Our
semantics of a process is a state P in an LTS together with a set of complete
paths: paths of P that are progressing, fair and just. We specify the fair paths by
means of temporal logic, using a fairness specification in addition to a process-
algebraic expression P . The progressing and just paths, on the other hand, are
completely determined by the syntax of P .

To demonstrate that the introduced approach is not only a theoretical result,
we have applied the formalism to a more involved process algebra called AWN
(Algebra for Wireless Networks) and analysed the IETF-standardised Ad hoc
On-demand Distance Vector (AODV) routing protocol [17]. We investigated two
fundamental properties of routing protocols: route discovery and packet delivery.
Route discovery—a property that every routing protocol ought to satisfy—states
that if a route discovery process is initiated in a state where the source is con-
nected to the destination and no (relevant) link breaks, then the source will
eventually discover a route to the destination. Surprisingly, using the presented
mechanism we could show that this property does not hold. The second property,
packet delivery, was already sketched in Section 3; it has been shown that this
property does not hold either. As a consequence, AODV does not satisfy two
of the most crucial properties of routing protocols. Details can be found in [8].
The formalisation of progress, fairness and justness presented here was crucial
for these results; without making these assumptions, no routing protocol would
satisfy the route discovery and packet delivery properties.

Future work will include the definition of suitable semantic equivalences on an
LTS together with a set of complete paths, and their algebraic characterisations.
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Appendices

A Finite Paths are Just iff they are Progressing

Proposition A.1. A finite path in S is Y-just, for Y ⊆H , iff its last state is a
state Q ∈ ExABC of T and all transitions enabled in Q are labelled with actions
from Y ∪ B?.

Proof. “⇒”: This follows immediately from the first requirement of Definition 4.1.
“⇐”: Define a path in S to be Y-justfin if it is finite, its last state is a state

Q ∈ ExABC of T , and all transitions enabled in Q are labelled with actions from
Y ∪B?. Then the family of predicates Y-justnessfin, for Y ⊆H , satisfies the five
requirements of Definition 4.1. Since Y-justness is the largest family of predicates
satisfying those requirements, Y-justnessfin implies Y-justness. ⊓⊔

It follows that a finite path is just iff it is progressing.

B A Concrete Kripke Structure for ABC

In Section 3 we extracted a transition system S with unlabelled transitions—a
Kripke structure [11], but without the condition of totality—out of the LTS T
generated by the structural operational semantics of ABC. The states of S are
the states of T , that is, ExABC, together with the transitions P

α−→ Q of T .
The transitions of S are P → (P

α−→ Q) and (P
α−→ Q) → Q, for any transition

P
α−→ Q of T . Next, we would like to define predicates en(ν) on the states of S

indicating whether an (abstract) transition ν is enabled in a state s of S . If s is
actually a state of T , this is the case if s is the source of ν. If s is a transition ζ of
T , this should be the case if ν is enabled in the source of ζ, and moreover ν and
ζ are concurrent, in the sense that they stem from different parallel components.
A problem with this plan has been illustrated in Section 4.4 by the process C|B,
with B

def
= c.B + b!.0 and C

def
= c.C. The b!-labelled transition ν is enabled in (or

during) the transition C|B c−→ C|B if this transition stems from C, but not if it
stems from B. However, our transition system S fails to distinguish transitions
based on the components from which they stem.

For this reason, we here define a different Kripke structure U that makes the
required distinctions. The states of U are the states ExABC of T together with
the derivations of transitions of T from the rules of Table 1—the latter are the
concrete transitions alluded to in Section 4.4. The transitions of U are of the
form P → χ and χ → Q, for T -states P,Q and derivations χ corresponding
to a transition P

α−→ Q. The Kripke structure S can be obtained from U by
consistently identifying multiple derivations of the same transition.

We start by giving a name to every derivation of an ABC transition from the
rules of Table 1. The unique derivation of the transition α.P

α−→ P using the
rule (Act) is called

α
→P . The derivation obtained by application of (Comm) or

(Bro-c) on the derivations χ and ζ of the premises of that rule is called χ|ζ.
The derivation obtained by application of (Par-l) or (Bro-l) on the derivation
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χ of the (positive) premise of that rule, and using process Q at the right of |,
is χ|Q. In the same way, (Par-r) and (Bro-r) yield P |ζ, whereas (Sum-l),
(Sum-r), (Rel), (Res) and (Rec) yield χ+Q, P+χ, χ[f ], χ\c and A:χ. For

a derivation χ of a transition P
α−→ Q write src(χ) := P , target(χ) := Q and

ℓ(χ) := α.
It remains to define atomic propositions on U . Following Section 3 we have

an atomic proposition α for each α ∈ Act, and a state u of U is labelled with α
iff u is a derivation of a transition P α−→ Q. Additionally, Section 4.4 announced
atomic propositions ν and en(ν) for each abstract transition ν; this is the subject
of Appendix D.

Let ·̂ be the mapping from the states of U to the states of S given by P̂ = P
for any process P ∈ ExABC, and χ̂ = (P

α−→ Q) for any derivation χ of a

transition P
α−→ Q in T . Then each state of S is of the form û, and there is a

transition û→ s in S iff there is a transition u→ v in U with v̂ = s. A path π in
U is a finite or infinite sequence u0u1u2 . . . of states of U such that ui → ui+1

for all i. This amounts to an alternating sequence of processes P ∈ ExABC and
derivations χ of transitions from T . For any such path π let π̂ := û0û1û2 . . . .
Then π̂ is a path in S , and furthermore any path in S is of this form. Both in U
and in S we only consider paths that are infinite or end in a state of T .

C An Asymmetric Concurrency Relation between

Transitions

We define a concurrency relation ⌣• between the derivations of the outgoing
transitions of a process P ∈ ExABC. With χ ⌣• ζ we mean that the possible
occurrence of χ is unaffected by the possible occurrence of ζ. More precisely, χ
and ζ need to be enabled in the state P , and χ 6⌣• ζ indicates that the occurrence
of ζ ends or interrupts the enabledness of χ, whereas χ ⌣• ζ indicates that χ
remains enabled during the execution of ζ.

Example C.1. Let P be the process A with A
def
= a.A+ c.A, and let χ and ζ

be the derivations of the a- and c-transitions of P . Then χ 6⌣• ζ, because the
occurrence of ζ interrupts the enabledness of χ, even though right after ζ has
occurred we again reach a state where χ is enabled.

Example C.2. Let P be the process a.0|c.0, and let χ and ζ be the derivations
of the a- and c-transitions. Then χ ⌣• ζ, because the occurrence of ζ does not
affect the (parallel) occurrence of χ in any way.

Example C.3. Let P be the process b!.0|(b?.0 + c.0), and let χ and ζ be the
derivations of the b!- and c-transitions of P . The broadcast b! is in our view
completely under the control of the left component; it will occur regardless of
whether the right component listens to it or not. It so happens that if b! occurs
in state P , the right component will listen to it, thereby disabling the possible
occurrence of c. For this reason we have χ ⌣• ζ but ζ 6⌣• χ.
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Definition C.4. Concurrency is the smallest relation ⌣• on derivations such
that

– χ|Q ⌣• P |ζ and P |ζ ⌣• χ|Q if src(χ) = P and src(ζ) = Q,
– χ|ς ⌣• P |ζ and ς|χ ⌣• ζ|P if src(χ) = P , src(ς) = src(ζ) and ℓ(ς) ∈ B?,
– χ ⌣• ζ implies χ+P ⌣• ζ+P , P+χ⌣• P+ζ, χ|P ⌣• ζ|P and P |χ⌣• P |ζ,
– χ⌣• ζ implies χ|P ⌣• ζ|ξ, χ|ξ⌣• ζ|P , P |χ⌣• ξ|ζ and ξ|χ⌣•P |ζ if P = src(ξ),
– χ ⌣• ζ implies χ|ς ⌣• ζ|ξ and ς|χ ⌣• ξ|ζ if src(ς) = src(ξ) and ℓ(ς) ∈ B?,
– χ ⌣• ζ ∧ ς ⌣• ξ implies χ|ς ⌣• ζ|ξ, and
– χ⌣• ζ implies χ\c⌣• ζ\c, χ[f ]⌣• ζ[f ], A:χ⌣•A:ζ for any c∈H , relabelling
f and A ∈ A,

for arbitrary derivations χ, ζ, ς, ξ, and expressions P,Q ∈ ExABC, provided that
the composed derivations exist. We say that χ and ζ are concurrent (in signs
χ ⌣ ζ) if χ ⌣• ζ and ζ ⌣• χ.

Observation C.5. The relation ⌣• is irreflexive. Moreover, if χ ⌣• ζ then
src(χ) = src(ζ).

This follows by a straightforward induction on the definition of ⌣•.

Example C.6. Let A
def
= c.A and B

def
= c̄.B + (τ.B + b!.0). Transition A|B τ−→A|B

has 2 derivations: (A:
c
→A)|B:

(
(

c̄
→B)+(τ.B+b!.0)

)
andA|B:

(
c̄.B+((

τ
→B)+b!.0)

)
.

Only the latter is concurrent with (A:
c
→A)|B (using the first clause above).

Example C.7. One has (((
a
→0)|c.0) + d.0)[f ] ⌣ ((a.0|(

c
→0)) + d.0)[f ], using the

first, third and seventh clauses above. Both are derivations of transitions with
source ((a.0|c.0) + d.0)[f ].

Example C.8. One has ((
a
→0)|c.0)|((

ā
→0)|c̄.0) ⌣ (a.0|(

c
→0))|(ā.0|(

c̄
→0))), using

the first and sixth clauses above. Both are derivations of transitions with source
(a.0|c.0)|(ā.0|c̄.0).

Example C.9. One has ((
a
→0)|c.0)|(

ā
→0) ⌣ (a.0|(

c
→0))|ā.0, using the first and

fourth clauses above. Both are derivations of transitions with source (a.0|c.0)|ā.0.

Example C.10. One has
b!
→0 |((

b?
→0)+c.0)⌣• b!.0 |(b?.0+(

c
→0)), using the second

clause above. Both are derivations of transitions with source b!.0|(b?.0 + c.0).

However, b!.0 |(b?.0+(
c
→0)) 6⌣•

b!
→0 |((

b?
→0)+c.0). See Example C.3 for motivation.

Example C.11. One has ((
b!
→0)|c.0)|((

b?
→0) + c̄.0) ⌣• (b!.0|(

c
→0))|(b?0 + (

c̄
→0)),

using the first and fifth clauses above. Both are derivations of transitions with
source (b!.0|c.0)|(b!.0 + c̄.0).
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D Enabling Abstract Transitions

Below we define the concept of an abstract transition as an equivalence class of
concrete transitions, the latter being the derivations of ABC transitions from
the rules of Table 1. The main idea is that a transition ν stemming from one
side of a parallel composition yields only one abstract transition of the parallel
composition itself, regardless of the state of the other component, and, if ν
performs a broadcast action, regardless of whether the other component performs
a receive action synchronising with ν.

Henceforth, ν, ν1 and ν2, ranges over abstract transitions, χ, ζ, ς and ξ over
derivations, P,Q over ABC expressions, and u, v over states of U , which are
either derivations or ABC expressions.

Definition D.1. Let ≡ be the smallest equivalence relation on derivations χ
with ℓ(χ) /∈ B?, satisfying

– χ|P ≡ χ|Q and P |χ≡Q|χ,
– χ|ς ≡ χ|P and ς|χ≡ P |χ if ℓ(χ) ∈ B! (and thus ℓ(ς) ∈ B?),
– χ+P ≡ χ ≡ P+χ, A:χ ≡ χ for A ∈ A ,
– χ ≡ ζ implies χ\c≡ζ\c, χ[f ]≡ζ[f ], χ|P ≡ ζ|P and P |χ≡P |ζ, and moreover
– χ ≡ ζ ∧ ς ≡ ξ implies χ|ς ≡ ζ|ξ,

for arbitrary derivations χ, ζ, ς, ξ, and expressions P,Q ∈ ExABC, provided that
the composed derivations exist. An equivalence class [χ]≡ is called an abstract
transition; it can uniquely be denoted by leaving out A:, P+ and +P and writing
ζ| for ζ|P or for ζ|ς with ℓ(ζ) ∈ B!—and likewise |ζ for P |ζ or for ς|ζ with
ℓ(ζ) ∈ B!—in all subexpressions of χ. If ν = [χ]≡ then the derivation χ is called
a representative of the abstract transition ν.

By definition χ ≡ ζ implies ℓ(χ) = ℓ(ζ). Setting ℓ([χ]≡) := ℓ(χ), we note
that receive-actions are excluded, i.e., for any abstract transition ν we have
ℓ(ν) /∈ B?.

Observation D.2. If χ|u ≡ v1|v2 with ℓ(χ) 6∈ B? then χ ≡ v1. As a conse-
quence, since no derivation is related to a process, χ|u 6≡ Q|ζ, for any deriva-
tion ζ and Q ∈ ExABC.

Observation D.3. If χ[f ] ≡ ζ[f ] or χ\c ≡ ζ\c then χ ≡ ζ.

The abstract transitions, with their labels, can be seen as the smallest set
such that

–
α
→P is an abstract tr. for α ∈ B!∪H ∪{τ} and P ∈ ExABC, and ℓ(

α
→P ) = α,

– if ν is an abstract tr. then so are ν| and |ν, with ℓ(ν| ) = ℓ( |ν) = ℓ(ν),
– if ν1 and ν2 are abstract trs. with ℓ(ν1)=ℓ(ν2) then so is ν1|ν2, with ℓ(ν1|ν2)=τ ,
– if ν is an abstract tr. with c 6= ℓ(ν) 6= c̄ then so is ν\c, with ℓ(ν\c) = ℓ(ν), and
– if ν is an abstract tr. and f a relabelling then so is ν[f ], with ℓ(ν[f ]) = f(ℓ(ν)).
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Abstract transitions only reflect the syntactical structure of derivations; they do
not take semantics into account. Hence, ν| 6= |ν and ( |ν)| 6= |(ν| ).

For each abstract transition ν we introduce atomic propositions ν and en(ν).
The former says that ν occurs. It holds for a state u of U iff u is a derivation
ζ such that ν = [ζ]≡. The latter is defined by a case distinction on the type of
state u. An abstract transition ν is enabled (denoted by en(ν)) in P ∈ExABC iff
P = src(χ) for a representative χ of ν. It is enabled in (or during) a derivation
ζ iff ν has a representative χ with χ ⌣• ζ. As we shall see, in that case ν is also
enabled in src(ζ) as well as target(ζ). We write u |= p if the atomic proposition
p holds in the state u of U .

Example D.4. The abstract transition ν = |(
c
→0), with c ∈ H and represen-

tatives χ1 = 0|(
c
→0) and χ2 = a.0 +

(
e.0|(

c
→0)

)
, is enabled during the deriva-

tion ζ = a.0 +
(
(
e
→0)|c.0)

)
of the transition a.0 + (e.0|c.0) e−→ 0|c.0. This is the

case because χ2 ⌣ ζ. Accordingly, ν is also enabled in the source src(ζ) =
a.0 + (e.0|c.0) as well as in the target target(ζ) = 0|c.0 of that transition. This
example would break down without the identification χ ≡ P+χ.

Example D.5. Let C
def
= d.0|e.0. Then the abstract transition ν = |(

d
→0| ) is

enabled during the derivation ζ = c.0|C:(d.0|
e
→0) of the transition c.0|C e−→

c.0|(d.0|0). Accordingly, it is enabled in the source src(ζ) = c.0|C as well as in
the target target(ζ) = c.0|(d.0|0) of that transition. This example would break
down without the identification C:(d.0| ) ≡ (d.0| ).

Example D.6. Let D
def
= c.(b?.0 + e.D). In our view, the infinite path labelled

(ce)ω of the process b!.0|D is unjust, because the output b! is continuously en-
abled, yet never taken. The idea is that the component b!.0 will perform this
output regardless of whether the other component is listening. For this reason,
we need to formalise this output as a single abstract transition ν such that the
path labelled (ce)ω satisfies FG en(ν). However, in the state b!.0|D—and during

the execution of b!.0|D:
c
→(b?.0+ e.D)—the derivation (

b!
→0)|D is enabled, yet in

the state b!.0|(b?.0 + e.D) the derivation
b!
→0|((

b?
→0) + c.D) is enabled. In order

to regard these two derivations as representatives of the same abstract transition
(
b!
→0)| we employ the equivalence χ|Q ≡ χ|ς when ℓ(χ) ∈ B!.

Furthermore, during the execution of b!.0|(b?.0 +
e
→D), a representative χ

of (
b!
→0)| with src(χ) = b!.0|(b?.0 + e.D) needs to be enabled as well. The only

candidate is χ =
b!
→0|((

b?
→0) + c.D), so

b!
→0|((

b?
→0) + c.D)⌣• b!.0|(b?.0 +

e
→D).

This is further motivation for the second clause in the Definition C.4 above.

Lemma D.7. If u |= en(ν) for a state u of U and an abstract transition ν then
u|v |= en(ν| ) for any state u|v of U .

Proof. We make case distinctions based on whether u and v are processes P,Q
or derivations.

– Suppose u = P |= en(ν). Then P = src(χ) for a representative χ of ν.
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• Let v = Q ∈ ExABC. In case ℓ(χ) = b! and Q
b?−→, let ς be a deriva-

tion of a transition Q
b?−→ Q′. Then there exists a derivation χ|ς, with

src(χ|ς) = P |Q, which is a representative of the abstract transition ν| . In
all other cases there exists a derivation χ|Q, with src(χ|Q)=P |Q, which is
a representative of the abstract transition ν| . Either way P |Q |= en(ν| ).

• Now let v = ξ be a derivation with Q := src(ξ). In case ℓ(χ) = b! and

Q
b?−→, let ς be a derivation of a transition Q

b?−→ Q′. Then there exists a
derivation χ|ς, with χ|ς ⌣• P |ξ, which is a representative of the abstract
transition ν| . In all other cases there exists a derivation χ|Q, with χ|Q ⌣
P |ξ, which is a representative of the abstract transition ν| . Either way
P |ξ |= en(ν| ).

– Suppose u = ζ |= en(ν). Then χ ⌣• ζ for a representative χ of ν.
• Let v = Q ∈ ExABC. In case ℓ(χ) = b! and Q

b?−→, let ς be a derivation of a

transition Q
b?−→ Q′. Then there exists a derivation χ|ς, with χ|ς ⌣• ζ|Q,

which is a representative of the abstract transition ν| . In all other cases
there exists a derivation χ|Q, with χ|Q ⌣• ζ|Q, which is a representative
of the abstract transition ν| . Either way ζ|Q |= en(ν| ).

• Now let v = ξ be a derivation with Q := src(ξ). In case ℓ(χ) = b! and

Q
b?−→, let ς be a derivation of a transition Q

b?−→ Q′. Then there exists a
derivation χ|ς, with χ|ς ⌣• ζ|ξ, which is a representative of the abstract
transition ν| . In all other cases there exists a derivation χ|Q, with χ|Q ⌣•

ζ|ξ, which is a representative of the abstract transition ν| . Either way
ζ|ξ |= en(ν| ). ⊓⊔

Lemma D.8. Let ui |= en(νi) for i=1, 2 with ℓ(ν1) = ℓ(ν2) ∈ H . Then u1|u2 |=
en(ν1|ν2), provided u1|u2 is a state of U .

Proof. We make case distinctions based on whether u1 and u2 are processes or
derivations.

Suppose ui = Pi |= en(νi) for i=1, 2. Then Pi = src(χi) for representatives
χi of νi. Now src(χ1|χ2) = P1|P2 and χ1|χ2 is a representative of ν1|ν2. So
P1|P2 |= en(ν1|ν2).

Suppose ui= ζi |= en(νi) for i=1, 2. Then χi⌣• ζi for representatives χi of νi.
So χ1|χ2 ⌣• ζ1|ζ2. Moreover, χ1|χ2 is a representative of ν1|ν2, and thus ζ1|ζ2 |=
en(ν1|ν2).

Suppose P1 |= en(ν1) and ζ2 |= en(ν2). Then P1 = src(χ1) and χ2 ⌣• ζ2 for
representatives χi of νi. Now χ1|χ2 ⌣• P1|ζ2 and χ1|χ2 is a representative of
ν1|ν2. So P1|ζ2 |= en(ν1|ν2).

The remaining case follows by symmetry. ⊓⊔

Lemma D.9. If u |= en(ν), c ∈ H and c 6= ℓ(ν) 6= c̄ then u\c |= en(ν\c).

Proof. We make a case distinction based on whether u is processes P or a deriva-
tions ζ.

Suppose P |= en(ν). Then P = src(χ) for a representative χ of ν. Now
src(χ\c) = P\c and χ\c is a representative of ν\c. So P\c |= en(ν\c).

Suppose ζ |= en(ν). Then χ ⌣• ζ for a representative χ of ν. So χ\c ⌣• ζ\c.
Moreover, χ\c is a representative of ν\c, and thus ζ\c |= en(ν\c). ⊓⊔
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Lemma D.10. If u |= en(ν) then u[f ] |= en(ν[f ]).

Proof. Similar to the proof of Lemma D.9. ⊓⊔

Proposition D.11. If an abstract transition ν is enabled during a derivation ζ
then ν is also enabled in src(ζ) as well as target(ζ).

Proof. If ν is enabled during ζ then there is a representative χ of ν such that
χ ⌣• ζ. By Observation C.5 src(χ) = src(ζ), so ν is also enabled in src(ζ).

For the other statement, we apply structural induction on χ.
Let χ =

α
→χ′. By Definition C.4 there is no derivation ζ with χ ⌣• ζ, which

is a contradiction to our assumptions.
Let χ = A:χ′. Since χ ⌣• ζ, ζ has the form A:ζ ′ with χ′ ⌣• ζ ′. As ν =

[χ]≡ = [χ′]≡, ν is also enabled during ζ ′, and by induction ν is enabled in
target(ζ ′) = target(ζ).

Let χ = χ′+P . Since χ ⌣• ζ, ζ has the form ζ ′+P with χ′ ⌣• ζ ′. As
ν = [χ]≡ = [χ′]≡, ν is also enabled during ζ ′, and by induction ν is enabled in
target(ζ ′) = target(ζ).

The case χ = P+χ′ follows by symmetry.
Let χ = χ′\c. Since χ ⌣• ζ, ζ has the form ζ ′\c with χ′ ⌣• ζ ′. So ν′ := [χ′]≡

is enabled during ζ ′, and by induction ν′ is enabled in target(ζ ′). Moreover,
ℓ(ν′) = ℓ(χ′) 6= c, c̄. Consequently, using Lemma D.9, ν = ν′\c is enabled in
target(ζ ′)\c = target(ζ).

Let χ = χ′[f ]. Since χ ⌣• ζ, ζ has the form ζ ′[f ] with χ′ ⌣• ζ ′. So ν′ := [χ′]≡
is enabled during ζ ′, and by induction ν′ is enabled in target(ζ ′). Consequently,
using Lemma D.10, ν = ν′[f ] is enabled in target(ζ ′)[f ] = target(ζ).

Let χ = χ1|P . Since χ ⌣• ζ, Definition C.4 offers three possibilities for ζ:

– Suppose that ζ has the form Q|ζ2 with src(χ1) = Q and src(ζ2) = P . Then
ν1 := [χ1]≡ is enabled in Q. Hence, by Lemma D.7, ν = ([χ1]≡)| is enabled
in P |target(ζ2) = target(ζ).

– Suppose that ζ has the form ζ1|P with χ1 ⌣• ζ1. Then ν1 := [χ1]≡ is enabled
during ζ1, and by induction ν1 is enabled in target(ζ1). Consequently, using
Lemma D.7, ν = ν1| is enabled in target(ζ1)|P = target(ζ).

– Suppose that ζ has the form ζ1|ζ2 with χ1 ⌣• ζ1 and P = src(ζ2). Then
ν1 := [χ1]≡ is enabled during ζ1, and by induction ν1 is enabled in target(ζ1).
Consequently, using Lemma D.7, ν = ν1| is enabled in target(ζ1)|target(ζ1) =
target(ζ).

The case χ = P |χ2 follows by symmetry.
Let χ = χ1|χ2 with ℓ(χ) = τ . Then ℓ(χ1) = ℓ(χ2) ∈ H . Since χ ⌣• ζ,

Definition C.4 offers three possibilities for ζ:

– Suppose ζ has the form ζ1|P with χ1 ⌣• ζ1 and P = src(χ2). Then ν1 := [χ1]≡
is enabled during ζ1, and by induction ν1 is enabled in target(ζ1). Conse-
quently, using Lemma D.7, ν = ν1| is enabled in target(ζ1)|P = target(ζ).

– The case that ζ has the form P |ζ2 with χ2 ⌣• ζ2 and P = src(χ1) follows by
symmetry.
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– Suppose ζ has the form ζ1|ζ2 with χi ⌣• ζi for i = 1, 2. Then νi := [χi]≡ is
enabled during ζi, and by induction νi is enabled in target(ζi). Consequently,
using Lemma D.8, ν = ν1|ν2 is enabled in target(ζ1)|target(ζ2) = target(ζ).

Let χ = χ1|χ2 with ℓ(χ) 6= τ . Then ℓ(χ) ∈ B!, since the case ℓ(χ) = ℓ(ν) ∈ B?
cannot occur. So ℓ(χ1) = b! and ℓ(χ2) = b? for some b ∈ B, or vice versa.
W.l.o.g. we assume the first of these cases. Since χ ⌣• ζ, Definition C.4 offers
five possibilities for ζ:

– Suppose ζ has the form P |ζ2 with P = src(χ1) and src(χ2) = src(ζ2). Then
ν1 := [χ1]≡ is enabled in P . Hence, by Lemma D.7, ν = ([χ1]≡)| is enabled
in P |target(ζ2) = target(ζ).

– The possibility that ζ = P |ζ2 with χ2 ⌣• ζ2 and P = src(χ1) is a special case
of the last one.

– Suppose ζ has the form ζ1|P with χ1 ⌣• ζ1 and P = src(χ2). Then ν1 := [χ1]≡
is enabled during ζ1, and by induction ν1 is enabled in target(ζ1). Conse-
quently, using Lemma D.7, ν = ν1| is enabled in target(ζ1)|P = target(ζ).

– Suppose ζ has the form ζ1|ζ2 with χ1 ⌣• ζ1 and src(χ2) = src(ζ2). Then
ν1 := [χ1]≡ is enabled during ζ1, and by induction ν1 is enabled in target(ζ1).
Consequently, using Lemma D.7, ν = ν1| is enabled in target(ζ1)|target(ζ2) =
target(ζ).

– The possibility ζ = ζ1|ζ2 with χi ⌣• ζi for i = 1, 2 is a special case of the
previous one. ⊓⊔

Lemma D.12. For derivations χ and ζ, χ ⌣• ζ implies χ 6≡ ζ.

Proof. In case ℓ(χ) ∈ B? the statement is trivial by Definition D.1; so assume
ℓ(χ) 6∈ B?. We apply structural induction on χ.

Let χ =
α
→χ′. By Definition C.4 there is no derivation ζ with χ ⌣• ζ, which

is a contradiction to the antecedent.

Let χ = A:χ′. Since χ ⌣• ζ, ζ has the form A:ζ ′ with χ′ ⌣• ζ ′. Assume
A:χ′ ≡ A:ζ ′. Then, by Definition D.1, χ′ ≡ A:χ′ ≡ A:ζ ′ ≡ ζ ′, a contradiction to
the induction hypothesis.

Let χ = χ′+P . Since χ ⌣• ζ, ζ has the form ζ ′+P with χ′ ⌣• ζ ′. Assume
χ′+P ≡ ζ ′+P . Then, by Definition D.1, χ′ ≡ χ′+P ≡ ζ ′+P ≡ ζ ′, a contradic-
tion to the induction hypothesis.

The case χ = P+χ′ follows by symmetry.

Let χ = χ′\c. Since χ ⌣• ζ, ζ has the form ζ ′\c with χ′ ⌣• ζ ′. Assume
χ′\c ≡ ζ ′\c. Then, by Observation D.3, χ′ ≡ ζ ′, a contradiction to the induction
hypothesis.

Let χ = χ′[f ]. Since χ ⌣• ζ, ζ has the form ζ ′[f ] with χ′ ⌣• ζ ′. Assume
χ′[f ] ≡ ζ ′[f ]. Then, by Observation D.3, χ′ ≡ ζ ′, a contradiction to the induction
hypothesis.

Let χ = χ1|Q. Note that ℓ(χ1) = ℓ(χ) 6∈ B?. Since χ ⌣• ζ, Definition C.4
offers three possibilities for ζ:

– Suppose that ζ has the form P |ζ2. By Observation D.2, χ1|Q 6≡ P |ζ2.
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– Suppose that ζ has the form ζ1|u with χ1 ⌣• ζ1 (combining the cases ζ1|Q
and ζ1|ζ2). Assume χ1|Q ≡ ζ1|u. Then, by Observation D.2, χ1 ≡ ζ1, a
contradiction to the induction hypothesis.

The case χ = P |χ2 follows by symmetry.
Let χ = χ1|χ2 . As ℓ(χ) 6∈ B? either ℓ(χ1) 6∈ B? or ℓ(χ2) 6∈ B?. W.l.o.g.

we assume the first. Since χ ⌣• ζ, Definition C.4 offers seven possibilities for ζ,
which can be summarised by the following 4 cases.

– Suppose ζ has the form P |ζ2. Then by Observation D.2 χ1|χ2 6≡ P |ζ2.
– The case where ζ has the form ζ1|P with src(χ2) = P , src(χ1) = src(ζ1) and
ℓ(χ1) ∈ B? cannot occur since ℓ(χ1) 6∈ B?.

– The case where ζ has the form ζ1|ζ2 with χ2 ⌣• ζ2, src(χ1) = src(ζ1) and
ℓ(χ1) ∈ B? cannot occur either since ℓ(χ1) 6∈ B?.

– Finally, suppose ζ has the form ζ1|u with χ1 ⌣• ζ1. Assume χ1|χ2 ≡ ζ1|u.
Then, by Observation D.2, χ1 ≡ ζ1, a contradiction to the induction hypoth-
esis. ⊓⊔

E Proof of Theorem 4.2

Theorem 4.2 makes a connection between the Y-just paths in T (or equivalently
S) and a weak fairness property for paths in U . To establish its “⇐”-direction,
we introduce two intermediate concepts: the Y-just paths in U , for Y ⊆ H , and
the ν-enabled paths in U , for abstract transitions ν. For the “⇒”-direction we
introduce one intermediate concept: the ν-enabled paths in S .

E.1 The “⇐”-direction

Observation E.1. For a derivation χ with src(χ) = P1|P2 we have either that

– χ has the form χ1|P2 with src(χ1) = P1 and target(χ) = target(χ1)|P2, or
– χ has the form χ1|χ2 with src(χi) = Pi for i=1, 2

and target(χ) = target(χ1)|target(χ2), or
– χ has the form P1|χ2 with src(χ2) = P2 and target(χ) = P1|target(χ1).

Hence all processes and derivations on a path π starting from a state u1|u2
of U have the form | . Let π1 be the sequence of left- and π2 the sequence
of right-components of these processes and derivations, after (finite or infinite)
subsequences of repeated elements are contracted to single elements. Then πi
is a path of ui (i=1, 2) and together they constitute the decomposition of π,
denoted π ⇛ π1|π2.

Observation E.2. If src(χ)=P\c then χ=χ′\c with src(χ′)=P and target(χ)=
target(χ′)\c.

Hence all processes and derivations on a path π of a state u\c in U have the
form \c. Let π′ be the sequence obtained from π by stripping off these outermost
occurrences of \c. Then π′ is a path of u, called the decomposition of π, denoted
π ⇛ π′\c. In the same way one defines the decomposition of a path π of a state
u[f ]; notation π ⇛ π′[f ].
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Observation E.3. Let π be a path in U . Then π ⇛ π1|π2 implies π̂ ∈ π̂1|π̂2.
Likewise, if π ⇛ π′\c or π ⇛ π′[f ] then π̂′ is a decomposition of π̂.

Although in S the decomposition of a path from P |Q need not be unique, in U
it is. Armed with these definitions of decompositions of paths in U , we define
Y-justness, for Y ⊆ H , on the paths of U in the exact same way as on S (see
Definition 4.1).

Proposition E.4. If a path π in U is Y-just, for Y ⊆H , then so is the path π̂
in S.

Proof. Define a path in S to be Y-justU , for Y ⊆ H , if it has the form π̂ for a
Y-just path π in U . We show that the family of predicates Y-justnessU satisfies
the five requirements of Definition 4.1.

– A finite Y-justU path π̂, with π a just path in U , ends in some state P̂ . Since
P̂ = P , π ends in the same state. Hence that state admits actions from Y ∪B?
only.

– Let π be a Y-just path in U , so that π̂, and hence π, starts from a process
P |Q. Then π ⇛ π1|π2 for an X-just path π1 of P and a Z-just path π2 of Q
such that Y ⊇ X∪Z and X∩Z̄ = ∅. By Observation E.3 π̂ ∈ π̂1|π̂2, where π̂1
is X-justU and π̂2 is Z-justU .

– Let π be a Y-just path in U starting from a process P\c. Then π ⇛ π′\c for
a Y ∪{c, c̄}-just path π′ of P . By Observation E.3 π̂′ is a decomposition of π̂,
where π̂′ is Y ∪{c, c̄}-justU .

– The case that π̂ is a path of P [f ] proceeds in exactly the same way.
– Each suffix of π̂ has the form π̂′ for π′ a suffix of π. So if π̂ is Y-justU because
π is Y-just then π′ must be Y-just, and hence π̂ is Y-justU .

Since Y-justness is the largest family of predicates on paths in S that satisfies
those requirements, Y-justnessU of paths in S implies Y-justness of paths in S .

⊓⊔

Definition E.5. ν-enabledness, for ν an abstract transition, is the smallest fam-
ily of predicates on the paths in U such that

– a finite path is ν-enabled if its last state Q ∈ ExABC enables ν, i.e. Q |= en(ν);
– a path π ⇛ π1|π2 is ν-enabled if either ν has the form ν1| and π1 is ν1-

enabled, or ν = |ν2 and π2 is ν2-enabled, or ν = ν1|ν2 and πi is νi-enabled
for i = 1, 2;

– a path π ⇛ π′\c is ν-enabled if ν has the form ν′\c and π′ is ν′-enabled;
– a path π ⇛ π′[f ] is ν-enabled if ν has the form ν′[f ] and π′ is ν′-enabled;
– and a path is ν-enabled if it has a suffix that is ν-enabled.

Proposition E.6. Let π be a path in U and Y ⊆ H . If, for all abstract tran-
sitions ν with ℓ(ν) 6∈ Y , π is not ν-enabled, then π is Y-just.

Proof. Define a path π in U to be Y-justen, for Y ⊆ H , if it is ν-enabled for no
abstract transition ν with ℓ(ν) 6∈ Y . Note that if π is Y-justen, it is also Y

′-justen
for any Y ⊆ Y ′ ⊆ H . We show that the family of predicates Y-justnessen, for
Y ⊆ H , satisfies the five requirements of Definition 4.1.
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– Let π be a finite Y-justen path. Suppose the last state Q of π admits an action
α /∈ Y ∪B?. Then Q |= en(ν) for an abstract transition ν with ℓ(ν)=α 6∈Y⊆
Y ∪B?. So π is ν-enabled, contradicting the Y-justnessen of π.

– Suppose π is a Y-justen path of a process P |Q. Then Y includes all labels of
abstract transitions ν for which π is ν-enabled. By Observation E.1 there are
paths πi for i=1, 2 with π ⇛ π1|π2. Let X be the set of labels of abstract
transitions ν for which π1 is ν-enabled, and let Z be the set of labels of
abstract transitions ν for which π2 is ν-enabled. If π1 is ν-enabled then π is
ν| -enabled by Definition E.5. Since ℓ(ν| ) = ℓ(ν) this implies that X ⊆ Y . In
the same way it follows that Z ⊆ Y .
Now suppose that X ∩ Z̄ 6= ∅. Then πi is νi-enabled, for i=1, 2, for abstract
transitions νi with ℓ(ν1) = c ∈ H and ℓ(ν2) = c̄. So by Definition E.5 π is
ν1|ν2-enabled, in contradiction with ℓ(ν1|ν2) = τ 6∈ Y ⊆ H . We therefore
conclude that X ∩ Z̄ = ∅.
By definition, π1 is X-justen and π2 is Z-justen.

– Suppose π is a Y-justen path of a process P\c. Then Y includes all labels of
abstract transitions ν for which π is ν-enabled. By Observation E.2 there is
a path π′ with π ⇛ π′\c. Let X be the set of labels of abstract transitions ν
for which π′ is ν-enabled. If π′ is ν-enabled and c 6= ℓ(ν) 6= c̄ then π is ν\c-
enabled by Definition E.5. Since ℓ(ν\c) = ℓ(ν) this implies thatX\{c, c̄} ⊆ Y .
It follows that π′ is X-justen, and hence Y ∪{c, c̄}-justen.

– Suppose π is a Y-justen path of a process P [f ]. Then Y includes all labels
of abstract transitions ν for which π is ν-enabled. By the remark after Ob-
servation E.2, there is a path π′ with π ⇛ π′[f ]. Let X be the set of labels
of abstract transitions ν for which π′ is ν-enabled. If π′ is ν-enabled then π
is ν[f ]-enabled by Definition E.5. Since ℓ(ν[f ]) = f(ℓ(ν)) this implies that
f(X) ⊆ Y . It follows that π′ is X-justen, and hence f−1(Y )-justen.

– Suppose π′ is a suffix of an Y-justen path π. Then Y includes all labels of
abstract transitions ν for which π is ν-enabled. By the last clause of Defini-
tion E.5, Y thereby includes all labels of abstract transitions ν for which π′

is ν-enabled. Hence π′ is Y-justen.

Since Y-justness is the largest family of predicates that satisfies those require-
ments, Y-justnessen implies Y-justness. ⊓⊔

Henceforth, we write π |= φ if the LTL formula φ holds for the path π in U , that
is, if π satisfies φ. Note that a finite path satisfies FGφ if φ holds in its last
state.

Proposition E.7. If π is ν-enabled then π |= FG en(ν).

Proof. We apply induction on ν-enabledness of a path π in U , using the five
clauses of Definition E.5.

Suppose π is ν-enabled because it is finite and its last state Q ∈ ExABC

enables ν. Then π |= FG en(ν).
Suppose π ⇛ π1|π2 is ν-enabled because ν = ν1| and π1 is ν1-enabled. By

induction π1 |= FG en(ν1). Let π
′
1 = u0u1u2 . . . be a suffix of π1 with π′

1 |=
G en(ν1). Then, for all i ≥ 0, ui |= en(ν1) and thus ui|v |= en(ν1| ) for any state
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ui|v of U by Lemma D.7. Therefore π |= FG en(ν). The case that ν = |ν2 and
π2 is ν2-enabled goes likewise.

Suppose π ⇛ π1|π2 is ν-enabled because ν = ν1|ν2 and πi is νi-enabled
for i = 1, 2. Then ℓ(ν1) = ℓ(ν2) ∈ H . By induction πi |= FG en(νi). Let
π′
1 = u0u1u2 . . . and π′

2 = v0v1v2 . . . be (finite or infinite) suffixes of π1 and
π2 with π′

i |= G en(νi) for i = 1, 2. Then, for all j, k ≥ 0, uj |= en(ν1) and
vk |= en(ν2) and thus uj |vk |= en(ν1|ν2) by Lemma D.8, whenever uj |vk is a
state of U . Therefore π |= FG en(ν).

Suppose π ⇛ π′\c (with c ∈ H ) is ν-enabled because ν = ν′\c and π′ is ν′-
enabled. Then c 6= ℓ(ν′) 6= c̄. By induction, π′ |= FG en(ν′). Using Lemma D.9,
one finds π |= FG en(ν).

Suppose π ⇛ π′[f ] is ν-enabled because ν = ν[f ] and π′ is ν′-enabled. By
induction π′ |= FG en(ν′). Using Lemma D.10, one finds π |= FG en(ν).

Suppose π is ν-enabled because it has a suffix π′ that is ν-enabled. Then, by
induction, π′ |= FG en(ν). Hence π |= FG en(ν). ⊓⊔

The following result is the “⇐”-direction of Theorem 4.2.

Proposition E.8. If π is a path in U with π |= FG en(ν) ⇒ GF ν for each
abstract transition ν with ℓ(ν) ∈ B! ∪ {τ}, then π̂ is just in the sense of Defini-
tion 4.1.

Proof. By definition no state P ∈ ExABC satisfies ν. So, any state of U that could
satisfy ν as well as en(ν) needs to be a derivation ζ. Assume ζ |= en(ν). Then
there is a representative χ of ν, i.e., ν = [χ]≡, with χ ⌣• ζ. Using Lemma D.12,
we get ν = [χ]≡ 6= [ζ]≡. In case ζ would also satisfy ν, we have, by definition,
ν = [ζ]≡, which is a contradiction. Hence there is no abstract transition ν and
state u in U for which the propositions en(ν) and ν both hold. Consequently,
the formula FG en(ν) ⇒ GF ν is equivalent to ¬FG en(ν).

Let π be a path in U with π |= ¬FG en(ν) for each ν with ℓ(ν) ∈ B! ∪ {τ}.
Then, by Proposition E.7, π is ν-enabled for no ν with ℓ(ν) ∈ B! ∪ {τ}. Hence,
by Proposition E.6, π is H -just. Therefore, by Proposition E.4, π̂ is H -just,
and hence just. ⊓⊔

E.2 The “⇒”-direction

E.2.1 On the targets of derivations enabling abstract transitions

Lemma E.9. If ζ |= en(ν| ), ζ |= en( |ν) or ζ |= en(ν1|ν2) for a derivation ζ
and abstract transitions ν, ν1, ν2, then target(ζ) has the form P1|P2.

Proof. Since ζ |= en(ν) means that χ ⌣• ζ for a representative χ of ν, the lemma
can be rephrased as: “If χ ⌣• ζ for a representative χ of an abstract transition
ν| , |ν or ν1|ν2, target(ζ) has the form P1|P2.” We prove this statement by
structural induction on χ.

– Let χ be χ′|P , P |χ′ or χ1|χ2. By the definition of ⌣•, ζ must then have the
form Q|ζ ′, ζ ′|Q or ζ1|ζ2. In each of these cases target(ζ) has the form P1|P2.
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– Let χ = χ′+P . Then ζ must have the form ζ ′+P with χ′ ⌣• ζ ′ by the
definition of ⌣•. Since χ is a representative of an abstract transition ν| or
ν1|ν2, so is χ′. By induction, target(ζ ′) has the form P1|P2. By rule (Sum-l)
target(ζ) = target(ζ ′), and thus of the form P1|P2.

– The cases χ = P+χ′ and χ = A:χ′ proceed likewise.

As χ represents an abstract transition ν| or ν1|ν2, it cannot have any other
form. ⊓⊔

Lemma E.10. If ζ |= en(ν\c) or ζ |= en(ν[f ]), then target(ζ) has the form
P\c, and P [f ], resp.

Proof. The first statement can be rephrased as: “If χ ⌣• ζ for a representative
χ of an abstract transition ν\c, then target(ζ) has the form P\c.” We prove this
statement by structural induction on χ.

– Let χ = χ′\c. By the definition of ⌣• we have ζ = ζ ′\c with χ′ ⌣• ζ ′. Hence
target(ζ) has the form P\c.

– Let χ = A:χ′. Then ζ must have the form A:ζ ′ with χ′ ⌣• ζ ′ by the definition
of ⌣•. Since χ is a representative of an abstract transition ν\c, so is χ′. By
induction, target(ζ ′) has the form P\c. By rule (Rec) target(ζ) = target(ζ ′),
and thus of the form P\c.

– The cases χ = χ′+P and χ = P+χ′ proceed likewise, using (Sum-l) and
(Sum-r).

– As χ represents an abstract transition ν\c, it cannot have any other form.

The proof of the second statement proceeds likewise. ⊓⊔

E.2.2 Decomposing enabled abstract transitions

Observation E.11. Using Observation E.1, any representative χ of ν| such
that src(χ) = P1|P2 is of the form χ′|P2 with χ′ a representative of ν, or χ′|ς
with χ′ a representative of ν and ℓ(χ′) = ℓ(χ) ∈ B!. Moreover src(χ′) = P1.

Lemma E.12. If u1|u2 |= en(ν| ) for a state u1|u2 of U , then u1 |= en(ν).

Proof. We make a case distinction based on whether ui is a process or a deriva-
tion.

Suppose P1|P2 |= en(ν| ). Then P1|P2 = src(χ) for a representative χ of ν| .
By Observation E.11, it has the form χ′|v with χ′ a representative of ν and
src(χ′) = P1. Therefore P1 |= en(ν).

Suppose P1|ζ2 |= en(ν| ) with src(P1|ζ2) = P1|P2. Then χ ⌣• P1|ζ2 for a
representative χ of ν| . By Observation C.5 src(χ) = src(P1|ζ2) = P1|P2. So,
by Observation E.11 it is has the form χ′|v, with χ′ a representative of ν and
src(χ′) = P1. Therefore P1 |= en(ν).

Suppose ζ1|u2 |= en(ν| ) with src(ζ1|u2) = P1|P2. Then χ ⌣• ζ1|u2 for a
representative χ of ν| . By Observation C.5 src(χ) = src(ζ1|u2) = P1|P2. So,
by Observation E.11 it is has either the form χ′|P2 or χ′|ς (ℓ(χ′) ∈ B!), with
χ′ a representative of ν. So, χ′|P2 ⌣• ζ1|u2 or χ′|ς ⌣• ζ1|u2 and hence, by
Definition C.4, χ′ ⌣• ζ ′1. Since χ

′ a representative of ν, ζ1 |= en(ν). ⊓⊔
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Lemma E.13. If u1|u2 |= en(ν1|ν2) for a state u1|u2 of U , then ui |= en(νi)
(i=1, 2).

Proof. We make a case distinction based on whether ui is a process or a deriva-
tion.

Suppose P1|P2 |= en(ν1|ν2). Then P1|P2 = src(χ) for a representative χ of
ν1|ν2. By Observation E.1, it has the form v1|v2. Since it is a representative of
ν1|ν2, it has the form χ1|χ2, with χi a representative of νi (i=1, 2). Furthermore,
src(χi) = Pi. It follows that Pi |= en(νi) (i=1, 2).

Suppose P1|ζ2 |= en(ν1|ν2) with src(P1|ζ2) = P1|P2. Then χ ⌣• P1|ζ2 for
a representative χ of ν1|ν2. By Observation C.5 src(χ) = src(P1|ζ2) = P1|P2.
So, by Observation E.1, χ has the form v1|v2. Since it is a representative of
ν1|ν2, it has the form χ1|χ2, with χi a representative of νi (i=1, 2). Moreover,
ℓ(χ1) = ℓ(ν1) = ℓ(ν2) = ℓ(χ2) ∈ H . So χ1|χ2 ⌣• P1|ζ2 and by Definition C.4
src(χ1) = P1 and χ2 ⌣• ζ2. Since χi (i=1, 2) is a representative of νi, P1 |= en(ν1)
and ζ2 |= en(ν2).

The case ζ1|P2 follows by symmetry.
Suppose ζ1|ζ2 |= en(ν1|ν2) with src(ζ1|ζ2) = P1|P2. Then χ ⌣• ζ1|ζ2 for

a representative χ of ν1|ν2. By Observation C.5 src(χ) = src(P1|ζ2) = P1|P2.
So, by Observation E.1, χ has the form v1|v2. Since it is a representative of
ν1|ν2, it has the form χ1|χ2, with χi a representative of νi (i=1, 2). Moreover,
ℓ(χ1)=ℓ(ν1)=ℓ(ν2)=ℓ(χ2)∈H . So χ1|χ2 ⌣• ζ1|ζ2 and by Definition C.4 χi ⌣• ζi
(i=1, 2). Since χi is a representative of νi, ζi |= en(νi). ⊓⊔

Lemma E.14. If u |= en(ν\c) for a state u of U of the form u′\c, then u′ |=
en(ν).

Proof. We make a case distinction based on whether u is a processes P or a
derivation ζ.

Suppose P |= en(ν\c). Then P = src(χ) for a representative χ of ν\c. Since,
by assumption, P is of the form P ′\c, Observation E.2 says that χ is of the form
χ′\c with src(χ′) = P ′. Since χ = χ′\c is a representative of ν\c, χ′ must be a
representative of ν. Hence P ′ |= en(ν).

Suppose ζ |= en(ν\c). Then χ ⌣• ζ for a representative χ of ν\c. Since,
by assumption, ζ is of the form ζ ′\c, src(ζ) must be of the form P ′\c. By Ob-
servation C.5 src(χ) = src(ζ), so by Observation E.2 χ is of the form χ′\c.
Since χ = χ′\c is a representative of ν\c, χ′ must be a representative of ν. As
χ′\c ⌣• ζ ′\c, we have χ′ ⌣• ζ ′. Thus ζ ′ |= en(ν). ⊓⊔

Lemma E.15. If u[f ] |= en(ν[f ]) for a state u of U , then u |= en(ν).

Proof. Exactly as above, using an analogue of Observation E.2 for relabelling. ⊓⊔

E.2.3 ν-enabled paths in S

Definition E.16. A path ρ in S is ν-enabled for an abstract transition ν, if
either it is finite and its last state Q ∈ ExABC satisfies Q |= en(ν), or it is

infinite and has a suffix ρ′ such that ζ |= en(ν) for all derivations ζ with ζ̂ a
transition in ρ′.
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Lemma E.17. If a path ρ in S is Y-just and ν-enabled then ℓ(ν) ∈ Y .

Proof. If a finite path ρ in S is ν-enabled, its last state Q ∈ ExABC satisfies
en(ν), and thus Q

ℓ(ν)−−→. The first clause of Definition 4.1 (Y-justness) tells that
ℓ(ν) ∈ Y .

For infinite paths ρ, we apply structural induction on ν. Let ρ be an infinite
path that is Y-just and ν-enabled, and let ρ′ be a suffix of ρ, such that ζ |= en(ν)

for each derivation ζ with ζ̂ a transition in ρ′. Moreover, P |= en(ν) for each
state of P on ρ′, using Proposition D.11 and the definition of .̂ Let ζ0 be a
derivation of the first transition in ρ′, and let ρ′′ be the suffix of ρ′ starting from
Q := target(ζ0).

Let ν =
α
→P for α ∈ Act and P ∈ ExABC. Since no representative χ of ν is

concurrent with any derivation ζ, it follows that ρ′ contains no transitions, and
hence consists of a single state only. This contradicts the presumed infinity of ρ.

Let ν = ν1| . Since ζ0 |= en(ν1| ), by Lemma E.9 Q has the form P1|P2.

By Definition 4.1 ρ′′ can be decomposed into an X-just path ρ1 of P̂1 = P1

and a Z-just path ρ2 of P̂2 = P2 such that Y ⊇ X∪Z and X∩Z̄ = ∅. By
Observation E.1 and the definition of ,̂ all states u of ρ′′ as well as all derivations
u of transitions in ρ′′ have the form u1|u2. Since each such u1|u2 satisfies en(ν1| ),
by Lemma E.12 u1 |= en(ν1). It follows that u1 |= en(ν1) for each state u1 in
ρ1 and for each derivation u1 of a transition in ρ1. Hence ρ1 is ν1-enabled. By
induction ℓ(ν1) ∈ X. So ℓ(ν) = ℓ(ν1) ∈ X ⊆ Y .

The case ν = |ν2 follows by symmetry.

Let ν= ν1|ν2. Then ℓ(ν1) = ℓ(ν2) ∈ H . Since ζ0 |= en(ν1|ν2), by Lemma E.9
Q has the form P1|P2. By Definition 4.1 ρ′′ can be decomposed into an X-just

path ρ1 of P̂1 = P1 and a Z-just path ρ2 of P̂2 = P2 such that Y ⊇ X∪Z and
X∩Z̄ = ∅. By Observation E.1 and the definition of ,̂ all states u of ρ′′ as well
as all derivations u of transitions in ρ′′ have the form u1|u2. Since each such
u1|u2 satisfies en(ν1|ν2), by Lemma E.13 ui |= en(νi) (i=1, 2). It follows that
ui |= en(νi) for each state ui in ρi and for each derivation ui of a transition in
ρi. Hence ρi is νi-enabled. By induction ℓ(ν1) ∈ X and ℓ(ν1) = ℓ(ν2) ∈ Z̄, in
contradiction with X∩Z̄ = ∅. Therefore, this case cannot occur.

Let ν = ν′\c (with c ∈ H ). Then c 6= ℓ(ν′) 6= c̄. Since ζ0 |= en(ν′\c), by
Lemma E.10 Q has the form P\c. By Definition 4.1 ρ′′ can be decomposed

into a Y ∪{c}-just path ρ′′′ of P̂ = P . By Observation E.2 all derivations ζ of
transitions in ρ′′ have the form ζ ′\c. Since each such ζ ′\c satisfies en(ν′\c), by
Lemma E.14 ζ ′ |= en(ν′). It follows that ζ ′ |= en(ν′) for each derivation ζ ′ of a
transition in ρ′′′. Hence ρ′′′ is ν′-enabled. By induction ℓ(ν′) ∈ Y ∪ {c}. Since
ℓ(ν′) 6= c we obtain ℓ(ν) = ℓ(ν′) ∈ Y .

Let ν = ν′[f ]. Since ζ0 |= en(ν′[f ]), by Lemma E.10 Q has the form P [f ].

By Definition 4.1 ρ′′ can be decomposed into a f1(Y )-just path ρ′′′ of P̂ = P .
By the relabelling variant of Observation E.2 all derivations ζ of transitions in
ρ′′ have the form ζ ′[f ]. Since each such ζ ′[f ] satisfies en(ν′[f ]), by Lemma E.15
ζ ′ |= en(ν′). It follows that ζ ′ |= en(ν′) for each derivation ζ ′ of a transition in ρ′′′.
Hence ρ′′′ is ν′-enabled. By induction ℓ(ν′) ∈ f1(Y ). So ℓ(ν) = f(ℓ(ν′)) ∈ Y . ⊓⊔
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The following result directly implies the “⇒”-direction of Theorem 4.2.

Proposition E.18. Let ρ be a just path in S. Then ρ = π̂ for a path π in U
that satisfies π 6|= FG en(ν) for each abstract transition ν with ℓ(ν) ∈ B! ∪ {τ}.

Proof. First, suppose that ρ is a finite just path in S . By Definition 4.1 it ends
in a state Q ∈ ExABC that admits actions from H ∪ B? only. Pick any path π
in U with π̂ = ρ. Then π ends in Q as well. Hence π |= FG en(ν) for no abstract
transition ν with ℓ(ν) ∈ B! ∪ {τ}.

Next, consider the case that ρ is infinite. There are countably many abstract
transitions. Let (νi)

∞
i=0 be an enumeration of the abstract transitions ν with

ℓ(ν) ∈ B! ∪ {τ}, such that each such ν occurs infinitely often in this sequence.
With induction on i ∈N, we construct finite paths πi in U such that πi will

be a strict prefix of πj when i < j, and π̂i is a prefix of ρ for each i ∈N.
Let π0 be an arbitrary finite path in U with π̂0 a prefix of ρ. Given πi, let ζi

be an arbitrary derivation such that ζi 6|= en(νi) and ζ̂i occurs in ρ past the prefix
π̂i. Such a ζi must exists, as otherwise ρ would be νi-enabled, which contradicts
Lemma E.17. (Remember that by assumption ρ is just.)

We obtain πi+1 by extending πi in a way such that π̂i+1 is a prefix of ρ up

to and including ζ̂i and its target state; the last derivation of πi+1 is set to ζi.
All derivations different from ζi that are not part of πi can be chosen arbitrarily,
under the restriction that π̂i+1 is a prefix of ρ.

Now π := limi→∞ πi exists and satisfies ρ = π̂. By construction, π |=
¬FG en(ν) for any abstract transition ν with ℓ(ν) ∈ B! ∪ {τ}. ⊓⊔
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