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We show that the proof nets introduced in [4, 5] for MALL (Multiplicative Additive Linear Logic,

without units) identify cut-free proofs modulo rule commutation: two cut-free proofs translate to the

same proof net if and only if one can be obtained from the other by a succession of rule commutations.

This result holds with and without the mix rule, and we extend it with cut.

1 Introduction

The proof nets for MALL (Multiplicative Additive Linear Logic [2], without units) introduced in [4, 5]

solved numerous issues with monomial proof nets [3], for example:

• There is a simple (deterministic) translation function from cut-free proofs to proof nets.

• Cut elimination is simply defined and strongly normalising.

• Proof nets form a semi (i.e., unit-free) star-autonomous category with (co)products.

A proof net is a set of linkings on a sequent. Each linking is a set of links between complementary

formula leaves (literal occurrences). Figure 1 illustrates the translation of a proof into a proof net.

In this paper we prove that the translation precisely captures proofs modulo rule commutation: two

proofs translate to the same proof net if and only if one can be obtained from the other by a succession

of rule commutations. A rule commutation is a transposition of adjacent rules that preserves subproofs

immediately above, with possible duplication/identification, for example

P⊥,P

Q,Q⊥

⊕2
Q, R⊕Q⊥

⊗
P⊥, P⊗Q, R⊕Q⊥

−→
P⊥,P Q,Q⊥

⊗
P⊥, P⊗Q ,Q⊥

⊕2
P⊥, P⊗Q, R⊕Q⊥

in which the lower ⊗-rule commutes over the ⊕-rule, or

P⊥,P
⊕1

P⊥,P⊕R

Q⊥,Q Q⊥,Q
&

Q⊥, Q&Q
⊗

P⊥, (P⊕R)⊗Q⊥, Q&Q

−→

P⊥,P
⊕1

P⊥,P⊕R Q⊥,Q
⊗

P⊥,(P⊕R)⊗Q⊥,Q

P⊥,P
⊕1

P⊥,P⊕R Q⊥,Q
⊗

P⊥,(P⊕R)⊗Q⊥,Q
&

P⊥, P⊗Q⊥, Q&Q

illustrating duplication (of the⊗-rule and subproof
P⊥,P

⊕1
P⊥,P⊕R ) as the⊗-rule commutes over the &-rule.
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ax

P, P⊥

ax

P, P⊥

⊗

P⊗P, P⊥, P⊥

ax

P, P⊥

⊕1

P, P⊥⊕Q

ax

P, P⊥

⊗
P⊗P, P⊥, P⊥⊕Q

&

P⊗P, P⊥, P⊥&(P⊥⊕Q)

&

(P⊗P)

&

P⊥, P⊥&(P⊥⊕Q)

Figure 1: Example of the inductive translation of a MALL proof into a proof net. The concluding proof

net has two linkings, one drawn above the sequent, the other below. Each has two links. The proof nets

further up in the derivation have one or two linkings, correspondingly above/below the sequent.

2 Cut-free MALL

Let MALL− denote cut-free multiplicative-additive linear logic without units [2].1 Formulas are built

from literals (propositional variables P,Q, . . . and their negations P⊥, Q⊥, . . .) by the binary connectives

tensor ⊗, par

&

, with & and plus ⊕. Negation (−)⊥ extends to arbitrary formulas with P⊥⊥ = P on

propositional variables and de Morgan duality: (A⊗B)⊥ = A⊥

&

B⊥, (A
&

B)⊥ = A⊥⊗B⊥, (A⊕B)⊥ =
A⊥&B⊥, and (A&B)⊥ = A⊥⊕B⊥. We identify a formula with its parse tree, labelled with literals on

leaves and connectives on internal vertices. A sequent is a disjoint union of formulas. Thus a sequent is

a labelled forest. We write comma for disjoint union. For example,

P⊥, (P⊗P⊥)

&

P

is the labelled forest

P⊥ P

⊗

P⊥

&

P

❙❙ ✓✓

❙
❙

✓
✓
✓
✓✓

Sequents are proved using the following rules:

ax
P,P⊥

Γ,A B,∆
⊗

Γ,A⊗B,∆

Γ, A, B &

Γ, A

&

B

Γ,A Γ,B
&

Γ,A&B

Γ, A
⊕1

Γ, A⊕B

Γ, B
⊕2

Γ, A⊕B

Γ ∆
mix (optional)

Γ,∆

1We treat cut in Section 5.
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ax
{

P,P⊥
}

⊲ P,P⊥

θ ⊲ Γ, A θ ′ ⊲ Γ, B
&

θ ∪θ ′ ⊲ Γ, A&B

θ ⊲ Γ, A θ ′ ⊲ B,∆
⊗

{λ ∪λ ′ : λ ∈ θ ,λ ′ ∈ θ ′} ⊲ Γ, A⊗B,∆

θ ⊲ Γ, A,B &

θ ⊲ Γ, A

&

B

θ ⊲ Γ, A
⊕1

θ ⊲ Γ, A⊕B

θ ⊲ Γ, B
⊕2

θ ⊲ Γ, A⊕B

θ ⊲ Γ θ ′ ⊲ ∆
mix

{λ ∪λ ′ : λ ∈ θ ,λ ′ ∈ θ ′} ⊲ Γ,∆

Table 1: Alternative but equivalent definition of the function from MALL− proofs to linking sets. Here

θ ⊲ Γ signifies that θ is a set of linkings on Γ. We use the implicit tracking of formula leaves downwards

through rules. The base case is a singleton linking set whose only linking comprises a single link,

between P and P⊥.

The mix-rule is optional and absent by default. Our treatment is valid for MALL− with and without mix.

Throughout this document P,Q,R range over propositional variables, A,B, . . . over formulas, and

Γ,∆,Σ over sequents. Each of the proof rules above yields an implicit tracking of subformula occurrences,

mapping the vertices in the hypotheses to the ones in the conclusion. A formula occurrence in the

conclusion of a rule ρ is generated by ρ if it is not in the image of this map.

3 Function from proofs to proof nets

A link on Γ is a pair (two-element set) of leaves in Γ. A linking on Γ is a set of links on Γ.2 Every

MALL− proof Π of Γ defines a set θΠ of linkings on Γ as follows. Define a &-resolution R of Π to be

any result of deleting one branch above each &-rule of Π. By downwards tracking of formula leaves, the

axiom rules of R determine a linking λR on Γ. Define θΠ = {λR : R is a &-resolution of Π}.
Table 1 defines the same function by induction. See Figure 1 for an example. The fact that this

yields the same linking set as the resolution-based function follows from a simple structural induction

on proofs. Note that ⊗ (resp. &) is multiplicative (resp. additive): multiply (resp. add) the number of

linkings in θ and θ ′ to obtain the number of linkings on the conclusion.3

A linking set is a proof net if it is the translation of a proof.4

4 Rule commutations

Tables 2, 3 and 4 exhaustively list the rule commutations of MALL−. Each commutation may be applied

in context, i.e., to any subproof. This collection of rule commutations is not ad hoc: they are generated

systematically from a general definition of commutation, presented in the Appendix, which is more

liberal than the one analysed by Kleene [7] and Curry [1] in the context of sequent calculus [8, Def.

5.2.1].

Our main result is that the kernel of the function from MALL− proofs to proof nets coincides precisely

with equivalence modulo rule commutations:

2The paper [5] imposed additional conditions in the definition of a linking. We do not need these conditions here.
3This observation relies on θ and θ ′ having no common linking, which follows (by structural induction) from the fact

that in any proof net on Γ, every linking touches every formula in Γ (i.e., for every linking λ in the proof net, and every

formula(-occurrence) A in Γ, some link of λ contains a leaf of A).
4In [4, 5] we defined a proof net via a geometric criterion on a linking set, and proved that a linking set meets this criterion

if and only if it is the translation of a proof.
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Π

Γ,A1,A2,B1,B2 &

Γ,A1

&

A2,B1,B2 &

Γ,A1

&

A2,B1

&

B2

C

&
&

←→

Π

Γ,A1,A2,B1,B2 &

Γ,A1,A2,B1

&

B2 &

Γ,A1

&

A2,B1

&

B2

Π

Γ,Ai,B j
⊕i

Γ,A1⊕A2,B j
⊕ j

Γ,A1⊕A2,B1⊕B2

C
⊕
⊕

←→

Π

Γ,Ai,B j
⊕ j

Γ,Ai,B1⊕B2
⊕i

Γ,A1⊕A2,B1⊕B2

Π1

Γ,A1

Π2

A2,∆,B1

Π3

B2,Σ
⊗

A2,∆,B1⊗B2,Σ
⊗

Γ,A1⊗A2,∆,B1⊗B2,Σ

C
⊗
⊗

←→

Π1

Γ,A1

Π2

A2,∆,B1
⊗

Γ,A1⊗A2,∆,B1

Π3

B2,Σ
⊗

Γ,A1⊗A2,∆,B1⊗B2,Σ

Π1

Γ,A1,B1

Π2

Γ,A2,B1
&

Γ,A1&A2,B1

Π3

Γ,A1,B2

Π4

Γ,A2,B2
&

Γ,A1&A2,B2
&

Γ,A1&A2,B1&B2

C&
&

←→

Π1

Γ,A1,B1

Π3

Γ,A1,B2
&

Γ,A1,B1&B2

Π2

Γ,A2,B1

Π4

Γ,A2,B2
&

Γ,A2,B1&B2
&

Γ,A1&A2,B1&B2

Table 2: Homogeneous rule commutations. In the last conversion, note the reversal of Π2 and Π3.
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Π

Γ,Ai,B1,B2
⊕i

Γ,A1⊕A2,B1,B2 &

Γ,A1⊕A2,B1

&

B2

C
⊕&

−→
←−
C

&

⊕

Π

Γ,Ai,B1,B2 &

Γ,Ai,B1

&

B2
⊕i

Γ,A1⊕A2,B1⊕B2

Π1

Γ,Ai,B1
⊕i

Γ,A1⊕A2,B1

Π2

Γ,Ai,B2
⊕i

Γ,A1⊕A2,B2
&

Γ,A1⊕A2,B1&B2

C
⊕
&

−→
←−
C

&
⊕

Π1

Γ,Ai,B1

Π2

Γ,Ai,B2
&

Γ,Ai,B1&B2
⊕i

Γ,A1⊕A2,B1&B2

Π1

Γ,A1,A2,B1 &

Γ,A1

&

A2,B1

Π2

Γ,A1,A2,B2 &

Γ,A1

&

A2,B2
&

Γ,A1

&

A2,B1&B2

C

&

&

−→
←−
C&&

Π1

Γ,A1,A2,B1

Π2

Γ,A1,A2,B2
&

Γ,A1,A2,B1&B2 &

Γ,A1

&

A2,B1&B2

Π1

Γ,A1

Π2

A2,∆,Bi
⊕i

A2,∆,B1⊕B2
⊗

Γ,A1⊗A2,∆,B1⊕B2

C
⊕
⊗

−→
←−
C
⊗
⊕

Π1

Γ,A1

Π2

A2,∆,Bi
⊗

Γ,A1⊗A2,∆,Bi
⊕i

Γ,A1⊗A2,∆,B1⊕B2

Π1

Γ,A1

Π2

A2,∆,B1,B2 &

A2,∆,B1

&

B2
⊗

Γ,A1⊗A2,∆,B1

&

B2

C

&

⊗

−→
←−
C
⊗&

Π1

Γ,A1

Π2

A2,∆,B1,B2
⊗

Γ,A1⊗A2,∆,B1,B2 &

Γ,A1⊗A2,∆,B1

&

B2

Π1

Γ,A1

Π2

A2,∆,B1

Π3

A2,∆,B2
&

A2,∆,B1&B2
⊗

Γ,A1⊗A2,∆,B1&B2

C&
⊗

−→
←−
C
⊗
&

Π1

Γ,A1

Π2

A2,∆,B1
⊗

Γ,A1⊗A2,∆,B1

Π1

Γ,A1

Π3

A2,∆,B2
⊗

Γ,A1⊗A2,∆,B2
&

Γ,A1⊗A2,∆,B1&B2

Table 3: Heterogeneous rule commutations. The last three have symmetric variants, obtained by switch-

ing A2⊗A1 for A1⊗A2 and exchanging hypotheses of rules from left to right, correspondingly. (The

hypotheses are not ordered; however, we apply the convention that a hypothesis that contributes to one

side of a ⊗ or & connective is drawn on that side.) Note that there are two copies of the subproof Π1 on

the right side of the final conversion.
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Π1

Γ

Π2

∆

Π3

Σ
mix

∆,Σ
mix

Γ,∆,Σ

Cmix
mix

←→

Π1

Γ

Π2

∆
mix

Γ,∆

Π3

Σ
mix

Γ,∆,Σ

Π1

Γ

Π2

∆,B1

Π3

B2,Σ
⊗

∆,B1⊗B2,Σ
mix

Γ,∆,B1⊗B2,Σ

C
⊗
mix

−→
←−
Cmix
⊗

Π1

Γ

Π2

∆,B1
mix

Γ,∆,B1

Π3

B2,Σ
⊗

Γ,∆,B1⊗B2,Σ

Π1

Γ

Π2

∆,Bi
⊕i

∆,B1⊕B2
mix

Γ,∆,B1⊕B2

C
⊕
mix

−→
←−
Cmix
⊕

Π1

Γ

Π2

∆,Bi
mix

Γ,∆,Bi
⊕i

Γ,∆,B1⊕B2

Π1

Γ

Π2

∆,B1,B2 &

∆,B1

&

B2
mix

Γ,∆,B1

&

B2

C

&

mix

−→
←−
Cmix&

Π1

Γ

Π2

∆,B1,B2
mix

Γ,∆,B1,B2 &

Γ,∆,B1

&

B2

Π1

Γ

Π2

∆,B1

Π3

∆,B2
&

∆,B1&B2
mix

Γ,∆,B1&B2

C&
mix

−→
←−
Cmix

&

Π1

Γ

Π2

∆,B1
mix

Γ,∆,B1

Π1

Γ

Π3

∆,B2
mix

Γ,∆,B2
&

Γ,∆,B1&B2

Table 4: Mix rule commutations. The second conversion has a symmetric variant, in which, on the right-

hand side, the mix rule applies to the hypothesis contributing to the right argument of the tensor. Since

sequents are unordered, we do not need symmetric variants obtained by exchanging the hypotheses of

the mix rule. Our general definition of rule commutation in the Appendix also allows a version of Cmix
mix

with three applications of mix, two above and one below. However, this conversion can be generated

from the top conversion listed above and is therefore not listed explicitly.
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ax

P, P⊥

Γ, A,B &

Γ, A

&

B

Γ,A B,∆
⊗

Γ,A⊗B,∆

Γ, A
⊕1

Γ, A⊕B

Γ,B
⊕2

Γ,A⊕B

Γ ∆
mix (optional)

Γ,∆

Γ, A A⊥,∆
∗

Γ, A∗A⊥,∆

Ω1,Γ, A Ω2,Γ, B
& (Ωi is cut-only)

Ω1,Ω2,Γ, A&B

Table 5: Rules for deriving sequents in MALL∗. Here P ranges over propositional variables, A,B range

over MALL formulas, Γ,∆ range over MALL∗ sequents, and the Ωi range over cut-only sequents (disjoint

unions of cuts). Note that the &-rule may superimpose one or more cuts from its two hypotheses (the

ones contained in Γ), or may leave all cut pairs separate (when putting all cuts in Ωi).

THEOREM 1 Two MALL− proofs translate to the same proof net if and only if they can be converted

into each other by a series of rule commutations.

We will obtain this result as a special case of Proposition 1.

5 Cut

Let MALL be MALL−, as defined in Section 2, together with the rule

Γ,A A⊥,∆
cut

Γ,∆

Table 6 lists the rule commutations for cut; the rule commutations for MALL not involving cut are

exactly the same as in the cut-free case (Tables 2–4).

The translation of MALL proofs to proof nets [5] goes via a technically convenient variant MALL∗ of

MALL in which cuts are retained in sequents. Extend MALL formulas to include cuts A∗A⊥ for any cut-

free MALL formula A, where ∗ is the cut connective. By definition ∗ is unordered, i.e., A∗A⊥ = A⊥∗A

(in contrast to MALL formulas, where connectives are ordered, e.g., A⊗B 6= B⊗A when A 6= B). Note

that ∗ can only occur in outermost position.

As before, a sequent is a disjoint union of formulas (but now a formula may be a cut A∗A⊥). Sequents

are derived in MALL∗ using the rules in Table 5. The system MALL∗ is an extension of MALL−.

The function taking a MALL− proof to a set of linkings on a MALL− sequent (defined in Section 3,

page 3) extends in the obvious way to a function taking a MALL∗ proof Π to a set of linkings θΠ

on a MALL∗ sequent: a &-resolution R of Π is any result of deleting one branch above each &-rule

of Π; by downwards tracking of formula leaves, the axiom rules of Π determine a linking λR; define

θΠ = {λR : R is a &-resolution of Π}. Alternatively, the same function can be defined inductively, by

means of a direct extension of the cut-free case in Table 1 [5].

A linking set on a sequent Γ is a proof net if it is the translation of a MALL∗ proof of Γ.

Every MALL∗ proof projects to a MALL proof by deleting all cuts, thereby turning each ∗ rule into

a standard cut rule. Let θ be a set of linkings on a sequent. A MALL proof Π translates to θ , or is a

sequentialisation of θ , denoted Π s✲ θ , if Π is the projection of a MALL∗ proof translating to θ .

Restricted to the cut-free case, the sequentialisation relation s✲ is a function taking a proof to a

proof net, exactly the cut-free translation defined in Section 3. In the presence of cuts, more than one

proof net may correspond to the same MALL proof. Examples can be found in [5].
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Π1

Γ,A

Π2

A⊥,∆,B

Π3

B⊥,Σ
cut

A⊥,∆,Σ
cut

Γ,∆,Σ

Ccut
cut

←→

Π1

Γ,A

Π2

A⊥,∆,B
cut

Γ,∆,B

Π3

B⊥,Σ
cut

Γ,∆,Σ

Π1

Γ, A

Π2

A⊥,∆,B1

Π3

B2,Σ
⊗

A⊥,∆,B1⊗B2,Σ
cut

Γ, ∆,B1⊗B2,Σ

C
⊗
cut

−→
←−
Ccut
⊗

Π1

Γ,A

Π2

A⊥,∆,B1
cut

Γ,∆,B1

Π3

B2,Σ
⊗

Γ,∆,B1⊗B2,Σ

Π1

Γ,A

Π2

A⊥,∆,Bi
⊕i

A⊥,∆,B1⊕B2
cut

Γ,∆,B1⊕B2

C
⊕
cut

−→
←−
Ccut
⊕

Π1

Γ,A

Π2

A⊥,∆,Bi
cut

Γ,∆,Bi
⊕i

Γ,∆,B1⊕B2

Π1

Γ,A

Π2

A⊥,∆,B1,B2 &
A⊥,∆,B1

&

B2
cut

Γ,∆,B1

&

B2

C

&

cut

−→
←−
Ccut&

Π1

Γ,A

Π2

A⊥,∆,B1,B2
cut

Γ,∆,B1,B2 &

Γ,∆,B1

&

B2

Π1

Γ,A

Π2

A⊥,∆,B1

Π3

A⊥,∆,B2
&

A⊥,∆,B1&B2
cut

Γ,∆,B1&B2

C
&
cut

−→
←−
Ccut

&

Π1

Γ,A

Π2

A⊥,∆,B1
cut

Γ,∆,B1

Π1

Γ,A

Π3

A⊥,∆,B2
cut

Γ,∆,B2
&

Γ,∆,B1&B2

Π1

Γ

Π2

∆,B

Π3

B⊥,Σ
cut

∆,Σ
mix

Γ,∆,Σ

Ccut
mix

−→
←−
Cmix

cut

Π1

Γ

Π2

∆,B
mix

Γ,∆,B

Π3

B⊥,Σ
cut

Γ,∆,Σ

Table 6: MALL rule commutations involving cut. The second conversion has a symmetric variant in

whose right-hand side the cut rule applies to the hypothesis contributing to the right argument of the

tensor.
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Let proof-net equivalence be the smallest equivalence relation on MALL proofs such that proofs

that have a common translation are equivalent. Then our main result (Theorem 1) extends to MALL as

follows.

THEOREM 2 Two MALL proofs are proof-net equivalent if and only if they can be converted into each

other by a series of rule commutations.

The proof will be the subject of the following sections.

6 MALL∗ rule commutations

We will obtain Theorem 2 from a similar theorem for MALL∗. To this end, we need to collect the

rule commutations for MALL∗. As in the cut-free case, these can be generated systematically from

the general definition of rule commutation in the Appendix. Table 7 lists the rule commutations for ∗.
The rule commutations for MALL∗ not involving ∗ or & are exactly the same as in the cut-free case

(Tables 2–4), whereas the heterogeneous commutations involving & are obtained from the cut-free ones

by the addition of Ω1 and Ω2, just as in the rule C
&
∗ . The commutation C

&
& is a bit more involved: it can

be obtained from the one in Table 2 by the addition of 222

−2 = 14 variables Ωi jkl with i, j,k, l ∈ {0,1}.
Each cut occurring in the conclusion can be produced by one or more of the subproofs Π1–Π4. The

variable Ω1001 captures those cuts that are produced by Π1 as well as Π4, but not by Π2 or Π3; in general

the nth index from the series i, j,k, l indicates whether or not the cuts in Ωi jkl are produced by Πn. A

sequent occurring in the rule commutation is enriched with Ωi jkl iff it occurs under Πn for an n such

that the nth index from the series i, j,k, l is set to 1. The variable Ω0000 is not needed, as it would not

occur in the conclusion, and the variable Ω1111 is superfluous, as it can be incorporated in Γ. Since the

resulting rules do not fit on the page, below they are displayed using an abbreviation: Ωn denotes the

disjoint union of the sequents Ωi jkl where the nth index is set to 1. Likewise Ωmn indicates the disjoint

union of the sequents Ωi jkl where either the mth or the nth index is set to one, i.e. the non-disjoint union

of Ωm and Ωn.

Π1

Ω1,Γ,A1,B1

Π2

Ω2,Γ,A2,B1
&

Ω12,Γ,A1&A2,B1

Π3

Ω3,Γ,A1,B2

Π4

Ω4,Γ,A2,B2
&

Ω34,Γ,A1&A2,B2
&

Ω1234,Γ,A1&A2,B1&B2

l C&
&

Π1

Ω1,Γ,A1,B1

Π3

Ω3,Γ,A1,B2
&

Ω13,Γ,A1,B1&B2

Π2

Ω2,Γ,A2,B1

Π4

Ω4,Γ,A2,B2
&

Ω24,Γ,A2,B1&B2
&

Ω1234,Γ,A1&A2,B1&B2

The rule commutations for MALL (cf. Section 5) are obtained from the ones of MALL∗ by omitting all

cuts from sequents.
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Π1

Γ,A

Π2

A⊥,∆,B

Π3

B⊥,Σ
∗

A⊥,∆,B∗B⊥,Σ
∗

Γ,A∗A⊥,∆,B∗B⊥,Σ

C∗∗
←→

Π1

Γ,A

Π2

A⊥,∆,B
∗

Γ,A∗A⊥,∆,B

Π3

B⊥,Σ
∗

Γ,A∗A⊥,∆,B∗B⊥,Σ

Π1

Γ, A

Π2

A⊥,∆,B1

Π3

B2,Σ
⊗

A⊥,∆,B1⊗B2,Σ
∗

Γ, A∗A⊥,∆,B1⊗B2,Σ

C
⊗
∗
−→
←−
C∗⊗

Π1

Γ,A

Π2

A⊥,∆,B1
∗

Γ,A∗A⊥,∆,B1

Π3

B2,Σ
⊗

Γ,A∗A⊥,∆,B1⊗B2,Σ

Π1

Γ,A

Π2

A⊥,∆,Bi
⊕i

A⊥,∆,B1⊕B2
∗

Γ,A∗A⊥,∆,B1⊕B2

C
⊕
∗
−→
←−
C∗⊕

Π1

Γ,A

Π2

A⊥,∆,Bi
∗

Γ,A∗A⊥,∆,Bi
⊕i

Γ,A∗A⊥,∆,B1⊕B2

Π1

Γ,A

Π2

A⊥,∆,B1,B2 &
A⊥,∆,B1

&
B2
∗

Γ,A∗A⊥,∆,B1

&

B2

C

&

∗
−→
←−
C∗&

Π1

Γ,A

Π2

A⊥,∆,B1,B2
∗

Γ,A∗A⊥,∆,B1,B2 &

Γ,A∗A⊥,∆,B1

&

B2

Π1

Γ,A

Π2

A⊥,Ω1,∆,B1

Π3

A⊥,Ω2,∆,B2
&

A⊥,Ω1,Ω2,∆,B1&B2
∗

Γ,A∗A⊥,Ω1,Ω2,∆,B1&B2

C&
∗
−→
←−
C∗&

Π1

Γ,A

Π2

A⊥,Ω1,∆,B1
∗

Γ,A∗A⊥,Ω1,∆,B1

Π1

Γ,A

Π3

A⊥,Ω2,∆,B2
∗

Γ,A∗A⊥,Ω2,∆,B2
&

Γ,A∗A⊥,Ω1,Ω2,∆,B1&B2

Π1

Γ

Π2

∆,B

Π3

B⊥,Σ
∗

∆,B∗B⊥,Σ
mix

Γ,∆,B∗B⊥,Σ

C∗mix

−→
←−
Cmix
∗

Π1

Γ

Π2

∆,B
mix

Γ,∆,B

Π3

B⊥,Σ
∗

Γ,∆,B∗B⊥,Σ

Table 7: MALL∗ rule commutations involving cut. The second conversion also has a symmetric variant

in whose right-hand side the ∗ cut rule applies to the hypothesis contributing to the right argument of

the tensor. Since the arguments of ∗ are unordered, we do not need symmetric variants obtained by

exchanging the hypotheses of the ∗ cut rule.
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β\α ∗ mix ⊗ ⊕1 ⊕2

&

&

∗ X X X X X X X

mix X X X X X X X

⊗ X X X X X X X

⊕1 X X X X X X X

⊕2 X X X X X X X

&

◦ ◦ ◦ X X X X

& • • • ◦ ◦ ◦ ◦

Table 8: Rule commutations. The check marks flag pairs
α
β where a (lower) β -rule always commutes

over an α-rule. The marks ◦ indicate situations where β -rules commute over α-rules only under certain

syntactic restrictions, which can be found by studying the results of commuting α- over β -rules. The •
denotes commutation under certain syntactic restrictions.

7 Proof of the MALL∗ rule commutation theorem

We say that a β -rule commutes over an α-rule if there is a valid MALL∗ rule commutation where a

proof fragment in which the β -rule occurs immediately below one or more α-rules is replaced by a

proof fragment in which this order is reversed. Using either the definition of rule commutation from the

Appendix or the enumeration of Tables 2, 3, 4 and 7, enriched with Ωs as discussed above, it is not hard

to check that this happens if and only if (i) no formula occurrence generated by one of the α-rules tracks

to a subformula of a formula generated by the β -rule, and (ii) one of the following cases applies (cf.

Table 8):

• β ∈ {⊗,⊕1,⊕2,mix, ∗};

• β =

&

and α 6=⊗,mix, ∗;

• β =

&

, α =⊗, mix or ∗, and both arguments of the formula generated by the

&

-rule occur in the

same hypothesis of the α-rule;

• β = &, α 6=⊗,mix, ∗, and the formula occurrences generated by the two α-rules track to the same

same formula occurrence of the β -rule.

• β = &, α = ⊗, mix or ∗, the β -rule generates a formula B1&B2, and the hypotheses of the two

α-rules that do not contain B1 or B2 are the same, and have identical subproofs.

This, in turn, yields exactly the rule commutations of Tables 2–7, enriched with Ωs as discussed in

Section 6.

The following result, a generalisation of Theorem 1, is a crucial step towards proving Theorem 2.

PROPOSITION 1 Two MALL∗ proofs translate to the same proof net if and only if they can be converted

into each other by a series of rule commutations.

Proof. If Π′ can be obtained from Π by commuting rule occurrences, then Π and Π′ translate to the

same linking set: taking a &-resolution on either side of a commutation induces essentially the same

&-resolutions (or deletions) of the subproofs Πi. For example, in the last commutation in Table 3,

if we choose right for the distinguished &-rule, we delete subproof Π2 from both sides, and induce

corresponding &-resolutions of Π1 and Π3. The converse is proved below. �
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Given a set of linkings Λ on a MALL∗ sequent Γ, let Γ↾Λ be obtained from the forest Γ by deleting all

vertices that are not below a leaf of Γ that occurs in Λ (i.e., in a link in a linking of Λ). A &-vertex w in Γ

is toggled by Λ if both arguments of w occur in Γ↾Λ. A link a depends on w in Λ if there exist λ ,λ ′ ∈ Λ

such that a ∈ λ , a 6∈ λ ′, and w is the only & toggled by {λ ,λ ′}. Construct the graph GΛ [5] from Γ↾Λ

by adding the edges of
⋃

λ∈Λ λ , as well as all jump edges from leaves ℓ and ℓ′ to any &-vertex on which

the link {ℓ,ℓ′} depends in Λ. Below we will need the following properties of a proof net θ on a MALL∗

sequent Γ, established in [5].

Any set of two linkings in θ toggles a &-vertex of Γ. (1)

Each root vertex (formula occurrence) in Γ occurs in Gθ . (2)

For every λ ∈θ and each root &-vertex w in Γ

there is a λ ′∈θ such that w is the only & toggled by {λ ,λ ′}.
(3)

A formula occurrence A = A1αA2 in a MALL∗ sequent Γ separates a proof net θ on Γ if (i) α ∈ {

&

,&},
(ii) α =⊕ and one of the Ai does not occur in Gθ , or (iii) α ∈ {⊗, ∗} and Gθ has no cycle through α .

LEMMA 1 If the last rule of a MALL∗ proof generates A, then A separates the associated proof net.

Proof. The only non-trivial cases are A = A1αA2 for α ∈ {⊗, ∗}. Let Γ1 and Γ2 be the hypotheses of the

last rule ρ of the proof Π, let Πi be the branch of Π above ρ proving Γi, let θ be the proof net of Π and

θi that of Πi. Gθ could have a cycle through α only when in θ a link a in Γ1 depends on a &-vertex w in

Γ2 (or vice versa). In that case there exist λ ,λ ′ ∈ θ such that a ∈ λ , a 6∈ λ ′, and w is the only & toggled

by {λ ,λ ′}. Hence there must be λ1,λ
′
1 in θ1 and λ2,λ

′
2 in θ2 such that a ∈ λ1, a 6∈ λ ′1 and w is the only

& toggled by {λ1∪λ2,λ
′
1∪λ ′2}. However, by (1) there must be another &-vertex of Λ that is toggled by

{λ1∪λ2,λ
′
1∪λ ′2}, namely one occurring in Γ1 that is toggled by {λ1,λ

′
1}. �

LEMMA 2 If a formula occurrence A = A1αA2 in a MALL∗ sequent Γ, A separates a proof net θ of

Γ, A for which Gθ is connected, then there is at most one instance σ of an α-rule that could generate A

in the last step of a proof Π of Γ, A with proof net θ .

Proof.

• Case α =

&

: the hypothesis of σ must be Γ, A1,A2.

• Case α = &: the hypotheses of σ must be Γ, A1 and Γ, A2.

• Case α =⊕: exactly one of the Ai, say Ad, is in Gθ (2). Hence the hypothesis of σ must be Γ, Ad.

• Case α ∈ {⊗, ∗}: let Γ, A1,A2 be the sequent resulting from deleting the connective α in A from

Γ, A. Since A separates θ and Gθ is connected, the restriction of Gθ to Γ, A1,A2 has two discon-

nected components, one on a sequent Γ1, A1 and the other on a sequent Γ2, A2, where Γ1∪Γ2 = Γ.

Using (2), the hypotheses of σ must be Γ1, A1 and Γ2, A2. �

In each case the proof nets on the hypotheses of σ , induced by the branches of Π that prove these

hypotheses, are completely determined by θ .

For Π a MALL∗ proof, let GΠ abbreviate GθΠ
. We shall prove the following four lemmas by simultaneous

structural induction.

LEMMA 3 Let Π be a proof of a MALL∗ sequent ∆,A1αA2,Σ such that in GΠ any path between (vertices

in) ∆,A1 and A2,Σ passes through the indicated occurrence of α ∈ {⊗, ∗}. Then Π can, by means of rule

commutations, be converted into a proof Π′′ whose last step is the α-rule with hypotheses ∆,A1 and

A2,Σ.
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LEMMA 4 Let Π be a proof of a MALL∗ sequent Γ whose proof net θ is separated by a formula occur-

rence A in Γ. Then, by means of a series of rule commutations, Π can be converted into a proof Π′′ of Γ

that generates A in its last step.

LEMMA 5 Let Π be a proof of a MALL∗ sequent ∆,Σ for nonempty sequents ∆ and Σ, such that in GΠ

there is no path between (vertices in) ∆ and Σ. Then Π can, by means of rule commutations, be converted

into a proof Π′′ whose last step is the mix-rule with hypotheses ∆ and Σ.

LEMMA 6 If two proofs Π and Π′ of a MALL∗ sequent Γ translate to the same proof net on Γ, then Π

can be converted into Π′ by a series of rule commutations.

Lemma 6 is the converse direction of Proposition 1 that must be established.

Proof. We prove Lemmas 3–6 by a simultaneous structural induction on Π (or equivalently, on Γ).

Induction base (applies to Lemma 6 only). The induction base is trivial, as a MALL sequent that can be

proven in one step has at most one proof, a single application of ax.

Induction step for Lemma 3.

• First consider the case that the last step ρ of Π is an application of mix, say with hypotheses Γc

and Γd,A1αA2.

Let Πd be the branch of Π above ρ proving Γd ,A1αA2. Let ∆d = ∆∩Γd and Σd = Σ∩Γd. Since

GΠd
is a subgraph of GΠ, any path in GΠd

between (vertices in) ∆d ,A1 and A2,Σd passes through

the indicated occurrence of α . Hence, by induction, Πd can, by means of rule commutations, be

converted into a proof Π′d whose last step is the α-rule with hypotheses ∆d ,A1 and A2,Σd .

Let Πc be the branch of Π above ρ proving Γc. Let ∆c = ∆∩Γc and Σc = Σ∩Γc. Since GΠc
is a

subgraph of GΠ, there is no path in GΠc
between (vertices in) ∆c and Σc. If ∆c or Σc is empty, let

Π′c = Πc. Otherwise, by induction, using Lemma 5, Πc can, by means of rule commutations, be

converted into a proof Π′c whose last step is the mix-rule with hypotheses ∆c and Σc.

Let Π′ be the proof obtained from Π by replacing Πd with Π′d and Πc with Π′c. Let Π′′ be the

proof with the same 3 or 4 subproofs yielding ∆c, Σc, ∆d,A1 and A2,Σd that first combines ∆c

with ∆d,A1 into ∆,A1 using mix (provided ∆c is nonempty), and likewise combines Σc with A2,Σd

into A2,Σ using mix (provided Σc is nonempty), and then applies α to yield ∆,A1αA2,Σ. By means

of a few simple rule commutations, Π′ can be converted into Π′′.

• Next consider the case that the last step ρ of Π is an application of α generating the same formula

A1αA2. Let the hypotheses of ρ be Γi,Ai for i = 1,2.

Let Πi be the branch of Π above ρ proving Γi,Ai. Let ∆i = ∆∩Γi and Σi = Σ∩Γi. Since GΠ1
is a

subgraph of GΠ, there is no path in GΠ1
between (vertices in) ∆1,A1 and Σ1. In case Σ1 is empty,

let Π′1 = Π1. Otherwise, by induction, using Lemma 5, Π1 can, by means of rule commutations,

be converted into a proof Π′1 whose last step is the mix-rule with hypotheses ∆1,A1 and Σ1.

In case ∆2 is empty, let Π′2 = Π2. Otherwise, by means of rule commutations, Π2 can be converted

into a proof Π′2 whose last step is the mix-rule with hypotheses ∆2 and A2,Σ2.

Let Π′ be the proof obtained from Π by replacing Πi with Π′i for i ∈ {1,2}. Let Π′′ be the proof

with the same 2, 3 or 4 subproofs yielding ∆1,A1, Σ1, ∆2 and A2,Σ2 that first combines ∆1,A1

with ∆2 into ∆,A1 using mix (provided ∆2 is nonempty), and likewise combines Σ1 with A2,Σ2 into

A2,Σ using mix (provided Σ1 is nonempty), and then applies α to yield ∆,A1αA2,Σ. By means of

a few simple rule commutations, Π′ can be converted into Π′′.
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In the remaining cases let the last step of Π be a a β -rule ρ generating the formula B = B1βB2 6= A =
A1αA2. We treat the case that B occurs in Σ; the other case follows by symmetry. Let Σ = Σ′,B1βB2.

• Let β = ⊕. Let Πd be the part of Π above ρ , proving the hypothesis ∆,A,Σ′,Bd of ρ (where

d is 1 or 2). Since GΠd
is a subgraph of GΠ, any path in GΠd

between (vertices in) ∆,A1 and

A2,Σ
′,Bd passes through the indicated occurrence of α . Thus, by induction, by a series of rule

commutations Πd can be be converted into a proof Π′d of ∆,A1αA2,Σ
′,Bd whose last step is the

α-rule with hypotheses ∆,A1 and A2,Σ
′,Bd. Let Π′ be the proof obtained from Π by replacing Πd

by Π′d . In Π′, ρ commutes over the α-rule generating A, thereby yielding the required proof Π′′.

• Let β ∈ {⊗, ∗}. Let Π1 and Π2 be the branches of Π above ρ proving the hypotheses ∆1,A,Σ1,B1

and ∆2,Σ2,B2 of ρ , respectively. Here ∆ = ∆1,∆2 and Σ′= Σ1,Σ2. We assume that A sides with B1;

the other case proceeds symmetrically. Since GΠ1
is a subgraph of GΠ, any path in GΠ1

between

(vertices in) ∆1,A1 and A2,Σ1,B1 passes through the indicated occurrence of α . Thus, by induction,

by a series of rule commutations Π1 can be be converted into a proof Π′1 of ∆1,A1αA2,Σ1,B1 whose

last step is the α-rule with hypotheses ∆1,A1 and A2,Σ1,B1.

In case ∆2 is empty, let Π′2=Π2. Otherwise, by induction, using Lemma 5, Π2 can be be converted

into a proof Π′2 of ∆2,Σ2,B2 whose last step is the mix-rule with hypotheses ∆2 and Σ2,B2.

Let Π′ be the proof obtained from Π by replacing Πi by Π′i, for i ∈ {1,2}. Let Π′′ be the proof

with the same 3 or 4 subproofs yielding ∆1,A1, A2,Σ1,B1, ∆2 and Σ2,B2 that first combines ∆2

with ∆1,A1 into ∆,A1 using mix (provided ∆2 is nonempty), and likewise combines Σ2,B2 with

A2,Σ1,B1 into A2,Σ
′,B using β , and then applies α to yield ∆,A,Σ′,B. By means of a few simple

rule commutations, Π′ can be converted into Π′′.

• Let β =

&

. Let Πρ be the part of Π above ρ . Then Πρ proves the hypothesis ∆,A,Σ′,B1,B2 of

ρ . Since GΠρ is a subgraph of GΠ, in GΠρ any path between (vertices in) ∆,A1 and A2,Σ
′,B1,B2

passes through the indicated occurrence of α . Hence, by induction, using by Lemma 3, Πρ can,

by means of rule commutations, be converted into a proof Π′ρ whose last step is the α-rule with

hypotheses ∆,A1 and A2,Σ
′,B1,B2. Let Π′ be the proof obtained from Π by replacing Πρ by Π′ρ .

In Π′ the

&

-rule ρ commutes over the α-rule generating A, thereby yielding the required proof Π′′.

• Let β = &. The rule ρ has hypotheses hypotheses Ω∆
1 ,∆

′,A,ΩΣ
1 ,Σ
′′,B1 and Ω∆

2 ,∆
′,A,ΩΣ

2 ,Σ
′′,B2

·
·
·
·

Π1

Ω∆
1 ,∆

′,A1αA2,Ω
Σ
1 ,Σ
′′,B1

·
·
·
·

Π2

Ω∆
2 ,∆

′,A1αA2,Ω
Σ
2 ,Σ
′′,B2

&(ρ)
Ω∆

1 ,Ω
∆
2 ,∆

′,A1αA2,Ω
Σ
1 ,Ω

Σ
2 ,Σ
′′,B1&B2

with ∆ = Ω∆
1 ,Ω

∆
2 ,∆

′ and Σ′ = ΩΣ
1 ,Ω

Σ
2 ,Σ

′′. We claim that Ω∆
1 , and by symmetry also Ω∆

2 , is empty.

For if not, let ℓ be a leaf in Ω∆
1 that occurs in a link a in a linking ν of GΠ1

—such a leaf exists by

(2). Then, using Table 1, ν also occurs in GΠ. Using (3), let ν ′ ∈ θΠ be such that β is the only &

toggled by {ν ,ν ′}. Again using Table 1, ν ′ must occur in GΠ2
. Since ℓ does not occur in GΠ2

, a

cannot occur in ν ′, and thus depends on β . Hence in GΠ there is a jump edge from ℓ to β . This

contradicts the assumption that in Gθ any path between (vertices in) ∆,A1 and A2,Σ
′,B1

&

B2 passes

through the indicated occurrence of α .

Let Πi be the branch of Π above ρ proving ∆′,A,ΩΣ
i ,Σ

′′,Bi. Since GΠi
is a subgraph of GΠ, in GΠi

any path between (vertices in) ∆′,A1 and A2,Ω
Σ
i ,Σ

′′,Bi passes through the indicated occurrence of

α . Hence, by induction, using Lemma 3, Πi can, by means of rule commutations, be converted

into a proof Π′i whose last step is the α-rule with hypotheses ∆′,A1 and A2,Ω
Σ
i ,Σ
′′,Bi.
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Thus the left hypotheses of Π′1 and Π′2 are both ∆′,A1, and we claim that the proof nets on them

induced by the subproofs Π′11 and Π′21 of Π leading up to these hypotheses must be the same.

·
·
·
·

Π′11

∆′,A1 A2,Ω
Σ
1 ,Σ

′′,B1
α

∆′,A1αA2,Ω
Σ
1 ,Σ

′′,B1

·
·
·
·

Π′21

∆′,A1 A2,Ω
Σ
2 ,Σ
′′,B2

α
∆′,A1αA2,Ω

Σ
2 ,Σ

′′,B2
&(ρ)

∆′,A1αA2,Ω
Σ
1 ,Ω

Σ
2 ,Σ
′′,B1&B2

For if not, let λ be a linking in the proof net of Π′11 but not in the proof net of Π′21. (The symmetric

case goes likewise.) Then, using Table 1, for some linking µ on A2,Ω
Σ
1 ,Σ
′′,B1, the linking ν :=

λ ∪µ must be in the proof net θ of Π. Using (3), let ν ′ ∈ θ be such that β is the only & toggled

by {ν ,ν ′}. Again using Table 1, ν ′ = λ ′∪ µ ′ for some linking λ ′ in the proof net of Π′21. Since

there must be a link a = {ℓ,ℓ′} such that a ∈ λ but a 6∈ λ ′ (or vice versa), in Gθ there is a jump

edge from ℓ to β . This contradicts the assumption that in Gθ any path between (vertices in) ∆′,A1

and A2,Σ
′,B1

&

B2 passes through the indicated occurrence of α .

Therefore, by induction, using Lemma 6, Π′11 can be converted into Π′21 by a series of rule com-

mutations. Let Π′′2 be obtained from Π′2 by replacing its subproof Π′21 by Π′11, and let Π′ be the

proof obtained from Π by replacing Π1 by Π′1 and Π2 by Π′′2 . In Π′, the α-rules generating A

commute with the &-rule ρ , thereby yielding the required proof Π′′.

Induction step for Lemma 4. Suppose that Π does not generate A = A1αA2 in its last step. The case

α ∈ {⊗, ∗} is implied by Lemma 3. Therefore we assume here that α ∈ {⊕,

&

,&}.

• First consider the case that the last step of Π is the application of a mix-rule ρ . Then Γ = ∆,A and

A occurs in a hypothesis ∆d,A of ρ (where ∆d ⊆ ∆). Let Πd be the branch of Π above ρ proving

∆d,A. Its proof net is separated by A in ∆d, for otherwise the proof net θ of Π would not be

separated by A in Γ. Thus, by induction, by a series of rule commutations Πd can be be converted

into a proof Π′d of ∆d ,A that generates A in its last step. Let Π′ be the proof of Γ obtained by

replacing Πd by Π′d in Π. In Π′, ρ commutes over the α-rule generating A, thereby yielding the

required proof Π′′.

In the remaining cases let the last step of Π be the application of a β -rule ρ , generating the formula

B1βB2. Thus Γ = ∆,A,B1βB2.

• Let β ∈ {⊗,⊕, ∗}. Then A occurs in a hypothesis ∆d ,A,Bd of ρ (where d is 1 or 2, and ∆d = ∆ in

the case β = ⊕). Let Πd be the branch of Π above ρ proving ∆d ,A,Bd. Its proof net is separated

by A in ∆d ,A,Bd, for otherwise the proof net θ of Π would not be separated by A in Γ. Thus, by

induction, by a series of rule commutations Πd can be be converted into a proof Π′d of ∆d,A,Bd

that generates A in its last step. Let Π′ be the proof of Γ obtained by replacing Πd by Π′d in Π. In

Π′, ρ commutes over the α-rule generating A, thereby yielding the required proof Π′′.

• Let β =

&

. Let Πρ be the part of Π above ρ . Then Πρ proves the hypothesis ∆,A,B1,B2 of ρ , and

its proof net is separated by A, for otherwise θ would not be separated by A. Thus, by induction, by

a series of rule commutations Πρ can be be converted into a proof Π′ρ of ∆,A,B1,B2 that generates

A in its last step. As above, a rule commutation completes the argument.

• Let β = &. Then ρ has hypotheses Ω1,∆
′,A,B1 and Ω2,∆

′,A,B2 with ∆ = Ω1,Ω2,∆
′. Let Πi be

the branch of Π above ρ proving Ωi,∆
′,A,Bi. The proof nets of Π1 and Π2 are separated by A in

∆,A,Bi in exactly the same way, i.e., in case α =⊕ choosing the same argument Ad, for otherwise
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θ would not be separated by A. By induction, by a series of rule commutations the Πi can be

converted into proofs Π′i of Ωi,∆
′,A,Bi that generate A in their last steps. Let Π′ be the proof of Γ

obtained by replacing Πi by Π′i in Π, for i = 1,2. In Π′, the &-rule ρ commutes over the α-rules

generating A, thereby yielding the required proof Π′′.

Induction step for Lemma 5.

• First consider the case that the last step ρ of Π is an application of mix, say with hypotheses Γ1

and Γ2. Let Πi be the branch of Π above ρ , proving Γi (for i = 1,2). Since GΠi
is a subgraph

of GΠ, in GΠi
there is no path between (vertices in) ∆i := ∆∩Γi and Σi := Σ∩Γi. In case ∆i or

Σi is empty, we let Π′i = Πi. Otherwise, by induction Πi can, by means of rule commutations, be

converted into a proof Π′i whose last step is a mix-rule with hypotheses ∆i and Σi. Let Π′ be the

proof obtained from Π by replacing Πi with Π′i for i = 1,2. In Π′, ρ commutes over the 0, 1 or 2

mix-rules introduced immediately above it, thereby yielding the required proof Π′′.

In the remaining cases let the last step of Π be the application of a β -rule ρ , generating the formula

B = B1βB2. We treat the case that B occurs in Σ; the other case follows by symmetry. Let Σ = Σ′,B1βB2.

• Let β ∈ {⊗, ∗}. The hypotheses of this rule are ∆i,Σi,Bi, for i ∈ {1,2}, where ∆ = ∆1,∆2 and

Σ′ = Σ1,Σ2. Let Πi be the branch of Π proving ∆i,Σi,Bi. Since GΠi
is a subgraph of GΠ, in GΠi

there is no path between (vertices in) ∆i and Σi,Bi. In case ∆i is empty, we let Π′i = Πi. Otherwise,

by induction Πi can, by means of rule commutations, be converted into a proof Π′i whose last step

is a mix-rule with hypotheses ∆i and Σi,Bi. Let Π′ be the proof obtained from Π by replacing Πi

with Π′i for i = 1,2. In Π′, ρ commutes over the 1 or 2 mix-rules introduced immediately above it

(possibly using Cmix
β twice and Cmix

mix once), thereby yielding the required proof Π′′.

• Let β =⊕. The hypothesis of this rule is ∆,Σ′,Bd , where d is 1 or 2. Let Πd be the subproof of Π

proving the latter sequent. Since GΠd
is a subgraph of GΠ, in GΠd

there is no path between (vertices

in) ∆ and Σ′,Bd . By induction Πd can, by means of rule commutations, be converted into a proof

Π′d whose last step is an application of the mix-rule with hypotheses ∆ and Σ′,Bd . Let Π′ be the

proof obtained from Π by replacing Πd with Π′d . In Π′, ρ commutes over the mix-rule introduced

immediately above it, thereby yielding the required proof Π′′.

• Let β =

&

. The hypothesis of this rule is ∆,Σ′,B1,B2. Let Πρ be the subproof of Π proving the

latter sequent. Since GΠρ is a subgraph of GΠ, in GΠρ there is no path between ∆ and Σ′,B1,B2. By

induction Πρ can, by means of rule commutations, be converted into a proof Π′ρ whose last step is

a mix-rule with hypotheses ∆ and Σ′,B1,B2. Let Π′ be the proof obtained from Π by replacing Πρ

with Π′ρ . In Π′, ρ commutes over the mix-rule introduced immediately above it, thereby yielding

the required proof Π′′.

• Let β = &. The hypotheses of this rule are Ω∆
i ,∆

′,ΩΣ
i ,Σ
′′,Bi for i∈{1,2} with ∆ = Ω∆

1 ,Ω
∆
2 ,∆

′ and

Σ′ = ΩΣ
1 ,Ω

Σ
2 ,Σ
′′. As in the induction step for Lemma 3, it follows that Ω1 and Ω2 are empty. Let

Πi be the branch of Π proving ∆′,ΩΣ
i ,Σ
′′,Bi. Since GΠi

is a subgraph of GΠ, in GΠi
there is no path

between (vertices in) ∆′ and ΩΣ
i ,Σ

′′,Bi. By induction Πi can, by means of rule commutations, be

converted into a proof Π′i whose last step is a mix-rule with hypotheses ∆′ and ΩΣ
i ,Σ
′′,Bi. So the

left hypotheses of Π′1 and Π′2 are both ∆′, and we claim that the proof nets on them induced by the

subproofs Π′11 and Π′21 of Π leading up to these hypotheses must be the same. The argument goes

just as in the induction step for Lemma 3.

Therefore, by induction, using Lemma 6, Π′11 can be converted into Π′21 by a series of rule com-

mutations. Let Π′′2 be obtained from Π′2 by replacing its subproof Π′21 by Π′11, and let Π′ be the

16



proof obtained from Π by replacing Π1 by Π′1 and Π2 by Π′′2. In Π′, the mix-rules generating A

commute with the &-rule ρ , thereby yielding the required proof Π′′.

Induction step for Lemma 6. For the induction step, suppose Π and Π′ are two proofs of a MALL∗

sequent Γ that have the same proof net θ .

First assume that Gθ is connected. In that case the last steps of Π and Π′ cannot be mix. Let A be

the formula occurrence in Γ that is generated by the last step of Π′. By Lemma 1, A separates θ . Hence,

using Lemma 4, by means of a series of rule commutations, Π can be converted into a proof Π′′ of Γ that

generates A in its last step. By Lemma 2, the last step σ of Π′ is the same as the last step of Π′′. Thus

each hypothesis Γd of σ is proven by a subproof Π′d of Π′, and by a subproof Π′′d of Π′′. As Π′d and Π′′d
have the same proof net, by induction they can be converted into each other by means of a series of rule

commutations. It follows that also Π and Π′ can be converted into each other by means of a series of rule

commutations.

Next assume that Gθ is disconnected; let Γ = Γ1,Γ2 with the Γi nonempty sequents, such that in Gθ

there is no path between (vertices in) Γ1 and Γ2. Using Lemma 5, Π can, by means of rule commutations,

be converted into a proof Πmix whose last step is the mix-rule with hypotheses Γi. Let Πi be the branch

of Πmix proving Γi. Its proof net is simply the restriction of (the linkings in) θ to Γi. Likewise, Π′

can, by means of rule commutations, be converted into a proof Π′mix whose last step is the mix-rule with

hypotheses Γi. Let Π′i be the branch of Πmix proving Γi. Since Πi and Π′i have the same proof net, by

induction one can be converted into the other by a series of rule commutations. Consequently, Π can be

converted into Π′. �

8 Proof of the MALL rule commutation theorem

We use Proposition 1 to derive Theorem 2. We shall need two lemmas connecting MALL∗ rule commu-

tations with MALL rule commutations.

LEMMA 7 If two MALL∗ proofs differ by a rule commutation, so do their projections to MALL proofs.

Proof. This follows immediately from inspecting the rule commutations. �

In the other direction, one might expect that for each pair (Πl,Πr) of commuting MALL proofs, and

for each MALL∗ proof Π∗l that projects to Πl , there exists a MALL∗ proof Π∗r projecting to Πr and

commuting with Π∗l . This is not the case, however. A counterexample is provided by taking Π∗r to be

Π∗1a

Ω1,Γ,A1

Π∗2

A2,∆,B1
⊗

Ω1,Γ,A1⊗A2,∆,B1

Π∗1b

Ω2,Γ,A1

Π∗3

A2,∆,B2
⊗

Ω2,Γ,A1⊗A2,∆,B2
&

Ω1,Ω2,Γ,A1⊗A2,∆,B1&B2

with Ω1 or Ω2 nonempty, and (Πl ,Πr) the last rule commutation of Table 3. For (Πl,Πr) to be a valid

rule commutation, the subproofs Π∗1a and Π∗1b must project to identical MALL proofs, even though they

derive different MALL∗ sequents. This can be achieved by inserting a &-rule in each of these subproofs,

where one superimposes two cuts, while the other keeps them disjoint. However, a weaker property does

hold:
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LEMMA 8 For each MALL rule commutation (Πl ,Πr) there is a MALL∗ rule commutation (Π∗l ,Π
∗
r )

that projects to (Πl,Πr).

Proof. Orient the pair (Πl,Πr) so that we avoid Πl being an αβ -proof fragment (see the Appendix)

with β = & and α ∈ {⊗,mix,cut}. Take Π∗l to be an arbitrary MALL∗ proof projecting to Πl . Going

through the rule commutations of Tables 2–6, one can check that in each case it is straightforward to find

the required proof Π∗r . �

COROLLARY 1

(a) If two MALL proofs Πl and Πr translate to a common proof net then they can be converted into

each other by rule commutations.

(b) If two MALL proofs Πl and Πr differ by a rule commutation then they have a common proof net.

Proof. Suppose Πl and Πr translate to a common proof net θ . Then Πl and Πr must be projections of

MALL∗ proofs Π∗l and Π∗r that translate to θ . By Proposition 1 Π∗l and Π∗r can be converted into each

other by a series of rule commutations. By Lemma 7 the same holds for Πl and Πr.

Suppose Πl and Πr differ by a rule commutation. By Lemma 8 there are MALL∗ proofs Π∗l and Π∗r
that differ by a rule commutation and project to Πl and Πr. By Proposition 1 Π∗l and Π∗r translate to the

same proof net θ . Hence θ is a common proof net of Πl and Πr. �

Finally, Theorem 2 is a direct consequence of Corollary 1. �

9 Alternative treatments of cut

One of the innovations of the proof nets from [5] over the monomial ones from [2] is that the translation

from cut-free proofs to proof nets is a function. This property does not extend to proofs with cut. In [5,

Section 5.3.4] three alternative translations are discussed of which two are functions. One of these fails

to identify proof nets modulo rule commutations. For the other, we conjecture that it does. However, for

this notion “it is not immediately clear how to define a meaningful correctness criterion to characterise

the image of the translation” [5].

Superimposing no cuts The first alternative is to restrict the rule for & in Table 5 by requiring that Γ

may contain no cuts. This means the cuts appearing in the conclusion of the rule must be the disjoint

union of the cuts appearing in the premises. Let MALL∗sep be the resulting alternative for MALL∗. Now

each MALL proof is the restriction of a unique MALL∗sep proof; hence the translation from MALL proofs

to proof nets becomes a function.

Clearly, the resulting notion of proof-net equivalence on MALL proofs is included in the one from

Section 5. In fact the conclusion is strict, for we loose the rule commutation C∗& , as illustrated in [5,

Section 5.3.4]. In general, the commutations Cα
& and C

&
α with α ∈ {⊗,mix, ∗} are no longer valid,

because any cut included in Γ appears only once on the left, yet is duplicated on the right. (All other rule

commutations remain valid.)

Superimposing as many cuts as possible The alternative of requiring Ω1 and Ω2 in the rule for & in

Table 5 to be disjoint superimposes as many cuts as possible. As pointed out in [5, Section 5.3.4] it does

not yield a function from MALL proofs to proof nets, for there may be a choice of how to identify cuts.
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Local cuts A final variation considered in [5] is to depart from sets of linkings on a fixed cut sequent,

and permit each linking its own set of cut pairs. Define a cut linking on a MALL sequent Γ as a linking

on a sequent Ω,Γ with Ω a disjoint union of cuts. In order to abstract from the identity of the cut pairs

we consider Ω (but not Γ) up to isomorphism. A MALL proof of Γ yields a set of cut linkings on Γ in

the obvious way [5]. This yields a deterministic translation (function) from MALL proofs to sets of cut

linkings.

Since the set of cut linkings of a MALL sequent Γ can be inferred from any MALL proof net of Γ, the

kernel of this function (identifying MALL proofs that translate to the same set of cut linkings) includes

proof-net equivalence as defined in Section 5. Thus, two MALL proofs that differ by rule commutations

translate to the same set of cut linkings.

CONJECTURE 1 Two MALL proofs translate to the same set of cut linkings if and only if they can be

converted into each other by a series of rule commutations.

10 Local rule commutations

The rule commutations C&
⊗ /C⊗& , C&

mix /C
mix
& , C&

cut /C
cut
& and C&

∗ /C∗& duplicate/identify premises, respectively;

we refer to the other rule commutation as local. The Appendix below concludes with a general definition

of local rule commutation. In [6] a different notion of proof net, called a conflict net, is proposed, such

that two MALL proofs translate to the same conflict net if and only if they can be converted into each

other by a series of local rule commutations.

Appendix: General concept of rule commutation

In order to properly define rule commutations in a sequent calculus, we consider rules—called abstract

rules—that contain variables ranging over formulas and over sequents. The rules for MALL in Sections 2

and 5 are of this form. Thus, rather than seeing the rule for ⊗ as a template, of which there is an instance

for each choice of A, B, Γ and ∆, we see it as a single rule containing four variables. When applying such

a rule in a proof, formulas and sequents are substituted for the variables of the corresponding type.

Formally, a formula expression is built from formula variables, negated formula variables, literals

and connectives; it is a formula if it contains only literals and connectives. Here a negated formula

variable is a formula variable annotated with the subscript ⊥. A sequent expression is a multiset of

sequent variables and formula expressions; it is a sequent if it does not contain any variables. Here a

multiset of objects from a set S is a function M : S→ IN indicating for each object in S how often it

occurs in M. An object x ∈ S with M(x)> 0 is called an element of M. Let C(M) = {x ∈ S |M(x) > 0}
denote the set of elements of M. In case M(x) ∈ {0,1} for all x ∈ S, the multiset M is usually identified

with the set C(M).

An abstract rule is a pair H
Γ of a set H of sequent expressions—the premises—and a single sequent

expression Γ—the conclusion. A concrete rule—simply called rule outside of this appendix—is a pair
H
Γ of a multiset H of (variable-free) sequents and a single sequent Γ.

A substitution σ maps formula variables to formula expressions and sequent variables to sequent

expressions;5 it extends to negated formula variables A⊥ by σ(A⊥) = σ(A)⊥, and further extends to a

map from formula expressions to formula expressions and from (sets of) sequent expressions to (multisets

of) sequent expressions. A substitution is closed if it maps formula variables to formulas and sequent

5In order to capture MALL∗, we also allow sequent variables of special types—like “cut only” in Table 5—and for each

type define the class of sequent expressions that may be substituted for it.
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variables to sequents. If H
Γ is an abstract rule and σ a (closed) substitution, then

σ(H)
σ(Γ) is a (closed)

substitution instance of H
Γ ; its collapse

C(σ(H))
σ(Γ) is again an abstract rule.

Given a collection of connectives to determine the valid formulas, a sequent calculus—such as

MALL—is given by a set of abstract rules.6 It induces a set of concrete rules, namely the collapsed

closed substitution instances of the abstract rules.

We now formalise proofs, extended to include the case where the conclusion is a sequent expression.

When the conclusion is a standard sequent, the definition specialises to the familiar notion of sequent

calculus proof. A proof Π in a sequent calculus is a well-founded, upwards branching tree whose nodes

are labelled by sequent expressions and some of the leaves are marked “hypothesis”, such that if ∆ is the

label of a node that is not a hypothesis and K is the multiset of labels of the children of this node then K
∆

is a substitution instance of one of the rules of that sequent calculus. Such a proof derives the abstract

rule H
Γ

, where H is the set of labels of the hypotheses, and Γ the label of the root of Π. A proof of a

sequent expression Γ can be regarded as a proof of the abstract rule H
Γ

with H = /0.

For α and β two abstract proof rules in a sequent calculus, an αβ -proof is a proof in which each

non-hypothesis node is either the root and an application of β , or a child of the root and an application

of α . A subproof Π′ of a proof Π comprises all nodes in the tree Π above a given node, which is the

root of Π′. A proof Π f deriving a rule H
Γ , together with proofs Π∆ of ∆ for each ∆ ∈ H , composes into

a proof Π′ of Γ, such that the proofs Π∆ are subproofs of Π′. If Π′ itself is a subproof of a proof Π we

say that Π f is a proof fragment of Π; if Π f is an αβ -proof, it is called an αβ -proof fragment of Π.

For Π a proof and σ a substitution, σ(Π) denotes the proof obtained from Π by applying σ to all its

node labels.

An abstract rule is pure if (1) its premises are free of literals and connectives and thus are built from

variables (sequent variables, formula variables and negated formula variables) only, and (2) each of these

variables occurs exactly once in the conclusion. We define rule commutation for sequent calculi contain-

ing pure rules only. This includes MALL− and MALL∗, but not MALL; however, the rule commutations

of MALL can be derived as the projections of the ones for MALL∗.
The implicit tracking of subformula occurrences described in Section 2 and utilised in Sections 3

and 5 can now be formalised as follows: a subformula occurrence within an occurrence of a formula or

sequent substituted for a variable A, A⊥ or Γ appearing in the premises of an abstract rule tracks to the

corresponding subformula occurrence within the occurrence of the same formula or sequent substituted

for A, A⊥ or Γ in the conclusion of the rule.

It is not hard to show that any abstract rule derivable in a sequent calculus containing pure rules only

can be obtained as a collapsed substitution instance of a pure rule derivable in that sequent calculus.

Although we do not make use of this insight in our proofs, it helps to motivate the following definition.

A rule commutation is an (ordered) pair of an αβ -proof and a (different) βα-proof deriving the same

pure rule. An αβ -proof Π′1 commutes with a βα-proof Π′2 if there exists a rule commutation (Π1,Π2)
and a substitution σ such that σ(Π1) = Π′1 and σ(Π2) = Π′2. Two proofs differ by a rule commutation

if one can be obtained from the other by the replacement of an αβ -proof fragment occurring in it by

a commuting βα-proof fragment. Thus a rule commutation is a transposition of adjacent rules that

preserves subproofs immediately above, with possible duplication/identification.

We leave it to the reader to check that this definition, applied to MALL− and MALL∗, generates

exactly the rule commutations presented in Sections 4 and 6.

6By these definitions, the MALL axiom ax, unlike the other rules, is still a template, of which an instance is obtained by

filling in actual propositional variables for the metavariable P. If this is felt to be inelegant, one could rename “propositional

variable” into “atom” and introduce “atom variables” and negated atom variables to formulate the axiom ax. For simplicity, we

abstain from doing this here.
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In our definition of rule commutation it is essential that the rule derived by each of the two proofs

Π1 and Π2 in a rule commutation is pure. Skipping this requirement would give rise to unwanted rule

commutations. As an example, consider the rule commutation C

&
&of Figure 2 in which Γ,A1 is substituted

for Γ. The two sides of the resulting rule commutation define the same non-pure rule. Simply requiring—

as we do—that the same proof Π, deriving the sequent Γ,A1,A1,A2,B1,B2, is used at both sides of the

commutation does not rule out that the roles of the two occurrences of A1 are swapped at one side of the

commutation, possibly leading to proofs inducing different proof nets.

Moreover, we cannot drop the requirement that Π1 and Π2 must be αβ - and βα-rules, for that would

give rise to the unwanted rule commutation

A,C D, E
⊗

A,C⊗D, E
⊕1

A,C⊗D, E⊕F

B,C D, F
⊗

B,C⊗D, F
⊕2

B,C⊗D, E⊕F
&

A&B,C⊗D, E⊕F

←→

A,C D, F
⊗

A,C⊗D, F
⊕2

A,C⊗D, E⊕F

B,C D, E
⊗

B,C⊗D, E
⊕1

B,C⊗D, E⊕F
&

A&B,C⊗D, E⊕F

These two proofs derive the same pure rule, yet (when instantiated) induce different proof nets:

A&B, C⊗D, E⊕F A&B, C⊗D, E⊕F

Based on the above, we say that a concrete β -rule commutes over a concrete α-rule, if these rules occur

in an αβ -proof fragment obtained as a substitution instance of an αβ -proof for which there exists a βα-

proof deriving the same pure rule. This definition of rule commutation is more liberal than the standard

definition of rule commutation for a Gentzen sequent calculus [8, Def. 5.2.1], analysed by Kleene [7]

and Curry [1]. That definition only covers the case where each β rule commutes over each α-rule,

corresponding with the check marks in Table 8. Moreover, [8] requires—translated to our terminology—

the source proof fragment to have two non-leaf nodes only (one for β and only one for α), thereby ruling

out the commutation of & over any α .

Local rule commutations. Define a proof as non-repeating if all its hypothesis have a different label.

A rule commutation (Π1,Π2) is local (cf. Section 10) if Π1 and Π2 are non-repeating.
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