
The Coarsest Precongruences

Respecting Safety and Liveness Properties

Rob van Glabbeek

NICTA, Sydney, Australia

School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

This paper characterises the coarsest refinement preorders on labelled transition systems that are

precongruences for renaming and partially synchronous interleaving operators, and respect all safety,

liveness, and conditional liveness properties, respectively.

1 Introduction

The goal of this paper is to define and characterise certain semantic equivalences ≡ and refinement

preorders ⊑ on processes. The idea is that p ≡ q says, essentially, that for practical purposes processes

p and q are equally suitable, i.e. one can be replaced for by the other without untoward side effects.

Likewise, p ⊑ q says that for all practical purposes under consideration, q is at least as suitable as p, i.e.

it will never harm to replace p by q. Thus, one should have that p ≡ q iff both p ⊑ q and q ⊑ p.

Naturally, the choice of ≡ and ⊑ depends on how one models a process, and what range of practical

purposes one considers. I this paper I restrict myself to one of the most basic process models: labelled

transition systems. I study processes that merely perform actions a, b, c, . . . which themselves are not

subject to further investigations. These actions may be instantaneous or durational, but they may not last

forever; moreover, in a finite amount of time only finitely many actions can be carried out. I distinguish

between visible actions, that can be observed by the environment of a process, and whose occurrence can

be influenced by this environment, and invisible actions, that cannot be observed of influenced. Since

there is no need to distinguish different invisible actions, I can just as well consider all of them to be

occurrences of the same invisible action, which is traditionally called τ . Furthermore, I abstract from

real-time and probabilistic aspects of processes.

This choice of process model already rules out many practical purposes for which one process could

be more suitable than another. I can for instance not compare processes on speed, since this is an issue

that my process model has already abstracted from. In fact, the only aspects of processes that are captured

by such a model and that may matter in practical applications, are the sequences of actions that a process

may perform in a, possibly infinite, run, performed in, or in collaboration with, a certain environment.

As the invisible action is by definition unobservable, it moreover suffices to consider sequences of visible

actions. A sequence of visible actions that a process p may perform is called a trace of p; it is a complete

trace if it is performed during a maximal run of p, one that cannot be further extended. Obviously, the

traces of p are completely determined by the complete traces of p, namely as their prefixes.

Based on the considerations above, it is tempting to postulate that the relevant behaviour of a pro-

cess, as far as discernible in terms of labelled transition systems, is completely determined by its set

of complete traces; hence two processes should be equivalent if they have the same competed traces.

However, this argument bypasses the role of the environment in influencing the behaviour of a process.

Often, one allows the actions a process performs to be synchronisations with the environment, and the

environment can influence the course of action of a process by synchronising with some actions but not

2 The Coarsest Precongruences Respecting Safety and Liveness Properties

with others. Therefore, a safe over-approximation of the relevant behaviour of a process is not merely its

set of complete traces, but rather its set of complete traces obtained as a function of the environment the

process is running in.

In this paper I consider a neutral environment in which all courses of action are possible and the

behaviour of a process is indeed determined by its complete traces. All other ways in which the environ-

ment may influence the behaviour of a process are given in terms of contexts build from other processes

and certain composition operators. It could for instance be that in the neutral environment there is no

way to tell the difference between processes p and q; maybe because they have the same set of complete

traces. However, for a suitable parallel composition operator ‖ and other process r it may be that there

is a manifest practical difference between p‖r and q‖r, so that one has p‖r 6≡ q‖r. Now that fact alone

is taken to be enough reason to postulate that p 6≡ q. Namely the difference between p and q can be

spotted by placing them in a context ‖r. This context can be regarded as an environment in which the

behaviours of p and q differ.

Following this programme, a suitable semantic equivalence on processes is defined in terms of two

requirements. First of all the behaviour of processes is compared in the neutral environment. This entails

isolating a class C of properties ϕ of processes that are deemed relevant in a given range of applications.

One then requires for p ≡ q to hold that p and q have the same properties from this class:

p ≡ q ⇒ ∀ϕ ∈ C . (p |= ϕ ⇔ q |= ϕ) (1)

where p |= ϕ denotes that process p has the property ϕ . An equivalence ≡ that satisfies this last require-

ment is said to respect or preserve the properties in C . The second requirement entails selecting a class

O of useful operators for combining processes. One then requires that for any context C[] (such as ‖r)

built from operators from O and arbitrary processes, that

p ≡ q ⇒ C[p]≡C[q]. (2)

An equivalence ≡ that satisfies this last requirement is called a congruence for O . For the sake of intuition

it may help to consider the contrapositive formulation of these implications: if there exists a property ϕ
in C that holds for p but not for q, or vice versa, then p and q cannot be considered equivalent. Likewise

C[p] 6≡C[q] implies p 6≡ q.

These two requirements merely insist that the desired equivalence ≡ does not identify processes that

in some context differ on their relevant properties. They are satisfied by many equivalence relations,

including the identity relation, that distinguishes all processes. In order to characterise precisely when

two systems have the same relevant properties in any relevant context, one takes the coarsest equivalence

satisfying (1) and (2); the one making the most identifications. This equivalence is called fully abstract

w.r.t. C and O . It always exists, and, as is straightforward to check, is characterised by

p ≡ q ⇔ ∀O-context C[]. ∀ϕ ∈ C . (C[p] |= ϕ ⇔C[q] |= ϕ).

When, for a certain application, the choice of C and O is clear, the unique equivalence relation that

is fully abstract w.r.t. C and O is the right semantic equivalence for that application. However, when

the choice of C and O is not clear, or when proving results that may be re-used in future applications

that may call for extending C or O , it is better to err on the side of caution, and use equivalences that

satisfy (1) and (2) but need not be fully abstract; instead the finest equivalence ≡fine for which a result

p ≡fine q can be proved is often preferable, because this immediately entails that p ≡ q for any coarser

equivalence relation ≡, in particular for an ≡ that may turn out to be fully abstract for some future choice

R.J. van Glabbeek 3

of C and O . It is for this reason that much actual verification work employs the finest equivalences that

lend themselves for verification purposes, such as the various variants of bisimulation equivalence [13],

see e.g. [1]. Nevertheless, this paper is devoted to the characterisation of fully abstract equivalences, and

preorders, for a few suitable choices of C and O .

The programme for refinement preorders proceeds along the same lines, but here it is important to

distinguish between good and bad properties of processes. The counterpart of (1) is

p ⊑ q ⇒ ∀ϕ ∈ G . (p |= ϕ ⇒ q |= ϕ) (3)

where G is the set of good properties within C , those that for some applications may be required of a

process. If this holds, ⊑ respects or preserves the properties in G . When dealing with bad properties,

those that in some applications should be avoided, the implication between p |= ϕ and q |= ϕ is oriented

in the other direction. Since every bad property ϕ can be reformulated as a good property ¬ϕ , there is

no specific need add a variant of (3) for the bad properties. The counterpart of (2) is simply

p ⊑ q ⇒ C[p]⊑C[q]. (4)

and a preorder ⊑ that satisfies this requirement is called a precongruence for O . Now the preorder that

is fully abstract w.r.t. G and O always exists, and is characterised by

p ⊑ q ⇔ ∀O-context C[]. ∀ϕ ∈ G . (C[p] |= ϕ ⇒C[q] |= ϕ).

It is the coarsest precongruence for O that respects the properties in G . A characterisation of the preorder

⊑ that is fully abstract w.r.t. a certain G and O automatically yields a characterisation of the equivalence

≡ that is fully abstract w.r.t. G and O , as one has p ≡ q iff both p ⊑ q∧q ⊑ p.

In this paper I will propose three main candidates for the set G of good properties: safety properties

in Section 3, liveness properties in Section 4 and conditional liveness properties in Section 5. For the

sake of theoretical completeness I moreover address general linear time properties in Section 6.

In Section 2 I will define my model of labelled transition systems and propose a class of C of

operators that appear useful in applications to combine processes. My favourite selection contains

• the partially synchronous interleaving operator of CSP [16],

• abstraction or concealment [4, 16]

• and the state operator [3],

or any other basis that is equally expressive. With each of the four choices for G this set of operators

determines a fully abstract preorder, which will be characterised in Sections 3, 4, 5 and 6. It turns out that

the resulting preorders are somewhat robust under the precise choice of operators for which one imposes

a precongruence requirement: the same ones are obtained already without using concealment, and using

merely injective renaming instead of the more general state operator. In the other direction, I could just

as well have used all operators of CSP.

2 Labelled Transition Systems and a Selection of Composition Operators

Let Σ∗ denote the set of finite sequences over a given set Σ, and Σ∞ the set of infinite ones; Σω := Σ∗∪Σ∞.

Write ε for the empty sequence, σρ for the concatenation of sequences σ ∈ Σ∗ and ρ ∈ Σω , and a

for the sequence consisting of the single symbol a ∈ Σ. Write σ ≤ ρ for “σ is a prefix of ρ”, i.e.

“ρ = σ ∨∃ν ∈ Σ∗.σν = ρ”, and ρ < σ for “σ ≤ ρ and σ 6= ρ”.

I presuppose an infinite action alphabet A, not containing the silent action τ , and set Aτ = A∪{τ}.

4 The Coarsest Precongruences Respecting Safety and Liveness Properties

Definition 1 A labelled transition system (LTS) is a pair (P,→), where P is a class of processes or

states and → ⊆ P× Aτ ×P is a set of transitions, such that for each p ∈ P and α ∈ Aτ the class

{q ∈P | (p,α ,q) ∈→} is a set.

Assuming a fixed transition system (P,→), I write p
α−→ q for (p,α ,q) ∈→; this means that process p

can evolve into process q, while performing the action α . The ternary relation =⇒⊆P×A∗×P is the

least relation satisfying

p
ε
=⇒ p ,

p
τ−→ q

p
ε
=⇒ q

,
p

a−→ q, a 6= τ

p
a
=⇒ q

and
p

σ
=⇒ q

ρ
=⇒ r

p
σρ
=⇒ r

.

This enables a formalisation of the concepts of traces and complete traces from the introduction.

Definition 2 Let p ∈P.

• p is deterministic if, for any σ ∈ A∗, p
σ
=⇒ q1 and p

σ
=⇒ q2 implies that q1 = q2 and q1 6

τ
−→ r.

• p deadlocks, notation p 6→, if there are no α ∈ Aτ and q ∈P such that p
α−→ q.

• p is locked if it can never do a visible action, i.e. if p
a

=⇒ q for no a ∈ A and q ∈P.

• p diverges, notation p ⇑, if there are pi ∈P for all i > 0 such that p
τ−→ p1

τ−→ p2
τ−→ ·· ·.

• a1a2a3 · · · ∈ A∞ is an infinite trace of p if there are p1, p2, . . . ∈P such that p
a1=⇒ p1

a2=⇒ p2
a3=⇒ ···.

• inf (p) denotes the set of infinite traces of p.

• ptraces(p) := {σ ∈ A∗ | ∃q. p
σ
=⇒ q} is the set of partial traces of p.

• traces(p) := inf (p)∪ptraces(p) is the set of traces of p.

• deadlocks(p) := {σ ∈ A∗ | ∃q. p
σ
=⇒ q 6→} is the set of deadlock traces of p.

• divergences(p) := {σ ∈ A∗ | ∃q. p
σ
=⇒ q ⇑} is the set of divergence traces of p.

• CT(p) := inf (p)∪divergences(p)∪deadlocks(p) is the set of complete traces of p.

Note that traces(p) = {σ ∈ Aω | ∃ρ ∈ CT(p). σ ≤ ρ}.

To justify that CT(p) is indeed a correct formalisation of the set of complete traces of p, I postulate

that in a neutral environment, if a process p ∈P has any outgoing transition p
α−→ q, then within a finite

amount of time it will do one its outgoing transitions. This is called a progress property; it says that a

process will continue to make progress if possible.

As explained in the introduction, whether a fully abstract equivalence identifies processes p and q

may depend on the existence of a third process r such that p‖r can be distinguished from q‖r. When

restricting attention to a particular labelled transition system (P,→) it might happen that a perfectly

reasonable candidate r happens not to be a member of P, and thus that the conclusion p ≡ q is arrived

at solely as a result underpopulation of P. To obtain the most robust notions of equivalence, I therefore

assume my LTS to be universal, in the sense that up to isomorphism it contains any process one can

imagine.

Definition 3 An LTS (P,→
P

) is universal if for any other LTS (Q,→
Q

) there exists an injective map-

ping f :Q→P, called an embedding, such that, for any q ∈Q and p′ ∈ P one has f (q) α−→
P

p′ iff

p′ ∈P has the form f (q′) for some q′ ∈ Q with q
α−→
Q

q′.

The existence of a universal LTS has been established in [8]. Here one needs P to be a proper class.

All preorders ⊑ that I consider in this paper are defined on arbitrary LTSs and have the property that

q ⊑ q′ ⇔ f (p)⊑ f (q′), for any embedding f . This means that they are precongruences for isomorphism,

and only take into account the future behaviour of processes, i.e. in determining whether p⊑ q transitions

leading to p or q play no rôle. Thus, a definition of such a preorder on a universal LTS, implicitly also

defines it on any other LTS.

R.J. van Glabbeek 5

p
α−→ p′

p‖Sq
α−→ p′‖Sq

(α 6∈S)
q

α−→ q′

p‖Sq
α−→ p‖Sq′

(α 6∈S)
p

a−→ p′ q
a−→ q′

p‖Sq
a−→ p‖Sq′

(a∈S)

p
α−→ p′

τI(p) α−→ τI(p′)
(α 6∈I)

p
a−→ p′

τI(p) τ−→ τI(p′)
(a∈I)

p
τ−→ p′

λ m
s (p) τ−→ λ m

s (p′)

p
a−→ p′

λ m
s (p)−−

a(m,s)
−→ λ m

s(m,a)(p′)

Table 1: Partially synchronous interleaving, abstraction, and the state operator

I will now do a proposal for the set O that will be my default choice in this paper. It consists of three

operators for combining processes that appear useful in practical applications.

The first is the partially synchronous interleaving operator of CSP [16]. It is parametrised with a set

S ⊆ A of visible actions on which it synchronises: the composition p‖Sq can perform an action from S

only when both p and q perform it. All other actions from p and q are interleaved: whenever one of the

two components can perform such an action, so can the composition, while the other component doesn’t

change its state. Formally, for any choice of S ⊆ A, ‖S :P×P→P is a binary operator on P such that

a process p‖Sq can make an α-transition iff this can be inferred by the first three rules of Table 1 from

the transitions that p and q can make. Here a ranges over A and α over Aτ .

A context ‖Sr is widely regarded as a plausible way of modelling an environment that partially

synchronises with processes under investigation. It is for this reason I include it in O . This argument

does not hold for many other process algebraic operators, such as the choice operator + of CCS [13].

This is an example of an operator that is useful for describing particular processes, but a context + r

does not really model a reasonable environment in which one wants to run processes under investigation.

For reasons of algebraic convenience, being a precongruence for the + is an optional desideratum of

refinement preorders, but it is not such an overriding requirement as being a precongruence for ‖S.

The second operator nominated for membership of O is the unary abstraction operator τI of ACPτ

[4], also known as the concealment operator of CSP [5, 16]. This operator models a change in the

level of abstraction at which processes are regarded, by reclassifying visible actions as hidden ones. It

is parametrised with the set I ⊆ A of visible actions that one chooses to abstract from, and formally

defined by the next two rules of Table 1. Abstraction from internal actions by such a mechanism is an

essential part of most work on verification in a process algebraic setting, and a context τI() represents

a reasonable environment in which to evaluate processes.

My final nominee for the set O of useful composition operators is the state operator λ m
s of [3].

This unary operator formalises an interface between a process and its environment that is able to rename

actions: if its argument process performs an action b, the interface λ m
s () may pass on this action to

the environment as c, thereby opening up the possibility of synchronisation with another occurrence of

c when using a composed context λ m
s ()‖Sr. Furthermore, the interface may remember the actions that

have been performed to far, and make its renaming behaviour dependent on this history. For instance, if

its argument p performs two a-actions in a row, λ m
s (p) may pass these on to the environment as a1 and

a2, respectively.

The state operator λ m
s is parametrised with an interface specification m = (S ,ACTION,EFFECT),

consisting of set S of internal states, and functions ACTION : S ×A → A and EFFECT : S ×A →S , as

6 The Coarsest Precongruences Respecting Safety and Liveness Properties

well as a current state s ∈S . Here ACTION is a function that renames actions performed by an argument

process p into actions performed by the interface λ m
s (p); the renaming depends on the internal state of

the state operator, and thus is of type S ×A → A. EFFECT specifies the transformation of one internal

state of the state operator into another, as triggered by the the encounter of an action of its argument

process; it thus is of type S ×A →S . Traditionally, one writes a(m,s) for ACTION(s,a) and s(m,a) for

EFFECT(s,a). So a(m,s) denotes the action a, as modified by the interface m in state s, whereas s(m,a)
denotes the internal state s, as modified by the occurrence of action a of the argument process within the

scope of the interface m. With this notation, the formal definition of the state operator is given by the last

two rules of Table 1.

The special case of a state operator with a singleton set of internal states is known as a renaming

operator. Renaming operators occur in the languages CCS [13] and CSP [5, 16]. Here I denote a

renaming operator as λ m, where the redundant subscript s is omitted, and m trivialises to a function

ACTION : A → A. I speak of an injective renaming operator if ACTION(a) = ACTION(b) implies a = b.

For any injective renaming operator λ m there exists an inverse renaming operator λ−m (not necessarily

injective) such that for all p ∈ P, the process λ−m(λ m(p)) behaves exactly the same as p—they are

equivalent under all notions of equivalence considered in this paper.

3 Safety Properties

A safety property [10] is a property that says that

something bad will never happen.

To formulate a canonical safety property, assume that my alphabet of visible actions contains one specific

action b, whose occurrence is bad. The canonical safety property now says that b will never happen.

Definition 4 A process p satisfies the canonical safety property, notation p |= safety(b), if no trace of p

contains the action b.

To arrive at a general concept of safety property for labelled transition systems, assume that some notion

of bad is defined. Now, to judge whether a process p satisfies this safety property, one should judge

whether p can reach a state in which one would say that something bad had happened. But all observable

behaviour of p that is recorded in a labelled transition system until one comes to such a verdict, is the

sequence of visible actions performed until that point. Thus the safety property is completely determined

by the set sequences of visible actions that, when performed by p, lead to such a judgement. Therefore

one can just as well define the concept of a safety property in terms of such a set.

Definition 5 A safety property of processes in an LTS is given by a set B ⊆ A∗. A process p satisfies this

safety property, notation p |= safety(B), when ptraces(p)∩B = /0.

This formalisation of safety properties is essentially the same as the one in [2] and all subsequent work

on safety properties; the only, non-essential, difference is that I work with transition systems in which the

transitions are labelled, whereas [2] and most related work deals with state-labelled transition systems.

A property is called trivial if it either always holds or always fails. Trivial properties are respected

by any equivalence. The sets B := /0 and B := {ε} specify trivial safety properties.

Theorem 1 A precongruence for the state operator respects every safety property iff it respects the

canonical safety property.

R.J. van Glabbeek 7

Proof: “Only if ” follows because the canonical safety property is in fact a safety property, namely the

one with B being the set of those sequences that contain the action b.

“If ”: I use here a state operator that remembers exactly what sequence of actions has occurred so far.

Thus the set of internal states of its interface specification m is A∗, and furthermore σ(m,a) := σa for all

σ ∈ A∗ and a ∈ A. Now given a safety property B ⊆ A∗, let b ∈ A be the special “bad” action, and d ∈ A

be a different “neutral” action. Define a(m,σ) :=

{

b if σa ∈ B

d otherwise.

Then λ m
ε (p) |= safety(b) iff p |= safety(B). Thus, if p ⊑ q and p |= safety(B), then λ m

ε (p) ⊑ λ m
ε (q) and

λ m
ε (p) |= safety(b). Hence λ m

ε (q) |= safety(b), so q |= safety(B). ✷

Being locked (see Definition 2) is a safely property, namely with B the set of all sequences over A∗

of length 1. It can be understood this way by regarding any occurrence of an action as bad.

Theorem 2 A precongruence for abstraction that respects the property of being locked, respects the

canonical safety property.

Proof: Let ⊑ be a precongruence for abstraction that respects the property of being locked, and sup-

pose that p ⊑ q. Let I := A \ {b}. Then τI is an operator that renames all actions other than b into τ ;

thus if a process of the form τI(r) ever performs a visible action, it must be b. Now p |= safety(b) ⇔
τI(p) |= safety(b)⇔ τI(p) is locked ⇒ τI(q) is locked ⇔ τI(q) |= safety(b)⇔ q |= safety(b). ✷

By combining Theorems 1 and 2 one obtains:

Corollary 1 A precongruence for abstraction and for the state operator that respects the property of

being locked, respects all safety properties.

Theorem 3 Any precongruence for O that respects a single nontrivial safety property, respects every

safety property.

Proof: Let ⊑ be a precongruence for O that respects safety(B), where B ⊆ A∗, B 6= /0 and ε 6∈ B. Let

σ ∈ A∗ and a ∈ A be such that σa ∈ B, and no prefix ρ ≤ σ of σ is in B. Let safety(a) be the canonical

safety property, but with a playing the role of b. Naturally, Theorem 1 holds for this renamed canonical

safety property as well. Hence it suffices to show that ⊑ respects the property safety(a). Let I := A\{a}.

Then τI is an operator that renames all actions other than a into τ ; thus if a process of the form τI(s)
ever performs a visible action, it must be a. Let rσ be a process with CT(r) = {σ} and rσa be a process

with CT(r) = {σa}. Then, for any choice of s ∈ P, (τI(s)‖ /0rσ)‖Arσa is a process all of whose traces

are prefixes of σa, with σa ∈ ptraces((τI(s)‖ /0rσ)‖Arσa) iff a ∈ ptraces(τI(s)), which is the case iff

s 6|= safety(a). Suppose p ⊑ q. Then (τI(p)‖ /0rσ)‖Arσa ⊑ (τI(q)‖ /0rσ)‖Arσa and

p |= safety(a)⇔ (τI(p)‖ /0rσ)‖Arσa |= safety(B)⇒ (τI(q)‖ /0rσ)‖Arσa |= safety(B)⇔ q |= safety(a). ✷

Let ⊑safety denote the preorder that is fully abstract w.r.t. the class of safety properties and O . The

following, well-known, theorem characterises this preorder as reverse partial trace inclusion.

Theorem 4 p ⊑safety q ⇔ ptraces(p)⊇ ptraces(q).

Proof: Define reverse partial trace inclusion, ⊑−1
T , by p ⊑−1

T q iff ptraces(p)⊇ ptraces(q).
“⇐”: It suffices to establish that ⊑−1

T is a precongruence for O that respects all safety properties.

That ⊑−1
T is a precongruence for O follows immediately from the following observations:

ptraces(p‖Sq) = {σ ∈ ν‖Sξ | ν ∈ ptraces(p)∧ ξ ∈ ptraces(q)}
ptraces(τI(p)) = {τI(σ) | σ ∈ ptraces(p)}

ptraces(λ m
s (p)) = {λ m

s (σ) | σ ∈ ptraces(p)}.

8 The Coarsest Precongruences Respecting Safety and Liveness Properties

Here ν‖Sξ denotes the set of sequences of actions for which is it possible to mark each action occurrence

as left, right or both, obeying the restriction that an occurrence of action a is marked both left and right

iff a ∈ S, such that the subsequence of all left-labelled action occurrences is ν and the subsequence of

all right-labelled action occurrences is ξ . Furthermore, the operators τI and λ m
s on A∗ are uniquely

determined by

τI(ε) = ε τI(aσ) =

{

τI(σ) if a ∈ I

aτI(σ) otherwise

λ m
s (ε) = ε λ m

s (aσ) = a(m,s)λ m
s(m,a)(σ).

To show that ⊑−1
T respects all safety properties, let B ⊆ A∗, p ⊑−1

T q, and suppose p |= safety(B).
Then ptraces(q) ⊆ ptraces(p) and ptraces(p)∩ B = /0. Thus ptraces(q)∩B = /0, i.e. q |= safety(B),
which had to be shown.

“⇒”: Let ⊑ be any precongruence for O that respects all safety properties, and suppose p ⊑ q.

I have to establish that p ⊑−1
T q. Let B := A∗ \ptraces(p). Then p |= safety(B). Thus q |= safety(B), i.e.

ptraces(q)∩ (A∗ \ptraces(p)) = /0. This yields ptraces(q) ⊆ ptraces(p). ✷

The above characterisation as reverse partial trace inclusion of the coarsest congruence for O that respects

all safety properties, is rather robust under the choice of O . It holds already for the empty class of

operators, and it remains true when adding in all operators of CSP [5], CCS [13] or ACPτ [4], as ⊑−1
T is

known to be a precongruence for all of them.

By Theorem 3, the characterisation also remains valid when requiring respect for one arbitrary safety

property only, instead of all of them, but to this end all three operators of O are needed. If we just retain

the state operator, by Theorem 1 it suffices to require respect for the canonical safety property only.

4 Liveness Properties

A liveness property [10] is a property that says that

something good will eventually happen.

To formulate a canonical liveness property, assume that the alphabet A contains one specific action g,

whose occurrence is good. The canonical liveness property now says that g will eventually happen.

Definition 6 A process p satisfies the canonical liveness property, notation p |= liveness(g), if every

complete trace of p contains the action g.

To arrive at a general concept of liveness property for labelled transition systems, assume that some

notion of good is defined. Now, to judge whether a process p satisfies this liveness property, one should

judge whether p can reach a state in which one would say that something good had happened. But

all observable behaviour of p that is recorded in a labelled transition system until one comes to such

a verdict, is the sequence of visible actions performed until that point. Thus the liveness property is

completely determined by the set sequences of visible actions that, when performed by p, lead to such

a judgement. Therefore one can just as well define the concept of a liveness property in terms of such a

set.

Definition 7 A liveness property of processes in an LTS is given by a set G ⊆ A∗. A process p satisfies

this liveness property, notation p |= liveness(G), when each complete trace of p has a prefix in G.

This formalisation of liveness properties is essentially different from the one in [2] and most subsequent

work on liveness properties; this point is discussed in Section 6.

Just as for safety properties, the sets G := /0 and G := {ε} specify trivial liveness properties.

R.J. van Glabbeek 9

Theorem 5 A precongruence for the state operator respects every liveness property iff it respects the

canonical liveness property.

Proof: Just like the proof of Theorem 1. ✷

A process p has the initial progress property if it cannot immediately diverge or deadlock, i.e. if

ε 6∈ divergences(p)∪ deadlocks(p). This is a liveness property, namely with G the set of all sequences

over A∗ of length 1. It can be understood this way by regarding any occurrence of an action as good.

Theorem 6 A precongruence for abstraction that respects the initial progress property, respects the

canonical liveness property.

Proof: Just like the proof of Theorem 2. ✷

By combining Theorems 5 and 6 one obtains:

Corollary 2 A precongruence for abstraction and for the state operator that respects the initial progress

property, respects all liveness properties.

Conjecture 1 Any precongruence for O that respects a single nontrivial liveness property, respects every

liveness property.

Let ⊑liveness denote the preorder that is fully abstract w.r.t. the class of liveness properties and O . I will

proceed to characterise ⊑liveness as the preorder ⊑⊥
FDI based on failures, divergences and infinite traces

that is also used in the work on CSP [16]. Failures of a process p are defined below; they are pairs 〈σ ,X〉
such that p can perform the sequence of visible actions σ and then reach a state in which no further

progress can be made in case the environment allows only those visible actions to occur that are listed in

X . The preorder ⊑⊥
FDI does not take into account any information about the behaviour of processes that

can be thought of taking place after a divergence. One of the ways to erase this information from the set

of failures, divergences and infinite traces of a process is by means of flooding. Flooded sets of failures,

divergences and infinite traces are indicated by the subscript ⊥.

Definition 8 Let p ∈P.

• initials(p) := {α ∈ Aτ | ∃q. p
α−→ q}.

• failures(p) := {〈σ ,X〉 ∈ A∗×P(A) | ∃q. p
σ
=⇒ q∧ initials(q)∩ (X ∪{τ}) = /0}.

• divergences⊥(p) := {σρ | σ ∈ divergences(p)∧ρ ∈ A∗}.

• inf⊥(p) := {σρ | σ ∈ divergences(p)∧ρ ∈ A∞}.

• failures⊥(p) := {〈σρ ,X〉 | σ ∈ divergences(p)∧ρ ∈ A∗∧X ⊆ A}.

So deadlocks(p)={σ |〈σ ,A〉∈ failures(p)} and ptraces(p)=divergences(p)∪{σ |〈σ , /0〉∈ failures(p)}.

Theorem 7 p ⊑liveness q ⇔ divergences⊥(p) ⊇ divergences⊥(q)∧
inf⊥(p) ⊇ inf⊥(q)∧

failures⊥(p) ⊇ failures⊥(q).

Proof: Let ⊑⊥
FDI be the preorder defined by: p ⊑⊥

FDI q iff the right-hand side of Theorem 7 holds.

“⇐”: It suffices to establish that ⊑⊥
FDI is a liveness respecting precongruence.

To show that ⊑⊥
FDI respects liveness, let G ⊆ A∗, p ⊑⊥

FDI q, and suppose p |= liveness(G). I need

to show that q |= liveness(G). So suppose σ ∈ CT(q). Then one out of three possibilities must apply:

either σ ∈ divergences(g) ⊆ divergences⊥(g) ⊆ divergences⊥(p) or σ ∈ inf (q) ⊆ inf⊥(q) ⊆ inf⊥(p) or

〈σ ,A〉 ∈ failures(q)⊆ failures⊥(q)⊆ failures⊥(q). In the first case ρ ∈ divergences(p)⊆CT(p) for some

10 The Coarsest Precongruences Respecting Safety and Liveness Properties

ρ ≤ σ ; in the second case either σ ∈ inf (p) ⊆ CT(p) or ρ ∈ divergences(p) ⊆ CT(p) for some ρ < σ ;

and in the third case either 〈σ ,A〉 ∈ failures(p) or ρ ∈ divergences(p) ⊆ CT(p) for some ρ ≤ σ . In all

three cases ρ ∈ CT(p) for some ρ ≤ σ . Since p |= liveness(G), there must be a ν ≤ ρ with ν ∈ G. As

ν ≤ σ it follows that q |= liveness(G).
That ⊑⊥

FDI is a precongruence for ‖S and τI has been established in [16] by means of the following

observations:

divergences⊥(p‖Sq) = {σρ | ∃〈ν ,X〉 ∈ failures⊥(p),ξ ∈ divergences⊥(q). σ ∈ ν‖Sξ ∧ρ ∈ A∗}∪
{σρ | ∃ν ∈ divergences⊥(p),〈ξ ,X〉 ∈ failures⊥(q). σ ∈ ν‖Sξ ∧ρ ∈ A∗}

inf⊥(p‖Sq) = {σ | ∃ν ∈ inf⊥(p),ξ ∈ inf⊥(q). σ ∈ ν‖Sξ}∪
{σ | ∃〈ν ,X〉 ∈ failures⊥(p),ξ ∈ inf⊥(q). σ ∈ ν‖Sξ}∪
{σ | ∃ν ∈ inf⊥(p),〈ξ ,X〉 ∈ failures⊥(q). σ ∈ ν‖Sξ}∪
{σρ | σ ∈ divergences⊥(p‖Sq)∧ρ ∈ A∞}

failures⊥(p‖Sq) = {〈σ ,X ∪Y〉 | ∃〈ν ,X〉 ∈ failures⊥(p),〈ξ ,Y 〉 ∈ failures⊥(q).
X \S = Y \S∧σ ∈ ν‖Sξ}∪

{〈σ ,X〉 | σ ∈ divergences⊥(p‖Sq)∧X ⊆ A}.
divergences⊥(τI(p)) = {τI(σ)ρ | τI(σ),ρ ∈ A∗∧σ ∈ inf⊥(p)∪divergences⊥(p)}

inf⊥(τI(p)) = {τI(σ) | τI(σ) ∈ A∞ ∧σ ∈ inf⊥(p)}
∪{σρ | σ ∈ divergences⊥(τI(p))∧ρ ∈ A∞}

failures⊥(τI(p)) = {〈τI(σ),X〉 | 〈σ ,X ∪ I〉 ∈ failures⊥(p)}∪
{〈σ ,X〉 | σ ∈ divergences⊥(τI(p))∧X ⊆ A}.

Here τI(σ) for σ ∈ A∞ is the supremum, w.r.t. the prefix order ≤ on Aω , of the set {τI(ρ) | ρ < σ}.

Likewise, ⊑⊥
FDI is a congruence for λ m

s :

divergences⊥(λ
m
s (p)) = {λ m

s (σ)ρ | σ ∈ divergences⊥(p)∧ρ ∈ A∗}
inf⊥(λ

m
s (p)) = {λ m

s (σ) | σ ∈ inf⊥(p)}∪{σρ | σ ∈ divergences⊥(λ
m
s (p))∧ρ ∈ A∞}

failures⊥(λ
m
s (p)) = {〈λ m

s (σ),X〉 | 〈σ ,λ−m
s (X)〉 ∈ failures⊥(p)}∪

{〈σ ,X〉 | σ ∈ divergences⊥(λ
m
s (p))∧X ⊆ A}.

Here λ−m
s (X) := {a ∈ A | a(m,s) ∈ X}.

“⇒”: Let ⊑ be any liveness respecting precongruence, and suppose p ⊑ q. I have to establish that

p ⊑⊥
FDI q. W.l.o.g. I may assume that neither p nor q has any trace containing the action g. For let

λ m be an injective renaming operator such that g is not in the image of λ m. Then λ m(p) ⊑ λ m(q).
Suppose one can establish λ m(p) ⊑⊥

FDI λ m(q). Since ⊑⊥
FDI is a precongruence for renaming, this yields

p ≡⊥
FDI λ−m(λ m(p))⊑⊥

FDI λ−m(λ m(p))≡⊥
FDI q.

Suppose divergences⊥(p) 6⊇ divergences⊥(q); say σ ∈ divergences⊥(q) \divergences⊥(p). So there

is no ρ ≤ σ with ρ ∈ divergences(p). Let r be a deterministic process such that CT(r) = {ρg | ρ ≤ σ}.

Then each complete trace of p‖gr contains g. Here I write ‖g for ‖
A\{g}, the interleaving operator that

synchronises on all visible actions except g. As ⊑ is a precongruence, p ⊑ q implies p‖gr ⊑ q‖gr, and

since ⊑ respects the canonical liveness property, I obtain that each complete trace of q‖gr must contain

g. However, ρ ∈divergences(q) for some ρ ≤σ . So ρ ∈CT(q‖gr), although ρ does not contain g.

Suppose inf⊥(p) 6⊇ inf⊥(q); say σ ∈ inf⊥(q) \ inf⊥(p). So σ 6∈ inf (p) and there is no ρ < σ with

ρ ∈ divergences(p). Let r be a deterministic process such that CT(r) = {ρg | ρ < σ} ∪ {σ}. Then

each complete trace of p‖gr contains g. As ⊑ is a precongruence, p ⊑ q implies p‖gr ⊑ q‖gr, and since

⊑ respects the canonical liveness property, I obtain that each complete trace of q‖gr must contain g.

However, either σ ∈ inf (q) or ρ ∈ divergences(q) for some ρ < σ . So either σ ∈ CT(q‖gr) or ρ ∈
CT(q‖gr), and neither σ nor ρ contains g.

R.J. van Glabbeek 11

•

τ

c g
≡liveness •

τ

c

Figure 1: Two processes with the same liveness properties but different conditional liveness properties

Suppose failures⊥(p) 6⊇ failures⊥(q); say 〈σ ,X〉∈ failures⊥(q)\failures⊥(p). So 〈σ ,X〉 6∈ failures(p)
and there is no ρ ≤ σ with ρ ∈ divergences(p). Let r be a deterministic process with CT(r) = {ρg | ρ <
σ} ∪ {σa | a ∈ X}, and consider the liveness property given by G := {ρg | ρ < σ}∪ {σa | a ∈ X}.

Then p‖gr |= liveness(G). As ⊑ is a precongruence, p ⊑ q implies p‖gr ⊑ q‖gr, and since ⊑ respects

liveness properties, also q‖gr |= liveness(G). However, either 〈σ ,X〉 ∈ failures(q) or there is an ρ ≤ σ
with ρ ∈ divergences(q). So either σ ∈ CT(q‖gr) or ρ ∈ CT(q‖gr) for some ρ ≤ σ , contradicting that

q‖gr |= liveness(G). ✷

The standard refinement preorder used in CSP is in fact the failures-divergences preorder ⊑FD, defined

exactly like ⊑⊥
FDI , but abstracting from the infinite traces. As remarked in [16], this can be done be-

cause in CSP one normally restricts attention to processes p with the property that for any σ ∈ A∗ either

σ ∈ divergences⊥(p) or there are only finitely many processes q with p
σ
=⇒ q. For such processes the set

inf⊥(p) is, with Königs Lemma, completely determined by failures⊥(p) and divergences⊥(p), and thus

need not be explicitly recorded. When extending CSP to processes not having this property, the compo-

nent inf⊥ should be added to the semantics of processes [16]. In fact, ⊑⊥
FDI is the coarsest precongruence

for O contained in ⊑FD: if p, q and r are the processes used in the inf⊥-case of the above proof, and

I := A\{g}, then ε ∈ divergences⊥(τI(q‖
gr))\divergences⊥(τI(p‖gr)).

The above characterisation as ⊑⊥
FDI of the coarsest congruence for O that respects all liveness prop-

erties, is somewhat robust under the choice of O . It holds already for with just ‖g and injective renaming

(for these are the only two operators that are just in the proof), and it remains true when adding in all

operators of CSP [5], as ⊑⊥
FDI is known to be a precongruence for all of them [16].

By Corollary 2, the above characterisation also remains valid when requiring respect for the initial

progress property only, but to this end all three operators of O are needed. This result has in essence

been obtained already by Bill Roscoe in [16]. The state operator does not feature in [16]; its rôle in this

full abstraction result is taken over by a renaming operator that allows renaming an action a into a choice

between two actions b and c. When ignoring this difference in syntax, Theorem 7 can be obtained as an

immediate corollary of Corollary 2 and that result. The main reason for using the above proof instead is

to show that the concealment or abstraction operator is not needed here.

By Theorem 5, ⊑⊥
FDI is even fully abstract w.r.t. the partially synchronous interleaving and state

operators, and the canonical liveness property. This result, like the full abstraction result of [16], does

not hold without the state operator, or something equally powerful, even if renaming and abstraction is

allowed to be used. Namely, as pointed out by Antti Puhakka [14], one would fail to distinguish the

following two processes:

τ

a
•

a
6≡liveness

τ

a
•

a

a

5 Conditional Liveness Properties

Figure 1 presents two processes that have the same liveness properties in any CSP-context. The fact that

only the left-hand process can do something good doesn’t matter here, as neither of the two processes is

12 The Coarsest Precongruences Respecting Safety and Liveness Properties

guaranteed to do something good: they may never proceed beyond their initial τ-loops. Nevertheless,

from a practical point of view, the difference between these two processes may be enormous. It could

be that the action c comes with a huge cost, that is only worth making when something good happens

afterwards. Only the right-hand side process is able to incur the cost without any benefits, and for this

reason it lacks an important property that the left-hand process has. I call such properties conditional

liveness properties [7, 12]. A conditional liveness property is a property that says that

under certain conditions something good will eventually happen.

To formulate a canonical conditional liveness property, assume that the alphabet A contains two specific

action c and g, where the occurrence of c is the condition, and the occurrence of g is good. The canonical

conditional liveness property now says that if c occurs then g will eventually happen.

Definition 9 A process p satisfies the canonical conditional liveness property, notation p |= livenessc(g),
if every complete trace of p that contains the action c also contains the action g.

To arrive at a general concept of conditional liveness property for labelled transition systems, assume

that some condition, and some notion of good is defined. Now, to judge whether a process p satisfies

this conditional liveness property, one should judge first of all in which states the condition is fulfilled.

All observable behaviour of p that is recorded in a labelled transition system until one comes to such a

verdict, is the sequence of visible actions performed until that point. Thus the condition is completely

determined by the set sequences of visible actions that, when performed by p, lead to such a judgement.

Next one should judge whether p can reach a state in which one would say that something good had

happened. Again, this judgement can be expressed in terms of the sequences of visible actions that lead

to such a state.

Definition 10 A conditional liveness property of processes in an LTS is given by two sets C,G ⊆ A∗.

A process p satisfies this conditional liveness property, notation p |= livenessC(G), when each complete

trace of p that has a prefix in C, also has prefix in G.

For the sake of added generality, one could make the notion of success dependent on the particular

sequence of actions that fulfilled the condition. This would make G a function from C to P(A∗) and

the requirement would be that each complete trace of p that has a prefix σ ∈C, also has prefix in G(σ).
However, such a generalised conditional liveness property can be expressed as a conjunction of standard

ones, and a preorder that respects a given collection of properties also respects their conjunction.

Theorem 8 A precongruence for the state operator respects every conditional liveness property iff it

respects the canonical conditional liveness property.

Proof: “Only if ” follows because the canonical conditional liveness property is in fact a conditional

liveness property, namely the one with C being the set of those sequences that contain the action c, and

G the set of those sequences that contain the action g.

“If ”: Again I use a state operator that remembers exactly what sequence of actions has occurred so far.

Thus the set of internal states of its interface specification m is A∗, and σ(m,a) := σa for all σ ∈ A∗ and

a ∈ A. Note that the properties livenessC(G) and livenessC\G(G) are satisfied by the same processes, so

w.l.o.g. I may restrict attention to properties livenessC(G) with C∩G = /0. Given such a property, define

a(m,σ) :=







c if σa ∈C

g if σa ∈ G

d otherwise.

Then λ m
ε (p) |= livenessc(g) iff p |= livenessC(G). Thus, if p ⊑ q and p |= livenessC(G), then λ m

ε (p) ⊑
λ m

ε (q) and λ m
ε (p) |= livenessc(g). Hence λ m

ε (q) |= livenessc(g), so q |= livenessC(G). ✷

R.J. van Glabbeek 13

An element σ 6∈ divergences(p)∪deadlocks(p) is called a deadlock/divergence trace of a process p.

For any σ ∈ A∗, not having a deadlock/divergence trace σ is a conditional liveness property, namely with

C := {σ} and G := {σa | a ∈ A}. Using similar techniques as for Corollary 1, one can establish:

Corollary 3 A precongruence for abstraction and for the state operator that respects the property of

having no deadlock/divergence trace c, respects all liveness properties.

Let ⊑cond. liveness denote the preorder that is fully abstract w.r.t. the class of conditional liveness proper-

ties and O . Furthermore, write ⊑d/d for the coarsest precongruence for O such that q ⊑d/d p implies

deadlocks(q)∪divergences(q)⊆ deadlocks(p)∪divergences(p).

Corollary 4 p ⊑cond. liveness q iff q ⊑d/d p.

Proof: “If ” follows immediately from Corollary 3. “Only if ” follows from the observation that the

absence of any deadlock/divergence trace σ is a conditional liveness property. ✷

Antti Puhakka [14] has given a characterisation of the coarsest congruence that preserves deadlock/

divergence traces, ≡d/d. His arguments easily extend to a characterisation of ⊑d/d and hence, using

Corollary 4, of ⊑cond. liveness. Below I will give a direct proof of the same result. It shows that this

characterisation is already valid when merely requiring the precongruence property for ‖S and injective

renaming.

As for ⊑liveness, the characterisation of ⊑cond. liveness is in terms of failures, divergences and infinite

traces, and again some information needs to be erased, but less than in the case of ⊑liveness. This time

we need to forget about failures 〈σ ,X〉 ∈ failures(p) such that σ ∈ divergences(p), and about infinite

traces of p that have arbitrary long prefixes in divergences(p). In [14] this is achieved by removal of

such failures and infinite traces; here, in order to stress the similarity with the refinement preorder of

CSP, I equivalently apply the method of flooding.

Definition 11 Let p ∈P.

• infd(p) := inf (p)∪{σ ∈ A∞ | ∀ρ < σ∃ν ∈ divergences(p). ρ ≤ ν < σ}.

• failuresd(p) := failures(p)∪{〈σ ,X〉 | σ ∈ divergences(p)∧X ⊆ A}.

Theorem 9 p ⊑cond. liveness q ⇔ divergences(p) ⊇ divergences(q)∧
infd(p) ⊇ infd(q)∧

failuresd(p) ⊇ failuresd(q).

Proof: Let ⊑d
FDI be the preorder defined by: p ⊑d

FDI q iff the right-hand side of Theorem 7 holds.

“⇐”: It suffices to establish that ⊑d
FDI is a precongruence for O that respects all conditional liveness

properties.

To show that ⊑d
FDI respects conditional liveness properties, let C,G ⊆ A∗, p ⊑d

FDI q, and suppose

p |= livenessC(G). I need to show that q |= livenessC(G). So suppose σ ∈ CT(q) and ρ ∈ C for some

prefix ρ ≤σ . Then one out of three possibilities must apply: either σ ∈ divergences(g)⊆ divergences(p)
or σ ∈ inf (q) ⊆ infd(q) ⊆ infd(p) or 〈σ ,A〉 ∈ failures(q) ⊆ failuresd(q) ⊆ failuresd(p). In the first and

last case, one has σ ∈ CT(p). Since p |= livenessC(G), there must be a ξ ≤ σ with ξ ∈ G, which had to

be shown. In the second case either σ ∈ inf (p)⊆ CT(p), in which case the argument proceeds as above,

or ∃ν ∈ divergences(p)⊆ CT(p) with ρ ≤ ν < σ . In the latter case, there must be a ξ ≤ ν with ξ ∈ G,

and as ν < σ it follows that q |= livenessC(G).

14 The Coarsest Precongruences Respecting Safety and Liveness Properties

That ⊑d
FDI is a precongruence for ‖S, τI and λ m

s follows from the following observations:

divergences(p‖Sq) = {σ | ∃〈ν ,X〉 ∈ failuresd(p),ξ ∈ divergences(q). σ ∈ ν‖Sξ}∪
{σ | ∃ν ∈ divergences(p),〈ξ ,X〉 ∈ failuresd(q). σ ∈ ν‖Sξ}

infd(p‖Sq) = {σ | ∃ν ∈ infd(p),ξ ∈ infd(q). σ ∈ ν‖Sξ}∪
{σ | ∃〈ν ,X〉 ∈ failuresd(p),ξ ∈ infd(q). σ ∈ ν‖Sξ}∪
{σ | ∃ν ∈ infd(p),〈ξ ,X〉 ∈ failuresd(q). σ ∈ ν‖Sξ}∪
{σ ∈ A∞ | ∀ρ < σ∃ν ∈ divergences(p‖Sq). ρ ≤ ν < σ}

failuresd(p‖Sq) = {〈σ ,X ∪Y 〉 | ∃〈ν ,X〉 ∈ failuresd(p),〈ξ ,Y 〉 ∈ failuresd(q).
X \S =Y \S∧σ ∈ ν‖Sξ}∪

{〈σ ,X〉 | σ ∈ divergences(p‖Sq)∧X ⊆ A}.
divergences(τI(p)) = {τI(σ) | τI(σ) ∈ A∗∧σ ∈ infd(p)∪divergences(p)}

infd(τI(p)) = {τI(σ) | τI(σ) ∈ A∞ ∧σ ∈ infd(p)}∪
{σ ∈ A∞ | ∀ρ < σ∃ν ∈ divergences(τI(p)). ρ ≤ ν < σ}

failuresd(τI(p)) = {〈τI(σ),X〉 | 〈σ ,X ∪ I〉 ∈ failuresd(p)}∪
{〈σ ,X〉 | σ ∈ divergences(τI(p))∧X ⊆ A}

divergences(λ m
s (p)) = {λ m

s (σ) | σ ∈ divergences(p)}
infd(λ

m
s (p)) = {λ m

s (σ) | σ ∈ infd(p)}∪
{σ ∈ A∞ | ∀ρ < σ∃ν ∈ divergences(λ m

s (p)). ρ ≤ ν < σ}
failuresd(λ

m
s (p)) = {〈λ m

s (σ),X〉 | 〈σ ,λ−m
s (X)〉 ∈ failuresd(p)}∪

{〈σ ,X〉 | σ ∈ divergences(λ m
s (p))∧X ⊆ A}.

“⇒”: Let ⊑ be any precongruence for O that respects conditional liveness properties, and suppose

p ⊑ q. I have to establish that p ⊑d
FDI q. W.l.o.g. I may assume that neither p nor q has any trace

containing the actions c or g. The argument for this is as in the proof of Theorem 7.

Suppose divergences(p) 6⊇ divergences(q); say σ ∈ divergences(q) \ divergences(p). Let r be a

deterministic process such that CT(r) = {σcg}. Then each complete trace of p‖c,gr that contains c

also contains g. Here I write ‖c,g for ‖
A\{c,g}, the interleaving operator that synchronises on all visible

actions except c and g. As ⊑ is a precongruence, p ⊑ q implies p‖c,gr ⊑ q‖c,gr, and since ⊑ respects the

canonical conditional liveness property, I obtain that each complete trace of q‖c,gr that contains c must

also contain g. However, as σ ∈ divergences(q), σc ∈ divergences(q‖c,gr) ⊆ CT(q‖c,gr), although σc

does not contain g.

Suppose infd(p) 6⊇ infd(q); say σ ∈ infd(q) \ infd(p). So σ 6∈ inf (p) and there is a ρ < σ such

that ρ ≤ ρν < σ for no sequence ρν ∈ divergences(p). Let r be a deterministic process such that

CT(r) = {ρcνg | ρν < σ}∪{σ}. Then each complete trace of p‖gr that contains c, must also contain g.

As ⊑ is a precongruence, p ⊑ q implies p‖c,gr ⊑ q‖g,cr, and since ⊑ respects the canonical conditional

liveness property, I obtain that each complete trace of q‖c,gr that contains c must also contain g. However,

either σ ∈ inf (q) or ρν ∈ divergences(q) for some ρ ≤ ρν < σ . In each case q‖c,gr has a complete trace

that contains c but not g.

Suppose failuresd(p) 6⊇ failuresd(q); say 〈σ ,X〉 ∈ failuresd(q)\ failuresd(p). So 〈σ ,X〉 6∈ failures(p)
and σ 6∈ divergences(p). Let r be a deterministic process with CT(r) = {σca | a ∈ X}, let C be the set

of sequences containing c, and consider the conditional liveness property given by C and G := {σca |
a ∈ X}. Then p‖cr |= livenessC(G). As ⊑ is a precongruence, p ⊑ q implies p‖cr ⊑ q‖cr, and since ⊑
respects conditional liveness properties, also q‖gr |= livenessC(G). However, either 〈σ ,X〉 ∈ failures(q)
or σ ∈ divergences(q). So σc ∈ CT(q‖gr), contradicting that q‖cr |= livenessC(G). ✷

In [15], Bill Roscoe has shown that ⊑d
FDI is a precongruence for all operators of CSP; he also developed

a new fixed point theory that shows that it is a congruence for recursion as well.

R.J. van Glabbeek 15

6 Linear Time Properties

Safety, liveness, and conditional liveness properties, as studied in the previous sections, are special cases

of linear time properties. A linear time property can be thought of as any requirement on the observable

content of the runs of a process. The property is satisfied by a process when the observable content of all

its maximal runs satisfy this requirement. Hence a linear time property can be formalised by the set of

sequences over Aω that, when performed in a maximal run of a process, meet the requirement.

Definition 12 A linear time property of processes in an LTS is given by a set P ⊆ Aω . A process p

satisfies this property, notation p |= P, when CT(p)⊆ P.

A safety property is a special kind of linear time property, namely safety(B)= {σ ∈Aω | ¬∃ρ∈B.ρ ≤σ}.

Likewise, liveness(G) = {σ ∈ Aω | ∃ρ ∈ G. ρ ≤ σ}, and

livenessC(G) = {σ ∈ Aω | (∃ρ ∈C. ρ ≤ σ)⇒ (∃ν ∈ G. ν ≤ σ)}.

In [2] and most subsequent work, liveness properties are formalised in a different way than in this

paper. For the canonical liveness property it is fundamentally impossible to ever tell that it is not going to

be satisfied when one has only observed a finite prefix of a maximal run of a process. For if “something

good” is promised to happen, it is always possible to assume it will be further in the future. In [2], this is

taken to be the defining characteristic of liveness properties, and a property P is called a liveness property

iff ∀ρ ∈ A∗.∃σ ∈ P. ρ ≤ σ .

The property liveness(G) with G = {a} for instance says that the first visible action of a process

should be an a. It is a liveness property in my sense, since the first action being an a can be thought of as

a good thing that happened eventually; here the requirement that it has to happen as first action could be

part of one’s concept of good. However, it is not a liveness property as formalised in [2] and subsequent

work, since the occurrence of a b 6= a as first action proves that the property will never be satisfied.

The property that from some point onwards all visible actions a process performs should be g’s, is an

example of a liveness property in the sense of [2] that is not a liveness property in my sense. Namely, at

no point can one ever tell that something good has happened.

A well know theorem [2] says that any linear time property P can be written as the conjunction

safety(B)∩Pliveness of a safety property and a liveness property in the sense of [2]. Namely,

B := {ρ ∈ A∗ | ¬∃σ ∈ P. ρ ≤ σ} and Pliveness := P∪ (Aω \ safety(B)).

Such a theorem does not hold for my liveness properties.

My characterisation of ⊑liveness would still be valid if I would have taken as class of liveness prop-

erties the intersection of mine and the ones from [2]. This follows immediately from Theorem 5, as the

canonical liveness property is in this intersection. So the extra generality in my definition is harmless.

However, the extra restriction makes a difference, as the canonical conditional liveness property, for

instance, is a liveness property in the sense of [2].

Liveness properties in the sense of [2] are studied because proving them requires a different tool set

than proving safety properties. However, as far as practical applications are concerned, one is mostly

interested in conjunctions of safety and liveness properties, i.e. general linear time properties. I will

therefore not try to characterise coarsest congruences that respect just the liveness properties in the sense

of [2].

The coarsest congruence respecting all linear time properties has been characterised as NDFD-

equivalence by Roope Kaivola and Antti Valmari in [9]; this results extends to preorders in a straight-

forward way. The NDFD preorder can be defined just like ⊑d
FDI, except that inf() is used instead of

inf⊥(). In fact, this result can also be obtained as corollary of what we have seen so far.

16 The Coarsest Precongruences Respecting Safety and Liveness Properties

Theorem 10 p ⊑lt-properties q ⇔ divergences(p) ⊇ divergences(q)∧
inf (p) ⊇ inf (q)∧

failuresd(p) ⊇ failuresd(q).

Proof: Let ⊑NDFD be the preorder defined by: p ⊑NDFD q iff the right-hand side of Theorem 10 holds.

“⇐”: It suffices to establish that ⊑NDFD is a precongruence for O that respects all linear time properties.

To show that ⊑NDFD respects linear time properties, let P ⊆ Aω , p ⊑NDFD q, and suppose p |= P. I

need to show that q |= P. So suppose σ ∈ CT(q). Then either σ ∈ divergences(g) ⊆ divergences(p) or

σ ∈ inf (q) ⊆ inf (q) or 〈σ ,A〉 ∈ failures(q)⊆ failuresd(q)⊆ failuresd(p). In the last case, one has either

〈σ ,A〉 ∈ failures(p) or σ ∈ divergences(p). So in all cases σ ∈ CT(p). Since p |= P, it must be that

σ ∈ P. It follows that CT(q)⊆ P, i.e. q |= P.

That ⊑NDFD is a precongruence for ‖S, τI and λ m
s follows from similar, but simpler, observations as

in the proof of Theorem 9.

“⇒”: Let ⊑ be any precongruence for O that respects linear time properties, and suppose p ⊑ q. I

have to establish that p ⊑NDFD q. That divergences(p)⊇ divergences(q) and failuresd(p)⊇ failuresd(q)
follows immediately from Theorem 9, using that conditional liveness properties are linear time proper-

ties. That inf (p)⊇ inf (q) follows immediately by considering the linear time property CT(p). ✷

To obtain this result it suffices to define ⊑lt-properties as the coarsest precongruence w.r.t. ‖S and injective

renaming that respects all linear time properties. However, it happens to also be a precongruence for all

operators of CSP.

Linear time properties do not capture the entire observable behaviour or processes in the neutral

environment. Orthogonal to them are possibility properties, such as: a process may do an action g. As

argued by Leslie Lamport, “verifying possibility properties tells you nothing interesting about a system”

[11]. Nevertheless, it is not hard to characterise the coarsest precongruence for O that respects linear

time properties as well as all possibility properties, and thereby arguably the entire observable behaviour

of a processes in a neutral environment. It is ≡NDFD, the symmetric closure of ⊑NDFD.

7 Concluding remark

The methodology of the paper is close in spirit to the work on testing equivalences by Rocco De Nicola

and Matthew Hennessy [6], and the results in Sections 3 and 4 are comparable as well. The notion of

must testing of [6] could be reinterpreted as a way to test liveness properties, and hence, unsurprisingly,

my preorder ⊑liveness is exactly the must-testing preorder of [6]. However, my safety preorder is exactly

the inverse of the may testing preorder of [6]. This can be explained by thinking, in the context of may

testing, of the “success”-action ω as marking a state of failure, rather than one of success. Now the

property of whether a process may reach ω is exactly the negation of whether it will always avoid ω .

This turns may-testing around, from testing certain possibility properties, to testing safety properties. It

remains to elaborate a theory of testing that captures the concept of conditional liveness.

References

[1] M. Alexander & W. Gardner, editors (2008): Process Algebra for Parallel and Distributed Processing. Chap-

man & Hall.

[2] B. Alpern & F.B. Schneider (1985): Defining liveness. Information Processing Letters 21, pp. 181–185.

Available at http://dx.doi.org/10.1016/0020-0190(85)90056-0.

http://dx.doi.org/10.1016/0020-0190(85)90056-0

R.J. van Glabbeek 17

[3] J.C.M. Baeten & J.A. Bergstra (1988): Global renaming operators in concrete process algebra. Information

and Computation 78(3), pp. 205–245.

[4] J.A. Bergstra & J.W. Klop (1985): Algebra of communicating processes with abstraction. Theoretical Com-

puter Science 37(1), pp. 77–121.

[5] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes. Jour-

nal of the ACM 31(3), pp. 560–599.

[6] R. De Nicola & M. Hennessy (1984): Testing equivalences for processes. Theoretical Computer Science 34,

pp. 83–133.

[7] R.J. van Glabbeek & M. Voorhoeve (2006): Liveness, Fairness and Impossible Futures. In: Christel Baier &

Holger Hermanns, editors: CONCUR, LNCS 4137, Springer, pp. 126–141. Available at http://dx.doi.

org/10.1007/11817949_9.

[8] R.J. van Glabbeek (2001): The Linear Time – Branching Time Spectrum I; The Semantics of Concrete,

Sequential Processes. In: J.A. Bergstra, A. Ponse & S.A. Smolka, editors: Handbook of Process Algebra,

chapter 1, Elsevier, pp. 3–99. Available at http://Boole.stanford.edu/pub/spectrum1.ps.gz.

[9] R. Kaivola & A. Valmari (1992): The Weakest Compositional Semantic Equivalence Preserving Nexttime-

less Linear Temporal Logic. In: Rance Cleaveland, editor: CONCUR’92, LNCS 630, Springer, pp. 207–221.

Available at http://dx.doi.org/10.1007/BFb0084793.

[10] L. Lamport (1977): Proving the correctness of multiprocess programs. IEEE Transactions on Software

Engineering 3(2), pp. 125–143.

[11] Leslie Lamport (1998): Proving Possibility Properties. Theoretical Computer Science 206(1-2), pp. 341–

352. See especially http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.

html#lamport-possibility.

[12] P.B. Levy (2008): Infinite trace equivalence. Annals of Pure and Applied Logic 151(2-3), pp. 170–198.

Available at http://dx.doi.org/10.1016/j.apal.2007.10.007.

[13] R. Milner (1990): Operational and algebraic semantics of concurrent processes. In: J. van Leeuwen, editor:

Handbook of Theoretical Computer Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland),

pp. 1201–1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989,

of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer-Verlag,

1980.

[14] A. Puhakka (2001): Weakest Congruence Results Concerning “Any-Lock”. In: N. Kobayashi & B.C. Pierce,

editors: Proceedings TACS’01, LNCS 2215, Springer, pp. 400–419.

[15] A. W. Roscoe (2004): Seeing Beyond Divergence. In: Ali E. Abdallah, Cliff B. Jones & Jeff W. Sanders,

editors: 25 Years Communicating Sequential Processes, Lecture Notes in Computer Science 3525, Springer,

pp. 15–35. Available at http://dx.doi.org/10.1007/11423348_2.

[16] A.W. Roscoe (1997): The Theory and Practice of Concurrency. Prentice-Hall. Available at http://www.

comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf.

http://dx.doi.org/10.1007/11817949_9
http://dx.doi.org/10.1007/11817949_9
http://Boole.stanford.edu/pub/spectrum1.ps.gz
http://dx.doi.org/10.1007/BFb0084793
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-possibility
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-possibility
http://dx.doi.org/10.1016/j.apal.2007.10.007
http://dx.doi.org/10.1007/11423348_2
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf
http://www.comlab.ox.ac.uk/bill.roscoe/publications/68b.pdf

	Introduction
	Labelled Transition Systems and a Selection of Composition Operators
	Safety Properties
	Liveness Properties
	Conditional Liveness Properties
	Linear Time Properties
	Concluding remark

