
Showing invarian
e
ompositionally for a pro
essalgebra for network proto
olsTimothy Bourke1,2, Robert J. van Glabbeek3,4, and Peter Höfner3,4
1 Inria Paris-Ro
quen
ourt

2 E
ole normale supérieure, Paris, Fran
e
3 NICTA, Sydney, Australia

4 Computer S
ien
e and Engineering, UNSW, Sydney, AustraliaAbstra
t. This paper presents the me
hanization of a pro
ess algebrafor Mobile Ad ho
 Networks and Wireless Mesh Networks, and the de-velopment of a
ompositional framework for proving invariant proper-ties. Me
hanizing the
ore pro
ess algebra in Isabelle/HOL is relativelystandard, but its layered stru
ture ne
essitates spe
ial treatment. The
ontrol states of rea
tive pro
esses, su
h as nodes in a network, are mod-elled by terms of the pro
ess algebra. We propose a te
hnique based onthese terms to streamline proofs of indu
tive invarian
e. This is not suf-�
ient, however, to state and prove invariants that relate states a
rossmultiple pro
esses (entire networks). To this end, we propose a novel
ompositional te
hnique for lifting global invariants stated at the levelof individual nodes to networks of nodes.1 Introdu
tion and related workThe Algebra for Wireless Networks (AWN) is a pro
ess algebra developed formodelling and analysing proto
ols for Mobile Ad ho
 Networks (MANETs) andWireless Mesh Networks (WMNs) [6, �4℄. This paper reports on both its me
h-anization in Isabelle/HOL [15℄ and the development of a
ompositional frame-work for showing invariant properties of models.1 The te
hniques we des
ribeare a response to problems en
ountered during the me
hanization of a modeland proof�presented elsewhere [4℄�of an RFC-standard for routing proto
ols.Despite the existen
e of extensive resear
h on related problems [18℄ and severalme
hanized frameworks for rea
tive systems [5,10,14℄, we are not aware of othersolutions that allow the
ompositional statement and proof of properties relatingthe states of di�erent nodes in a message-passing model�at least not within thestri
tures imposed by an Intera
tive Theorem Prover (ITP).But is there really any need for yet another pro
ess algebra and asso
iatedframework? AWN provides a unique mix of
ommuni
ation primitives and atreatment of data stru
tures that are essential for studying MANET and WMNproto
ols with dynami
 topologies and sophisti
ated routing logi
 [6, �1℄. Itsupports
ommuni
ation primitives for one-to-one (uni
ast), one-to-many (group-
ast), and one-to-all (broad
ast) message passing. AWN
omprises distin
t layers1 The Isabelle/HOL sour
e �les
an be found in the Ar
hive of Formal Proofs [3℄.

2 Bourke, van Glabbeek, and Höfnerfor expressing the stru
ture of nodes and networks. We exploit this stru
ture, butwe also expe
t the te
hniques proposed in Se
tions 3 and 4 to apply to similarlayered modelling languages. Besides this, our work di�ers from other me
h-anizations for verifying rea
tive systems, like UNITY [10℄, TLA+ [5℄, or I/OAutomata [14℄ (from whi
h we drew the most inspiration), in its expli
it treat-ment of
ontrol states, in the form of pro
ess algebra terms, as distin
t from datastates. In this respe
t, our approa
h is
lose to that of Isabelle/Cir
us [7℄, but itdi�ers in (1) the treatment of operators for
omposing nodes, whi
h we modeldire
tly as fun
tions on automata, (2) the treatment of re
ursive invo
ations,whi
h we do not permit, and (3) our in
lusion of a framework for
ompositionalproofs. Other work in ITPs fo
uses on showing traditional properties of pro-
ess algebras, like, for instan
e, the treatment of binders [1℄, that bisimulationequivalen
e is a
ongruen
e [9,11℄, or properties of �x-point indu
tion [20℄, whilewe fo
us on what has been termed `proof methodology' [8℄, and develop a
om-positional method for showing
orre
tness properties of proto
ols spe
i�ed ina pro
ess algebra. Alternatively, Paulson's indu
tive approa
h [16℄
an be ap-plied to show properties of proto
ols spe
i�ed with less generi
 infrastru
ture.But we think it to be better suited to systems spe
i�ed in a `de
larative' styleas opposed to the strongly operational models we
onsider.Stru
ture and
ontributions. Se
tion 2 des
ribes the me
hanization of AWN.The basi
 de�nitions are routine but the layered stru
ture of the language andthe treatment of operators on networks as fun
tions on automata are relativelynovel and essential to understanding later se
tions. Se
tion 3 des
ribes our me
h-anization of the theory of indu
tive invariants,
losely following [13℄. We exploitthe stru
ture of AWN to generate veri�
ation
onditions
orresponding to thoseof pen-and-paper proofs [6, �7℄. Se
tion 4 presents a
ompositional te
hniquefor stating and proving invariants that relate states a
ross multiple nodes. Ba-si
ally, we substitute `open' Stru
tural Operational Semanti
s (SOS) rules overthe global state for the standard rules over lo
al states (Se
tion 4.1), show theproperty over a single sequential pro
ess (Se
tion 4.2), `lift' it su

essively overlayers that model message queueing and network
ommuni
ation (Se
tion 4.3),and, ultimately, `transfer' it to the original model (Se
tion 4.4).2 The pro
ess algebra AWNAWN
omprises �ve layers [6, �4℄. We treat ea
h layer as an automaton withstates of a spe
i�
 form and a given set of transition rules. We des
ribe the layersfrom the bottom up over the following se
tions.2.1 Sequential pro
essesSequential pro
esses are used to en
ode proto
ol logi
. Ea
h is modelled by a(re
ursive) spe
i�
ation Γ of type 'p ⇒ ('s, 'p, 'l) seqp, whi
h maps pro
ess namesof type 'p to terms of type ('s, 'p, 'l) seqp, also parameterized by 's, data states,and 'l, labels. States of sequential pro
esses have the form (ξ, p) where ξ is a datastate of type 's and p is a
ontrol term of type ('s, 'p, 'l) seqp.

Showing invarian
e
ompositionally for a pro
ess algebra 3{l}[[u]] p 'l ⇒ ('s ⇒ 's) ⇒ ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp{l}〈g〉 p 'l ⇒ ('s ⇒ 's set) ⇒ ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp{l}uni
ast(sip, smsg) . p ⊲ q 'l ⇒ ('s ⇒ ip) ⇒ ('s ⇒ msg) ⇒ ('s, 'p, 'l) seqp ⇒('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp{l}broad
ast(smsg) . p 'l ⇒ ('s ⇒ msg) ⇒ ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp{l}group
ast(sips, smsg) . p 'l ⇒ ('s ⇒ ip set) ⇒ ('s ⇒ msg) ⇒ ('s, 'p, 'l) seqp ⇒('s, 'p, 'l) seqp{l}send(smsg) . p 'l ⇒ ('s ⇒ msg) ⇒ ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp{l}re
eive(umsg) . p 'l ⇒ (msg ⇒ 's ⇒ 's) ⇒ ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp{l}deliver(sdata) . p 'l ⇒ ('s ⇒ data) ⇒ ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqpp1 ⊕ p2 ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp ⇒ ('s, 'p, 'l) seqp
all(pn) 'p ⇒ ('s, 'p, 'l) seqp(a) Term
onstru
tors for ('s, 'p, 'l) seqp.
ξ' = u ξ((ξ, {l}[[u]] p), τ , (ξ', p))∈ seqp-sos Γ ((ξ, p), a, (ξ', p'))∈ seqp-sos Γ((ξ, p ⊕ q), a, (ξ', p'))∈ seqp-sos Γ((ξ, Γ pn), a, (ξ', p'))∈ seqp-sos Γ((ξ,
all(pn)), a, (ξ', p'))∈ seqp-sos Γ ((ξ, q), a, (ξ', q'))∈ seqp-sos Γ((ξ, p ⊕ q), a, (ξ', q'))∈ seqp-sos Γ((ξ, {l}uni
ast(sip, smsg) . p ⊲ q), uni
ast (sip ξ) (smsg ξ), (ξ, p))∈ seqp-sos Γ((ξ, {l}uni
ast(sip, smsg) . p ⊲ q), ¬uni
ast (sip ξ), (ξ, q))∈ seqp-sos Γ(b) SOS rules for sequential pro
esses: examples from seqp-sos.Fig. 1: Sequential pro
esses: terms and semanti
sPro
ess terms are built from the
onstru
tors that are shown with their types2in Figure 1a. The indu
tive set seqp-sos, shown partially in Figure 1b,
ontainsone or two SOS rules for ea
h
onstru
tor. It is parameterized by a spe
i�
ation

Γ and relates triples of sour
e states, a
tions, and destination states.The `pre�x'
onstru
tors are ea
h labelled with an {l}. Labels are used tostrengthen invariants when a property is only true in or between
ertain states;they have no in�uen
e on
ontrol �ow (unlike in [13℄). The pre�x
onstru
tors areassignment, {l}[[u]] p, whi
h transforms the data state deterministi
ally a

ordingto the fun
tion u and performs a τ a
tion, as shown in Figure 1b; guard/bind,{l}〈g〉 p, with whi
h we en
ode both guards, 〈λξ. if g ξ then {ξ} else ∅〉 p, andvariable bindings, as in 〈λξ. {ξ(|no := n|) | n < 5}〉 p;3 network syn
hronizations,re
eive/uni
ast/broad
ast/group
ast, of whi
h the rules for uni
ast are
hara
teristi
and shown in Figure 1b�the environment de
ides between a su

essful uni
ast i mand an unsu

essful ¬uni
ast i; and, internal
ommuni
ations, send/re
eive/deliver.The other
onstru
tors are unlabelled and serve to `glue' pro
esses together:
hoi
e, p1 ⊕ p2, takes the union of two transition sets; and,
all,
all(pn), a�xesa term from the spe
i�
ation (Γ pn). The rules for both are shown in Figure 1b.2 Leading abstra
tions are omitted, for example, λl fa p. {l}[[u]] p is written {l}[[u]] p.3 Although it stri
tly subsumes assignment we prefer to keep both.

4 Bourke, van Glabbeek, and HöfnerWe introdu
e the spe
i�
ation of a simple `toy' proto
ol as a running example:
ΓToy PToy = labelled PToy (re
eive(λmsg' ξ. ξ (| msg := msg' |)). {PToy-:0}

[[λξ. ξ (|nhip := ip ξ|)]] {PToy-:1}(〈is-newpkt〉 {PToy-:2}
[[λξ. ξ (|no := max (no ξ) (num ξ)|)]] {PToy-:3}broad
ast(λξ. pkt(no ξ, ip ξ)). Toy() {PToy-:4,5}

⊕ 〈is-pkt〉 {PToy-:2}(〈λξ. if num ξ ≥ no ξ then {ξ} else {}〉 {PToy-:6}
[[λξ. ξ (|no := num ξ|)]] {PToy-:7}
[[λξ. ξ (|nhip := sip ξ|)]] {PToy-:8}broad
ast(λξ. pkt(no ξ, ip ξ)). Toy() {PToy-:9,10}

⊕ 〈λξ. if num ξ < no ξ then {ξ} else {}〉 {PToy-:6}Toy()))) , {PToy-:11}where PToy is the pro
ess name, is-newpkt and is-pkt are guards that unpa
k the
ontents of msg, and Toy() is an abbreviation that
lears some variables beforea
all(PToy). The fun
tion labelled asso
iates its argument PToy paired with anumber to every pre�x
onstru
tor. There are two types of messages: newpkt(data, dst), from whi
h is-newpkt
opies data to the variable num, and pkt (data,sr
), from whi
h is-pkt
opies data into num and sr
 into sip.The
orresponding sequential model is an automaton�a re
ord4 of two �elds:a set of initial states and a set of transitions�parameterized by an address i:ptoy i = (|init = {(toy-init i, ΓToy PToy)}, trans = seqp-sos ΓToy|) ,where toy-init i yields the initial data state (|ip = i, no = 0, nhip = i, msg = SOMEx. True, num = SOME x. True, sip = SOME x. True|). The last three variables areinitialized to arbitrary values, as they are
onsidered lo
al�they are expli
itlyreinitialized before ea
h
all(PToy). This is the biggest departure from the originalde�nition of AWN; it simpli�es the treatment of
all, as we show in Se
tion 3.1,and fa
ilitates working with automata where variable lo
ality makes little sense.2.2 Lo
al parallel
ompositionMessage sending proto
ols must nearly always be input-enabled, that is, nodesshould always be in a state where they
an re
eive messages. To a
hieve this, andto model asyn
hronous message transmission, the proto
ol pro
ess is
ombinedwith a queue model, qmsg, that
ontinually appends re
eived messages onto an(s, a, s')∈S ∧m. a 6= re
eive m((s, t), a, (s', t))∈ parp-sos S T (t, a, t')∈T ∧m. a 6= send m((s, t), a, (s, t'))∈ parp-sos S T(s, re
eive m, s')∈S (t, send m, t')∈T((s, t), τ , (s', t'))∈ parp-sos S TFig. 2: SOS rules for parallel pro
esses: parp-sos.4 The generi
 re
ord has type ('s, 'a) automaton, where the type 's is the domain ofstates, here pairs of data re
ords and
ontrol terms, and 'a is the domain of a
tions.

Showing invarian
e
ompositionally for a pro
ess algebra 5(s, group
ast D m, s')∈S(s iR, (R ∩ D):*
ast(m), s' iR)∈ node-sos S (s, re
eive m, s')∈S(s iR, {i}¬∅:arrive(m), s' iR)∈ node-sos S(s iR, ∅¬{i}:arrive(m), s iR)∈ node-sos S (s iR,
onne
t(i, i'), s iR ∪ {i'})∈ node-sos SFig. 3: SOS rules for nodes: examples from node-sos.internal list and o�ers to send the head message to the proto
ol pro
ess:ptoy i 〈〈 qmsg. The lo
al parallel operator is a fun
tion over automata:s 〈〈 t = (|init = init s × init t, trans = parp-sos (trans s) (trans t)|) .The rules for parp-sos are shown in Figure 2.2.3 NodesAt the node level, a lo
al pro
ess np is wrapped in a layer that re
ords its address iand tra
ks the set of neighbouring node addresses, initially Ri:
〈i : np : Ri〉 = (|init = {s iRi

| s∈ init np}, trans = node-sos (trans np)|) .Node states are denoted s iR. Figure 3 presents rules typi
al of node-sos. Outputnetwork syn
hronizations, like group
ast, are �ltered by the list of neighboursto be
ome *
ast a
tions. The H¬K:arrive(m) a
tion�in Figure 3 instantiated as
∅¬{i}:arrive(m), and {i}¬∅:arrive(m)�is used to model a message m re
eived bynodes in H and not by those in K. The
onne
t(i, i') adds node i' to the set ofneighbours of node i; dis
onne
t(i, i') works similarly.2.4 Partial networksPartial networks are spe
i�ed as values of type net-tree, that is, as a node 〈i; Ri〉with address i and a set of initial neighbours Ri, or a
omposition of two net-treesp1 ‖p2. The fun
tion pnet maps su
h a value, together with the pro
ess np i toexe
ute at ea
h node i, here parameterized by an address, to an automaton:pnet np 〈i; Ri〉 = 〈i : np i : Ri〉pnet np (p1 ‖p2) = (|init = {s1q s2 | s1 ∈ init (pnet np p1) ∧ s2 ∈ init (pnet np p2)},trans = pnet-sos (trans (pnet np p1)) (trans (pnet np p2))|) ,The states of su
h automata mirror the tree stru
ture of the network term; wedenote
omposed states s1q s2. This stru
ture, and the node addresses, remain
onstant during an exe
ution. These de�nitions su�
e to model an example threenode network of toy pro
esses:pnet (λi. ptoy i 〈〈 qmsg) (〈A; {B}〉 ‖ 〈B; {A, C}〉 ‖ 〈C; {B}〉) .Figure 4 presents rules typi
al of pnet-sos. There are rules where only onenode a
ts, like the one shown for τ , and rules where all nodes a
t, like those for*
ast and arrive. The latter ensure�sin
e qmsg is always ready to re
eive m�thata partial network
an always perform an H¬K:arrive(m) for any
ombination ofH and K
onsistent with its node addresses, but that pairing with an R:*
ast(m)restri
ts the possibilities to the one
onsistent with the destinations in R.

6 Bourke, van Glabbeek, and Höfner(s, R:*
ast(m), s')∈S (t, H¬K:arrive(m), t')∈T H ⊆ R K ∩ R = ∅(s q t, R:*
ast(m), s'q t')∈ pnet-sos S T(s, H¬K:arrive(m), s')∈S (t, H'¬K':arrive(m), t')∈T(s q t, (H ∪ H')¬(K ∪ K'):arrive(m), s'q t')∈ pnet-sos S T (s, τ , s')∈S(s q t, τ , s'q t)∈ pnet-sos S TFig. 4: SOS rules for partial networks: examples from pnet-sos.2.5 Complete networksThe last layer
loses a network to further intera
tions with an environment; the*
ast a
tion be
omes a τ and H¬K:arrive(m) is forbidden:
losed A = A(|trans :=
net-sos (trans A)|) .The rules for
net-sos are straight-forward and not presented here.3 Basi
 invarian
eThis paper only
onsiders proofs of invarian
e, that is, properties of rea
hablestates. The basi
 de�nitions are
lassi
 [14, Part III℄.De�nition 1 (rea
hability). Given an automaton A and an assumption I overa
tions, rea
hable A I is the smallest set de�ned by the rules:s∈ init As∈ rea
hable A I s∈ rea
hable A I (s, a, s')∈ trans A I as'∈ rea
hable A IDe�nition 2 (invarian
e). Given an automaton A and an assumption I, apredi
ate P is invariant, denoted A ||= (I →) P, i� ∀ s∈ rea
hable A I. P s.We state rea
hability relative to an assumption on (input) a
tions I. When I is
λ-. True, we write simply A ||= P.De�nition 3 (step invarian
e). Given an automaton A and an assumption I,a predi
ate P is step invariant, denoted A ||≡ (I →) P, i�

∀ a. I a −→ (∀ s∈ rea
hable A I. ∀ s'. (s, a, s')∈ trans A −→ P (s, a, s')) .Our invarian
e proofs follow the
ompositional strategy re
ommended in [18,�1.6.2℄. That is, we show properties of sequential pro
ess automata using theindu
tion prin
iple of De�nition 1, and then apply generi
 proof rules to su

es-sively lift su
h properties over ea
h of the other layers. The indu
tive assertionmethod, as stated in rule inv-b of [13℄, requires a �nite set of transition s
hemas,whi
h, together with the obligation on initial states yields a set of su�
ient ver-i�
ation
onditions. We develop this set in Se
tion 3.1 and use it to derive themain proof rule presented in Se
tion 3.2 together with some examples.

Showing invarian
e
ompositionally for a pro
ess algebra 73.1 Control termsGiven a spe
i�
ation Γ over �nitely many pro
ess names, we
an generate a�nite set of veri�
ation
onditions be
ause transitions from ('s, 'p, 'l) seqp termsalways yield subterms of terms in Γ . But, rather than simply
onsider the setof all subterms, we prefer to de�ne a subset of `
ontrol terms' that redu
esthe number of veri�
ation
onditions, avoids tedious dupli
ation in proofs, and
orresponds with the obligations
onsidered in pen-and-paper proofs. The mainidea is that the ⊕ and
all operators serve only to
ombine pro
ess terms: theyare, in a sense, exe
uted re
ursively by seqp-sos to determine the a
tions thata term o�ers to its environment. This is made pre
ise by de�ning a relationbetween sequential pro
ess terms.De�nition 4 (;Γ). For a (re
ursive) spe
i�
ation Γ , let ;Γ be the smallestrelation su
h that (p1 ⊕ p2) ;Γ p1, (p1 ⊕ p2) ;Γ p2, and (
all(pn)) ;Γ Γ pn.We write ;Γ

∗ for its re�exive transitive
losure. We
onsider a spe
i�
ation tobe well formed, when the inverse of this relation is well founded:wellformed Γ = wf {(q, p) | p ;Γ q} .Most of our lemmas only apply to well formed spe
i�
ations, sin
e otherwisefun
tions over the terms they
ontain
annot be guaranteed to terminate. Neitherof these two spe
i�
ations is well formed: Γ a(1) = p ⊕
all(1); Γ b(n) =
all(n + 1).We will also need a set of `start terms'�the subterms that
an a
t dire
tly.De�nition 5 (sterms). Given a wellformed Γ and a sequential pro
ess term p,sterms Γ p is the set of maximal elements related to p by the re�exive transitive
losure of the ;Γ relation5:sterms Γ (p1 ⊕ p2) = sterms Γ p1 ∪ sterms Γ p2,sterms Γ (
all(pn)) = sterms Γ (Γ pn), and,sterms Γ p = {p} otherwise.We also de�ne `lo
al start terms' by stermsl (p1 ⊕ p2) = stermsl p1 ∪ stermsl p2and otherwise stermsl p = {p} to permit the su�
ient synta
ti

ondition that aspe
i�
ation Γ is well formed if
all(pn') /∈ stermsl (Γ pn).Similarly to the way that start terms a
t as dire
t sour
es of transitions, wede�ne `derivative terms' giving possible a
tive destinations of transitions.De�nition 6 (dterms). Given a wellformed Γ and a sequential pro
ess term p,dterms p is de�ned by:dterms Γ (p1 ⊕ p2) = dterms Γ p1 ∪ dterms Γ p2,dterms Γ (
all(pn)) = dterms Γ (Γ pn),dterms Γ ({l}[[u]] p) = sterms Γ p,dterms Γ ({l}uni
ast(sip, smsg) . p ⊲ q) = sterms Γ p ∪ sterms Γ q, and so on.5 This
hara
terization is equivalent to {q | p ;Γ

∗ q ∧ (∄ q'. q ;Γ q')}. Terminationfollows from wellformed Γ , that is, wellformed Γ =⇒ sterms-dom (Γ , p) for all p.

8 Bourke, van Glabbeek, and HöfnerThese derivative terms overapproximate the set of rea
hable sterms, sin
e they donot
onsider the truth of guards nor the willingness of
ommuni
ation partners.These auxiliary de�nitions lead to a su

in
t de�nition of the set of
ontrolterms of a spe
i�
ation.De�nition 7 (
terms). For a spe
i�
ation Γ ,
terms is the smallest set where:p∈ sterms Γ (Γ pn)p∈
terms Γ

pp∈
terms Γ p∈ dterms Γ ppp∈
terms ΓIt is also useful to de�ne a lo
al version independent of any spe
i�
ation.De�nition 8 (
termsl). Let
termsl be the smallest set de�ned by:
termsl (p1 ⊕ p2) =
termsl p1 ∪
termsl p2,
termsl (
all(pn)) = {
all(pn)},
termsl ({l}[[u]] p) = {{l}[[u]] p} ∪
termsl p, and so on.In
luding
all terms ensures that q∈ stermsl p implies q∈
termsl p, whi
h fa
ilitatesproofs. For wellformed Γ ,
termsl allows an alternative de�nition of
terms,
terms Γ = {p | ∃ pn. p∈
termsl (Γ pn) ∧ not-
all p} . (1)While the original de�nition is
onvenient for developing the meta-theory, due tothe a

ompanying indu
tion prin
iple, this one is more useful for systemati
allygenerating the set of
ontrol terms of a spe
i�
ation, and thus, we will see, setsof veri�
ation
onditions. And, for wellformed Γ , we have as a
orollary
terms Γ = {p | ∃ pn. p∈ subterms (Γ pn) ∧ not-
all p ∧ not-
hoi
e p} , (2)where subterms, not-
all, and not-
hoi
e are de�ned in the obvious way.We show that
terms over-approximates the set of rea
hable
ontrol states.Lemma 1. For wellformed Γ and automaton A where
ontrol-within Γ (init A) andtrans A = seqp-sos Γ , if (ξ, p)∈ rea
hable A I and q∈ sterms Γ p then q∈
terms Γ .The predi
ate
ontrol-within Γ σ = ∀ (ξ, p)∈σ. ∃ pn. p∈ subterms (Γ pn) serves tostate that the initial
ontrol state is within the spe
i�
ation.3.2 Basi
 proof rule and invariantsUsing the de�nition of invarian
e (De�nition 2), we
an state a basi
 propertyof an instan
e of the toy pro
ess:ptoy i ||= onl ΓToy (λ(ξ, l). l∈ {PToy-:2..PToy-:8} −→ nhip ξ = ip ξ) , (3)This invariant states that between the lines labelled PToy-:2 and PToy-:8, that is,after the assignment of PToy-:1 until before the assignment of PToy-:8, the valuesof nhip and ip are equal; onl Γ P, de�ned as λ(ξ, p). ∀ l∈ labels Γ p. P (ξ, l), extra
tslabels from
ontrol states.6 Invariants like these are solved using a pro
edurewhose soundness is justi�ed as a theorem. The proof exploits (1) and Lemma 1.6 Using labels in this way is standard, see, for instan
e, [13, Chap. 1℄, or the `assertionnetworks' of [18, �2.5.1℄. Isabelle rapidly dispat
hes all the uninteresting
ases.

Showing invarian
e
ompositionally for a pro
ess algebra 9Theorem 1. To prove A ||= (I →) onl Γ P, where wellformed Γ , simple-labels Γ ,
ontrol-within Γ (init A), and trans A = seqp-sos Γ , it su�
es(init) for arbitrary (ξ, p)∈ init A and l∈ labels Γ p, to show P (ξ, l), and,(step) for arbitrary p∈
termsl (Γ pn), but not-
all p, and l∈ labels Γ p, giventhat p∈ sterms Γ pp for some (ξ, pp)∈ rea
hable A I, to assume P (ξ, l)and I a, and then for any (ξ', q) su
h that ((ξ, p), a, (ξ', q))∈ seqp-sos Γand l'∈ labels Γ q, to show P (ξ', l').Here, simple-labels Γ = ∀ pn. ∀ p∈ subterms (Γ pn). ∃! l. labels Γ p = {l}: ea
h
ontrolterm must have exa
tly one label, that is, ⊕ terms must be labelled
onsistently.We in
orporate this theorem into a ta
ti
 that (1) applies the introdu
-tion rule, (2) repla
es p∈
termsl (Γ pn) by a disjun
tion over the values ofpn, (3) applies De�nition 8 and repeated simpli�
ations of Γ s and eliminationson disjun
tions to generate one subgoal (veri�
ation
ondition) for ea
h
ontrolterm, (4) repla
es
ontrol term derivatives, the subterms in De�nition 6, by freshvariables, and, �nally, (5) tries to solve ea
h subgoal by simpli�
ation. Step 4repla
es potentially large
ontrol terms by their (labelled) heads, whi
h is im-portant for readability and prover performan
e. The ta
ti
 takes as argumentsa list of existing invariants to in
lude after having applied the introdu
tion ruleand a list of lemmas for trying to solve any subgoals that survive the �nal simpli-�
ation. There are no s
hemati
 variables in the subgoals and we bene�t greatlyfrom Isabelle's parallel_goals ta
ti
al [22℄.In pra
ti
e, one states an invariant, applies the ta
ti
, and examines theresulting goals. One may need new lemmas for fun
tions over the data state orexpli
it proofs for di�
ult goals. That said, the ta
ti
 generally dispat
hes theuninteresting goals, and the remaining ones typi
ally
orrespond with the
asestreated expli
itly in manual proofs [4℄.For step invariants, we show a
ounterpart to Theorem 1, and de
lare it to theta
ti
. Then we
an show, for our example, that the value of no never de
reases:ptoy i ||≡ (λ((ξ, -), -, (ξ', -)). no ξ ≤ no ξ') .4 Open invarian
eThe analysis of network proto
ols often requires `inter-node' invariants, likewf-net-tree n =⇒
losed (pnet (λi. ptoy i 〈〈 qmsg) n) ||=netglobal (λσ. ∀ i. no (σ i) ≤ no (σ (nhip (σ i)))) , (4)whi
h states that, for any net-tree with disjoint node addresses (wf-net-tree n),the value of no at a node is never greater than its value at the `next hop'�theaddress in nhip. This is a property of a global state σ mapping addresses to
orresponding data states. Su
h a global state is readily
onstru
ted with:netglobal P = λs. P (default toy-init (netlift fst s)),default df f = (λi.
ase f i of None ⇒ df i | Some s ⇒ s), andnetlift sr (s iR) = [i 7→ fst (sr s)℄netlift sr (s q t) = netlift sr s ++ netlift sr t .

10 Bourke, van Glabbeek, and HöfnerThe appli
ations of fst elide the state of qmsg and the proto
ol's
ontrol state.7While we
an readily state inter-node invariants of a
omplete model, showingthem
ompositionally is another issue. Se
tions 4.1 and 4.2 present a way tostate and prove su
h invariants at the level of sequential pro
esses�that is, withonly ptoy i left of the turnstile. Se
tions 4.3 and 4.4 present, respe
tively, rulesfor lifting su
h results to network models and for re
overing invariants like (4).4.1 The open modelRather than instantiate the 's of ('s, 'p, 'l) seqp with elements ξ of type state, oursolution introdu
es a global state σ of type ip ⇒ state. This ne
essitates a sta
k ofnew SOS rules that we
all the open model ; Figure 5 shows some representatives.The rules of oseqp-sos are parameterized by an address i and
onstrain onlythat entry of the global state, either to say how it
hanges (σ' i = u (σ i)) or thatit does not (σ' i = σ i). The rules for oparp-sos only allow the �rst sub-pro
ess to
onstrain σ. This
hoi
e is disputable: it pre
ludes
omparing the states of qmsgs(and any other lo
al �lters) a
ross a network, but is also simpli�es the me
hani
sand use of this layer of the framework.8 The sets onode-sos and opnet-sos neednot be parameterized sin
e they are generated indu
tively from lower layers.Together they
onstrain subsets of elements of σ. This o

urs naturally for ruleslike those for arrive and *
ast, where the syn
hronous
ommuni
ation serves as a
onjun
tion of
onstraints on sub-ranges of σ. But for others that normally only
onstrain a single element, like those for τ , assumptions (∀ j 6= i. σ' j = σ j) areintrodu
ed here and later dispat
hed (Se
tion 4.4). The rules for o
net-sos, notshown, are similar�elements not addressed within a model may not
hange.The sta
k of operators and model layers des
ribed in Se
tion 2 is refashionedto use the new transition rules and to distinguish the global state, whi
h ispreserved as the fst element a
ross layers, from the lo
al state elements whi
hare
ombined in the snd element as before.For instan
e, a sequential instan
e of the toy proto
ol is de�ned asoptoy i = (|init = {(toy-init, ΓToy PToy)}, trans = oseqp-sos ΓToy i|) ,
ombined with the standard qmsg pro
ess using the operators 〈〈i t = (|init = {(σ, (sl, tl)) | (σ, sl)∈ init s ∧ tl ∈ init t},trans = oparp-sos i (trans s) (trans t)|) ,and lifted to the node level via the open node
onstru
tor
〈i : onp : Ri〉o = (|init = {(σ, s iRi

) | (σ, s)∈ init onp}, trans = onode-sos (trans onp)|) .Similarly, to map a net-tree term to an open model we de�ne:opnet onp 〈i; Ri〉 = 〈i : onp i : Ri〉oopnet onp (p1 ‖p2) = (|init = {(σ, s1q s2) | (σ, s1)∈ init (opnet onp p1)
∧ (σ, s2)∈ init (opnet onp p2)
∧ net-ips s1 ∩ net-ips s2 = ∅},trans = opnet-sos (trans(opnet onp p1)) (trans(opnet onp p2))|) .7 The formulation here is a te
hni
al detail: sr
orresponds to netlift as np does to pnet.8 The treatment of the other layers is
ompletely independent of this
hoi
e.

Showing invarian
e
ompositionally for a pro
ess algebra 11
σ' i = u (σ i)((σ, {l}[[u]] p), τ , (σ', p))∈ oseqp-sos Γ i ((σ, p), a, (σ', p'))∈ oseqp-sos Γ i((σ, p ⊕ q), a, (σ', p'))∈ oseqp-sos Γ i

σ' i = σ i((σ, {l}uni
ast(sip, smsg) . p ⊲ q), uni
ast (sip (σ i)) (smsg (σ i)), (σ', p))∈ oseqp-sos Γ i(a) Sequential pro
esses: examples from oseqp-sos.((σ, s), re
eive m, (σ', s'))∈S (t, send m, t')∈T((σ, (s, t)), τ , (σ', (s', t')))∈ oparp-sos i S T(b) Parallel pro
esses: example from oparp-sos.((σ, s), re
eive m, (σ', s'))∈ S((σ, s iR), {i}¬∅:arrive(m), (σ', s' iR))∈ onode-sos S ((σ, s),τ, (σ', s'))∈S ∀ j 6= i. σ' j = σ j((σ, s iR),τ, (σ', s' iR))∈ onode-sos S(
) Nodes: examples from onode-sos.((σ, s), H¬K:arrive(m), (σ', s'))∈ S ((σ, t), H'¬K':arrive(m), (σ', t'))∈T((σ, s q t), (H ∪ H')¬(K ∪ K'):arrive(m), (σ', s'q t'))∈ opnet-sos S T(d) Partial networks: example from opnet-sos.Fig. 5: SOS rules for the open model (
f. Figures 1, 2, 3, and 4)This de�nition is non-empty only for well-formed net-trees (net-ips gives theset of node addresses in the state of a partial network). In
luding su
h a
on-straint within the open model, rather than as a separate assumption like thewf-net-tree n in (4), eliminates an annoying te
hni
ality from the indu
tions de-s
ribed in Se
tion 4.3. As with the extra premises in the open SOS rules, we
anfreely adjust the open model to fa
ilitate proofs but ea
h `en
oded assumption'be
omes an obligation to be dis
harged in the transfer lemma of Se
tion 4.4.An operator for adding the last layer is also readily de�ned byo
losed A = A(|trans := o
net-sos (trans A)|) ,giving all the de�nitions ne
essary to turn a standard model into an open one.4.2 Open invariantsThe basi
 de�nitions of rea
hability and invarian
e, De�nitions 1�3, apply toopen models, but
onstru
ting a
ompositional proof requires
onsidering thee�e
ts of both syn
hronized and interleaved a
tions of possible environments.De�nition 9 (open rea
hability). Given an automaton A and assumptions Sand U over, respe
tively, syn
hronized and interleaved a
tions, orea
hable A S Uis the smallest set de�ned by the rules:(σ, p)∈ init A(σ, p)∈ orea
hable A S U (σ, p)∈ orea
hable A S U U σ σ'(σ', p)∈ orea
hable A S U(σ, p)∈ orea
hable A S U ((σ, p), a, (σ', p'))∈ trans A S σ σ' a(σ', p')∈ orea
hable A S U

12 Bourke, van Glabbeek, and HöfnerIn pra
ti
e, we use restri
ted forms of the assumptions S and U, respe
tively,otherwith E N I σ σ' a = (∀ i. i /∈ N −→ E (σ i) (σ' i)) ∧ I σ a , (5)other F N σ σ' = ∀ i. if i∈N then σ' i = σ i else F (σ i) (σ' i) . (6)The former permits the restri
tion of possible environments (E) and also theextra
tion of information from shared a
tions (I). The latter restri
ts (F) thee�e
ts of interleaved a
tions, whi
h may only
hange non-lo
al state elements.De�nition 10 (open invarian
e). Given an automaton A and assumptions Sand U over, respe
tively, syn
hronized and interleaved a
tions, a predi
ate P isan open invariant, denoted A |= (S, U →) P, i� ∀ s∈ orea
hable A S U. P s.It follows easily that existing invariants
an be made open: most invariants
anbe shown in the basi

ontext but still exploited in the more
ompli
ated one.Lemma 2. Given an invariant A ||= (I →) P where trans A = seqp-sos Γ , and anyF, there is an open invariant A' |= (λ- -. I, other F {i} →) (λ(σ, p). P (σ i, p)) wheretrans A' = oseqp-sos Γ i, provided that init A = {(σ i, p) | (σ, p)∈ init A'}.Open step invarian
e and a similar transfer lemma are de�ned similarly. Themeta theory for basi
 invariants is also readily adapted, in parti
ular,Theorem 2. To show A |= (S, U →) onl Γ P, in addition to the
onditions andthe obligations (init) and (step) of Theorem 1, suitably adjusted, it su�
es,(env) for arbitrary (σ, p)∈ orea
hable A S U and l∈ labels Γ p, to assume bothP (σ, l) and U σ σ', and then to show P (σ', l).This theorem is de
lared to the ta
ti
 des
ribed in Se
tion 3.2 and proofs pro
eedas before, but with the new obligation to show invarian
e over interleaved steps.We �nally have su�
ient ma
hinery to state (and prove) Invariant (4) at thelevel of a sequential pro
ess:optoy i |= (otherwith nos-in
 {i} (ore
vmsg msg-ok), other nos-in
 {i} →)(λ(σ, -). no (σ i) ≤ no (σ (nhip (σ i)))) , (7)where nos-in
 ξ ξ' = no ξ ≤ no ξ', ore
vmsg applies its given predi
ate to re
eivea
tions and is otherwise true, msg-ok σ (pkt (data, sr
)) = (data ≤ no (σ sr
)),and msg-ok σ (newpkt (data, dst)) = True. So, given that the variables no in theenvironment never de
rease and that in
oming pkts re�e
t the state of the sender,there is a relation between the lo
al node and the next hop. Similar invariantso

ur in proofs of realisti
 proto
ols [4℄.4.3 Lifting open invariantsThe next step is to lift Invariant (7) over ea
h
omposition operator of the openmodel. We mostly present the lemmas over orea
hable, rather than those for openinvariants and step invariants, whi
h follow more or less dire
tly.

Showing invarian
e
ompositionally for a pro
ess algebra 13The �rst lifting rule treats
omposition with the qmsg pro
ess. It mixes ore-a
hable and rea
hable predi
ates: the former for the automaton being lifted, thelatter for properties of qmsg. The properties of qmsg�only re
eived messages areadded to the queue and sent messages
ome from the queue�are shown usingthe te
hniques of Se
tion 3.Lemma 3 (qmsg lifting). Given (σ, (s, (q, t)))∈ orea
hable (A 〈〈i qmsg) S U,where predi
ates S = otherwith E {i} (ore
vmsg R) and U = other F {i}, and provided(1) A |≡ (S, U →) (λ((σ, -), -, (σ', -)). F (σ i) (σ' i)), (2) for all ξ, ξ', E ξ ξ' impliesF ξ ξ', (3) for all σ, σ', m, ∀ j. F (σ j) (σ' j) and R σ m imply R σ' m, and, (4) F isre�exive, then (σ, s)∈ orea
hable A S U and (q, t)∈ rea
hable qmsg (re
vmsg (R σ)),and furthermore ∀m∈ set q. R σ m.The key intuition is that every message m re
eived, queued, and sent by qmsg sat-is�es R σ m. The proof is by indu
tion over orea
hable. The R's are preserved whenthe external environment a
ts independently (3, 4), when it a
ts syn
hronously(2), and when the lo
al pro
ess a
ts (1, 3).The rule for lifting to the node level adapts assumptions on re
eive a
tions(ore
vmsg) to arrive a
tions (oarrivemsg).Lemma 4 (onode lifting). If, for all ξ and ξ', E ξ ξ' implies F ξ ξ', then given(σ, s iR)∈ orea
hable (〈i : A : Ri〉o) (otherwith E {i} (oarrivemsg I)) (other F {i}) it followsthat (σ, s)∈ orea
hable A (otherwith E {i} (ore
vmsg I)) (other F {i}).The sole
ondition is needed be
ause
ertain node-level a
tions�namely
onne
t,dis
onne
t, and ∅¬{i}:arrive(m)�syn
hronize with the environment (giving E ξ ξ')but appear to `stutter' (requiring F ξ ξ') relative to the underlying pro
ess.The lifting rule for partial networks is the most demanding. The fun
tionnet-tree-ips, giving the set of addresses in a net-tree, plays a key role.Lemma 5 (opnet lifting). Given (σ, s q t)∈ orea
hable (opnet onp (p1 ‖p2)) S U,where S = otherwith E (net-tree-ips (p1 ‖p2)) (oarrivemsg I), U = other F (net-tree-ips(p1 ‖p2)), and E and F are re�exive, for arbitrary p i of the form 〈i : onp i : R〉o,p i |≡ (λσ -. oarrivemsg I σ, other F {i} →) (λ((σ, -), a, (σ', -)).
astmsg (I σ) a), andsimilar step invariants for E (σ i) (σ' i) and F (σ i) (σ' i), then it follows that both(σ, s)∈ orea
hable (opnet onp p1) S1 U1 and (σ, t)∈ orea
hable (opnet onp p2) S2 U2,where S1 and U1 are over p1, and S2 and U2 are over p2.The proof is by indu
tion over orea
hable. The initial and interleaved
ases aretrivial. For the lo
al
ase, given open rea
hability of (σ, s) and (σ, t) for p1 andp2, respe
tively, and ((σ, s q t), a, (σ', s'q t'))∈ trans (opnet onp (p1 ‖p2)), we mustshow open rea
hability of (σ', s') and (σ', t'). The proof pro
eeds by
ases of a.The key step is to have stated the lemma without introdu
ing
y
li
 dependen-
ies between (syn
hronizing) assumptions and (step invariant) guarantees. For asyn
hronizing a
tion like arrive, De�nition 9 requires satisfa
tion of S1 to advan
ein p1 and of S2 to advan
e in p2, but the assumption S only holds for addressesj /∈ net-tree-ips (p1 ‖p2). This is why the step invariants required of nodes onlyassume oarrivemsg I σ of the environment, rather than an S over node address {i}.

14 Bourke, van Glabbeek, and HöfnerThis is not unduly restri
tive sin
e the step invariants provide guarantees forindividual lo
al state elements and not between network nodes. The assumptionoarrivemsg I σ is never
y
li
: it is either assumed of the environment for pairedarrives, or trivially satis�ed for the side that *
asts. The step invariants are liftedfrom nodes to partial networks by indu
tion over net-trees. For non-syn
hronizinga
tions, we exploit the extra guarantees built into the open SOS rules.The rule for
losed networks is similar to the others. Its important fun
tionis to eliminate the syn
hronizing assumption (S in the lemmas above), sin
emessages no longer arrive from the environment. The
on
lusion of this rule hasthe form required by the transfer lemma of the next se
tion.4.4 Transferring open invariantsThe rules in the last se
tion extend invariants over sequential pro
esses, likethat of (7), to arbitrary, open network models. All that remains is to transferthe extended invariants to the standard model. We do so using a lo
ale [12℄openpro
 np onp sr where np has type ip ⇒ ('s, 'm seq-a
tion) automaton, onp hastype ip ⇒ ((ip ⇒ 'g) × 'l, 'm seq-a
tion) automaton, and sr has type 's ⇒ 'g × 'l. Theautomata use the a
tions of Se
tion 2.1 with arbitrary messages ('m seq-a
tion).The openpro
 lo
ale relates an automaton np to a
orresponding `open' au-tomaton onp, where sr splits the states of the former into global and lo
al
om-ponents. Besides two te
hni
al
onditions on initial states, this relation requiresassuming σ i = fst (sr s), σ' i = fst (sr s') and (s, a, s')∈ trans (np i), and then showing((σ, snd (sr s)), a, (σ', snd (sr s')))∈ trans (onp i)�that is, that onp simulates np.For our running example, we show openpro
 ptoy optoy id, and then lift it to the
omposition with qmsg, using a generi
 relation on openpro
 lo
ales.Lemma 6 (transfer). Given np, onp, and sr su
h that openpro
 np onp sr, thenfor any wf-net-tree n and s∈ rea
hable (
losed (pnet np n)) (λ-. True), it follows that(default (someinit np sr) (netlift sr s), netliftl sr s)
∈ orea
hable (o
losed (opnet onp n)) (λ- - -. True) U.This lemma uses two openpro

onstants: someinit np sr i
hooses an arbitraryinitial state from np (SOME x. x∈ (fst ◦ sr) ` init (np i)), andnetliftl sr (s iR) = (snd (sr s)) iRnetliftl sr (s q t) = (netliftl sr s) q (netliftl sr t) .The proof of the lemma `dis
harges' the assumptions in
orporated into theopen SOS rules. An impli
ation from an open invariant on an open model to aninvariant on the
orresponding standard model follows as a
orollary.Summary. The te
hni
alities of the lemmas in this and the pre
eding se
tionare essential for the underlying proofs to su

eed. The key idea is that throughan open version of AWN where automaton states are segregated into global andlo
al
omponents, one
an reason lo
ally about global properties, but still, usingthe so
alled transfer and lifting results, obtain a result over the original model.

Showing invarian
e
ompositionally for a pro
ess algebra 155 Con
luding remarksWe present a me
hanization of a modelling language for MANET and WMNproto
ols, in
luding a streamlined adaptation of standard theory for showinginvariants of individual rea
tive pro
esses, and a novel and
ompositional frame-work for lifting su
h results to network models. The framework allows the state-ment and proof of inter-node properties. We think that many elements of ourapproa
h would apply to similarly stru
tured models in other formalisms.It is reasonable to ask whether the basi
 model presented in Se
tion 2
ouldnot simply be abandoned in favour of the open model of Se
tion 4.1. But webelieve that the basi
 model is the most natural way of des
ribing what AWNmeans, proving semanti
 properties of the language, showing `node-only' invari-ants, and, potentially, for showing re�nement relations. Having su
h a referen
emodel allows us to freely in
orporate assumptions into the open SOS rules,knowing that their soundness must later be justi�ed.The Ad ho
 On-demand Distan
e Ve
tor (AODV)
ase study. Theframework we present in this paper was su

essfully applied in the me
hanizationof a proof of loop freedom [6, �7℄ of the AODV proto
ol [17℄, a widely-usedrouting proto
ol designed for MANETs, and one of the four proto
ols
urrentlystandardized by the IETF MANET working group. The model has about 100
ontrol lo
ations a
ross 6 di�erent pro
esses, and uses about 40 fun
tions tomanipulate the data state. The main property (loop freedom) roughly statesthat `a data pa
ket is never sent round in
ir
les without being delivered'. Toestablish this property, we proved around 400 lemmas. Due to the
omplexity ofthe proto
ol logi
 and the length of the proof, we present the details elsewhere [4℄.The
ase study shows that the presented framework
an be applied to veri�
ationtasks of industrial relevan
e.A
knowledgments. We thank G. Klein and M. Pouzet for support and
omplai-san
e, and M. Daum for parti
ipation in dis
ussions. Isabelle/jEdit [21℄, Sledge-hammer [2℄, parallel pro
essing [22℄, and the TPTP proje
t [19℄ were invaluable.NICTA is funded by the Australian Government through the Department ofCommuni
ations and the Australian Resear
h Coun
il through the ICT Centreof Ex
ellen
e Program.Referen
es1. J. Bengtson and J. Parrow. Psi-
al
uli in Isabelle. In S. Berghofer, T. Nipkow,C. Urban, and M. Wenzel, editors, TPHOLs'09, volume 5674 of LNCS, pages 99�114. Springer, 2009.2. J. C. Blan
hette, S. Böhme, and L. C. Paulson. Extending Sledgehammer withSMT solvers. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE-23, vol-ume 6803 of LNCS, pages 116�130. Springer, 2011.3. T. Bourke. Me
hanization of the Algebra for Wireless Networks (AWN). Ar
hiveof Formal Proofs, 2014. http://afp.sf.net/entries/AWN.shtml.4. T. Bourke, R. J. van Glabbeek, and P. Höfner. A me
hanized proof of loop freedomof the (untimed) AODV routing proto
ol, 2014. See authors' webpages.

http://afp.sf.net/entries/AWN.shtml

16 Bourke, van Glabbeek, and Höfner5. K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz. Verifying safety propertieswith the TLA+ proof system. In J. Giesl and R. Hähnle, editors, IJCAR'10, volume6173 of LNCS, pages 142�148. Springer, 2010.6. A. Fehnker, R. J. van Glabbeek, P. Höfner, A. M
Iver, M. Portmann, and W. L.Tan. A pro
ess algebra for wireless mesh networks used for modelling, verifyingand analysing AODV. Te
hni
al Report 5513, NICTA, 2013. http://arxiv.org/abs/1312.7645.7. A. Felia
hi, M.-C. Gaudel, and B. Wol�. Isabelle/Cir
us: A pro
ess spe
i�
ationand veri�
ation environment. In R. Joshi, P. Müller, and A. Podelski, editors,VSTTE'12, volume 7152 of LNCS, pages 243�260. Springer, 2012.8. W. Fokkink, J. F. Groote, and M. Reniers. Pro
ess algebra needs proof method-ology. In EATCS Bulletin 82, pages 109�125, 2004.9. T. Göthel and S. Glesner. An approa
h for ma
hine-assisted veri�
ation of TimedCSP spe
i�
ations. Innovations in Systems and Software Engineering, 6(3):181�193, 2010.10. B. Heyd and P. Crégut. A modular
oding of UNITY in COQ. In G. Goos, J. Hart-manis, J. Leeuwen, J. Wright, J. Grundy, and J. Harrison, editors, TPHOLs'96,volume 1125 of LNCS, pages 251�266. Springer, 1996.11. D. Hirs
hko�. A full formalisation of π-
al
ulus theory in the Cal
ulus of Con-stru
tions. In K. S
hneider and J. Brandt, editors, TPHOLs'07, volume 4732 ofLNCS, pages 153�169. Springer, 2007.12. F. Kammüller, M. Wenzel, and L. C. Paulson. Lo
ales: A se
tioning
on
ept forIsabelle. In Y. Bertot, G. Dowek, A. Hirs
howitz, C. Paulin, and L. Théry, editors,TPHOLs'99, volume 1690 of LNCS, pages 149�165. Springer, 1999.13. Z. Manna and A. Pnueli. Temporal Veri�
ation of Rea
tive Systems: Safety.Springer, 1995.14. O. Müller. A Veri�
ation Environment for I/O Automata Based on FormalizedMeta-Theory. PhD thesis, TU Mün
hen, 1998.15. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant forHigher-Order Logi
, volume 2283 of LNCS. Springer, 2002.16. L. C. Paulson. The indu
tive approa
h to verifying
ryptographi
 proto
ols. J.Computer Se
urity, 6(1�2):85�128, 1998.17. C. E. Perkins, E. M. Belding-Royer, and S. R. Das. Ad ho
 on-demand distan
eve
tor (AODV) routing. RFC 3561 (Experimental), Network Working Group, 2003.18. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhne
h, M. Poel,and J. Zwiers. Con
urren
y Veri�
ation: Introdu
tion to Compositional and Non-
ompositional Methods. Cambridge Tra
ts in Theor. Comp. S
i. 54. CUP, 2001.19. G. Sut
li�e. The TPTP problem library and asso
iated infrastru
ture: The FOFand CNF parts, v3.5.0. J. Automated Reasoning, 43(4):337�362, 2009.20. H. Tej and B. Wol�. A
orre
ted failure divergen
e model for CSP in Isabelle/HOL.In J. S. Fitzgerald, C. B. Jones, and P. Lu
as, editors, FME'97, volume 1313 ofLNCS, pages 318�337. Springer, 1997.21. M. Wenzel. Isabelle/jEdit�a prover IDE within the PIDE framework. In J. Jeur-ing, J. A. Campbell, J. Carette, G. Dos Reis, P. Sojka, M. Wenzel, and V. Sorge,editors, Intelligent Computer Mathemati
s, volume 7362 of LNCS, pages 468�471.Springer, 2012.22. M. Wenzel. Shared-memory multipro
essing for intera
tive theorem proving. InS. Blazy, C. Paulin-Mohring, and D. Pi
hardie, editors, ITP'13, volume 7998 ofLNCS, pages 418�434. Springer, 2013.

http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1312.7645

	Showing invariance compositionally for a process algebra for network protocols

