
Comparing the expressiveness of the π-calculus and
CCS

Rob van Glabbeek
Data61, CSIRO, Sydney, Australia

School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
rvg@cs.stanford.edu

Abstract—This paper shows that the π-calculus with implicit
matching is no more expressive than CCSγ , a variant of CCS in
which the result of a synchronisation of two actions is itself an
action subject to relabelling or restriction, rather than the silent
action τ . This is done by exhibiting a compositional translation
from the π-calculus with implicit matching to CCSγ that is valid
up to strong barbed bisimilarity.

The full π-calculus can be similarly expressed in CCSγ
enriched with the triggering operation of MEIJE.

I also show that these results cannot be recreated with CCS
in the rôle of CCSγ , not even up to reduction equivalence, and
not even for the asynchronous π-calculus without restriction or
replication.

Finally I observe that CCS cannot be encoded in the π-calculus.

I. INTRODUCTION

The π-calculus [23], [24], [22], [33] has been advertised
as an “extension to the process algebra CCS” [23] adding
mobility. It is widely believed that the π-calculus has features
that cannot be expressed in CCS, or other immobile process
calculi—so called in [27]—such as ACP and CSP.

“the π-calculus has a much greater expressiveness
than CCS” [Sangiorgi [32]]
“Mobility – of whatever kind – is important in modern
computing. It was not present in CCS or CSP, [...] but
[...] the π-calculus [...] takes mobility of linkage as a
primitive notion.” [Milner [22]]

The present paper investigates this belief by formally com-
paring the expressive power of the π-calculus and immobile
process calculi.

Following [10], [11] I define one process calculus to be at
least as expressive as another up to a semantic equivalence ∼
iff there exists a so-called valid translation up to ∼ from the
other to the one. Validity entails compositionality, and requires
that each translated expression is ∼-equivalent to its original.
This concept is parametrised by the choice of a semantic
equivalence that is meaningful for both the source and the
target language. Any language is as expressive as any other up
to the universal relation, whereas almost no two languages are
equally expressive up to the identity relation. The equivalence
∼ up to which a translation is valid is a measure for the quality
of the translation, and thereby for the degree in which the
source language can be expressed in the target.

Robert de Simone [34] showed that a wide class of process
calculi, including CCS [20], CSP [6], ACP [4] and SCCS [18],

are expressible up to strong bisimilarity in MEIJE [1]. In
[8] I sharpened this result by eliminating the crucial rôle
played by unguarded recursion in De Simone’s translation,
now taking aprACPR as the target language. Here aprACPR
is a fragment of the language ACP of [4], enriched with
relational relabelling, and using action prefixing instead of
general sequential composition. It differs from CCS only in
its more versatile communication format, allowing multiway
synchronisation instead of merely handshaking, in the absence
of a special action τ , and in the relational nature of the
relabelling operator. The class of languages that can be trans-
lated to MEIJE and aprACPR are the ones whose structural
operational semantics fits a format due to [34], now known as
the De Simone format. They can be considered the “immobile
process calculi” alluded to above. The π-calculus does not fit
into this class—its operational semantics is not in De Simone
format.

To compare the expressiveness of mobile and immobile
process calculi I first of all need to select a suitable semantic
equivalence that is meaningful for both kinds of languages.
A canonical choice is strong barbed bisimilarity [26], [33].
Strong barbed bisimilarity is not a congruence for either CCS
or the π-calculus, but it is used as a semantic basis for
defining suitable congruences on languages [26], [33]. For
CCS, the familiar notion of strong bisimilarity [19] arises as
the congruence closure of strong barbed bisimilarity. For the π-
calculus, the congruence closure of strong barbed bisimilarity
yields the notion of strong early congruence, called strong full
bisimilarity in [33]. In general, whatever its characterisation
in a particular calculus, strong barbed congruence is the name
of the congruence closure of strong barbed bisimilarity, and a
default choice for a semantic equivalence [33].

My first research goal was to find out if there exists a
translation from the π-calculus to CCS that is valid up to
strong barbed bisimilarity. The answer is negative. In fact, no
compositional translation of the π-calculus to CCS is possible,
even when weakening the equivalence up to which it should
be valid from strong barbed bisimilarity to strong reduction
equivalence, and even when restricting the source language
to the asynchronous π-calculus [5] without restriction and
replication. This disproves a result of [3].

My next research goal was to find out if there is a translation
from the π-calculus to any other immobile process calculus,
and if yes, to keep the target language as close as possible

TABLE I
STRUCTURAL OPERATIONAL SEMANTICS OF CCS

α.P
α−→ P

Pj
α−→ P ′j∑

i∈I Pi
α−→ P ′j

(j ∈ I)

P
α−→ P ′

P |Q α−→ P ′|Q
P

a−→ P ′, Q
ā−→ Q′

P |Q τ−→ P ′|Q′
Q

α−→ Q′

P |Q α−→ P |Q′

P
α−→ P ′

P\L α−→ P ′\L
(α 6∈ L ∪ L̄)

P
α−→ P ′

P [f]
f(α)−−−→ P ′[f]

P
α−→ P

A
α−→ P

(A
def
= P)

to CCS. Here the answer turned out to be positive. How
close the target language can be kept to CCS depends on
which version of the π-calculus I take as source language.
My first choice was the original π-calculus, as presented in
[23], [24], as it is at least as expressive as its competitors.
It turns out, however, that the matching operator [x=y]P of
[23], [24] is the source of a complication. The book [33]
merely allows matching to occur as part of action prefixing, as
in [x=y]u(z).P or [x=y]ūv.P . I call this implicit matching.
Matching was introduced in [23], [24] to facilitate complete
equational axiomatisations of the π-calculus, and [33] shows
that for that purpose implicit matching is sufficient.

To obtain a valid translation from the π-calculus with
implicit matching (henceforth called πIM) to an upgraded
variant of CCS, the only upgrade needed is to turn the result of
a synchronisation of two actions into a visible action, subject
to relabelling or restriction, rather than the silent action τ .
I call this variant CCSγ , where γ is a commutative partial
binary communication function, just like in ACP [4]. CCSγ
is a fragment of aprACPR, which also carries a parameter γ.
If γ(a, b) = c, this means that an a-action of one component
in a parallel composition may synchronise with a b-action of
another component, into a c-action; if γ(a, b) is undefined, the
actions a and b do not synchronise. CCS can be seen as the
instance of CCSγ with γ(ā, a) = τ , and γ undefined for other
pairs of actions. But as target language for my translation I
will need another choice of the parameter γ.

An important feature of ACP, which greatly contributes
to its expressiveness, is multiway synchronisation. This is
achieved by allowing an action γ(a, b) to synchronise with
an action c into γ(γ(a, b), c). This feature is not needed
for the target language of my translations. So I require that
γ(γ(a, b), c) is always undefined.

To obtain a valid translation from the full π-calculus,
with an explicit matching operator, I need to further upgrade
CCSγ with the triggering operator of MEIJE, which allows a
relabelling of the first action of its argument only.

By a general result of [11], the validity up to strong barbed
bisimilarity of my translation from πIM to CCSγ (and from π
to CCStrig

γ) implies that it is even valid up to an equivalence
on their disjoint union that on π coincides with strong barbed
congruence, or strong early congruence, and on CCStrig

γ is

the congruence closure of strong barbed bisimilarity under
translated contexts. The latter is strictly coarser than strong
bisimilarity, which is the congruence closure of strong barbed
bisimilarity under all CCStrig

γ contexts.
Having established that πIM can be expressed in CCSγ ,

the possibility remains that the two languages are equally
expressive. This, however, is not the case. There does not exists
a valid translation (up to any reasonable equivalence) from
CCS—thus neither from CCSγ—to the π-calculus, even when
disallowing the infinite sum of CCS, as well as unguarded
recursion. This is a trivial consequence of the power of the
CCS renaming operator, which cannot be mimicked in the π-
calculus. Using a simple renaming operator that is as finite
as the successor function on the natural numbers, CCS, even
without infinite sum and unguarded recursion, allows the
specification of a process with infinitely many weak barbs,
whereas this is fundamentally impossible in the π-calculus.

II. CCS

CCS [19] is parametrised with a sets K of agent identifiers
and A of visible actions. The set A of co-actions is A := {ā |
a∈A }, and L := A ∪A is the set of labels. The function ·̄ is
extended to L by declaring ¯̄a = a. Finally, Act := L] {τ}
is the set of actions. Below, a, b, c, . . . range over L and α,
β over Act. A relabelling is a function f : L →L satisfying
f(ā) = f(a); it extends to Act by f(τ) := τ . The class TCCS

of CCS terms, expressions, processes or agents is the smallest
class1 including:

α.P for α ∈Act and P ∈ TCCS prefixing∑
i∈IPi for I an index set and Pi ∈ TCCS choice

P |Q for P,Q ∈ TCCS parallel comp.
P\L for L ⊆ L and P ∈ TCCS restriction
P [f] for f a relabelling and P ∈ TCCS relabelling
A for A ∈ K recursion.

One writes P1 +P2 for
∑
i∈I Pi when I ={1, 2}, and 0 when

I = ∅. Each agent identifier A ∈ K comes with a unique

1CCS [19], [20] allows arbitrary index sets I in summations
∑
i∈IPi. As

a consequence, TCCS is a proper class rather than a set. Although this is
unproblematic, many computer scientists prefer the class of terms to be a set.
This can be achieved by choosing a cardinal κ and requiring the index sets I
to satisfy |I| < κ. To enable my translation from the π-calculus to CCStrig

γ ,
κ should exceed the size of the set of names used in the π-calculus.

2

defining equation of the form A
def
= P , with P ∈ TCCS. The

semantics of CCS is given by the labelled transition relation
→ ⊆ TCCS × Act × TCCS. The transitions P α−→ Q with
P,Q∈TCCS and α∈Act are derived from the rules of Table I.

Arguably, the most authentic version of CCS [20] features
a recursion construct instead of agent identifiers. Since there
exists a straightforward valid transition from the version of
CCS presented here to the one from [20], the latter is at least
as expressive. Therefore, when showing that a variant of CCS
is at least as expressive as the π-calculus, I obtain a stronger
result by using agent identifiers.

III. CCSγ
CCSγ has four parameters: the same set K of agent

identifiers as for CCS, an alphabet A of visible actions,
with a subset S ⊆ A of synchronisations2, and a partial
communication function γ : (A \S)2 ⇀ S ∪ {τ}, which
is commutative, i.e. γ(a, b) = γ(b, a) and each side of this
equation is defined just when the other side is. Compared to
CCS there are no co-actions, so Act := A] {τ}.

The syntax of CCSγ is the same as that of CCS, except
that parallel composition is denoted ‖ rather than |, following
ACP [4], [2]. This indicates a semantic difference: the rule for
communication in the middle of Table I is for CCSγ replaced
by P

a−→ P ′, Q
b−→ Q′

P‖Q c−→ P ′‖Q′
(γ(a, b) = c).

Moreover, relabelling operators f : A → Act are allowed to
rename visible actions into τ , but not vice versa.3 They are
required to satisfy c ∈ S ⇒ f(c) ∈ S ∪ {τ}. These are the
only differences between CCS and CCSγ .

IV. STRONG BARBED BISIMILARITY

The semantics of the π-calculus and CCS can be expressed
by associating a labelled or a barbed transition system with
these languages, with processes as states. Semantic equiva-
lences are defined on the states of labelled or barbed transition
systems, and thereby on π- and CCS processes.

Definition 1: A labelled transition system (LTS) is pair
(S,→) with S a class (of states) and → ⊆ S × A × S a
transition relation, for some suitable set of actions A.

I write P α−→ Q for (P, α,Q) ∈→, P α−→ for ∃Q. P α−→ Q,
and P 6α−→ for its negation. The structural operational seman-
tics of CCS presented before creates an LTS with as states
all CCS processes and the transition relation derived from the
operational rules, with A := Act.

Definition 2: A strong bisimulation is a symmetric relation
R on the states of an LTS such that
• if P R Q and P α−→ P ′ then ∃Q′. Q α−→ Q′∧P ′ R Q′.

Processes P and Q are strongly bisimilar—notation P ↔Q—
if P R Q for some strong bisimulation R.

2These have been added solely to prevent multiway synchronisation.
3Renaming into τ could already be done in CCS by means of parallel

composition. Hence this feature in itself does not add extra expressiveness.

TABLE II
THE ACTIONS

α Kind O(α) fn(α) bn(α)
Mτ Silent − ∅ ∅
Mx̄y Free output x̄ n(M) ∪ {x, y} ∅
Mx̄(y) Bound output x̄ n(M) ∪ {x} {y}
Mxy Free input x n(M) ∪ {x, y} ∅
Mx(y) Bound input x n(M) ∪ {x} {y}

As is well-known, ↔ is an equivalence relation, and a
strong bisimulation itself. Through the operational semantics
of CCSγ , strong bisimilarity is defined on CCSγ processes.

Definition 3: A barbed transition system (BTS) is a triple
(S, 7→, ↓) with S a class (of states), 7→ ⊆ S × S a reduction
relation, and ↓ ⊆ S × B an observability predicate for some
suitable set of barbs B.

One writes P↓b for P ∈ S and b ∈ B when (P, b) ∈ ↓. A
BTS can be extracted from an LTS with τ ∈A, by means of a
partial observation function O : A ⇀ B. The states remain the
same, the reductions are taken to be the transitions labelled τ
(dropping the label in the BTS), and P↓b holds exactly when
there is a transition P α−→ Q with O(α) = b.

In this paper I consider labelled transition systems whose
actions α ∈ A are of the forms presented in Table II. Here x
and y are names, drawn from the disjoint union of two sets
Z and R of public and private names, and M is a (possibly
empty) matching sequence, a sequence of matches [x=y] with
x, y ∈ Z] R and x 6= y. The set of names occurring in M
is denoted n(M). In Table II, also the free names fn(α) and
bound names bn(α) of an action α are defined. The set of
names of α is n(α) := fn(α) ∪ bn(α). Consequently, also
the actions Act of my instantiation of CCSγ need to have the
forms of Table II. For the translation into barbed transition
systems I take B := Z ∪ Z , where Z := {ā | a ∈ Z}, and
O(α) as indicated in Table II, provided M = ε and O(α)∈B.

Definition 4: A strong barbed bisimulation is a symmetric
relation R on the states of a BTS such that

• if P R Q and P 7−→ P ′ then ∃Q′. Q 7−→ Q′∧P ′ R Q′

• and if P R Q and P↓b then also Q↓b.
Processes P and Q are strongly barbed bisimilar—notation
P •∼ Q—if P R Q for some strong barbed bisimulation R.

Again, •∼ is an equivalence relation, and a strong barbed
bisimulation itself. Through the above definition, strong barbed
bisimilarity is defined on all LTSs occurring in this paper, as
well as on my instantiation of CCSγ . It can also be used to
compare processes from different LTSs, namely by taking their
disjoint union.

V. THE π-CALCULUS

The π-calculus [23], [24] is parametrised with an infinite
set N of names and, for each n ∈ IN, a set of Kn of

3

agent identifiers of arity n. The set Tπ of π-calculus terms,
expressions, processes or agents is the smallest set including:

0 inaction
τ.P for P ∈ Tπ silent prefix
x̄y.P for x, y ∈N and P ∈ Tπ output prefix
x(y).P for x, y ∈N and P ∈ Tπ input prefix
(νy)P for y ∈N and P ∈ Tπ restriction
[x=y]P for x, y ∈N and P ∈ Tπ match
P |Q for P,Q ∈ Tπ parallel comp.
P +Q for P,Q ∈ Tπ choice
A(y1, ..., yn) for A ∈ Kn and yi ∈N defined agent

The order of precedence among the operators is the order of
the listing above. A process α.0 with α = τ or x̄y or x(y) is
often written α.

n(P) denotes the set of all names occurring in a process P .
An occurrence of a name y in a term is bound if it occurs in
a subterm of the form x(y).P or (νy)P ; otherwise it is free.
The set of names occurring free (resp. bound) in a process P
is denoted fn(P) (resp. bn(P)).

Each agent identifier A ∈ Kn is assumed to come with a
unique defining equation of the form

A(x1, . . . , xn)
def
= P

where the names xi are all distinct and fn(P) ⊆ {x1, . . . , xn}.
The π-calculus with implicit matching (πIM) drops the

matching operator, instead allowing prefixes of the form
Mx̄y.P , Mx(y).P and Mτ.P , with M a matching sequence.

A substitution is a partial function σ : N ⇀ N such that
N\(dom(σ) ∪ range(σ)) is infinite. For ~x = (x1, . . . , xn),
~y=(y1, . . . , yn)∈Nn, {~y/~x} denotes the substitution given by
σ(xi) = yi for 1≤ i≤ n. One writes {y/x} when n=1.

For x∈N , x[σ] denotes σ(x) if x∈dom(σ) and x otherwise;
M [σ] is the result of changing each occurrence of a name x
in M into x[σ], while dropping resulting matches [y=y].

For a substitution σ, the process Pσ is obtained from P∈Tπ
by simultaneous substitution, for all x ∈ dom(σ), of x[σ] for
all free occurrences of x in P , with change of bound names
to avoid name capture. A formal inductive definition is:

0σ = 0
(Mτ.P)σ = M [σ]τ.(Pσ)

(Mx̄y.P)σ = M [σ]x[σ]y[σ].(Pσ)
(Mx(y).P)σ = M [σ]x[σ](z).(P{z/y}σ)

((νy)P)σ = (νz)(P{z/y}σ)
([x=y]P)σ = [x[σ]=y[σ]](Pσ)

(P |Q)σ = (Pσ)|(Qσ)
(P +Q)σ = (Pσ) + (Qσ)

A(~y)σ = A(~y[σ])

where z is chosen outside fn((νy)P) ∪ dom(σ) ∪ range(σ);
in case y /∈ dom(σ) ∪ range(σ) one always picks z := y.

A congruence is an equivalence relation ∼ on Tπ such that
P ∼ Q implies τ.P ∼ τ.Q, x̄y.P ∼ x̄y.Q, x(y).P ∼ x(y).Q,
(νy)P ∼ (νy)Q, [x=y]P ∼ [x=y]Q, P |U ∼Q|U , U |P ∼U |Q,
P+U∼Q+U and U+P∼U+Q. Let ≡ be the smallest con-
gruence on Tπ allowing renaming of bound names, i.e., that

π

late
LTS

late
symbolic

LTS

early
LTS

early
symbolic

LTS

α

BTS

reduction
semantics

α

Fig. 1. Semantics of the π-calculus

satisfies x(y).P ≡ x(z).(P{z/y}) and (νy)P ≡ (νz)(P{z/y})
for any z /∈ fn((νy)P). If P ≡ Q, then Q is obtained from
P by means of α-conversion. Due to the choice of z above,
substitution is precisely defined only up to α-conversion.

Note that P ≡ Q implies that fn(P) = fn(Q), and also that
Pσ ≡ Qσ for any substitution σ.

VI. THE SEMANTICS OF THE π-CALCULUS

Whereas CCS has only one operational semantics, the π-
calculus is equipped with at least five, as indicated in Figure 1.
The late operational semantics stems from [24], the origin of
the π-calculus. It is given by the action rules of Table III. These
rules generate a labelled transition system in which the states
are the π-calculus processes and the transitions are labelled
with the actions τ , x̄y, x̄(y) and x(y) of Table II (always
with M the empty string). Here I take Z := N and R := ∅.

For πIM, rule MATCH is omitted. A process [x=y]α.P has
no outgoing transitions, similar to 0.

In [24] the late and early bisimulation semantics of the π-
calculus were proposed.

Definition 5: A late bisimulation is a symmetric relation R
on π-processes such that, whenever P R Q, α is either τ or
x̄y and z 6∈ n(P) ∪ n(Q),

1) if P α−→ P ′ then ∃Q′ with Q α−→ Q′ and P ′ R Q′,
2) if P x(z)−−→P ′ then ∃Q′∀y. Q x(z)−−→Q′∧P ′{y/z} R Q′{y/z},
3) if P x̄(z)−−→ P ′ then ∃Q′ with Q x̄(z)−−→ Q′ and P ′ R Q′.

Processes P and Q are late bisimilar—notation P
.∼L Q—

if P R Q for some late bisimulation R. They are late
congruent—notation P ∼L Q—if P{~y/~x} .∼L Q{~y/~x} for any
substitution {~y/~x}.

Early bisimilarity (.∼E) and congruence (∼E) are defined
likewise, but with ∀y∃Q′ instead of ∃Q′∀y. In [24], [33] it
is shown that .∼L and .∼E are congruences for all operators
of the π-calculus, except for the input prefix. ∼E and ∼L
are congruence relations for the entire language; in fact they
are the congruence closures of .∼L and .∼E , respectively. By
definition, .∼L ⊆

.∼E , and thus ∼L ⊆ ∼E .

Lemma 1 ([24]): Let P ≡ Q and bn(α) ∩ n(Q) = ∅.
If P α−→ P ′ then Q α−→ Q′ for some Q′ with P ′ ≡ Q′.

This implies that ≡ is a late bisimulation, so that ≡ ⊂ ∼L.

4

TABLE III
LATE STRUCTURAL OPERATIONAL SEMANTICS OF THE π-CALCULUS

TAU:
τ.P

τ−→ P

OUTPUT:
x̄y.P

x̄y−→ P

INPUT:
x(y).P

x(z)−−→ P{z/y} (z 6∈ fn((νy)P))

SUM:
P

α−→ P ′

P +Q
α−→ P ′

MATCH:
P

α−→ P ′

[x=x]P
α−→ P ′

IDE:
P{~y/~x} α−→ P ′

A(~y)
α−→ P ′

(A(~x)
def
= P)

PAR:
P

α−→ P ′

P |Q α−→ P ′|Q
(bn(α) ∩ fn(Q) = ∅)

COM:
P

x̄y−→ P ′, Q
x(z)−−→ Q′

P |Q τ−→ P ′|Q′{y/z}

CLOSE:
P

x̄(z)−−→ P ′, Q
x(z)−−→ Q′

P |Q τ−→ (νz)(P ′|Q′)

RES:
P

α−→ P ′

(νy)P
α−→ (νy)P ′

(y 6∈ n(α))

ALPHA-OPEN:
P

x̄y−→ P ′

(νy)P
x̄(z)−−→ P ′{z/y}

(
y 6= x
z 6∈ fn((νy)P ′)

)
The rules SUM, PAR, COM and CLOSE additionally have symmetric forms, with the rôles of P and Q exchanged.

TABLE IV
EARLY STRUCTURAL OPERATIONAL SEMANTICS OF THE π-CALCULUS

TAU:
τ.P

τ−→ P

OUTPUT:
x̄y.P

x̄y−→ P

EARLY-INPUT:
x(y).P

xz−→ P{z/y}

SUM:
P

α−→ P ′

P +Q
α−→ P ′

MATCH:
P

α−→ P ′

[x=x]P
α−→ P ′

IDE:
P{~y/~x} α−→ P ′

A(~y)
α−→ P ′

(A(~x)
def
= P)

PAR:
P

α−→ P ′

P |Q α−→ P ′|Q
(bn(α) ∩ fn(Q) = ∅)

EARLY-COM:
P

x̄y−→ P ′, Q
xy−→ Q′

P |Q τ−→ P ′|Q′

EARLY-CLOSE:
P

x̄(z)−−→ P ′, Q
xz−→ Q′

P |Q τ−→ (νz)(P ′|Q′)
(z /∈ fn(Q))

RES:
P

α−→ P ′

(νy)P
α−→ (νy)P ′

(y 6∈ n(α))

OPEN:
P

x̄y−→ P ′

(νy)P
x̄(y)−−→ P ′

(
y 6= x

) ALPHA:
P ≡ Q, Q

α−→ Q′

P
α−→ Q′

In [25] the early operational semantics of the π-calculus is
proposed, presented in Table IV; it uses free input actions xy
instead of bound inputs x(y). This is also the semantics of
[33]. The semantics in [25], [33] requires us to identify pro-
cesses modulo α-conversion before applying the operational
rules. This is equivalent to adding rule ALPHA of Table IV.

A variant of the late operational semantics incorporating rule
ALPHA is also possible. In this setting rule ALPHA-OPEN can
be simplified to OPEN, and likewise INPUT to x(y).P

x(y)−−→ P .
By Lemma 1, the late operational semantics with ALPHA gives
rise to the same notions of early and late bisimilarity as the
late operational semantics without ALPHA; the addition of this
rule is entirely optional. Interestingly, the rule ALPHA is not
optional in the early operational semantics, not even when
reinstating ALPHA-OPEN.

Example 1: Consider the process P := x̄y|(νy)(x(z)).
One has (νy)(x(z))

x(z)−−→L (νy)0 and thus P
τ−→L 0|(νy)0

by COM. However, (νy)(x(z))
xy−→E (νy)0 is forbidden by the

side condition of RES, so in the early semantics without ALPHA

process P cannot make a τ -step. Rule ALPHA comes to the
rescue here, as it allows P ≡ x̄y|(νw)(x(z))

τ−→E 0|(νw)0.

By the following lemma, the early transition relation −→E is
completely determined by the late transition relation −→αL

with ALPHA:

Lemma 2 ([25]): Let P ∈ Tπ and β be τ , x̄y or x̄(y).

• P
β−→E Q iff P β−→αL Q.

• P
xy−→EQ iff P x(z)−−→αLR for some R, z with Q≡R{y/z}.

The early transition relations allow a more concise definition
of early bisimilarity:

Proposition 1 ([25]): An early bisimulation is a symmetric
relation R on Tπ such that, whenever P R Q and α is an
action with bn(α) ∩ (n(P) ∪ n(Q)) = ∅,

• if P α−→E P ′ then ∃Q′ with Q α−→E Q′ and P ′ R Q′.

Processes P and Q are early bisimilar iff P R Q for some
early bisimulation R.

5

TABLE V
LATE SYMBOLIC STRUCTURAL OPERATIONAL SEMANTICS OF THE π-CALCULUS

TAU:
Mτ.P

Mτ−−→ P

OUTPUT:
Mx̄y.P

Mx̄y−−−→ P

INPUT:
Mx(y).P

Mx(z)−−−−→ P{z/y} (z 6∈ fn((νy)P))

SUM:
P

α−→ P ′

P +Q
α−→ P ′

SYMB-MATCH:
P

α−→ P ′

[x=y]P
[x=y]α−−−−→ P ′

IDE:
P{~y/~x} α−→ P ′

A(~y)
α−→ P ′

(A(~x)
def
= P)

PAR:
P

α−→ P ′

P |Q α−→ P ′|Q
(bn(α) ∩ fn(Q) = ∅)

SYMB-COM:
P

Mx̄y−−−→ P ′, Q
Nv(z)−−−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ P ′|Q′{y/z}

SYMB-CLOSE:
P

Mx̄(z)−−−−→ P ′, Q
Nv(z)−−−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ (νz)(P ′|Q′)

RES:
P

α−→ P ′

(νy)P
α−→ (νy)P ′

(y 6∈ n(α))

SYMB-ALPHA-OPEN:
P

Mx̄y−−−→ P ′

(νy)P
Mx̄(z)−−−−→ P ′{z/y}

y 6= x
z 6∈ fn((νy)P ′)
y /∈ n(M)

For the π-calculus, the blue Ms are omitted; for πIM the purple rules.

TABLE VI
EARLY SYMBOLIC STRUCTURAL OPERATIONAL SEMANTICS OF THE π-CALCULUS

TAU:
Mτ.P

Mτ−−→ P

OUTPUT:
Mx̄y.P

Mx̄y−−−→ P

EARLY-INPUT:
Mx(y).P

Mxz−−−→ P{z/y}

SUM:
P

α−→ P ′

P +Q
α−→ P ′

SYMB-MATCH:
P

α−→ P ′

[x=y]P
[x=y]α−−−−→ P ′

IDE:
P{~y/~x} α−→ P ′

A(~y)
α−→ P ′

(A(~x)
def
= P)

PAR:
P

α−→ P ′

P |Q α−→ P ′|Q
(bn(α) ∩ fn(Q) = ∅)

E-S-COM:
P

Mx̄y−−−→ P ′, Q
Nvy−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ P ′|Q′

E-S-CLOSE:
P

Mx̄(z)−−−−→ P ′, Q
Nvz−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ (νz)(P ′|Q′)
(z /∈ fn(Q))

RES:
P

α−→ P ′

(νy)P
α−→ (νy)P ′

(y 6∈ n(α))

SYMB-OPEN:
P

Mx̄y−−−→ P ′

(νy)P
Mx̄(y)−−−−→ P ′

(
y 6= x
y /∈ n(M)

) ALPHA:
P ≡ Q, Q

α−→ Q′

P
α−→ Q′

Through the general method of Section IV, taking Z := N
and R := ∅, a barbed transition system can be extracted from
the late or early labelled transition system of the π-calculus;
by Lemmas 1 and 2 the same BTS is obtained either way. This
defines strong barbed bisimilarity •∼ on Tπ . The congruence
closure of •∼ is early congruence [33]. In [21] a reduction
semantics of the π-calculus is given, that yields a BTS right
away. Up to strong barbed bisimilarity, this BTS is the same
as the one extracted from the late or early LTS.

In [32] yet another operational semantics of the π-calculus
was introduced, in a style called symbolic by Hennessy & Lin
[16], who had proposed it for a version of value-passing CCS.
It is presented in Table V. The transitions are labelled with
actions α of the form Mβ, where M is a matching sequence
and β an action as in the late operational semantics. When
x 6= y the matching sequence M prepended with [x=y] is
denoted [x=y]M ; however, [x=x]M simply denotes M .

In the operational semantics of CCS, τ -actions can be
thought of as reactions that actually take place, whereas a
transition labelled a merely represents the potential of a

reaction with the environment, one that can take place only if
the environment offers a complementary transition ā. In case
the environment never does an ā, this potential will not be
realised. A reduction semantics (as in [22]) yields a BTS that
only represents directly the realised actions—the τ -transitions
or reductions—and reasons about the potential reactions by
defining the semantics of a system in terms of reductions that
can happen when placing the system in various contexts. An
LTS, on the other hand, directly represents transitions that
could happen under some conditions only, annotated with the
conditions that enable them. For CCS, this annotation is the
label a, saying that the transition is conditional on an ā-
signal from the environment. As a result of this, semantic
equivalences defined on labelled transitions systems tend to be
congruences for most operators right away, and do not need
much closure under contexts.

Seen from this perspective, the operational semantics of
the π-calculus of Table III or IV is a compromise between a
pure reduction semantics and a pure labelled transition system
semantics. Input and output actions are explicitly included to

6

signal potential reactions that are realised in the presence of a
suitable communication partner, but actions whose occurrence
is conditional on two different names x and y denoting the
same channel are entirely omitted, even though any π-process
can be placed in a context in which x and y will be identified.
As a consequence of this, the early and late bisimilarities need
to be closed under all possible substitutions or identifications
of names before they turn into early and late congruences.
The operational semantics of Table V adds the conditional
transitions that where missing in Table III, and hence can be
seen as a true labelled transition system semantics.

In this paper I need the early symbolic operational semantics
of the π-calculus, presented in Table VI. Although new, it is
the logical combination of the early and the (late) symbolic
semantics. Its transitions that are labelled with actions having
an empty matching sequence are exactly the transitions of the
early semantics, so the BTS extracted from this semantics is
the same.

For πIM, rule SYMB-MATCH is omitted, but TAU, OUTPUT and
INPUT carry the matching sequence M (indicated in blue).

VII. VALID TRANSLATIONS

A signature Σ is a set of operator symbols g, each of which
is equipped with an arity n ∈ IN. The set TΣ of closed terms
over Σ is the smallest set such that, for all g ∈ Σ,

P1, . . . , Pn ∈ TΣ ⇒ g(P1, . . . , Pn) ∈ TΣ .

Call a language simple if its expressions are the closed terms
TΣ over some signature Σ. The π-calculus is simple in this
sense; its signature consists of the binary operators + and |, the
unary operators τ , x̄y., x(y)., (νy) and [x=y] for x, y ∈ N ,
and the nullary operators (or constants) 0 and A(y1, . . . , yn)
for A ∈ Kn and yi ∈ N . CCS is not quite simple, since it
features the infinite choice operator.

Let L be a language. An n-ary L-context C is an L-
expression that may contain special variables X1, . . . , Xn—its
holes. For C an n-ary context, C[P1, . . . , Pn] is the result of
substituting Pi for Xi, for each i = 1, . . . , n.

Definition 6: Let L′ and L languages, generating sets of
closed terms TL′ and TL. Let L′ be simple, with signature Σ.
A translation from L′ to L (or an encoding from L′ into L)
is a function T : TL′ → TL. It is compositional if for each
n-ary operator g ∈ Σ there exists an n-ary L-context Cg such
that T (g(P1, . . . , Pn)) = Cg[T (P1), . . . ,T (Pn)].

Let ∼ be an equivalence relation on TL′∪TL. A translation
T from L′ to L is valid up to ∼ if it is compositional and
T (P) ∼ P for each P ∈ TL′ .

The above definition stems in essence from [10], [11], but
could be simplified here since [10], [11] also covered the case
that L′ is not simple. Moreover, here I restrict attention to
what are called closed term languages in [11].

VIII. THE UNENCODABILITY OF π INTO CCS

In this section I show that there exists no translation of the
π-calculus to CCS that is valid up to •∼. I even show this

for the fragment π¶A of the (asynchronous) π-calculus without
choice, recursion, matching and restriction (thus only featuring
inaction, action prefixing and parallel composition).

Definition 7: Strong reduction bisimilarity, ↔r, is defined
just as strong barbed equivalence in Definition 4, but without
the requirement on barbs.

I show that there is no translation of π¶A to CCS that is valid
up to ↔r. As ↔r is coarser than •∼, this implies my claim
above. It may be useful to read this section in parallel with
the first half of Section XIV.

Definition 8: Let � be the smallest preorder on CCS
contexts such that

∑
i∈I Ei � Ej for all j ∈ I , E|F � E,

E|F � F , E\L� E, E[f] � E and A� P for all A ∈ K
with A def

= P . A variable X occurs unguarded in a context E
if E � X .

If the hole X1 occurs unguarded in the unary context E[] and
U

τ−→ (resp. U τ−→ τ−→) then E[U]
τ−→ (resp. E[U]

τ−→ τ−→).

Lemma 3: Let E[] be a unary and C[,] a binary CCS
context, and P,Q, P ′, Q′, U ∈ TCCS. If E[C[P,Q]]

τ−→ and
U

τ−→ but neither E[C[P ′, Q]]
τ−→ nor E[C[P,Q′]]

τ−→ nor
E[U]

τ−→ τ−→, then C[P,Q]
τ−→.

•
•
•
•
•

•
•
•
•
•
•
•
•

CCS proof trees

Proof. Since the only rule in the operational
semantics of CCS with multiple premises has
a conclusion labelled τ , it can occur at most
once in the derivation of a CCS transition.
Thus, such a derivation is a tree with at most
two branches, as illustrated at the right. Now
consider the derivation of E[C[P,Q]]

τ−→. If none of its
branches prods into the subprocess P , the transition would
be independent on what is substituted here, thus yielding
E[C[P ′, Q]]

τ−→. Thus, by symmetry, both P and Q are
visited by branches of this proof. It suffices to show that these
branches come together within the context C, as this implies
C[P,Q]

τ−→. So suppose, towards a contradiction, that the two
branches come together in E. Then E must have the form
E1[E2[]|E3[]], where the hole X1 occurs unguarded in E2,
E3 as well as E1. But in that case E[U]

τ−→ τ−→, contradicting
the assumptions.

Lemma 4: If D[, ,] is a ternary CCS context, P1, P2, P3∈
TCCS, and D[P1, P2, P3]

τ−→, then there exists an i∈{1, 2, 3}
and a CCS context E[] such that D′[P]

τ−→ E[P] for any P ∈
TCCS. Here D′ is the unary context obtained from D[, ,]
by substituting Pj for the hole Xj , for all j ∈{1, 2, 3}, j 6= i.

Proof. Since the derivation of D[P1, P2, P3]
τ−→ has at most

two branches, one of the Pi is not involved in this proof at all.
Thus, the derivation remains valid if any other process P is
substituted in the place of that Pi; the target of the transition
remains the same, except for P taking the place of Pi in it.

Theorem 1: There is no translation from π¶A to CCS that is
valid up to↔r.

7

Proof. Suppose, towards a contradiction, that T is a transla-
tion from π¶A to CCS that is valid up to ↔r. By definition,
this means that T is compositional and that T (P)↔r P for
any π¶A-process P .

As T is compositional, there exists a ternary CCS context
D[, ,] such that, for any π¶A-processes R,S, T ,

T
(
x̄v
∣∣ x(y).(R|S|T)

)
= D[T (R),T (S),T (T)].

Since x̄v
∣∣x(y).(0|0|0)

τ−→ as well as T
(
x̄v
∣∣x(y).(0|0|0)

)
↔r

x̄v
∣∣x(y).(0|0|0), it follows that T

(
x̄v
∣∣x(y).(0|0|0)

) τ−→, i.e.,
D[T (0),T (0),T (0)]

τ−→. Hence Lemma 4 can be applied.
For simplicity I assume that i=1; the other two cases proceed
in the same way. So there is a CCS context E[] such
that D[P,T (0),T (0)]

τ−→E[P] for all CCS terms P . In
particular, T

(
(x̄v
∣∣x(y).(R|0|0)

)
=D[T (R),T (0),T (0)]

τ−→
E[T (R)] for all π¶A-processes R. (1)

I examine the translations of the π-calculus expressions
x̄v
∣∣x(y).(R|0|0), for R ∈ {ȳz|v(w), 0|v(w), ȳz|0, τ}.
Since x̄v

∣∣x(y).(ȳz|v(w)|0|0)
τ−→ τ−→ and T respects↔r,

T
(
x̄v
∣∣x(y).(ȳz|v(w)|0|0)

) τ−→ τ−→
In the same way, neither T

(
x̄v
∣∣x(y).(0|v(w)|0|0)

) τ−→ τ−→
nor T

(
x̄v
∣∣x(y).(ȳz|0|0|0)

) τ−→ τ−→. (2)
Furthermore, since T respects↔r and there is no S∈Tπ such
that x̄v|x(y).(ȳz|v(w)|0|0)

τ−→ S 6τ−→, there is no S ∈ TCCS

with T
(
x̄v|x(y).(ȳz|v(w)|0|0)

) τ−→ S 6τ−→. (3)
By (1) and (3), E[T (ȳz|v(w))]

τ−→.
By (1) and (2), E[T (0|v(w))] 6τ−→ and E[T (ȳz|0)] 6τ−→.
Since T is compositional, there is a binary CCS context

C|[,] such that T (P |Q) = C|[T (P),T (Q)] for any P,Q ∈
Tπ . It follows that

E[C|[T (ȳz),T (v(w))]]
τ−→

E[C|[T (0),T (v(w))]] 6τ−→
E[C|[T (ȳz),T (0)]] 6τ−→ .

Moreover since τ
τ−→, also U := T (τ)

τ−→, but, since it
is not the case that x̄v

∣∣x(y).(τ |0|0)
τ−→ τ−→ τ−→, neither holds

T
(
x̄v
∣∣x(y).(τ |0|0)

) τ−→ τ−→ τ−→, and neither E[U]
τ−→ τ−→.

So by Lemma 3, T (ȳz|v(w)) = C|[T (ȳz),T (v(w))]
τ−→,

yet ȳz|v(w) 6τ−→. This contradicts the validity of T up to↔r.

IX. A VALID TRANSLATION OF πIM INTO CCSγ
Given a set N of names, I now define the parameters K,

A and γ of the language CCSγ that will be the target of my
encoding. First of all, K will be the disjoint union of all the
sets Kn for n ∈ IN, of n-ary agent identifiers from the chosen
instance of the π-calculus.

Take p /∈ N . Let R0 := {ςp | ς ∈ {e, `, r}∗}. The set R
of private names is {uυ | u ∈ R0 ∧ υ ∈ {′}∗}. Let S =
{s1, s2, . . .} be an infinite set of spare names, disjoint from
N and R. Let Z := N] S and H := Z]R.4

4The names in S and in R\R0 exist solely to make the substitutions
{~y/~x}S , η and py surjective. Here σ is surjective iff dom(σ) ⊆ range(σ).

I take Act to be the set of all expressions α from Table II, as
defined in Section IV (in terms of Z andR), so A :=Act\{τ}.
The communication function γ is given by γ(Mx̄y,Nvy) =
[x=v]MNτ , just as for rule E-S-COM in Table VI.

For ~x = (x1, . . . , xn) ∈ Nn and ~y = (y1, . . . , yn) ∈ Hn,
with the xi distinct, let {~y/~x}S : S ∪{x1, . . . , xn}⇀ H be the
substitution σ with σ(xi) = yi and σ(si) = xi for i= 1, ..., n,
and σ(si) = si−n for i > n. These functions extend homo-
morphically to A and thereby constitute CCSγ relabellings.
Abbreviate [{~y/~x}S] by [~y/~x] and [{z/y}S] by [z/y].

For η ∈ {`, r, e} and y ∈ Z , let the surjective substitutions
η : R⇀ R and py :{y} ∪ R → {y} ∪ R be given by:

η(ςp) := ηςp py(y) := p py(p′) := y
η(ςpυ′) := ςpυ if ς 6= ηζ py(u) := e(u) if u 6= y, p′

These σ : H⇀ H are injective, i.e., x[σ] 6= y[σ] when x 6= y.
Also they yield CCSγ relabellings. The following composi-
tional encoding, which will be illustrated with examples in
Section XII, defines my translation from πIM to CCSγ .

T (0) := 0
T (Mτ.P) := Mτ.T (P)
T (Mx̄y.P) := Mx̄y.T (P)
T (Mx(y).P) :=

∑
z∈HMxz.

(
T (P)[z/y]

)
T ((νy)P) := T (P)[py]
T (P | Q) := T (P)[`] ‖T (Q)[r]
T (P +Q) := T (P) + T (Q)
T (A(~y)) := A[~y/~x] when A(~x)

def
= P

where the CCSγ agent identifier A has the defining equation
A = T (P) when A(~x)

def
= P was the defining equation of the

agent identifier A from the π-calculus.
To explain what this encoding does, inaction, silent prefix,

output prefix and choice are translated homomorphically. The
input prefix is translated into an infinite sum over all possible
input values z that could be received, of the received message
Mxz followed by the continuation process T (P)[z/y]. Here
[z/y] is a CCS relabelling operator that simulates substitution
of z for y in T (P). This implements the rule EARLY-
INPUT from Table VI. Agent identifiers are also translated
homomorphically, except that their arguments ~y are replaced
by relabelling operators.

Restriction is translated by simply dropping the restriction
operator, but renaming the restricted name y into a private
name p that generates no barbs. The operator [py] injectively
renames all private names ςp that occur in the scope of (νy)
by tagging all of them with a tag e. This ensures that the new
private name p is fresh, so that no name clashes can occur that
in πIM would have been prevented by the restriction operator.

Parallel composition is almost translated homomorphically.
However, each private name on the right is tagged with an r,
and on the left with an `. This guarantees that private names
introduced at different sides of a parallel composition cannot
interact. Interaction is only possible when the name is passed
on in the appropriate way.

The main result of this paper states the validity of the above
translation, and thus that CCSγ is at least as expressive as πIM:

8

Theorem 2: For P ∈ Tπ one has T (P) •∼ P .

See the appendix for a proof.5 Theorem 2 says that each π-
calculus process is strongly barbed bisimilar to its translation
as a CCSγ process. The labelled transition systems of the π-
calculus and CCSγ are both of the type presented in Section IV,
i.e. with transition labels taken from Table II. There also the
associated barbs are defined. By Theorem 2 each π transition
P

τ−→ P ′ can be matched by a CCSγ transition T (P)
τ−→ Q

with T (P ′) •∼Q. Likewise, each CCSγ transition T (P)
τ−→Q

can be matched by a π transition P τ−→ P ′ with T (P ′) •∼ Q.
Moreover, if P has a barb x (or x̄) then so does T (P), and
vice versa. Here a π or CCSγ process P has a barb a ∈ Z∪Z
iff P ay−→ P ′ or P a(y)−−→ P ′ for some name y ∈ H and process
P ′. Transitions P Mx̄y−−−→ P ′, P Mx̄(y)−−−−→ P ′, P Mxy−−−→ P ′ or
P

Mx(y)−−−−→ P ′ with M 6= ε or x ∈ R generate no barbs.

X. THE IDEAS BEHIND THIS ENCODING

The above encoding combines seven ideas, each of which
appears to be necessary to achieve the desired result. Accord-
ingly, the translation could be described as the composition of
seven encodings, leading from πIM to CCSγ via six interme-
diate languages. Here a language comprises syntax as well as
semantics. Each of the intermediate languages has a labelled
transition system semantics where the labels are as described
in Section IV. Accordingly, at each step it is well-defined
whether strong barbed bisimilarity is preserved, and one can
show it is. These proofs go by induction on the derivation
of transitions, where the transitions with visible labels are
necessary steps even when one would only be interested in
the transitions with τ -labels. There are various orders in which
the seven steps can be taken. The seven steps are:

1) Moving from the late operational semantics (Table III) to
the early one (Table IV). This translation is syntactically
the identity function, but still its validity requires proof, as
the generated LTS changes. The proof amounts to show-
ing that the same barbed transition system is obtained
before and after the translation—see Section VI.

2) Moving from a regular operational semantics (Table IV)
to a symbolic one (Table VI). This step commutes with
the previous one.

3) Renaming the bound names of a process in such a way
that the result is clash-free [3], meaning that all bound
names are different and no name occurs both free and
bound. The trick is to do this in a compositional way. The
relabelling operators [`], [r] and [py] in the final encoding
stem from this step.

4) Eliminating the need for rule ALPHA in the operational
semantics. This works only for clash-free processes, as
generated by the previous step.

5) Dropping the restriction operators, while preserving
strong barbed bisimilarity. This eliminates the orange
parts of Table VI. For this purpose clash-freedom and
the elimination of ALPHA are necessary.

5Appendices 1 and 2 present two different proofs of Theorem 2—the first
shorter, but the second conceptually simpler, avoiding counterintuitive detours.

6) Changing all occurrences of substitutions into applica-
tions of CCS relabelling operators.

7) The previous six steps generate a language with a se-
mantics in the De Simone format. So from here on a
translation to MEIJE or aprACPR is known to be possible.
The last step, to CCSγ , involves changing the remaining
form of name-binding into an infinite sum.

πIM(N)

πIM(Z,R) π†IM(Z,R) CCSγ

Fig. 2. Translation from the π-calculus with implicit matching to CCSγ
The intermediate languages πIM(Z,R) and π†IM(Z,R) are not yet defined.

As indicated in Figure 2, my translation maps the π-calculus
with implicit matching to a subset of CCSγ . On that subset,
π-calculus behaviour can be replayed faithfully, at least up
to strong early congruence, the congruence closure of strong
barbed bisimilarity (cf. [11]). However, the interaction between
a translated π-calculus process and a CCSγ process outside
the image of the translation may be disturbing, and devoid
of good properties. Also, in case intermediate languages are
encountered on the way from πIM to CCSγ , which is just one
of the ways to prove my result, no guarantees are given on
the sanity of those languages outside the image of the source
language, i.e. on their behaviour outside the realm of clash-
free processes after Step 3 has been made.

XI. TRIGGERING

To include the general matching operator in the source lan-
guage I need to extend the target language with the triggering
operator s⇒P of MEIJE [1], [34]:

P
α−→ P ′

s⇒P sα−→ P ′

MEIJE features signals and actions; each signal s can be
“applied” to an action α, and doing so yields an action sα.
In this paper the actions are as in Table II, and a signal is an
expression [x=y] with x, y ∈ N ; application of a signal to an
action was defined in Section VI.

Triggering cannot be expressed in CCSγ , as rooted weak
bisimilarity [2], the weak congruence of [19], [20], is a
congruence for CCSγ but not for triggering. However, rooted
branching bisimilarity [12] is a congruence for triggering [9].

My translation from πIM to CCSγ can be extended into one
from the full π-calculus to CCStrig

γ by adding the clause

T ([x=y]P) := [x=y]⇒T (P).

Theorem 2 applies to this extended translation as well.

9

XII. EXAMPLES

Example 2: The outgoing transitions of x(y).ȳw are

x(y).ȳw

z̄1wxz1
0z̄1w

z̄2w
xz2

0z̄2w

...
z̄nw

xzn 0 .z̄nw

The same applies to its translation
∑
z∈H xz.

(
(ȳw.0)[z/y]

)
.

∑
z∈H xz.

(
(ȳw.0)[z/y]

) (ȳw.0)[z1/y]xz1
0[z1/y]

z̄1w

(ȳw.0)[z2/y]
xz2

0[z2/y]
z̄2w

...
(ȳw.0)[zn/y]xzn 0[zn/y]

z̄nw

Here the zi range over all names in N . Below I flatten such
a picture by drawing the arrows only for one name z, which
however still ranges over N .

Example 3: The transitions of P = x(y).ȳw | x̄u.u(v) are

(x(y).ȳw)|x̄u.u(v) z̄w|x̄u.u(v)
xz 0|x̄u.u(v)

z̄w

(x(y).ȳw)|u(v)

x̄u

z̄w|u(v)

x̄u
xz 0|u(v)

x̄u
z̄w

(x(y).ȳw)|0

uq

z̄w|0

uq

xz 0|0

uq
z̄w

ūw|u(v)

τ

τ
[z=u]τ

Here ūw|u(v) is the special case of z̄w|u(v) obtained by
taking z := u. It thus also has outgoing transitions labelled
ūw and uq, for q ∈ N .

Up to strong bisimilarity, the same transition system is
obtained by the translation T (P) of P in CCSγ .

T (P) =

(∑
z∈H

xz.((ȳw.0)[z/y])

)
[`]

∥∥∥∥∥
(
x̄u.
∑
z∈H

uz(0[z/v])

)
[r]

Since there are no restriction operators in this example, the
relabelling operators [`] and [r] are of no consequence. Here
T (P)

τ→(ȳw.0)[u/y][`]
∥∥∥∑
z∈H

uz(0[z/v])[r]
τ→0[u/y][`]‖0[w/v][r].

Example 4: Let Q = (νx)
(
x(y).ȳw | (νu)

(
x̄u.u(v)

))
. It

has no other transitions than

Q
τ−→ (νx)(νu)

(
ūw|u(v)

) τ−→ (νx)(νu)(0|0).

Its translation T (Q) into CCSγ is((∑
z∈H

xz.((ȳw.0)[z/y])

)
[`]

∥∥∥∥∥
(
x̄u.
∑
z∈H

uz(0[z/v])

)
[pu][r]

)
[px]

Up to strong bisimilarity, its transition system is the same as
that of P or T (P) from Example 3, except that in transition
labels the name u is renamed into the private name erp, and
x is renamed into the private name p. One has T (Q) •∼ Q,
since private names generate no barbs.

Example 5: The process (νx)(x(y)) | (νx)(x̄u) has no
outgoing transitions. Accordingly, its translation(∑

z∈H
xz.(0{z/y})

)
[px][`]

∥∥∥∥∥ (x̄u)[px][r]

only has outgoing transitions labelled `pz for z ∈ H and rpu.
Since the names `p and rp are private, these transitions generate
no barbs. In this example, the relabelling operators [`] and
[r] are essential. Without them, the mentioned transitions
would have complementary names, and communicate into a
τ -transition.

Example 6: Let P = (νy)
(
x̄y.ȳw

)
| x(u).u(v). Then

P
τ−→ (νy)

(
ȳw | y(v)

) τ−→ (νy)(0|0).

Now T
(
(νy)

(
x̄y.ȳw

))
= (x̄y.ȳw.0)[py] and

T (x(u).u(v)) =
∑
z∈H

xz.

((∑
z∈H

uz.(0[z/v])

)
[z/u]

)
.

Hence T
(
(νy)

(
x̄y.ȳw

))
[`]

x̄`p−−→ (ȳw.0)[py][`]. Since the
substitution r used in the relabelling operator [r] is surjective,
there is a name s that is mapped to `p, namely `p′. Considering
that T (x(u).u(v))

xs−→ T (u(v))[s/u],

T (P)
τ−→ (ȳw.0)[py][`]

∥∥∥∥∥
(∑
z∈H

(uz.0)[z/v]

)
[s/u][r]

These parallel components can perform actions p̀w and `pw,
synchronising into a τ -transition, and thereby mimicking the
behaviour of P .

Example 7: Let P = (νy)
(
x̄y.(νy)(ȳw)

)
| x(u).u(v). Then

P
τ−→ (νy)

(
(νy)(ȳw) | y(v)

)
6τ−→. One obtains

T (P)
τ−→ (ȳw.0)[py][py][`]

∥∥∥∥∥
(∑
z∈H

uz.(0[z/v])

)
[s/u][r]

for a name s that under [r] maps to `p. Now the left component
can do an action `epw, whereas the left component can merely
match with p̀w. No synchronisation is possible. This shows
why it is necessary that the relabelling [py] not only renames
y into p, but also p into ep.

Example 8: Let P = x(y).x(w).w̄u. Then

P |x̄v.x̄y.y(v)
τ−→ x(w).w̄u|x̄y.y(v)

τ−→ ȳu|y(v)
τ−→ 0|0.

Therefore, T (P |x̄v.x̄y.y(v)) must also be able to start with
three consecutive τ -transitions. Note that

T (P |x̄v.x̄y.y(v)) = T (P)[`]

∥∥∥∥∥
(
x̄v.x̄y.

∑
z∈H

yz(0[z/y])

)
[r]

with

T (P) =
∑
z∈H

xz.

((∑
z∈H

xz.((w̄u.0)[z/w])

)
[z/y]

)
.

10

The only way to obtain T (P |x̄v.x̄y.y(v))
τ−→ τ−→ τ−→ is when

T (P)
xv−→ Q

xy−→ ȳu−→. The CCSγ process Q must be(∑
z∈H

xz.((w̄u.0)[z/w])

)
[v/y].

Given the semantics of the CCS relabelling operator, one
must have

∑
z∈H xz.((w̄u.0)[z/w])

α−→, such that applying the
relabelling [v/y] to α yields xy. When simply taking [{v/y}]
for [v/y], that is, the relabelling that changes all occurrences
of the name y in a transition label into v, this is not possible.
This shows that a simplification of my translation without use
of the spare names S would not be valid.

Crucial for this example is that I only use surjective sub-
stitutions. [v/y] is an abbreviation of [{v/y}S]. Here {v/y}S
is a surjective substitution that not only renames y into
v, but also sends a spare name s to y. This allows me
to take α := xs. Consequently, in deriving the transition∑
z∈H xz.((w̄u.0)[z/w])

α−→, I choose z to be s, so that∑
z∈H

xz.((w̄u.0)[z/w])
xs−→ (w̄u.0)[s/w]

s̄u−→ 0[s/w].

Putting this in the scope of the relabelling [v/y] yields

Q
xy−→ (w̄u.0)[s/w][v/y]

ȳu−→ 0[s/w][v/y]

as desired, and the example works out.6

This example shows that spare names play a crucial role in
intermediate states of CCSγ-translations. In general this leads
to stacked relabellings from true names into spare ones and
back. Making sure that in the end one always ends up with
the right names calls for particularly careful proofs that do not
cut corners in the bookkeeping of names.

A last example showing a crucial feature of my translation
is discussed in Section XIV.

XIII. THE UNENCODABILITY OF CCS INTO π

Let f : A → A be a CCS relabelling function satisfying
f(xiy) = xi+1y. Here (xi)

∞
i=0 is an infinite sequence of

names, and A is as in Section IV. The CCS process A defined
by

A := x0y.0 + τ.(A[f])

satisfies ∃P. A τ−→
∗
P ∧ P↓xi for all i ≥ 0, i.e., it has

infinitely many weak barbs. It is easy to check that all weak
barbs of a π-calculus process Q must be free names of Q, of
which there are only finitely many. Consequently, there is no
π-calculus process Q with A •∼ Q, and hence no translation
of CCS in the π-calculus that is valid up to •∼.7

6This use of spare names solves the problem raised in [3, Footnote 5].
7In [28] it was already mentioned, by reference to Pugliese [personal

communication, 1997] that CCS relabelling operators cannot be encoded in
the π-calculus.

XIV. RELATED WORK

My translation from πIM to CCSγ is inspired by an ear-
lier translation E from a version of the π-calculus to CCS,
proposed by Banach & van Breugel [3]. The paper [3] takes
A := {〈x, y〉 | x, y ∈ N} for the visible CCS actions; action
〈x, y〉 corresponds with my xy, and its complement 〈x, y〉 with
my x̄y. On the fragment of π featuring inaction, prefixing,
choice and parallel composition, the encoding of [3] is given
by E(0) := 0

E(τ.P) := τ.E(P)

E(x̄y.P) := 〈x, y〉.E(P)
E(x(y).P) :=

∑
z∈N 〈x, z〉.

(
E(P)[z/y]

)
E(P | Q) := E(P) | E(Q)
E(P +Q) := E(P) + E(Q).

The main result of [3] (Theorem 5.3), stating the correctness of
this encoding, says that P ↔r Q iff E(P)↔r E(Q), for all π-
processes P and Q. Here↔r is strong reduction bisimilarity—
see Definition 7. In fact, replacing the call to Lemma 3.5 in
the proof of this theorem by a call to Lemma 3.4, they could
equally well have claimed the stronger result that P ↔r E(P)
for all π-processes P , i.e., that E is valid up to↔r.

This result contradicts my Theorem 1 and thus must be
flawed. Where it fails can be detected by pushing the coun-
terexample process P := x̄v | x(y).R with R := ȳu|v(w),
used in the proof of Theorem 1, through the encoding of [3].
I claim that while P τ−→ v̄u|v(w)

τ−→, its translation E(P)
cannot do two τ -steps. Hence P 6↔r E(P). Using a trivial
process Q such that P ↔r Q↔r E(Q), this also constitutes a
counterexample to [3, Theorem 5.3].

Note that E(R) = 〈y, u〉.0 |
∑
z∈N 〈v, z〉.(0[z/w]). This

process can perform the actions 〈y, u〉 as well as 〈v, u〉, but
no action τ , since y 6= v. Now

E(P) = 〈x, v〉.0 |
∑
z∈N
〈x, z〉.(E(R)[z/y]).

Its only τ -transition goes to 0 | E(R)[v/y]. This process can
perform the actions 〈v, u〉 as well as 〈v, u〉, but still no action
τ , since [v/y] is a CCS relabelling operator rather than a
substitution, and it is applied only after any synchronisations
between 〈y, u〉.0 and

∑
z∈N 〈v, z〉.(0[z/w]) are derived.

My own encoding T translates the processes P and R
essentially in the same way, but now there is a transition
T (R)

[y=v]τ−−−−→ (0‖0[u/w]). The renaming [v/y] turns this
synchronisation into a τ :

T (P)
τ−→ T (R)[v/y]

τ−→ (0‖0[u/w])[v/y].

The crucial innovation of my approach over [3] in this regard
is the switch from the early to the early symbolic semantics
of the π-calculus, combined with a switch from CCS as target
language to CCSγ .

In [31], Roscoe argues that CSP is at least as expressive as
the π-calculus. As evidence he present a translation from the
latter to the former. Roscoe does not provide a criterion for the
validity of such a translation, nor a result implying that a suit-
able criterion has been met. The following observations show

11

that his transition is not compositional, and that it is debatable
whether it preserves a reasonable semantic equivalence.
(1) Roscoe translates τ.P as tau→ CSP[P], where→ is CSP

action prefixing and CSP[P] is the translation of the π-
expression P . Here tau is a visible CSP action, that
is renamed into τ only later in the translation, when
combining prefixes into summations. Thus, on the level of
prefixes, the translation does not preserve (strong) barbed
bisimilarity or any other suitable semantic equivalence.
This problem disappears when we stop seeing prefixing
and choice as separate operators in the π-calculus, instead
using a guarded choice

∑
i∈I αi.Pi.

(2) Roscoe translates x(y).P into x?z → CSP[P{z/y}]. This
is not compositional, since the translation of x(y).P
does not merely call the translation of P as a building
block, but the result of applying a substitution to P .
Substitution is not a CSP operator; it is applied to the
π-expression P before translating it. While this mode of
translation has some elegance, it is not compositional,
and it remains questionable whether a suitable weaker
correctness criterion can be formulated that takes the
place of compositionality here.

(3) To deal with restriction, [31] works with translations
CSP[P]κ,σ , where two parameters κ and σ are passed
along that keep track of sets of fresh names to translate
restricted names into. The set of fresh names σ is par-
titioned in the translation of P |Q (page 388), such that
both sides get disjoint sets of fresh names to work with.
Although the idea is rather similar to the one used here,
the passing of the parameters makes the translation non-
compositional. In a compositional translation CSP[P |Q]
the arguments P and Q may appear in the translated
CSP process only in the shape CSP[P] and CSP[Q], not
CSP[P]κ,σ′ for new values of σ′.

As pointed out in [14], [29], even the most bizarre translations
can be found valid if one only imposes requirements based
on semantic equivalence, and not compositionality. Roscoe’s
translation is actually rather elegant. However, we do not
have a decent criterion to say to what extent it is a valid
translation. The expressiveness community strongly values
compositionality as a criterion, and this attribute is the novelty
brought in by my translation.

XV. CONCLUSION

This paper exhibited a compositional translation from the
π-calculus to CCSγ extended with triggering that is valid up
to strong barbed bisimilarity, thereby showing that the latter
language is at least as expressive as the former. Triggering
is not needed when restricting to the π-calculus with implicit
matching (as used for instance in [33]). Conversely, I observed
that CCS (and thus certainly CCSγ) cannot be encoded in the
π-calculus. I also showed that the upgrade of CCS to CCSγ
is necessary to capture the expressiveness of the π-calculus.

A consequence of this work is that any system specification
or verification that is carried out in the setting of the π-calculus
can be replayed in CCSγ . The main idea here is to replace the

names that are kept private in the π-calculus by means of the
restriction operator, by names that are kept private by means
of a careful bookkeeping ensuring that the same private name
is never used twice. Of course this in no way suggests that
it would be preferable to replay π-calculus specifications or
verifications in CCSγ .

My translation encodes the restriction operator (νy) from
the π-calculus by renaming y into a “private name”. Crucial
for this approach is that private names generate no barbs, in
contrast with standard approaches where all names generate
barbs. This use of private names is part of the definition of
strong barbed bisimilarity •∼ on my chosen instance of CCSγ ,
and justified since that definition is custom made in the present
paper. The use of private names can be avoided by placing an
outermost CCS restriction operator around any translated π-
process. This, however, would violate the compositionality of
my translation.

The use of infinite summation in my encoding might be
considered a serious drawback. However, when sticking to a
countable set of π-calculus names, only countable summation
is needed, which, as shown in [8], can be eliminated in favour
of unguarded recursion with infinitely many recursion equa-
tions. As the original presentation of the π-calculus already
allows unguarded recursion with infinitely many recursion
equations [24] the latter can not reasonably be forbidden in
the target language of the translation. Still, it is an interesting
question whether infinite sums or infinite sets of recursion
equations can be avoided in the target language if we rule
them out in the source language. My conjecture is that this is
possible, but at the expense of further upgrading CCSγ , say
to aprACPτR. This would however require work that goes well
beyond what is presented here.

An alternative approach is to use a version of CCS featuring
a choice quantifier [17] instead of infinitary summation, a con-
struct that looks remarkably like an infinite sum, but is as finite
as any quantifier from predicate logic. A choice quantifier
binds a data variable z (here ranging over names) to a single
process expression featuring z. The present application would
need a function from names to CCS relabelling operators.
When using this approach, the size of translated expressions
becomes linear in the size of the originals.

It could be argued that choice quantification is a step
towards mobility. On the other hand, if mobility is associated
more with scope extrusion than with name binding itself, one
could classify CCSγ with choice quantification as an immobile
process algebra. A form of choice quantification is standard
in mCRL2 [15], which is often regarded “immobile”.

My translation from π to CCSγ has a lot in common with
the attempted translation of π to CCS in [3]. That one is based
on the early operational semantics of CCS, rather than the
early symbolic one used here. As a consequence, substitutions
there cannot be eliminated in favour of relabelling operators.

A crucial step in my translation yields an intermediate
language with an operational semantics in De Simone format.
In [7] another representation of the π-calculus is given through
an operational semantics in the De Simone format. It uses

12

a different way of dealing with substitutions. This type of
semantics could be an alternative stepping stone in an encoding
from the π-calculus into CCSγ .

In [28] Palamidessi showed that there exists no uniform
encoding of the π-calculus into a variant of CCS. Here uniform
means that T (P |Q) = T (P)|T (Q). This does not contra-
dict my result in any way, as my encoding is not uniform.
Palamidessi [28] finds uniformity a reasonable criterion for
encodings, because it guarantees that the translation maintains
the degree of distribution of the system. In [30], however, it is
argued that it is possible to maintain the degree of distribution
of a system upon translation without requiring uniformity. In
fact, the translation offered here is a good example of one that
is not uniform, yet maintains the degree of distribution.

Gorla [13] proposes five criteria for valid encodings, and
shows that there exists no valid encoding of the π-calculus
(even its asynchronous fragment) into CCS. Gorla’s proof
heavily relies on the criterion of name invariance imposed
on valid encodings. It requires for P ∈ Tπ and an injective
substitution σ that T (Pσ) = T (P)σ′ for some substitution
σ′ that is obtained from σ through a renaming policy. Fur-
thermore, the renaming policy is such that if dom(σ) is finite,
then also dom(σ′) is finite. This latter requirement is not met
by the encoding presented here, for a single name x ∈ N
corresponds with an infinite set of actions xy, the “names” of
CCS, and a substitution that merely renames x into z must
rename each action xy into zy at the CCS end, thus violating
the finiteness of dom(σ′).

My encoding also violates Gorla’s compositionality require-
ment, on grounds that T (P) appears multiple times (actually,
infinitely many) in the translation of Mx(y).P . It is however
compositional by the definition in [10] and elsewhere. My
encoding satisfies all other criteria of [13] (operational corre-
spondence, divergence reflection and success sensitiveness).

REFERENCES

[1] D. Austry & G. Boudol (1984): Algèbre de processus et synchronisa-
tions. TCS 30(1), pp. 91–131, doi:10.1016/0304-3975(84)90067-7.

[2] J.C.M. Baeten & W.P. Weijland (1990): Process Algebra. Cambridge
Tracts in Theoretical Computer Science 18, Cambridge University Press,
doi:10.1017/CBO9780511624193.

[3] R. Banach & F. van Breugel (1998): Mobility and Modularity: expressing
π-calculus in CCS. Preprint. Available at http://www.cs.man.ac.uk/
∼banach/some.pubs/Pi.CCS.ext.abs.pdf.

[4] J.A. Bergstra & J.W. Klop (1986): Algebra of communicating processes.
In: Mathematics and Computer Science, CWI Monograph 1, North-
Holland, pp. 89–138.

[5] G. Boudol (1992): Asynchrony and the π-calculus (Note). Tech. Rep.
1702, INRIA.

[6] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of
communicating sequential processes. Journal of the ACM 31(3), pp.
560–599, doi:10.1145/828.833.

[7] G.L. Ferrari, U. Montanari & P. Quaglia (1996): A Pi-Calculus with
Explicit Substitutions. Theoretical Computer Science 168(1), pp. 53–
103, doi:10.1016/S0304-3975(96)00063-1.

[8] R.J. van Glabbeek (1994): On the expressiveness of ACP (extended
abstract). In: Proc. ACP’94, Workshops in Computing, Springer, pp.
188–217, doi:10.1007/978-1-4471-2120-6 8.

[9] R.J. van Glabbeek (2011): On Cool Congruence Formats for Weak
Bisimulations. Theoretical Computer Science 412(28), pp. 3283–3302,
doi:10.1016/j.tcs.2011.02.036.

[10] R.J. van Glabbeek (2012): Musings on Encodings and Expressiveness.
In: Proc. EXPRESS/SOS’12, EPTCS 89, Open Publishing Association,
pp. 81–98, doi:10.4204/EPTCS.89.7.

[11] R.J. van Glabbeek (2018): A Theory of Encodings and Expressive-
ness. In: Proc. FoSSaCS’18, LNCS 10803, Springer, pp. 183–202,
doi:10.1007/978-3-319-89366-2 10.

[12] R.J. van Glabbeek & W.P. Weijland (1996): Branching Time and
Abstraction in Bisimulation Semantics. Journal of the ACM 43(3), pp.
555–600, doi:10.1145/233551.233556.

[13] D. Gorla (2010): Towards a unified approach to encodability and
separation results for process calculi. Information and Computation
208(9), pp. 1031–1053, doi:10.1016/j.ic.2010.05.002.

[14] D. Gorla & U. Nestmann (2016): Full abstraction for expressiveness:
history, myths and facts. Mathematical Structures in Computer Science
26(4), pp. 639–654, doi:10.1017/S0960129514000279.

[15] J.F. Groote & M.R. Mousavi (2014): Modeling and Analysis of Com-
municating Systems. MIT Press.

[16] M. Hennessy & H. Lin (1995): Symbolic Bisimulations. Theoretical
Comp. Sc. 138(2), pp. 353–389, doi:10.1016/0304-3975(94)00172-F.

[17] B. Luttik (2003): On the expressiveness of choice quantification. Ann.
Pure Appl. Logic 121, pp. 39–87, doi:10.1016/S0168-0072(02)00082-9.

[18] R. Milner (1983): Calculi for synchrony and asynchrony. Theoretical
Comp. Sc. 25, pp. 267–310, doi:10.1016/0304-3975(83)90114-7.

[19] R. Milner (1989): Communication and Concurrency. Prentice Hall,
Englewood Cliffs.

[20] R. Milner (1990): Operational and algebraic semantics of concurrent
processes. In: Handbook of Theoretical Computer Science, chapter 19,
Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242.

[21] R. Milner (1992): Functions as Processes. Mathematical Structures in
Computer Science 2(2), pp. 119–141, doi:10.1017/S0960129500001407.

[22] R. Milner (1999): Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press.

[23] R. Milner, J. Parrow & D. Walker (1992): A Calculus of Mobile
Processes, I. I&C 100, pp. 1–40, doi:10.1016/0890-5401(92)90008-4.

[24] R. Milner, J. Parrow & D. Walker (1992): A Calculus of Mobile
Processes, II. I&C 100, pp. 41–77, doi:10.1016/0890-5401(92)90009-5.

[25] R. Milner, J. Parrow & D. Walker (1993): Modal Logics for Mobile
Processes. TCS 114, pp. 149–171, doi:10.1016/0304-3975(93)90156-N.

[26] R. Milner & D. Sangiorgi (1992): Barbed Bisimulation. In: Proc.
ICALP’92, LNCS 623, Springer, pp. 685–695, doi:10.1007/3-540-
55719-9 114.

[27] U. Nestmann (2006): Welcome to the Jungle: A Subjective Guide to
Mobile Process Calculi. In: Proc. CONCUR’06, LNCS 4137, Springer,
pp. 52–63, doi:10.1007/11817949 4.

[28] C. Palamidessi (2003): Comparing The Expressive Power Of The Syn-
chronous And Asynchronous Pi-Calculi. Mathematical Structures in
Comp. Science 13(5), pp. 685–719, doi:10.1017/S0960129503004043.

[29] J. Parrow (2016): General conditions for full abstraction. Math. Struct.
in Comp. Sc. 26(4), pp. 655–657, doi:10.1017/S0960129514000280.

[30] K. Peters, U. Nestmann & U. Goltz (2013): On Distributability in
Process Calculi. In: Proc. ESOP’13, LNCS 7792, Springer, pp. 310–329,
doi:10.1007/978-3-642-37036-6 18.

[31] A.W. Roscoe (2010): CSP is Expressive Enough for π. In: Reflections
on the Work of C.A.R. Hoare, Springer, pp. 371–404, doi:10.1007/978-
1-84882-912-1 16.

[32] D. Sangiorgi (1996): A Theory of Bisimulation for the pi-Calculus. Acta
Informatica 33(1), pp. 69–97, doi:10.1007/s002360050036.

[33] D. Sangiorgi & D. Walker (2001): The π-calculus: A Theory of Mobile
Processes. Cambridge University Press.

[34] R. de Simone (1985): Higher-level synchronising devices in MEIJE-
SCCS. TCS 37, pp. 245–267, doi:10.1016/0304-3975(85)90093-3.

13

http://dx.doi.org/10.1016/0304-3975(84)90067-7
http://dx.doi.org/10.1017/CBO9780511624193
http://www.cs.man.ac.uk/~banach/some.pubs/Pi.CCS.ext.abs.pdf
http://www.cs.man.ac.uk/~banach/some.pubs/Pi.CCS.ext.abs.pdf
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1016/S0304-3975(96)00063-1
http://dx.doi.org/10.1007/978-1-4471-2120-6_8
http://dx.doi.org/10.1016/j.tcs.2011.02.036
http://dx.doi.org/10.4204/EPTCS.89.7
http://dx.doi.org/10.1007/978-3-319-89366-2_10
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1017/S0960129514000279
http://dx.doi.org/10.1016/0304-3975(94)00172-F
http://dx.doi.org/10.1016/S0168-0072(02)00082-9
http://dx.doi.org/10.1016/0304-3975(83)90114-7
http://dx.doi.org/10.1017/S0960129500001407
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1016/0890-5401(92)90009-5
http://dx.doi.org/10.1016/0304-3975(93)90156-N
http://dx.doi.org/10.1007/3-540-55719-9_114
http://dx.doi.org/10.1007/3-540-55719-9_114
http://dx.doi.org/10.1007/11817949_4
http://dx.doi.org/10.1017/S0960129503004043
http://dx.doi.org/10.1017/S0960129514000280
http://dx.doi.org/10.1007/978-3-642-37036-6_18
http://dx.doi.org/10.1007/978-1-84882-912-1_16
http://dx.doi.org/10.1007/978-1-84882-912-1_16
http://dx.doi.org/10.1007/s002360050036
http://dx.doi.org/10.1016/0304-3975(85)90093-3

πL(N) πE(N)
id

πES(N)
id

πES(Z,R)

T r
cf

id

π 6αES(Z,R)

Tν

π†ES(Z,R)

id

π‡ES(Z,R)

Tcfν

Tγ

CCStrig
γ

Fig. 3. Translation from the π-calculus to CCStrig
γ

APPENDIX 1

As indicated in Figure 3, my translation from π to CCStrig
γ

proceeds in seven steps. Section IX presents a translation
in one step: essentially the composition of these constituent
translations. Its decomposition in Figure 3 describes both how
I found it, and how I prove its validity.

Each of the eight languages in Figure 3 comprises syntax,
determining what are the valid expressions or processes, a
structural operational semantics generating an LTS, and a BTS
extracted from the LTS in the way described in Section IV.
The subscript L, E or ES in Figure 3 tells whether I mean
the π-calculus equipped with the late, the early, or the early
symbolic semantics. The argument N denotes the set of names
employed by this version of the π-calculus. In step 3 the set
of names is extended from N to Z] R, where N ⊂ Z . I
write Z,R instead of Z]R to indicate that only the names
in Z—the public ones—generate barbs, and to impose a mild
restriction on which names to allow within defining equations
of agent identifiers. The superscript 6α indicates that rule
ALPHA is deleted from the operational semantics, and † that
moreover the restriction operator is dropped. The superscript
‡ indicates a variant of the calculus to which relabelling
operators have been added, and where the substitutions in rules
EARLY-INPUT and IDE are replaced by relabelling operators.
The interior white ellipses denote the classes of clash-free
processes, defined in Sections A and E.

My translation starts from the π-calculus πL(N) with the
late operational semantics, as defined in [24]. The first step
is the identity mapping to πE(N), the calculus with the same
syntax but the early operational semantics. The validity of this
translation step is the statement that each πL(N)-expression
P is strongly barbed bisimilar with the same expression P ,
but now seen as a state in the LTS generated by the early
operational semantics. As remarked in Section VI, this is an
immediate consequence of Lemmas 1 and 2.

The second translation step likewise goes to the π-calculus
with the early symbolic semantics. Its validity has been
concluded at the end of Section VI.

Skipping step 3 for the moment, Section B describes the
fourth translation step by studying the identity translation from
πES(Z,R) to π6αES(Z,R). As shown by Example 1, rule
ALPHA is not redundant in the early (symbolic) semantics,
and thus this step in not valid in general. As a consequence,
π6αES(Z,R) is a weird calculus, that no doubt is unsuitable
for many practical purposes. Nevertheless, Section B shows
that this translation step is valid on the subclass of clash-

free processes, defined in Section A. That is, each clash-free
process P in πES(Z,R) is strongly barbed bisimilar to the
same process P seen as a state in π6αES(Z,R).

Step 5, recorded in Section C, eliminates the restriction
operator from the language by translating (sub)expressions
(νz)P into P . This step does not preserve •∼ for the language
as a whole, but, since there are no R-barbs, it does so on the
sublanguage that arises as the image of the previous translation
steps, namely on the clash-free processes in π6αES(Z,R).

Section D shows that the substitutions that occur in the
operational semantics of Table VI may be replaced by rela-
belling operators, while preserving strong barbed bisimilarity
on clash-free processes. This proves the validity of Step 6, the
identity translation from π†ES(Z,R) to π‡ES(Z,R) After this
step, the resulting language is in De Simone format. Moreover,
as shown in Section G, it is easily translated into CCStrig

γ .
To compose the above fourth step with the first two steps

of my translation I need an intermediate step that maps
each process P in πES(N) to a clash-free process. A first
proposal T r

cf for such a translation appears in Section E. It
replicates agent identifiers and their defining equations—this
surely preserves •∼—and renames bound names by giving all
binders (νy) a fresh name—this preserves ≡ and thus certainly
•∼. Due to the introduction of fresh names, the target of the
translation is πES(Z]R) rather than πES(N).

Even though T r
cf preserves •∼, I have to reject it as a valid

translation. The main objection is that it employs operations
on processes—ruthless substitutions—that are not syntactic
operators of the target language. Thereby it fails the criterion
of compositionality, even if the ruthless substitutions are
applied in a compositional manner. In addition, it creates an
infinite amount of replicated agent identifiers, whereas I strive
not to increase the number of agent identifiers found in the
source language.

To overcome these problems, Section F studies the com-
posed translation Tν ◦T r

cf from πES(N) to π‡ES(Z,R), and
shows that in this translation the applications of ruthless substi-
tutions can be replaced by applications of relabelling operators.
In fact, the latter can be seen as syntactic counterparts of the
ruthless substitutions. This replacement preserves the validity
of the translation. This change also makes the replication of
agent identifiers unnecessary, and thus solves both objections
against T r

cf .
Section H shows that the composed translation so obtained

is equivalent to the one presented in Section IX.

14

A different proof, which first moves from substitutions to
relabellings and only then eliminates restriction, is presented
in Appendix 2.

A. Clash-free processes

In this section I consider the π-calculus π(Z]R) where the
set of available names is the disjoint union of sets Z and R of
public and private names. For the purposes of this section it
doesn’t matter whether the calculus is equipped with the late,
the early, the late symbolic or the early symbolic operational
semantics.

A process P in π(Z] R) is well-typed w.r.t. the partition
(Z,R) if for each binder x(z) occurring in P one has z ∈Z ,
and for each binder (νy) occurring in P one has z ∈ R.
Let π(Z,R) be the variant of π(Z]R) in which all defining
equations A(~x)

def
= P satisfy the restriction that P is well-

typed and xi∈Z for i = 1, . . . , n. In addition, when extracting
a BTS from the LTS generated by this version of the π-
calculus, only names in Z generate barbs.

In the setting of π(Z,R) I sharpen the definition of Pσ
from Section V, the application of a substitution σ to a process
P . Namely, when choosing a name z /∈ fn((νy)P)∪dom(σ)∪
range(σ) to replace a bound name y, one always picks z ∈ Z
if y ∈ Z and z ∈ R if y ∈ R.

In [3] a process P is called clash-free if all occurrences of
binders x(y) and (νy) use a different name y and no name
occurs both free and bound. Below I employ a more liberal
version of this notion by requiring this only for binders (νy),
and by allowing the arguments of a +-operator to share bound
names. At the same time I sharpen the concept by including
as binders of P not only those occurring in P , but also those
occurring in the body Q of a defining equation A(~x)

def
= Q

for which A, directly or indirectly, occurs in P . Furthermore,
I require clash-free processes to be well-typed.

Definition 9: Let h(P), the hereditary subprocesses of P ∈
Tπ , be the smallest set of processes containing P such that
• if Q∈h(P) and R is a subterm of Q then R∈h(P), and
• if A(~y) ∈ h(P) and A(~x)

def
= Q then Q ∈ h(P).

Let RN(P), the restriction-bound names of P , be the set of
all names y such that a process (νy)Q occurs in h(P).

Observation 1: If P is a well-typed π(Z,R) process then
RN(P) ⊆ R.

Definition 10: A π(Z,R) process P is clash-free8 if
1) P is well-typed,
2) for each (νy)Q ∈ h(P) one has y /∈ RN(Q),
3) for each Q|R ∈ h(P) one has RN(Q)∩RN(R) = ∅, and
4) fn(P) ∩ RN(P) = ∅.

A substitution σ is clash-free on a well-typed π(Z,R) process
P if RN(P) ∩ (dom(σ) ∪ range(σ)) = ∅. In that case, Pσ,
defined in Section V, does not involve renaming of bound
names from R.

8The concept defined here ought to be called “restriction-clash-free”, but is
abbreviated “clash-free” in Sections A–C. In Section E a more general notion
of “full” clash-freedom will be defined.

Observation 2: If P is clash-free and σ is clash-free on P ,
then Pσ is clash-free and RN(Pσ) = RN(P).

Lemma 5: If A(~y) is clash-free and A(~x)
def
= P then the

substitution {~y/~x} from rule IDE is clash-free on P .

Proof. Since xi∈Z for i = 1, . . . , n, one has xi /∈R⊇RN(P).
Since yi ∈ fn(A(~y)) one has yi /∈ RN(A(~y)) = RN(P).

Lemma 6: If Mx(y).P is clash-free and z /∈ RN(Mx(y).P)
then substitution {z/y} from EARLY-INPUT is clash-free on P .

Proof. One has y ∈ Z , so y /∈ RN(P) ⊆ R, and z /∈ RN(P)
because RN(P) = RN(Mx(y).P).

Definition 11: Let � ⊆ Tπ × Tπ be the smallest preorder
such that P +Q� P , P +Q� Q, P |Q� P , P |Q� Q,
[x=y]P � P , (νy)P � P and A(~y) � P{~y/~x} when
A(~x)

def
= P .

The relation �, like in Definition 8, connects the left-hand
sides of conclusions in operational rules with the left-hand
sides of the corresponding premises.

Lemma 7: If P � Q and P is clash-free, then so is Q.

Proof. Only the last two cases are nontrivial. For (νy)P�P
use: fn(P)⊆ fn((νy)P)∪{y} and RN(P)⊆ RN((νy)P)\{y}.

Suppose A(~y) is clash-free and A(~x)
def
= P . By definition

P is clash-free. Apply Lemma 5 and Observation 2.

B. The elimination of ALPHA

As a consequence of Lemma 1, up to late congruence,
rule ALPHA is redundant in the late operational semantics
of the π-calculus, and hence not included in Table III. As
shown by Example 1, ALPHA is not redundant in the early
operational semantics, or in the early symbolic one. However,
this section establishes a few basic properties of the early
(symbolic) operational semantics, leading to the conclusion
that restricted to the class of clash-free π(Z,R) processes,
ALPHA is redundant up to •∼. These results apply to the early
as well as the early symbolic semantics.

Let P α−→• Q denote that the transition P
α−→ Q is

derivable from the rules of Table VI without using rule ALPHA.

Lemma 8: Let P α−→ Q. If α = Mx̄y or Mτ then n(α) ⊆
fn(P). If α = Mxy or α = Mx̄(y) then n(M)∪{x} ⊆ fn(P).

Proof. Trivial inductions on the inference of P α−→ Q.

Lemma 9: If P α−→ Q then fn(Q) ⊆ fn(P) ∪ n(α).

Proof. A trivial induction on the inference of P α−→ Q.

Lemma 10: If P Mx̄(y)−−−−→• Q then y ∈ RN(P).

Proof. A trivial induction on the inference of P Mx̄(y)−−−−→ Q.

Lemma 11: If R is clash-free, α is not of the form Mxz
with z ∈ RN(R), and R

α−→• R′, then R′ is clash-free and
RN(R′) ⊆ RN(R). Moreover, bn(α) ∩ RN(R′) = ∅.

Proof. With induction on the derivation of R α−→• R′.

15

• The cases that R α−→•R′ is derived by rule TAU or EARLY-
OUTPUT are trivial, using that R′ is a subexpression of R.

• Suppose R α−→•R′ is derived by EARLY-INPUT. Then R=
Mx(y).P , α=Mxz with z /∈ RN(R) and R′ = P{z/y}.
Since fn(P) ⊆ fn(R) ∪ {y}, RN(P) = RN(R) and Z 3
y /∈ RN(P), the process P is clash-free. By Lemma 6, the
substitution {z/y} is clash-free on P . Thus R′ = P{z/y}
is clash-free by Observation 2, and RN(R′) = RN(R).

• The cases that R α−→• R′ is derived by rule SUM, IDE or
SYMB-MATCH are trivial.

• Suppose R α−→• R′ is derived by PAR. Then R = P |Q,
P

α−→• P ′, R′ = P ′|Q, and if α=Mxz then z /∈ RN(P).
By Lemma 7, P and Q are clash free. So by induction
P ′ is clash-free and RN(P ′) ⊆ RN(P). Moreover,
bn(α) ∩ RN(P ′) = ∅. If z ∈ bn(α) then z ∈ RN(P)
by Lemma 10 and thus z /∈ RN(Q) by the clash-freedom
of R. Hence z /∈ RN(R′). Moreover RN(R′) ⊆ RN(R).
I still need to check that R′ is clash-free.
Since RN(P) ∩ RN(Q) = ∅, also RN(P ′) ∩ RN(Q) = ∅.
It remains to establish that fn(P ′|Q) ∩ RN(P ′|Q) = ∅.
So suppose y ∈ fn(P ′|Q). In case y ∈ fn(P |Q) then
y /∈ RN(P |Q) ⊇ RN(P ′|Q) by the clash-freedom of R.
Hence, in view of Lemmas 8 and 9, the only remaining
cases are that α has the shape Mxy or Mx̄(y), and
y ∈ fn(P ′). In the first case the assumption made in
Lemma 11 yields y /∈ RN(R) ⊇ RN(P ′|Q). In the latter
case y ∈ RN(P) by Lemma 10, so y /∈ RN(Q) by the
clash-freedom of R, and y /∈ RN(P ′) as P ′ is clash-free.

• Suppose R α−→• R′ is derived by E-S-COM. Then R =
P |Q, α = [x=v]MNτ , P Mx̄y−−−→• P ′, Q Nvy−−→• Q′ and
R′ = P ′|Q′. By Lemma 8, y ∈ fn(P), so y /∈ RN(Q)
by the clash-freedom of R. By Lemma 7, P and Q are
clash free. Hence, by induction, P ′ and Q′ are clash-free,
RN(P ′) ⊆ RN(P) and RN(Q′) ⊆ RN(Q).
Since RN(P)∩RN(Q) = ∅, also RN(P ′)∩RN(Q′) = ∅.
Since y ∈ fn(P), fn(P ′) ∪ fn(Q′) ⊆ fn(P) ∪ fn(Q) by
Lemmas 8 and 9. Thus fn(R′) ∩ RN(R′) = ∅ by the
clash-freedom of R, so R′ is clash-free.

• Suppose R α−→• R′ is derived by E-S-CLOSE. Then R =
P |Q, α = [x=v]MNτ , P Mx̄(z)−−−−→• P ′, Q Nvz−−→• Q′, R′=
(νz)(P ′|Q′) and z /∈ fn(Q). By Lemma 10, z ∈ RN(P),
so z /∈ RN(Q) by the clash-freedom of R. By Lemma 7,
P and Q are clash free. Hence, by induction, P ′ and Q′

are clash-free, RN(P ′) ⊆ RN(P) and RN(Q′) ⊆ RN(Q).
Moreover, z /∈RN(P ′). As z∈RN(P)⊆RN(R), it follows
that RN(R′) ⊆ RN(R).
Since RN(P)∩RN(Q) = ∅, also RN(P ′)∩RN(Q′) = ∅.
Since fn(R′) = (fn(P ′)∪fn(Q′))\{z} ⊆ fn(P)∪fn(Q) =
fn(R) by Lemmas 8 and 9, fn(R′)∩ RN(R′) = ∅ by the
clash-freedom of R. Finally, as z /∈ RN(Q) ⊇ RN(Q′)
and z /∈ RN(P ′), z /∈ RN(P ′|Q′). Hence R′ is clash-free.

• Suppose R α−→• R′ is derived by RES. Then R = (νy)P ,
R′ = (νy)P ′, and P

α−→• P ′. Moreover, y /∈ n(α). By
Lemma 7, P is clash-free. If α is of the form Mxz then
z 6= y and thus z /∈ RN(P). Hence, by induction, P ′ is

clash-free, RN(P ′) ⊆ RN(P) and bn(α)∩RN(P ′) = ∅. It
follows that RN(R′) ⊆ RN(R) and bn(α)∩RN(R′) = ∅.
Since R is clash-free, y /∈ RN(P) ⊇ RN(P ′). It remains
to establish that fn(R′) ∩ RN(R′) = ∅. So suppose w ∈
fn(R′) ⊆ fn(P ′). Then w 6= y. Moreover, w /∈ RN(P ′)
by the clash-freedom of P ′. Hence w /∈ RN(R′).

• Finally, suppose R
α−→• R′ is derived by SYMB-OPEN.

Then R=(νy)P , α=Mx̄(y) and P Mx̄y−−−→•R′. Moreover,
y 6=x and y /∈n(M). By Lemma 7, P is clash-free. Hence,
by induction, R′ is clash-free and RN(R′) ⊆ RN(P) ⊆
RN(R). Since R is clash-free, y /∈ RN(P) ⊇ RN(R′).

Lemma 12: If P Mxy−−−→• Q with y /∈ fn(P) and z /∈ RN(P)

then P Mxz−−−→• P ′ for some P ′ with P ′ ≡ Q{z/y}.

Proof. A trivial induction on the inference of P Mxy−−−→ Q.

Let χ be an inference of P α−→ Q. Then bnχ(P) is the union
of all bn(P ′) for P ′ β−→ Q′ a transition that appears in χ.

Lemma 13: Let χ be an inference of P Mxy−−−→ Q with y /∈
fn(P) and z /∈bnχ(P), then P Mxz−−−→ P ′ for some P ′≡Q{z/y}.
Moreover, P Mxz−−−→ P ′ has an inference no deeper than χ.

Proof. A trivial induction on χ.

Given a substitution σ:Z]R⇀Z]R, let σ[y 7→ z] denote
the substitution with dom(σ[y 7→ z]) = dom(σ)∪{y}, defined
by σ[y 7→ z](y) := z and σ[y 7→ z](x) := σ(x) when x 6= y.

Observation 3: If w /∈ fn((νy)P)∪dom(σ)∪range(σ) then
Pσ[y 7→ z] ≡ P{w/y}σ{z/w}.

Recall that ((νy)P)σ := (νw)(P{w/y}σ) for some w /∈
fn((νy)P)∪dom(σ)∪range(σ). Thus if U ≡ ((νy)P)σ, then,
w.l.o.g. α-converting the topmost name w first, U = (νz)Q
with Q ≡ P{w/y}σ{z/w}. By Observation 3 Q ≡ Pσ[y 7→ z].
Here z /∈ fn((νw)(P{w/y}σ)) = fn(((νy)P)σ). Likewise, if
U≡(Mx(y).P)σ then U=M [σ]x[σ](z).Q with Q≡Pσ[y 7→z].

Corollary 1: If z /∈ fn(((νy)P)σ)
then (νz)(Pσ[y 7→ z])≡ ((νy)P)σ.

In the next lemma I am mostly interested in the case
dom(σ) = ∅, but the general case is needed to deal in-
ductively with the cases RES and SYMB-OPEN. The condition
fn(α[σ]) ∩ RN(U) = ∅ is needed for case RES only.

Lemma 14: Suppose R α−→R′, U is clash-free, σ is a finite
substitution with fn(α[σ]) ∩ RN(U) = ∅ and U ≡ Rσ.

(a) If bn(α) = ∅ then ∃U ′. U α[σ]−−→• U ′ ≡ R′σ.
(b) If α=Mx̄(y) then ∃z, U ′. U M [σ]x̄[σ](z)−−−−−−−→•U ′≡R′σ[y 7→z].

Proof. By induction on the depth of the inference of R α−→R′.
Ad (a):

• The cases that R α−→ R′ is derived by rule TAU or OUTPUT

are trivial.
• Suppose R α−→ R′ is derived by EARLY-INPUT. Then R =
Mx(y).P , α = Mxz and R′ = P{z/y}. Since U ≡ Rσ,
U = M [σ]x[σ](w).Q with w /∈ fn(((νy)P)σ) and

16

Q ≡ Pσ[y 7→ w]. By application of rule EARLY-INPUT,
U

α[σ]−−→• Q{z[σ]/w}. Moreover,

Q{z[σ]/w} ≡ Pσ[y 7→ w]{z[σ]/w} ≡ P{z/y}σ = R′σ.

• The cases that R α−→ R′ is derived by rule SUM, SYMB-
MATCH, PAR or ALPHA are trivial.

• Suppose R α−→ R′ is derived by IDE. Then R = A(~y),
A(~x)

def
= P and P{~y/~x} α−→ R′. Furthermore, U = Rσ.

By Lemma 7 P{~y[σ]/~x}
(
≡ P{~y/~x}σ

)
is clash-free. By

Lemma 5 and Observation 2, RN(P{~y[σ]/~x})= RN(P)=
RN(A(~y)) = RN(U), so fn(α[σ]) ∩ RN(P{~y[σ]/~x}) = ∅.
Thus, by induction, P{~y[σ]/~x} α−→• U ′ ≡ R′σ. By rule
IDE U

α−→• U ′.
• Suppose R

α−→ R′ is derived by E-S-COM. Then R =
P |Q, α = [x=v]MNτ , P Mx̄y−−−→ P ′, Q Nvy−−→ Q′ and R′=
P ′|Q′. Moreover, U =V |W with V ≡Pσ and W ≡Qσ.
Since y ∈ fn(P) by Lemma 8, y[σ] ∈ fn(V) ⊆ fn(U). As
U is clash-free, y[σ] /∈ RN(U) ⊇ RN(V)∪RN(W). Thus
fn((Mx̄y)[σ]) ∩ RN(V) = fn((Nvy)[σ]) ∩ RN(W) = ∅.
So, by induction, ∃V ′. V Mx̄y−−−→• V ′ ≡ P ′σ as well as
∃W ′. W Nvy−−→• W ′ ≡ Q′σ. Therefore, applying E-S-
COM, U [x=v]MNτ−−−−−−−→ V ′|W ′ ≡ P ′σ|Q′σ = R′σ.

• Suppose R α−→ R′ is derived by RES. Then R = (νy)P ,
R′ = (νy)P ′, and P

α−→ P ′ is obtained by a shallower
inference. Moreover, y /∈ n(α). Since U ≡ Rσ, U =
(νz)Q with z /∈ fn((νy)P)σ) and Q ≡ Pσ[y 7→ z]. So
fn(α[σ]) ∩ (RN(Q) ∪ {z}) = ∅ and α[σ[y 7→ z]] = α[σ].
By Lemma 7 process Q is clash-free. Thus, by induction,
∃Q′.Q α[σ]−−→• Q′ ≡ P ′σ[y 7→ z]. Hence, as z /∈ n(α[σ]),
U

α−→• (νz)Q′ by RES. Since z /∈ fn(((νy)P)σ) and
z /∈ n(α[σ]), z /∈fn(((νy)P ′)σ) by Lemma 9. [Namely, if
w ∈ fn(((νy)P ′)σ) then w = v[σ] with v ∈ fn(P ′)\{y}.
Thus v ∈

(
fn(P)∪n(α)

)
\{y} ⊆ fn((νy)P)∪n(α), and

w ∈ fn(((νy)P)σ) ∪ n(α[σ]).] Hence, by Corollary 1,
(νz)Q′ ≡ (νz)(P ′σ[y 7→ z])≡ ((νy)P ′)σ =R′σ.

• R
α−→R′ cannot be derived by SYMB-OPEN, as bn(α)=∅.

• Finally, suppose R α−→ R′ is derived by E-S-CLOSE. Then
R = P |Q, α = [x=v]MNτ , P Mx̄(y)−−−−→ P ′, Q Nvy−−→ Q′,
y /∈ fn(Q) and R′ = (νy)(P ′|Q′). Moreover, U = V |W
with V ≡Pσ and W≡Qσ. As fn(Mx̄(y)[σ]) ⊆ fn(α[σ]),
fn(Mx̄(y)[σ])∩RN(V) = ∅. Consequently, by induction,

∃z, V ′. V M [σ]x̄[σ](z)−−−−−−−→• V ′ ≡ P ′σ[y 7→ z].

Let χ be the derivation of Q Nvy−−→ Q′. Pick w /∈ bnχ(Q)∪
RN(W)∪ fn(W)∪ fn((νy)Q′)∪dom(σ)∪range(σ). Ap-
plying Lemma 13, Q Nvw−−−→ Q′′ for some Q′′ ≡ Q′{w/y}.
Moreover, the inference of this transition is not as deep
as the one of R α−→ R′. As fn((Nvw)[σ])∩RN(W) = ∅,

∃W ′. W N [σ]v[σ]w−−−−−−→• W ′ ≡ Q′′σ ≡ Q′{w/y}σ

by induction. Since z ∈ RN(V) by Lemma 10, and U is
clash-free, z /∈ RN(W). Applying Lemma 12,

∃W ′′. W N [σ]v[σ]z−−−−−−→• W ′′ ≡W ′{z/w} ≡ Q′{w/y}σ{z/w}

By Observation 3, Q′{w/y}σ{z/w} ≡ Q′σ[y 7→ z]. Thus,
applying E-S-CLOSE, U ([x=v]MNτ)[σ]−−−−−−−−−−→ (νz)(V ′|W ′′).
Since z ∈ RN(V) ⊆ RN(U) and U is clash-free, z /∈
fn(U) = fn(Rσ) ⊇ fn(R′σ), the last step by Lem-
mas 8 and 9. Therefore, by Corollary 1, (νz)(V ′|W ′′) ≡
(νz)((P ′|Q′)σ[y 7→ z]) ≡ ((νy)(P ′|Q′))σ = R′σ.

Ad (b):
• Suppose R Mx̄(y)−−−−→ R′ is derived by SYMB-OPEN. Then
R = (νy)P and P

Mx̄y−−−→ R′ is obtained by a shallower
inference. Moreover, y 6=x and y /∈n(M). Since U≡Rσ,
U = (νz)Q with z /∈ fn((νy)P)σ) and Q ≡ Pσ[y 7→
z]. By Lemma 7, Q is clash-free. Since U is clash-free,
z /∈ RN(Q). So fn((Mx̄y)[σ[y 7→ z]]) ∩ RN(Q) = ∅.
Consequently, by induction,

∃U ′. Q M [σ]x̄[σ]z−−−−−−→• U ′ ≡ R′σ[y 7→ z].

By Lemma 8, n(Mx̄y) ⊆ fn(P) and hence n(M)∪{x} ⊆
fn((νy)P), so n(M [σ]) ∪ {x[σ]} ⊆ fn(((νy)P)σ) 63 z.
Therefore, by SYMB-OPEN, U M [σ]x̄[σ](z)−−−−−−−→• U ′.

• The cases that R Mx̄(y)−−−−→ R′ is derived by rule SUM,
SYMB-MATCH or ALPHA are again trivial.

• Derivations of R Mx̄(y)−−−−→ R′ by TAU, OUTPUT, EARLY-
INPUT, E-S-COM or E-S-CLOSE cannot occur.

• The case that R Mx̄(y)−−−−→ R′ is derived by rule IDE

proceeds just as for statement (a) above.

• Suppose R Mx̄(y)−−−−→ R′ is derived by PAR. Then R = P |Q,
P

Mx̄(y)−−−−→ P ′ is obtained by a shallower inference, and
R′ = P ′|Q. Moreover, y /∈ fn(Q), and U = V |W with
V ≡ Pσ and W ≡ Qσ. Using that V is clash-free and
fn((Mx̄(y))[σ]) ∩ RN(V) = ∅, by induction

∃z, V ′. V M [σ]x[σ](z)−−−−−−−→• V ′ ≡ P ′σ[y 7→ z].

By Lemma 10 z ∈ RN(V), so z /∈ fn(W) by the clash-
freedom of U . By PAR U

M [σ]x[σ](z)−−−−−−−→• V ′|W . Finally,
V ′|W ≡ P ′σ[y 7→ z] | Qσ[y 7→ z] ≡ R′σ[y 7→ z].

• Suppose R
Mx̄(v)−−−−→ R′ is derived by RES. Then R =

(νy)P , P Mx̄(v)−−−−→ P ′, R′ = (νy)P ′ and y /∈ n(Mx̄(v)).
Since U ≡ Rσ, U = (νz)Q with z /∈ fn((νy)P)σ) and
Q ≡ Pσ[y 7→ z]. So fn(Mx̄(v)[σ])∩ (RN(Q)∪{z})=∅,
M [σ[y 7→ z]] = M [σ] and x̄[σ[y 7→ z]] = x̄[σ].
Moreover, Q is clash-free by Lemma 7. By induction,

∃w,Q′. Q M [σ]x̄[σ](w)−−−−−−−−→• Q′ ≡ P ′σ[y 7→ z][v 7→ w].

By Lemma 10, w ∈ RN(Q), so w 6= z by the clash-
freedom of U . By Lemma 8, n(M) ∪ {x} ⊆ fn(P), so
n(M [σ]) ∪ {x[σ]} ⊆ fn(((νy)P)σ) 63 z. Hence, by RES,

U
M [σ]x̄[σ](w)−−−−−−−−→• (νz)Q′.

Using Lemmas 8 and 9, fn(P ′) ⊆ fn(P) ∪ {v} and thus
fn(((νy)P ′)σ[v 7→ w]) ⊆ fn(((νy)P)σ[v 7→ w]) ∪ {w}.

17

As z /∈ fn((νy)P)σ)∧ z 6=w, z /∈ fn(((νy)P ′)σ[v 7→ w]).
It follows that

(νz)Q′ ≡ (νz)
(
P ′σ[y 7→ z][v 7→ w]

)
= (νz)

(
P ′σ[v 7→ w][y 7→ z]

)
y 6= v

≡
(
(νy)P ′

)
σ[v 7→ w] Corollary 1

= R′σ[v 7→ w].

Now let Tα be the identity translation from πES(Z,R) to
π6αES(Z,R), where π6αES(Z,R) is the variant of the πES(Z,R)
without rule ALPHA.

Theorem 3: If P is clash-free then Tα(P) •∼ P .

Proof. I have to provide a strong barbed bisimulation on the
disjoint union of the LTSs of πES(Z,R) and π6αES(Z,R).
Since they have the same states, I make them disjoint by
tagging each process in π6αES(Z,R) with a superscript 6α. Let

R := {(R,U 6α), (U 6α, R) | U is clash-free and R ≡ U}.

Clearly, R relates P and Tα(P) for clash-free P , so it suffices
to show that R is a strong barbed bisimulation. So suppose
U is clash-free and R ≡ U , so that U 6α R R and R R U 6α.

Let U τ−→• Q. Then R
τ−→ Q by rule ALPHA. Moreover,

Q is clash-free by Lemma 11, so Q6α R Q.
Let R τ−→ R′. Then ∃P. U τ−→• P ≡ R′ by Lemma 14(i).

Moreover, P is clash-free by Lemma 11, so R′ R P 6α.
Now let U 6α↓b with b ∈ Z∪Z . Then U by−→• U ′ or U b(y)−−→•

U ′ for some y and U ′, using the definition of O in Section IV.
So R by−→ U ′ or R b(y)−−→ U ′ by rule ALPHA. Thus R↓b.

Finally, let R↓b with b ∈ Z∪Z . Then R by−→• R′ or R b(y)−−→•
R′ for some y and R′. Hence U by−→ U ′ or U b(z)−−→ U ′ for some
z and U ′ by Lemma 14. Thus U↓b.

C. Eliminating restriction operators from the π-calculus

The fifth step Tν of my translation simply drops all restric-
tion operators. It is defined compositionally by Tν((νy)P) =
Tν(P) and Tν(A) = Aν , where Aν is a fresh agent identifier
with defining equation Aν(~x)

def
= Tν(P) when A(~x)

def
= P

was the defining equation of A; the translation Tν acts
homomorphically on all other constructs.

The source of this translation step is the well-typed fragment
of π6αES(Z,R). Its target is π†ES(Z,R), a calculus that differs
in three ways from π6αES(Z,R). First of all it only allows well-
typed-processes. Secondly, it allows defining equations

A(x1, . . . , xn)
def
= P

with fn(P) ⊆ {x1, . . . , xn} ∪ R, which is more liberal than
the restriction fn(P) ⊆ {x1, . . . , xn} imposed by π6αES(Z,R).

Intuitively, one may think of such an equation as

A(x1, . . . , xn,R)
def
= P,

in the sense that besides the declared names xi also all names
in R are implicitly declared. A call A(~y) of agent A can
likewise be seen as a call A(~y,R). Crucial here is that although
~y is being substituted for ~x, the implicit substitution of R for
R is the identity. To make that stick, the restriction to well-
typed processes has been imposed. All substitutions {z/y} and

{~y/~x} that are induced by the operational semantics, namely
in rules EARLY-INPUT and IDE, have the property that y ∈ Z ,
respectively xi ∈ Z . So there never is a need to apply a
substitution renaming an element of R.

The third and last difference between π6αES(Z,R) and
π†ES(Z,R) is that the latter does not feature restriction op-
erators. Hence there is no need for rules RES and SYMB-OPEN.
Since the resulting semantics cannot generate transitions la-
belled Mx̄(z), rule E-S-CLOSE can be dropped as well. More-
over, bn(α)=∅ for all transition labels α. So the side condition
of rule PAR can be dropped too. I also leave out ALPHA.

Lemma 15: Let P and Q be π†ES(Z,R) processes. If P ≡ Q
and P

α−→ P ′ then Q
α−→ Q′ for some Q′ with P ′ ≡ Q′.

Moreover, the size of the derivation of Q α−→ Q′ is the same
as that of P α−→ P ′.

Proof. A trivial induction on the inference of P α−→ P ′.

This testifies that ALPHA is redundant. Thus, in total, all orange
parts of Table VI are dropped.

I proceed to prove the validity of translation Tν . For α an
action in π6αES(Z,R) one defines the debinding of α by 〈α〉:=α
if α has the form Mτ , Mxz or Mx̄y, and 〈Mx̄(y)〉 := Mx̄y.

Lemma 16: If R is clash-free and R α−→• R′, where α is not
of the form Mxz with z∈RN(R), then Tν(R)

〈α〉−−→≡ Tν(R′).

Proof. By induction on the derivation of R α−→• R′.
• The cases that R α−→• R′ is derived by TAU or OUTPUT

are trivial.
• Suppose R

α−→• R′ is derived by EARLY-INPUT. Then
R = Mx(y).P , α = Mxz, R′ = P{z/y} and Tν(R) =

Mx(y).Tν(P). Moreover, Tν(R)
〈α〉−−→ Tν(P){z/y}.

Thus it suffices to show that Tν(P){z/y} ≡ Tν(P{z/y}).
This holds because the substitution {z/y} is clash-free on
P , using Lemma 6.

• Suppose R
α−→• R′ is derived by IDE. Then R =

A(~y) with A(~x)
def
= P , so P{~y/~x} α−→• R′. Moreover

Tν(R) = Aν(~y), with Aν defined by Aν(~x)
def
= Tν(P).

By Lemma 7 P{~y/~x} is clash-free. Since RN(P{~y/~x}) =
RN(P) = RN(R), α is not of the form Mxz with z ∈
RN(P{~y/~x}). So by induction Tν(P{~y/~x}) 〈α〉−−→≡Tν(R′).
By Lemma 5, the substitution {~y/~x} is clash-free on P .
Hence Tν(P{~y/~x}) ≡ Tν(P){~y/~x}. Lemma 15 yields
Tν(P){~y/~x} 〈α〉−−→≡ Tν(R′). Applying rule IDE yields
Tν(R)

〈α〉−−→≡ Tν(R′).
• The cases that R α−→• R′ is derived by SUM, SYMB-

MATCH or PAR are trivial.
• Suppose R α−→• R′ is derived by E-S-COM. Then R =
P |Q, α = [x=v]MNτ , P Mx̄y−−−→• P ′, Q Nvy−−→• Q′, R′ =
P ′|Q′ and Tν(R) = Tν(P)|Tν(Q). By Lemma 7, P
and Q are clash-free. By Lemma 8, y ∈ fn(P) ⊆ fn(R),
so y /∈ RN(Q) by the clash-freedom of R. By induction,
Tν(P)

Mx̄y−−−→≡ Tν(P ′) and Tν(Q)
Nvy−−→≡ Tν(Q′). Thus

Tν(R)
〈α〉−−→≡ Tν(R′) by application of rule E-S-COM.

• Suppose R α−→• R′ is derived by E-S-CLOSE. Then R =
P |Q, α = [x=v]MNτ , P Mx̄(z)−−−−→• P ′, Q Nvz−−→• Q′ with

18

z /∈ fn(Q), R′ = P ′|Q′, and Tν(R) = Tν(P)|Tν(Q).
By Lemma 7, P and Q are clash-free. By Lemma 10,
z ∈ RN(P), so z /∈ RN(Q) by the clash-freedom of R.
Consequently, by induction, Tν(P)

Mx̄z−−−→≡ Tν(P ′) and
Tν(Q)

Nvz−−→≡ Tν(Q′). Thus Tν(R)
〈α〉−−→≡ Tν(R′) by

application of rule E-S-COM.
• Suppose R α−→• R′ is derived by RES. Then R = (νy)P ,
R′ = (νy)P ′, P α−→• P ′ and y /∈ n(α). By Lemma 7, P
is clash-free. Moreover, α is not of the form Mxz with
z∈RN(P)⊆RN(R). By induction Tν(P)

〈α〉−−→≡ Tν(P ′).
Now Tν(R) = Tν(P)

〈α〉−−→≡ Tν(P ′) = Tν(R′).
• Suppose R α−→• R′ is derived by SYMB-OPEN. Then R =

(νy)P , α = Mx̄(y) and P
Mx̄y−−−→• R′. By Lemma 7, P

is clash-free. By induction Tν(P)
Mx̄y−−−→≡ Tν(R′). Now

Tν(R) = Tν(P)
〈α〉−−→≡ Tν(R′).

The next lemma makes use of the set no(β) of non-output
names of an action β in π†ES(Z,R). Here no(β) := n(β) if β
has the form Mτ or Mxz, whereas no(Mx̄y) := n(M)∪{x}.

Lemma 17: If R is clash-free and Tν(R)
β−→ U , where

no(β)∩RN(R) = ∅, then R α−→• R′ for some α and R′ with
〈α〉 = β and Tν(R′) ≡ U .

Proof. By induction on the derivation of Tν(R)
β−→ U , and

a nested structural induction on R.

• The cases R = Mτ.P and R = Mx̄y.P are trivial.
• Let R = Mx(y).P . Then Tν(R) = Mx(y).Tν(P).

Hence β = Mxz and U = Tν(P){z/y}. Furthermore,
R

Mxz−−−→• P{z/y}. Finally, Tν(P{z/y}) ≡ Tν(P){z/y},
since {z/y} is clash-free on P , using Lemma 6.

• Let R = A(~y) with A(~x)
def
= P . Then Tν(R) = Aν(~y)

with Aν(~x)
def
= Tν(P). So Tν(P){~y/~x} β−→ U . By

Lemma 5, the substitution {~y/~x} is clash-free on P .
Hence Tν(P){~y/~x} ≡ Tν(P{~y/~x}) and Lemma 15 yields
Tν(P{~y/~x}) β−→≡ U . By Lemma 7 P{~y/~x} is clash-free.
Since RN(P{~y/~x}) = RN(P) = RN(R) one has no(β) ∩
RN(P{~y/~x}) = ∅. So by induction P{~y/~x} α−→• R′ for
some α and R′ with 〈α〉 = β and Tν(R′) ≡ U . Now
R

α−→• R′ by IDE.
• Let R = P |Q. Then Tν(R) = Tν(P)|Tν(Q). Suppose

Tν(R)
β−→ U is derived by PAR. Then Tν(P)

β−→ V
and U = V |Tν(Q). By Lemma 7 P is clash-free.
Since RN(P) ⊆ RN(P |Q), no(β) ∩ RN(P) = ∅. So by
induction P α−→• P ′ for some α and P ′ with 〈α〉=β and
Tν(P ′) ≡ V . By Lemma 10 bn(α) ⊆ RN(P) ⊆ RN(R),
so bn(α) ∩ fn(Q) = ∅ by the clash-freedom of R. Thus
R

α−→• P ′|Q by PAR, and Tν(P ′|Q) ≡ V |Tν(Q) = U .

Now suppose Tν(R)
β−→ U is derived by E-S-COM. Then

β = [x=v]MNτ , Tν(P)
Mx̄y−−−→ V , Tν(Q)

Nvy−−→ W and
U = V |W . By Lemma 7 P and Q are clash-free. Since
RN(P) ⊆ RN(P |Q), no(Mx̄y) ∩ RN(P) = ∅. So by
induction either P Mx̄y−−−→• P ′ or P Mx̄(y)−−−−→• P ′ for some
P ′ with Tν(P ′) ≡ V .
In the first case y ∈ fn(P) ⊆ fn(R) by Lemma 8, so
y /∈ RN(R) ⊇ RN(Q) by the clash-freedom of R. Hence

also no(Nvy) ∩ RN(Q) = ∅. By induction Q
Nvy−−→• Q′

for some Q′ with Tν(Q′) = W . So R
α−→• P ′|Q′ by

E-S-COM, and Tν(P ′|Q′) ≡ V |W = U .
In the second case y ∈ RN(P) ⊆ RN(R) by Lemma 10,
so y /∈ fn(Q)∪RN(Q) by the clash-freedom of R. Hence
no(Nvy) ∩ RN(Q) = ∅. By induction Q

Nvy−−→• Q′ for
some Q′ with Tν(Q′) = W . So R

α−→• (νy)(P ′|Q′)
by E-S-CLOSE, and Tν((νy)(P ′|Q′)) = Tν(P ′|Q′) ≡
V |W = U .

• Finally, let R = (νy)P . Then Tν(R) = Tν(P). More-
over, no(β) ∩ RN(P) = ∅. By induction, P α−→• P ′ for
some α and P ′ with 〈α〉 = β and Tν(P ′) ≡ U .
In case y /∈ n(α), R α−→• (νy)P ′ by RES. Moreover,
Tν((νy)(P ′)) = Tν(P ′) ≡ U .
In case y ∈ n(α) = n(β), using that RN(R)3 y /∈no(β),
β must have the form Mx̄y with y 6= x and y /∈ n(M).
So α is either Mx̄(y) or Mx̄y. If α = Mx̄(y) then y ∈
RN(P) by Lemma 10, contradicting the clash-freedom of
R. So α = Mx̄y. Now R

Mx̄(y)−−−−→• P ′ by SYMB-OPEN.

Lemma 18: Let P be a process in πES(Z,R). If P Mxy−−−→• Q
then ∃R. P Mxz−−−→• R for any z /∈ RN(P).

Proof. A trivial induction on the inference of P Mxy−−−→ Q.

Theorem 4: If P is clash-free then Tν(P) •∼ P .

Proof. Let

R :=

{
(R,U), (U,R)

∣∣∣∣R in π6αES(Z,R) is clash-free
and U ≡ Tν(R)

}
.

It suffices to show that R is a strong barbed bisimulation. So
suppose R is clash-free and U ≡ Tν(R).

Let R τ−→• R′. Then Tν(R)
τ−→≡ Tν(R′) by Lemma 16,

and U
τ−→ U ′ ≡ Tν(R′) by Lemma 15. Moreover, R′ is

clash-free by Lemma 11, so R′ R U ′.
Let U τ−→ U ′. Then Tν(R)

τ−→≡ U ′ by Lemma 15. Thus,
by Lemma 17, R τ−→• R′ for some R′ with Tν(R′) ≡ U ′.
Moreover, R′ is clash-free by Lemma 11, so U ′ R R′.

Now let R↓b with b ∈ Z ∪Z . Then R by−→• R′ or R b(y)−−→•
R′ for some y and R′, using the definition of O in Section IV.
By Lemma 18 I may assume, w.l.o.g., that if b ∈ Z then y /∈
RN(R). So Tν(R)

by−→≡ Tν(R′) by Lemma 16, and U by−→≡
Tν(R′) by Lemma 15. Thus U↓b.

Finally, let U↓b with b = x ∈ Z or b = x̄ with x ∈ Z . Then
U

by−→ U ′ for some y and U ′. So Tν(R)
by−→ U ′′ for some y

and U ′′ by Lemma 15. Since R is well-typed, RN(R) ⊆ R,
so x /∈ RN(P). By Lemma 18 I may assume, w.l.o.g., that if
b = x then y /∈ RN(R). Hence no(by) ∩ RN(R) = ∅. Thus,
by Lemma 17, R by−→• R′ or R b(y)−−→• R′ for some R′. Hence
R↓b.

D. Replacing substitution by relabelling

Recall that π†ES(Z,R) is the version of the π-calculus with-
out restriction, equipped with the early symbolic operational
semantics (Table VI without the orange rules), using Z]R as
the set of names, subject to the following typing restrictions:
(i) each binder x(z) occurring in a process satisfies z∈Z , and

19

(ii) each defining equation A(x1..., xn)
def
= P satisfies xi ∈ Z

and fn(P) ⊆ {x1, . . . , xn} ∪ R.
π‡−ES(Z,R) is the variant of π†ES(Z,R) to which has been

added a relabelling operator [σ] for each substitution σ with
dom(σ) finite and dom(σ) ∩ R = ∅; its structural operation
semantics is given by

P
α−→ P ′

P [σ]
α[σ]−−→ P ′[σ]

.

Moreover, the substitutions {z/y} and {~y/~x} that appear in
rules EARLY-INPUT and IDE are replaced by applications of
the relabelling operators [{z/y}] and [{~y/~x}], respectively.

This section defines a collection of “clash-free” π†ES(Z,R)
processes, and shows that on clash-free processes the identity
translation from π†ES(Z,R) to π‡−ES(Z,R) preserves •∼.

Lemma 19: Let R be a π†ES(Z,R) process and σ a
substitution with dom(σ) finite and dom(σ) ∩ R = ∅. If
R

α−→ R′ then Rσ α[σ]−−→≡ R′σ.

Proof. With induction on the derivation of R α−→ R′.
• The cases that R α−→ R′ is derived by rule TAU or OUTPUT

are trivial.
• Suppose R α−→R′ is derived by rule EARLY-INPUT. Then
R = Mx(y).P , α = Mxz and R′ = P{z/y}. So Rσ =
M [σ]x[σ](w).(P{w/y}σ) ∧ α[σ] = M [σ]x[σ]z[σ] where
w is chosen outside fn((νy)P)∪dom(σ)∪range(σ). By
EARLY-INPUT Rσ

α[σ]−−→ P{w/y}σ{z[σ]/w} ≡ P{z/y}σ.
• Suppose R=A(~y). Let A(~x)

def
= P . Say ~x=(x1, . . . , xn).

Then P{~y/~x} α−→R′, so by induction P{~y/~x}σ α[σ]−−→≡R′σ.
Moreover, Rσ = A(~y[σ]) and P{~y[σ]/~x} ≡ P{~y/~x}σ.
Here I use that fn(P) ∩ dom(σ) ⊆ {x1, . . . , xn}. So
P{~y[σ]/~x} α[σ]−−→≡R′σ by Lemma 15. Thus, by rule IDE,
Rσ

α[σ]−−→≡ R′σ.
• The cases that R α−→ R′ is derived by rule SUM, SYMB-

MATCH, PAR or E-S-COM are trivial.

Define the input arguments ι(α) of an action α by

ι(Mx̄y) = ι(Mτ) := ∅ and ι(Mxz) = {z}.

Lemma 20: Let P be a π†ES(Z,R) process. If P α−→ Q
then n(α)\ι(α) ⊆ fn(P)∪R and fn(Q) ⊆ fn(P)∪ ι(α)∪R.

Proof. A trivial induction on the inference of P α−→ Q.

Lemmas 8 and 9 make the same statements for the calculus
πES(Z,R), but without the additions ∪R. These additions
are needed for the case of recursion, because the bodies of
defining equations may introduce names from R.

Lemma 21: Let P be a π†ES(Z,R) process. If P Mxz−−−→ Pz
and w /∈ fn(P) then there is a process Pw such that P Mxw−−−→Pw
and Pz ≡ Pw{z/w}. Moreover, the size of the derivation of
P

Mxw−−−→ Pw is the same as that of P Mxz−−−→ Pz .

Proof. A trivial induction on the inference of P Mxz−−−→ Pz .

Lemma 22: Let P be a π†ES(Z,R) process. If P Mxw−−−→ Pw
with w /∈ fn(P) then for each name z there is a process Pz
such that P Mxz−−−→ Pz and Pz ≡ Pw{z/w}. Moreover, the

size of the derivation of P Mxz−−−→ Pz is the same as that of
P

Mxw−−−→ Pw.

Proof. A trivial induction on the inference of P Mxw−−−→ Pw.

Lemma 23: Let R be a π†ES(Z,R) process and σ a
substitution with dom(σ) finite and dom(σ) ∩ R = ∅. If
Rσ

β−→ U with ι(β) ∩ dom(σ) ⊆ range(σ) then R
α−→ R′

for some α and R′ with α[σ] = β and R′σ ≡ U. Moreover,
the size of the derivation of R α−→ R′ is the same as that of
Rσ

β−→ U .

Proof. With induction on the size of the derivation of Rσ β−→U.

• The cases that Rσ β−→ U is derived by rule TAU or
OUTPUT are trivial.

• Suppose Rσ
β−→ U is derived by EARLY-INPUT. Then

R = Mx(y).P and Rσ = M [σ]x[σ](w).(P{w/y}σ) with
w /∈ fn((νy)P)∪dom(σ)∪range(σ). So β = M [σ]x[σ]v
and U = P{w/y}σ{v/w}. Since v ∈ ι(β), there is a z
with z[σ] = v. By EARLY-INPUT R

α−→ R′ with α =
Mxz and R′ = P{z/y}. Now α[σ] = β and R′σ ≡ U .

• Suppose Rσ β−→ U is derived by IDE. Then R = A(~y)
and Rσ=A(~y[σ]). Let A(~x)

def
= P . Say ~x=(x1, . . . , xn).

Then P{~y[σ]/~x} β−→ U . Since P{~y[σ]/~x} ≡ P{~y/~x}σ,
using that fn(P) ∩ dom(σ) ⊆ {x1, . . . , xn}, Lemma 15
yields P{~y/~x}σ β−→≡ U . So by induction P{~y/~x} α−→ R′

for some α and R′ with α[σ] = β and R′σ ≡ U . By rule
IDE R

α−→ R′.
• The cases that Rσ β−→ U is derived by rule SUM, SYMB-

MATCH or PAR are trivial.
• Suppose Rσ β−→ U is derived by E-S-COM. Then R =
P |Q, Rσ = Pσ|Qσ, β = [x=v]MNτ , Pσ Mx̄y−−−→ V ,
Qσ

Nvy−−→W and U = V |W . By Lemma 20, y ∈ fn(Pσ),
so y∈range(σ) or y /∈dom(σ). Hence ι(Nvy)∩dom(σ)
⊆ range(σ). By induction, there are matching sequences
K,L with K[σ] = M and L[σ] = N , names q, r, z, u
with q[σ] = x, r[σ] = v, z[σ] = y and u[σ] = y, and
processes P ′ and Q′ with P ′σ ≡ V and Q′σ ≡W , such
that P Kq̄z−−→ P ′ and Q

Lru−−→ Q′. Pick w /∈ fn(Q). By
Lemma 21 there is a process Pw such that Q Lrw−−→ Qw
and Q′ ≡ Qw{u/w}. By Lemma 22 there is a process
Pz such that Q Lrz−−→ Qz and Qz ≡ Qw{z/w}. Note
that Q′σ ≡ Qzσ. By E-S-COM R

[q=r]KLτ−−−−−−→ P ′|Qz .
Moreover, ([q=r]KLτ)[σ] = [x=v]MNτ and (P ′|Qz)σ
≡ V |W = U .

For P a π‡−ES(Z,R) process, let P̂ be the π†ES(Z,R)
process obtained from P by recursively replacing each subterm
Q[σ] by Qσ, and each agent identifier A by A .̂ Here Aˆ is a
fresh agent identifier with defining equation A (̂~x)

def
= P̂ when

A(~x)
def
= P was the defining equation of A.

Lemma 24: If R α−→ R′ then R̂ α−→≡ R̂′.

Proof. By induction of the inference of R α−→ R′.

• Suppose R α−→ R′ is derived by TAU. Then R =Mτ.P ,
α=Mτ and R′=P . Moreover, R̂ = Mτ.P̂ and R̂ α−→ R̂′.

20

• The case that R α−→ R′ is derived by OUTPUT proceeds
likewise.

• Suppose R
α−→ R′ is derived by EARLY INPUT. Then

R = Mx(y).P , α = Mxz and R′ = P [z/y]. Moreover
R̂ = Mx(y).P̂ and R̂ α−→ P̂{z/y} = ̂P [{z/y}] = R̂′.

• Suppose R α−→ R′ is derived by SUM. Then R = P +Q
and P α−→ R′. Now R̂ = P̂ + Q̂. By induction P̂ α−→≡
R̂′. Hence, by SUM, R̂ α−→≡ R̂′.

• Suppose R
α−→ R′ is derived by SYMB-MATCH. Then

R = [x=y]P , P β−→ R′ and α = [x=y]β. Now R̂ =

[x=y]P̂ . By induction P̂
β−→≡ R̂′. Hence, by SYMB-

MATCH, R̂ α−→≡ R̂′.
• Suppose R α−→ R′ is derived by IDE. Then R = A(~y)

with A(~x)
def
= P and P [{~y/~x}] α−→ R′. Now ̂P [{~y/~x}] =

P̂{~y/~x}. By induction ̂P [{~y/~x}] = P̂{~y/~x} α−→≡ R̂′.
Hence, by IDE, R̂ = A (̂~y)

α−→≡ R̂′.
• Suppose R α−→ R′ is derived by PAR. Then R = P |Q,
P

α−→ P ′ and R′ = P ′|Q. Now R̂ = P̂ |Q̂ and R̂′ =

P̂ ′|Q̂. By induction P̂ α−→≡ P̂ ′. Thus R̂ α−→≡ R̂′.
• Suppose R

α−→ R′ is derived by E-S-COM. Then
R = P |Q, P Mx̄y−−−→ P ′, Q Nvy−−→ Q′, R′ = P ′|Q′, and
α = [x=v]MNτ . Now R̂ = P̂ |Q̂ and R̂′ = P̂ ′|Q̂′.
By induction P̂

Mx̄y−−−→≡ P̂ ′ and Q̂
Nvy−−→≡ Q̂′. Thus

R̂
α−→≡ R̂′.

• Suppose R
α−→ R′ is derived by RELABELLING. Then

R=P [σ], P β−→ P ′, R′=P ′[σ] and α=β[σ]. By induction
P̂

β−→≡ P̂ ′. By Lemma 19, R̂ = P̂ σ
α−→≡ P̂ ′σ = R̂′.

For A ∈ Kn an agent identifier with A(x1, . . . , xn)
def
= P ,

let dn(A) = {x1, . . . , xn} be the set of declared names of A.

Definition 12: Let BN(P), the hereditary bound names of
a π‡−ES(Z,R) process P , be the set of all names y such that
h(P) contains either a process Mx(y)Q, or a process A(~z)
with y ∈ dn(A), or a process Q[σ] with y ∈ dom(σ).

Definition 13: The free names of a π‡−ES(Z,R)-process P
are defined inductively as follows:

fn(0) = ∅
fn(Mτ.P) = n(M) ∪ fn(P)

fn(Mx̄y.P) = n(M) ∪ {x, y} ∪ fn(P)
fn(Mx(y).P) = n(M) ∪ {x} ∪ fn(P)\{y}

fn([x=y]P) = {x, y} ∪ fn(P)
fn(P +Q) = fn(P | Q) = fn(P) ∪ fn(Q)

fn(A(y1, . . . , yn)) = {y1, . . . , yn}
fn(P [σ]) = {x[σ] | x ∈ fn(P)}

In the absence of relabelling operators, this definition agrees
with the one from Section V.

Definition 14: A π‡−ES(Z,R) process P is clash-free if

1) for each A(~z)∈h(P) with A(~x)
def
=Q one has xi /∈BN(Q),

2) for each Q[σ] ∈ h(P) one has dom(σ) ∩ BN(Q) = ∅,
3) for each Mx(y).Q ∈ h(P) one has y /∈ BN(Q), and
4) (fn(P) ∪R) ∩ BN(P) = ∅.

This definition applies equally well to π†ES(Z,R) processes;
here Clause 2 is moot, as there are no relabelling operators in
π†ES(Z,R).

The relation � from Definition 11 applies to π‡−ES(Z,R)
as well, except that there is a clause P [σ] � P , and the last
clause is A(~y) � P [{~y/~x}] when A(~x)

def
= P .

Lemma 25: If P � Q and P is a clash-free π‡−ES(Z,R)
process, then so is Q.

Proof. Only the cases of relabelling and recursion are non-
trivial. For P [σ] � P use: fn(P) ⊆ fn(P [σ]) ∪ dom(σ) and
BN(P) = BN(P [σ])\dom(σ).

Suppose A(~y) is clash-free and A(~x)
def
= P . By definition P

satisfies Clauses 1–3. Hence P [{~y/~x}] satisfies Clauses 1 and
3. Moreover P [{~y/~x}] satisfies Clause 2 since A(~y) satisfies
Clause 1. Finally, BN(P [{~y/~x}]) = BN(P) ∪ {x1, . . . , xn} =
BN(A(~y)) and fn(P [{~y/~x}) ⊆ fn(A(~y))∪R, so Clause 4 holds
too.

Note that Lemma 20 holds also for π‡−ES(Z,R) processes.

Lemma 26: If R is clash-free and R̂
α−→ U with ι(α) ∩

BN(R) = ∅ then R α−→ R′ for some R′ with R̂′ ≡ U .

Proof. By induction on the size of the derivation of R̂ α−→ U ,
with a nested induction on the number of topmost renaming
operators in R.

• Suppose that R is not of the form P [σ]. The cases
that R̂ α−→ U is derived by TAU, OUTPUT, EARLY-INPUT,
SUM, SYMB-MATCH, IDE or PAR are trivial, similar to the
cases spelled out in the proof of Lemma 24, but using
Lemma 25 to establish clash-freedom when applying the
induction hypothesis, and also using that R� P implies
BN(P) ⊆ BN(R).
Suppose R̂ α−→ U is derived by rule E-S-COM. Then R =
P |Q, R̂=P̂ |Q̂, α = [x=v]MNτ , P̂ Mx̄y−−−→ V , Q̂ Nvy−−→W
and R̂′ = V |W . By Lemma 25 P and Q are clash-free.
By induction P

Mx̄y−−−→ P ′ for some P ′ with P̂ ′ ≡ V .
By Lemma 20 y ∈ fn(P) ∪ R ⊆ fn(R) ∪ R, and hence
ι(Nvy) ∩ BN(Q) = ∅ by the clash-freedom of R. So by
induction Q

Nvy−−→ Q′ for some Q′ with Q̂′ ≡ W . By
E-S-COM R

α−→ P ′|Q′ ≡ U .
• Now suppose R = P [σ]. Then ι(α) ∩ dom(σ) = ∅ and
R̂ = P̂ σ. By Lemma 23 P̂ β−→ V for some β and V with
β[σ]=α and V σ≡U . Moreover, the size of the derivation
of P̂ β−→ V is the same as that of P̂ σ α−→ U . Suppose
ι(β) = {z}. Then either z ∈ dom(σ), so z /∈ BN(P)
by the clash-freedom of R, or ι(β) = ι(α) and z /∈
BN(R) ⊇ BN(P). So by induction P

β−→ P ′ for some
P ′ with P̂ ′ ≡ V . By rule RELABELLING R

α−→ P ′[σ].
Furthermore one has P̂ ′[σ] = P̂ ′σ ≡ V σ ≡ U .

Lemma 27: If R in π‡−ES(Z,R) is clash-free, ι(α)∩BN(R)=

∅ and R α−→ R′, then R′ is clash-free and BN(R′) ⊆ BN(R).

Proof. First I show that BN(R′) ⊆ BN(R) implies that R′

meets Clause 4 of Definition 14. That R∩BN(R′) = ∅ follows

21

sinceR∩BN(R) = ∅ by the clash-freedom of R. Now suppose
y ∈ fn(R′)∩BN(R′). The case that y ∈ fn(R) contradicts the
clash-freedom of R. In view of Lemma 20, the only remaining
case is that y ∈ ι(α). However, in that case y /∈ BN(R) ⊇
BN(R′) by the assumption of the lemma.

The rest of the proof proceeds with induction on the
derivation of R α−→ R′.

• The cases that R α−→R′ is derived by rule TAU or EARLY-
OUTPUT are trivial, using that R′ is a subexpression of R.

• Suppose R α−→R′ is derived by EARLY-INPUT. Then R=
Mx(y).P , α=Mxz with z /∈ BN(R) and R′=P [{z/y}].
By definition, P satisfies Clauses 1–3 of Definition 14.
Hence R′ satisfies Clauses 1 and 3. Moreover R′ satisfies
Clause 2 since R satisfies Clause 3. Finally, BN(R′) =
BN(P) ∪ {y} = BN(R).

• The cases that R α−→ R′ is derived by rule SUM, IDE or
SYMB-MATCH are trivial.

• Suppose R α−→ R′ is derived by PAR. Then R = P |Q,
P

α−→ P ′, R′ = P ′|Q, and if α=Mxz then z /∈ BN(P).
By Lemma 25, P and Q are clash free. So by induction
P ′ is clash-free and BN(P ′) ⊆ BN(P). Hence BN(R′) ⊆
BN(R) and R′ is clash-free.

• Suppose R
α−→ R′ is derived by E-S-COM. Then R =

P |Q, α = [x=v]MNτ , P Mx̄y−−−→ P ′, Q Nvy−−→ Q′ and
R′ = P ′|Q′. By Lemma 20, y ∈ fn(P), so y /∈ BN(Q)
by the clash-freedom of R. By Lemma 25, P and Q are
clash free. Hence, by induction, P ′ and Q′ are clash-
free, RN(P ′) ⊆ RN(P) and RN(Q′) ⊆ RN(Q). Thus
BN(R′) ⊆ BN(R) and R′ is clash-free.

• Suppose R
α−→ R′ is derived by RELABELLING. Then

R = P [σ], P β−→ P ′, β[σ] = α and R′ = P ′[σ]. By
Lemma 25, P is clash free. Suppose ι(β) = {z}. Then
either z ∈ dom(σ), so z /∈ BN(P) by the clash-freedom
of R, or ι(β) = ι(α) and z /∈ BN(R) ⊇ BN(P). So
by induction P ′ is clash-free and BN(P ′) ⊆ BN(P).
Hence BN(R′)=BN(P ′)∪dom(σ) ⊆ BN(P)∪dom(σ)=
BN(R). It remains to show that R′ is clash-free.
Clauses 1 and 3 of Definition 14 hold trivially for R′,
since they hold for P ′. The clash-freedom of R yields
dom(σ)∩BN(P) = ∅, hence dom(σ)∩BN(P ′) = ∅ and
Clause 2 holds for R′ as well.

Let Tρ be the identity translation from π†ES(Z,R) to
π‡−ES(Z,R).

Theorem 5: Tρ(P) •∼P for any clash-free P in π†ES(Z,R).

Proof. Let

R :=

{
(R,U), (U,R)

∣∣∣∣R in π‡−ES(Z,R) is clash-free
and U ≡ R̂ in π†ES(Z,R)

}
.

Since any clash-free P in π†ES(Z,R) satisfies Tρ(P)=P and
P̂ = P , and thus Tρ(P) R P , it suffices to show that R is a
strong barbed bisimulation.

So suppose R in π‡−ES(Z,R) is clash-free and U ≡ R̂.

Let R τ−→ R′. Then R̂
τ−→≡ R̂′ by Lemma 24, and

U
τ−→ U ′ ≡ R̂′ by Lemma 15. Moreover, R′ is clash-free

by Lemma 27, so R′ R U ′.
Let U τ−→ U ′. Then R̂

τ−→≡ U ′ by Lemma 15. Thus, by
Lemma 26, R τ−→ R′ for some R′ with R̂′ ≡ U ′. Moreover,
R′ is clash-free by Lemma 27, so U ′ R R′.

Now let R↓b with b ∈ Z ∪ Z . Then R by−→ R′ for some y
and R′, using the definition of O in Section IV. So R̂ by−→≡ R̂′
by Lemma 24, and U by−→≡ R̂′ by Lemma 15. Thus U↓b.

Finally, let U↓b with b = x ∈ Z or b = x̄ with x ∈ Z . Then
U

by−→ U ′ for some y and U ′. So R̂ by−→ U ′′ for some y and
U ′′ by Lemma 15. By Lemma 21 I may assume, w.l.o.g., that
if b = x then y /∈ BN(R). Hence ι(by) ∩ BN(R) = ∅. Thus,
by Lemma 26, R by−→ R′ for some R′. Hence R↓b.

E. Making processes clash-free

Call a πES(Z,R) or π6αES(Z,R) process fully clash-free
if it is restriction-clash-free according to Definition 10 and
satisfies Clauses 1, 3 and 4 of Definition 14. Note that any
π†ES(Z,R) or π‡−ES(Z,R) process is trivially restriction-clash-
free, as these languages only contain well-typed processes
P with RN(P) = ∅. If P is fully clash-free, then Tν(P) is
a clash-free π†ES(Z,R) process according to Definition 14.
Thus, to connect Steps 1 and 2 of my overall translation from
πL(N) to CCStrig

γ to steps 4, 5 and 6, the intermediate Step 3
needs to convert each πES(N) process into a fully clash-free
πES(Z,R) process. This section describes this third step T r

cf .
Let B = {ςs | ς ∈ s∗} and D = {ςdi | ς ∈ d∗ ∧ i > 0}

be the sets of symbolic and declared names, respectively. The
set S of spare names and R of private names were defined
in Section IX. The set Z of public names is N] S] B]D,
and the set H of all names of the target language will be
H = Z] R. The string ς in a symbolic, declared or private
name is called its modifier.

Definition 15: The ruthless application P{{σ}} of a substi-
tution σ to a process P is the result of simultaneously replacing
each occurrence of an agent identifier A in P by σA and each
occurrence of a name x in P by x[σ]. Here it does not matter if
the occurrence of x is free or bound. Furthermore, σA is a fresh
agent identifier, with defining equation σA(~x[σ])

def
= P{{σ}}

when A(~x)
def
= P was the defining equation of A.

A substitution σ : H ⇀ H is called injective if x[σ] 6= y[σ]
for all names x 6= y. It is surjective if dom(σ) ⊆ range(σ),
and bijective if it is injective as well as surjective.

Ruthless substitution may lead to name capture: a free
occurrence of a name becoming bound in P{{σ}}. When σ
is injective, which it will be in my applications, this is not
possible.

For y ∈N and ~x= (x1, . . . , xn)∈Nn, let the substitutions
sy : {y}∪B∪S → {y}∪B∪S and d~x : {x1, ..., xn}∪D∪S ⇀
{x1, ..., xn} ∪ D ∪ S be defined by

sy(y) := s d~x(xi) := di for 1 ≤ i ≤ n
sy(ςs) := sςs d~x(ςdi) := dςdi for 1 ≤ i ≤ n
sy(s1) := y d~x(si) := xi for 1 ≤ i ≤ n
sy(si+1) := si d~x(si+n) := si .

22

Also recall the functions `, r and py defined in Section IX.
Note that all substitutions `, r, py , sy and d~x are bijective.
Define the translation T r

cf from π(N) to π(Z,R) inductively
by:

T r
cf (0) := 0

T r
cf (τ.P) := τ.T r

cf (P)
T r

cf (x̄y.P) := x̄y.T r
cf (P)

T r
cf (x(y).P) := x(s).

(
T r

cf (P){{sy}}
)

T r
cf ((νy)P) := (νp)

(
T r

cf (P){{py}}
)

T r
cf ([x=y]P) := [x=y]T r

cf (P)
T r

cf (P | Q) := T r
cf (P){{`}} | T r

cf (Q){{r}}
T r

cf (P +Q) := T r
cf (P) + T r

cf (Q)
T r

cf (A(~y)) := Acf(~y)

where Acf is a fresh agent identifier, with defining equation
Acf(~x[d~x])

def
= T r

cf (P){{d~x}} when A(~x)
def
= P was the defin-

ing equation of A (which may now be dropped).

Example 9: Let P := (νy)x̄y.A(y, z) where A(x1, x2)
def
=

(νz).A(z, x1). Then T r
cf (P) = (νp)x̄p.

pyAcf(p, z) where

Acf(d1, d2)
def
= (νp).

d~xpyAcf(p, d1),
pyAcf(d1, d2)

def
= (νep).

pyd~xpyAcf(
ep, d1),

pyd~xpyAcf(
dd1,

dd2)
def
= (νeep).

pyd~xpyd~xpyAcf(
eep, dd1), ...

Theorem 6: Each process T r
cf (P) is fully clash-free.

Proof. In T r
cf ((νy)P) the operation {{py}} injectively re-

names all private names ςp in T r
cf (P) by adding a tag e in front

of their modifiers. This frees up the name p. The translation
of (νy)P takes advantage of this by changing the bound name
y into p. This ensures that Clause 2 of Definition 10 is met.

Likewise, in T r
cf (x(y).P) the {{sy}} injectively renames all

symbolic names ςs in T r
cf (P) by adding a tag s in front of

their modifiers. This frees up the name s. The translation of
Mx(y)P finishes by changing the bound name y into s. As a
result also Clause 3 of Definition 14 is met.

In T r
cf (A(~y)) the operation {{d~x}} injectively renames all

declared names ςdi for 1 ≤ i ≤ n by adding a tag d in front
of their modifiers ς . This frees up the names d1, . . . , dn. The
translation of defining equations takes advantage of that by
renaming all declared names xi into di. This way Clause 1 of
Definition 14 is met.

In T r
cf (P |Q) the operations {{`}} and {{r}} injectively

rename private names in T r
cf (P) and T r

cf (Q) by adding a tag
` or r in front of their modifiers, depending on whether they
occur in the left or the right argument. This validates Clause
3 of Definition 10.

Free names of a π(N) process P are not renamed in
T r

cf (P). As a consequence, one has fn(T r
cf (P)) ⊆ N .

Moreover, declared names always end up in D and names
bound by input prefixes and restriction always in B and
R, respectively. Therefore, translated processes T r

cf (P) are
always well-typed, and Clauses 1 and 4 of Definition 10 as
well as 4 of Definition 14 are met.

Moreover, after translation, any defining equation A(~x)
def
= P

satisfies the condition that P is well-typed and xi ∈ Z for

i = 1, . . . , n. This ensures that this third step of my translation
composes fruitfully with steps four, five and six.

Since all T r
cf does is replication of defining equations

and renaming of bound and declared variables, it preserves
strong barbed bisimilarity, regardless whether all barbs are
considered, or only barbs from Z .

F. Replacing ruthless substitution by relabelling

Even though T r
cf preserves •∼, I have to reject it as a valid

translation. The main objection is that it employs operations on
processes—ruthless substitutions—that are not syntactic oper-
ators of the target language. Thereby it fails the criterion of
compositionality, even if the ruthless substitutions are applied
in a compositional manner. In addition, it creates an infinite
amount of replicated agent identifiers, whereas I strive not to
increase the number of agent identifiers found in the source
language. To overcome these problems, this section shows that
the ruthless substitutions can be replaced by applications of
relabelling operators.

Let T r
cfν := Tν ◦ T r

cf be the composed translation from
πES(N) to π†ES(Z,R). It can be inductively defined just as
T r

cf in Section E, except that the clause for restriction reads

T r
cfν((νy)P) := T r

cf (P){{py}}.9

By Theorems 3 and 4 this translation preserves strong barbed
bisimilarity: T r

cfν(P) •∼ P for all πES(N) processes P .
Now let π‡ES(Z,R) be the variant of π‡−ES(Z,R) enriched

with relabelling operators [σ] for any bijective substitution
σ : H ⇀ H that satisfies that y ∈ R ⇒ σ(y) ∈ R. Like
π‡−ES(Z,R), it also contains all relabelling operators [σ] with
dom(σ) finite, satisfying dom(σ) ∩R = ∅.

Finally, let Tcfν be the translation from πES(N) to
π‡ES(Z,R) defined inductively exactly as T r

cfν , except that
each substitution {{σ}} is replaced by the relabelling operator
[σ]. Theorem 7 below will show that T r

cfν(P) •∼ Tcfν(P) for
any πES(N) process P . This entails that also the translation
Tcfν preserves strong barbed bisimilarity: Tcfν(P) •∼ P for
all πES(N) processes P .

The translation Tcfν replaces each defining equation
A(~x)

def
= P that was present in πES(N) by a defining equa-

tion Acfν(~x[d~x])
def
= Tcfν(P)[d~x]. The total number of agent

identifiers and defining equations in the language does not
change. In particular, the translation Tcfν does not introduce
the infinite set of fresh agent identifiers σA of Definition 15,
and their defining equations σA(~x[σ])

def
= P{{σ}}. These where

introduced by the translation T r
cf , but can be dropped as soon

as we have Theorem 7. They do not form a part of the ultimate
translation from πL(N) to CCStrig

γ ; they merely played a rôle
in the validity proof of that translation.

Lemma 28: Let R be a π†ES(Z,R) process and σ an injec-
tive substitution. If R α−→ R′ then R{{σ}} α[σ]−−→≡ R′{{σ}}.

Proof. With induction on the derivation of R α−→ R′.

9Note that Tν(T r
cf(P){{d}}) = Tν(T r

cf(P)){{d}}.

23

• The cases that R α−→ R′ is derived by rule TAU or OUTPUT

are trivial.
• Suppose R α−→R′ is derived by rule EARLY-INPUT. Then
R=Mx(y).P , α=Mxz and R′=P{z/y}. So R{{σ}}=
M [σ]x[σ](y[σ]).(P{{σ}}) ∧ α[σ] = M [σ]x[σ]z[σ]. By
rule EARLY-INPUT R{{σ}} α[σ]−−→ P{{σ}}{z[σ]/y[σ]} ≡
P{z/y}{{σ}} = R′{{σ}}. The last step uses that σ is
injective.

• Suppose R=A(~y). Let A(~x)
def
= P . Say ~x=(x1, . . . , xn).

Then P{~y/~x} α−→R′, so by induction

P{~y/~x}{{σ}} α[σ]−−→ ≡ R′{{σ}}.

Moreover, R{{σ}}= σA(~y[σ]) and

P{{σ}}{~y[σ]/~x[σ]} ≡ P{~y/~x}{{σ}}.

This step uses that σ is injective. So by Lemma 15
P{{σ}}{~y[σ]/~x[σ]} α[σ]−−→≡ R′{{σ}}. Thus, by rule IDE,
R{{σ}} α[σ]−−→≡ R′{{σ}}.

• The cases that R α−→ R′ is derived by rule SUM, SYMB-
MATCH, PAR or E-S-COM are trivial.

Lemma 29: Let R be a π†ES(Z,R) process and σ a bijective
substitution. If R{{σ}} β−→ U then R α−→ R′ for some α and
R′ with α[σ] = β and R′{{σ}} ≡ U . Moreover, the size of the
derivation of R α−→ R′ is the same as that of R{{σ}} β−→ U .

Proof. With induction on the size of the derivation of the
transition R{{σ}} β−→ U .

• The cases that R{{σ}} β−→ U is derived by rule TAU or
OUTPUT are trivial.

• Suppose R{{σ}} β−→ U is derived by EARLY-INPUT. Then
R = Mx(y).P and Rσ = M [σ]x[σ](y[σ]).(P{{σ}}). So
β = M [σ]x[σ]v and U = P{{σ}}{v/y[σ]}. Since σ is
surjective, there is a z with z[σ] = v. By EARLY-INPUT

R
α−→ R′ with α = Mxz and R′ = P{z/y}. Now α[σ] =

β and R′{{σ}}=P{z/y}{{σ}}≡P{{σ}}{z[σ]/y[σ]}=U .
The last step uses that σ is injective.

• Suppose R{{σ}} β−→ U is derived by IDE. Then R =
A(~y) and R{{σ}} = σA(~y[σ]). Let A(~x)

def
= P . Then

σA(~x[σ])
def
= P{{σ}}. So P{{σ}}{~y[σ]/~x[σ]} β−→ U . Since

P{{σ}}{~y[σ]/~x[σ]} ≡ P{~y/~x}{{σ}}, using that σ is
injective, Lemma 15 yields P{~y/~x}{{σ}} β−→≡ U . So
by induction P{~y/~x} α−→ R′ for some α and R′ with
α[σ] = β and R′{{σ}} ≡ U . By rule IDE R

α−→ R′.
• The cases that R{{σ}} β−→ U is derived by rule SUM,

SYMB-MATCH or PAR are trivial. The case for E-S-COM is
also trivial, when using injectivity of σ to conclude that
there is a unique z with z[σ] = y. This solves the only
complication in the corresponding case of the proof of
Lemma 23.

For P a π‡ES(Z,R) process, let P̂ be the π†ES(Z,R)
process obtained from P by recursively replacing each subterm
Q[σ] by Qσ if dom(σ) is finite and dom(σ) ∩ R = ∅, and
by Q{{σ}} if dom(σ) is infinite and σ bijective, and each
agent identifier A by A .̂ Here Aˆ is a fresh agent identifier

with defining equation A (̂~x)
def
= P̂ when A(~x)

def
= P was the

defining equation of A. This definition extends the mapping ·̂
defined in Section D from π‡−ES(Z,R) to π‡ES(Z,R).

Lemma 30: If R α−→ R′ then R̂ α−→≡ R̂′.

Proof. The proof is the same as the proof of Lemma 24, except
that the case of RELABELLING R = [σ] involves a further
case distinction, depending on whether dom(σ) is finite and
dom(σ) ∩ R = ∅, or dom(σ) is infinite and σ is bijective.
In the first case Lemma 19 is called, and in the second case
Lemma 28.

Definition 16: Let BN be the smallest function from
π‡ES(Z,R) processes to sets of names, such that

• y ∈ BN(Mx(y).P),
• x1, . . . , xn ∈ BN(A(~y) if A(x1, . . . , xn)

def
= P ,

• y ∈ BN(P [σ]) if y ∈ dom(σ) and dom(σ) is finite,
• BN(P) ⊆ BN(Mτ.P),
• BN(P) ⊆ BN(Mx̄y.P) and BN(P) ⊆ BN(Mx(y).P),
• BN(P) ∪ BN(Q) ⊆ BN(P +Q),
• BN(P) ∪ BN(Q) ⊆ BN(P |Q),
• BN(P) ⊆ BN([x=y]P),
• BN(P) ⊆ BN(A(~y)) if A(x1, . . . , xn)

def
= P ,

• BN(P) ⊆ BN(P [σ]) if dom(σ) is finite.
• BN(P [σ]) = {σ(y) | y ∈ BN(P)} if dom(σ) is infinite

and σ bijective.

Note that restricted to π‡−ES(Z,R) processes, so that the last
clause above does not apply, this definition agrees with Defi-
nition 12. Using this definition of BN, Definition 14 of clash-
freedom extends to the general case with the stipulation that
Clause 2 on Q[σ] only applies when σ is a finite substitution
with dom(σ)∩R = ∅; the notion does not restrict the use of
relabelling operators σ with dom(σ) infinite and σ bijective.

I now show that Lemma 25 (and the definition of �)
extends to π‡ES(Z,R).

Lemma 31: If P � Q and P is a clash-free π‡ES(Z,R)
process, then so is Q.

Proof. Let P [σ] be a clash-free π‡ES(Z,R) process with
dom(σ) infinite and σ bijective. By definition of π‡ES(Z,R),
σ satisfies y ∈ R ⇒ σ(y) ∈ R. This implies that
R ∩ BN(P) = ∅. The other clauses of Definition 14 are
satisfied trivially, so P is clash-free.

All other cases go as in the proof of Lemma 25.

Note that Lemma 20 holds also for π‡ES(Z,R) processes.

Lemma 32: If R is clash-free and R̂
α−→ U with ι(α) ∩

BN(R) = ∅ then R α−→ R′ for some R′ with R̂′ ≡ U .

Proof. By induction on the size of the derivation of R̂ α−→ U ,
with a nested induction on the number of topmost renaming
operators in R.

• The cases that R is not of the form P [σ], or that R =
P [σ] with dom(σ) finite and dom(σ)∩R = ∅, go exactly
as in the proof of Lemma 26.

24

• Now suppose R = P [σ] with dom(σ) infinite and σ

bijective. Then R̂ = P̂{{σ}}. By Lemma 29 P̂ β−→ V for
some β and V with β[σ]=α and V {{σ}}≡U . Moreover,
the size of the derivation of P̂ β−→ V is the same as that of
P̂{{σ}} α−→ U . By Lemma 31 P is clash-free and trivially
ι(β) ∩ BN(P) = ∅. So by induction P β−→ P ′ for some
P ′ with P̂ ′ ≡ V . By rule RELABELLING R

α−→ P ′[σ].
Furthermore one has P̂ ′[σ] = P̂ ′{{σ}} ≡ V {{σ}} ≡ U .

The following result is in analogy with Theorem 6.

Lemma 33: Each process R := Tcfν(P) is clash-free and
BN(R) ⊆ B ∪ D.

Proof. In Tcfν(x(y).P) = x(s).
(
Tcfν(P)[sy]

)
the relabelling

[sy] injectively relabels all symbolic names ςs in BN(Tcfν(P))
by adding a tag s to their modifiers. This frees up the name
s. The translation of Mx(y)P takes advantage of this by
changing the bound name y into s ∈ B. This ensures that
Clause 3 of Definition 14 is met.

Likewise, in Tcfν(A(~y)) = Acfν(~y), where Acfν is an agent
identifier with defining equation Acfν(~x[d~x])

def
= Tcfν(P)[d~x]

when A(~x)
def
= P was the defining equation of A, the [d~x]

injectively renames all declared names ςdi for 1 ≤ i ≤ n in
BN(Tcfν(P)) by adding a tag d to their modifiers ς . This frees
up the names d1, . . . , dn. The translation of defining equations
takes advantage of that by renaming all declared names xi into
di ∈ D. This way Clause 1 of Definition 14 is met.

Relabelling operators [σ] with dom(σ) finite do not occur in
processes Tcfν(P). Hence Clause 2 of Definition 14 is trivially
met. Furthermore, since all relabelling operators employed in
the translation never take a name from B or D outside of B
or D, respectively, one has BN(R) ⊆ B ∪ D.

In Tcfν((νy)P) = Tcfν(P)[py] the bound name y is turned
into a free name p ∈ R, and all relabelling operators keep
such names within R. Free names of a π(N) process P
are not renamed in Tcfν(P). As a consequence, one has
fn(Tcfν(P)) ⊆ N ∪R. Therefore, Clause 4 of Definition 14
is met as well.

Lemma 34: If R in π‡ES(Z,R) is clash-free, ι(α)∩BN(R)

=∅ and R α−→ R′, then R′ is clash-free and BN(R′) ⊆ BN(R).

Proof. The proof is the same as the one of Lemma 27,
except that there is now one extra case to consider: Suppose
R

α−→ R′ is derived by RELABELLING and R = P [σ] with
dom(σ) infinite and σ bijective. Then P

β−→ P ′, β[σ] = α
and R′ = P ′[σ]. By Lemma 31, P is clash free. Since
ι(α) ∩ BN(R) = ∅ and σ is bijective, ι(β) ∩ BN(P) = ∅. So
by induction P ′ is clash-free and BN(P ′) ⊆ BN(P). Hence
BN(R′) ⊆ BN(R) and R′ is clash-free.

Theorem 7: T r
cfν(P) •∼Tcfν(P) for any πES(N) process P.

Proof. Let

R :=

{
(R,U), (U,R)

∣∣∣∣R in π‡ES(Z,R) is clash-free
and U ≡ R̂ in π†ES(Z,R)

}
.

Lemma 33 shows that Tcfν(P) is clash-free for each πES(N)

process P . Since T̂cfν(P) = T r
cfν(P) for any πSE(N) process

P , it suffices to show that R is a strong barbed bisimulation.
This follows exactly as in the proof of Theorem 5, but using
Lemmas 30, 32 and 34 instead of 24, 26 and 27.

G. The last steps

The translation from π‡ES(Z,R) to CCStrig
γ , depicted as the

last step in Figure 3, actually consists of 2 small steps. The first
of those consists in moving the relabelling operator [{~y/~x}]
that occurs in rule IDE, as well as the relabelling [d~x] that
was added to defining equations of agent identifiers, forwards.
The target language is the variant π§ES(Z,R) of π‡ES(Z,R)
in which agent identifiers may be called only with their own
declared names as parameters, i.e. such that ~y = ~x in rule IDE.
As a result of this, the relabelling or substitution operator in
this rule can be dropped. Let T ′cfν(P) be the translation from
π(N) to π§ES(Z,R) defined inductively as follows:

T ′cfν(0) := 0
T ′cfν(τ.P) := τ.T ′cfν(P)
T ′cfν(x̄y.P) := x̄y.T ′cfν(P)
T ′cfν(x(y).P) := x(s).

(
T ′cfν(P)[sy]

)
T ′cfν((νy)P) := T ′cfν(P)[py]
T ′cfν([x=y]P) := [x=y]T ′cfν(P)
T ′cfν(P | Q) := T ′cfν(P)[`] | T ′cfν(Q)[r]
T ′cfν(P +Q) := T ′cfν(P) + T ′cfν(Q)
T ′cfν(A(~y)) := A′cfν(~x)[d~x][{~y/~x[d~x]}]

where A′cfν is a fresh agent identifier, with defining equa-
tion A′cfν(~x)

def
= T ′cfν(P) when A(~x)

def
= P was the defining

equation of A. This translation differs from Tcfν only in
the case of agent identifiers. There Tcfν(A(~y)) := Acfν(~y)
where Acfν is a fresh agent identifier, with defining equation
Acfν(~x[d~x])

def
= Tcfν(P)[d~x] when A(~x)

def
= P was the defin-

ing equation of A.

Theorem 8: T ′cfν(P)↔Tcfν(P) for any πES(N) process P.

Proof. Let R be the symmetric closure of the smallest relation
between π§ES(Z,R) and π‡ES(Z,R) processes such that 0 R
0, A′cfν(~x)[d~x][{~y/~x[d~x]} R Acfν(~y), and P R V ∧ Q R W
implies x̄y.PR x̄y.V , x(y).PRx(y).V , τ.PRτ.V , [x=y]PR
[x=y]V , P |QRV |W , P+QRV+W and P [σ]RV [σ]. Then
T ′cfν(P) R Tcfν(P) for any πES(N) process P , so it suffices
to show that R is a strong bisimulation, i.e. that

if R R U and R α−→ R′ then ∃U ′. U α−→ U ′ ∧R′ R U ′.

The proof is by induction on the derivation of R α−→ R′, while
making a case distinction based on the construction of R R U .
• Suppose R = A′cfν(~x)[d~x][{~y/~x[d~x]} and U = Acfν(~y).

Then A′cfν(~x)
β−→ Q′ for some β and Q′ such that

β[d~x][{~y/~x[d~x]} = α and Q′[d~x][{~y/~x[d~x]} = R′. Let
A(~x)

def
= P be the defining equation of A. Then, by IDE,

T ′cfν(P)
β−→ Q′ and thus T ′cfν(P)[d~x][{~y/~x[d~x]} α−→ R′.

By induction, Tcfν(P)[d~x][{~y/~x[d~x]} α−→ U ′ for some U ′

with R′ R U ′. Thus, again by IDE, Acfν(~y)
α−→ U ′.

25

The symmetric case goes likewise.
• Suppose R R U holds because R = P |Q and U = V |W

with P R V and Q R W .

– First suppose that R α−→ R′ is derived by PAR. Then
P

α−→ P ′ has a smaller derivation and R′ = P ′|Q.
By induction V α−→ V ′ for some V ′ with P ′ R V ′.
So by PAR U

α−→ V ′|W and V ′|W R P ′|Q = R′.
– The case that R α−→ R′ is derived by E-S-COM (or

by the symmetric form of PAR) is equally trivial.

• All other cases are also trivial.

The language π§ES(Z,R) can almost be recognised as an
instance of CCSγ . As parameters of CCSγ I take A to be
the set of all actions Mτ , Mx̄y and Mxy with names from
H. The communication function γ : H ⇀ H is given by
γ(Mx̄y,Nvy) = [x=v]MNτ , and its commutative variant.
Now the parallel composition of π§ES(Z,R) turns out to be the
same as for this instance of CCSγ . Likewise, the silent and out-
put prefixes are instances of CCSγ prefixing. Moreover, when
simply writing A for A(~x), the agent identifiers of π§ES(Z,R)
are no different from CCSγ agent identifiers.10 However,
the input prefix of π§ES(Z,R) does not occur in CCSγ .
Yet, one can identify Mx(y).P with

∑
z∈HMxz.(P [{z/y}]),

for both processes have the very same outgoing transitions.
The π§ES(Z,R) matching operator is no different from the
triggering operator of MEIJE or CCStrig

γ (see Section XI):
both rename only the first actions their argument process can
perform, namely by adding a single match [x=y] in front of
each of them—this match is suppressed when x=y.

This yields to the following translation from π§ES(Z,R) to
CCStrig

γ :

Tγ(0) := 0
Tγ(Mτ.P) := Mτ.Tγ(P)
Tγ(Mx̄y.P) := Mx̄y.Tγ(P)
Tγ(Mx(y).P) :=

∑
z∈HMxz.

(
Tγ(P)[{z/y}]

)
Tγ([x=y]P) := [x=y]⇒Tγ(P)
Tγ(P | Q) := Tγ(P)‖Tγ(Q)
Tγ(P +Q) := Tγ(P) + Tγ(Q)
Tγ(A(~x)) := A

where the CCSγ agent identifier A has the defining equation
A = Tγ(P) when A(~x)

def
= P was the defining equation of

the π§ES(Z,R) agent identifier A.
Here the use of the triggering operator can be avoided by

restricting attention to the π-calculus with implicit matching.
For that language the clause for Tγ([x=y]P) can be dropped,
at the expense of the addition of the blue Ms above, which
are absent when dealing with the full π-calculus.

Theorem 9: Tγ(P)↔ P for each π§ES(Z,R) process P .

Proof. Trivial.

10Here I assume that all sets Kn are disjoint, i.e., the same π-calculus
agent identifier does occur with multiple arities. When this assumption is not
met, an arity-index at the CCSγ identifier is needed.

H. A small simplification

Putting all steps of my translation from πL(N) to CCStrig
γ

together, I obtain

T1(0) := 0
T1(Mτ.P) := Mτ.T1(P)
T1(Mx̄y.P) := Mx̄y.T1(P)
T1(Mx(y).P) :=

∑
z∈HMxz.

(
T1(P)[sy][{z/s}]

)
T1((νy)P) := T1(P)[py]
T1([x=y]P) := [x=y]⇒T1(P)
T1(P | Q) := T1(P)[`] ‖T1(Q)[r]
T1(P +Q) := T1(P) + T1(Q)
T1(A(~y)) := A[d~x][{~y/~x[d~x]}]

where the CCSγ agent identifier A has the defining equation
A = T1(P) when A(~x)

def
= P was the defining equation of

the πL(N) agent identifier A.
Now I discuss two simplification that can be made to this

translation. The first is obtained by replacing the nested rela-
bellings [sy][{z/s}] and [d~x][{~y/~x[d~x]}] in the clauses for input
prefix and agent identifiers by single relabellings [{z/s} ◦ sy]
and [{~y/~x[d~x]} ◦ d~x]. This surely preserves strong bisimilar-
ity. After this change, all CCStrig

γ relabelling operators [σ]
that are introduced by the translation have the property that
x ∈ B ∪ D ⇔ x[σ] ∈ B ∪ D.

Now let TBD be the translation from CCStrig
γ to CCStrig

γ

that replaces each sum
∑
z∈H into a sum

∑
z∈N∪R∪S and

each relabelling operator [σ] by [σ � N ∪R ∪ S]. It is trivial
to show that each process of the form T (P) with P ∈ πL(N)
is strongly barbed bisimilar with TBD(T (P)). The idea is that
names from B ∪ D are never introduced and thus can just as
well be dropped from the language.

The resulting simplifications of the renamings [{z/s} ◦ sy]
and [{~y/~x[d~x]} ◦ d~x] can now be written as [{z/y}S] and
[{~y/~x}S], or as [z/y] and [~y/~x] for short. Here [{z/y}S] was
defined in Section IX. It relabels y ∈ N into z and bijectively
maps S to S ∪ {y}, leaving all other names unchanged.
Likewise, [{~y/~x}S] relabels xi into yi for i = 1, . . . , n and
bijectively maps S to S ∪ {x1, . . . , xn}. This yields the
translation T presented in Section IX.

26

πL(N) πES(N)
id

πSES(N)

id
id

π ρ•ES (N)

Tr

π ρES(N)

Tcf

π ρES(N ,R)
Tν

π†ES(N ,R)
Tγ

CCStrig
γ

Fig. 4. Translation from the π-calculus to CCStrig
γ

APPENDIX 2

As indicated in Figure 4, my translation from π to CCStrig
γ

proceeds in seven steps, or actually ten when decomposing
steps 1, 3 and 6 into two smaller steps each. Section IX
presents the translation in one step: the composition of these
constituent translations. Its decomposition in Figure 4 de-
scribes how this appendix proves its validity.

Each of the eight languages in Figure 4 comprises syntax,
determining what are the valid expressions or processes, a
structural operational semantics generating an LTS, and a BTS
extracted from the LTS in the way described in Section IV.

My translation starts from the π-calculus πL(N) with the
late operational semantics, as defined in [24]. The argument
N denotes the set of names taken as a parameter of the π-
calculus. The first step is the identity mapping to πES(N),
the calculus with the same syntax but the early symbolic
operational semantics. The validity of this translation step
is the statement that each πL(N)-expression P is strongly
barbed bisimilar with the same expression P , but now seen as
a state in the LTS generated by the early symbolic operational
semantics. This has been concluded already in Section VI.
This first translation step can be decomposed into two smaller
steps by taking either the π-calculus with the early semantics
or the one with the late symbolic semantics as an halfway
point between πL(N) and πES(N).

The calculus πSES(N) is a variant of πES(N) in which the
substitutions that occur in the early symbolic operational rules
EARLY-INPUT and IDE are changed into surjective substitutions.
This is achieved by extending the set of names from N to
Z := N] S , for a countable set of spare names S. In order
to preserve the integrity of the calculus, this change forces new
definitions of α-conversion, the free names of a process, and
the application of a substitution to a process. These concepts
differ from the old ones only when spare names are involved.
The πSES(N)-processes that employ names from N only form
a subcalculus of πSES(N) that behaves just like πES(N). This
yields the second translation step.

The calculus π ρ•ES(N) is a variant of πSES(N) enriched
with a CCS-style relabelling operator [σ] for each surjective
substitution σ. Moreover, all substitutions that are used in the
operational semantics are replaced by relabelling operators.
Section D documents that the identity mapping is a valid
translation from πSES(N) to π ρ•ES(N). This works only when
using surjective substitutions, and that is the reason πSES(N)
appears in the previous translation step.

In π ρ•ES(N) there is no room for rule ALPHA. Hence, before
translating πSES(N) into π ρ•ES(N) I show that on πSES(N)
one can equally well use a version of the early symbolic
operational semantics in which all α-conversion has been
moved into stronger versions of rules RES and SYMB-OPEN.
This can be seen as an intermediate translation step.

The calculus π ρES(N) is the variant of π ρ•ES(N) in which
agent identifiers may be called only with their own declared
names as parameters, i.e. such that ~y = ~x in rule IDE. In
Section F I establish the validity of a translation from π ρ•ES(N)
to π ρES(N) that turns each call A(~y) to an agent identifier with
defining equation A(~x)

def
= P into the expression A(~x)[~y/~x].

In π ρES(N ,R) the set of names employed is further ex-
tended with a collection R of private names. I write N ,R
instead of N] R to indicate, amongst others, that only the
names in Z := N]S—the public ones—generate barbs. The
interior white ellipse denotes the class of clash-free processes
within π ρES(N ,R), defined in Section G. That section also
presents the translation Tcf that turns each π ρES(N) process
into a clash-free π ρES(N ,R) process.

Step 6, recorded in Sections H–I, eliminates the restriction
operator from the language by translating (sub)expressions
(νz)P into P . This step does not preserve •∼ for the language
as a whole, but, since there are no R-barbs, it does so on the
sublanguage that arises as the image of the previous translation
steps, namely on the clash-free processes in π ρES(N ,R). This
step is delivered in two substeps, the first of which eliminates
α-conversion from the operational semantics, and the second
the restriction operator.

After this step, the resulting language π†ES(N ,R) is in De
Simone format. Moreover, as shown in Section J, it is easily
translated into CCStrig

γ .
A different proof of the same result, Theorem 2, saying that

T is a valid translation from πL(N) to CCStrig
γ , up to strong

barbed bisimilarity, appears in Appendix 1. That proof avoids
step 2 from the current approach, which is the most laborious
one, as well as step 3a. The remaining steps are delivered in
the order 1a−1b−5−6a−6b−3b−4−7. However, that proof
appears less direct: its third step, making processes clash-free,
introduces two auxiliary sets of names B and D, as well as
“ruthless substitutions”, with an infinity of replicated agent
identifiers. The ruthless substitutions are eliminated again after
the sixth step, and the names from B and D at the very end.
The proof in this appendix avoids those detours.

27

A. Substitution

This section shows to what extend substitution preserves and
reflects the behaviour of π-calculus processes. As behaviour I
will use the labelled translation relation generated by the early
symbolic operational semantics.

In the next section, I will need that the results of this
section remain valid for an adapted version of the π-calculus,
in which the meaning of the construct x(y).P will be changed.
Technically, this will manifest itself by
• the use of surjective substitutions {z/y}S and {~y/~x}S

instead of {z/y} and {~y/~x} in rules EARLY-INPUT and IDE,
• the use of a relation ≡S instead of ≡ in rule ALPHA,
• the use of a function FN instead of fn in rules PAR and

E-S-CLOSE,
• a different definition of (x(y).P)σ.

The function FN will be defined inductively by

FN(0) := ∅
FN(Mτ.P) := n(M) ∪ FN(P)
FN(Mx̄y.P) := n(M) ∪ {x, y} ∪ FN(P)
FN(Mx(y).P) := n(M) ∪ {x} ∪ FN(P)−y
FN((νy)P) := FN(P)\{y}
FN([x=y]P) := {x, y} ∪ FN(P)
FN(P |Q) := FN(P) ∪ FN(Q)
FN(P +Q) := FN(P) ∪ FN(Q)
FN(A(~y)) := {y1, . . . , yn}.

where FN(P)−y is yet to be defined. So FN differs from fn only
when applied to processes x(y).P .

I will use the following definition of substitution:

0σ := 0
(Mτ.P)σ := M [σ]τ.(Pσ)

(Mx̄y.P)σ := M [σ]x[σ]y[σ].(Pσ)
(Mx(y).P)σ := M [σ]x[σ](z).(Pσ[y 7→ z])

((νy)P)σ := (νz)(P{z/y}σ)
([x=y]P)σ := [x[σ]=y[σ]](Pσ)

(P |Q)σ := (Pσ)|(Qσ)
(P +Q)σ := (Pσ) + (Qσ)

A(~y)σ := A(~y[σ])

where Pσ[y 7→z] is yet to be defined. Here z is chosen outside
FN((νy)P)∪dom(σ)∪range(σ); when y /∈dom(σ)∪range(σ)
one always picks z := y. The original definition of substitution
is retrieved by taking Pσ[y 7→ z] := P{z/y}σ.

To facilitate reuse, I record below the properties of substi-
tutions, FN and ≡S that will be needed in my proofs.

FN(P{~y/~x}S) ⊆ FN(A(~y)) (4)
P ≡S Q ⇒ FN(P) = FN(Q) (5)

FN(P{z/y}S) ⊆ FN(x(y).P) ∪ {z} (6)
Pσ[y 7→ w]{z[σ]/w}S ≡S P{z/y}Sσ (7)

FN(Pσ) = {x[σ] | x ∈ FN(P)} (8)
P{~y[σ]/~x}S ≡S P{~y/~x}Sσ (9)

((νy)P) ≡S (νw)(P{w/y}) (10)
(Pσ1)σ2 ≡S P (σ2 ◦ σ1)11 (11)

(∀x ∈ FN(P). x[σ] = x[σ′]) ⇒ Pσ ≡S Pσ′ (12)
P ≡S Q ⇒ Pσ ≡S Qσ (13)

P{w/y}S{z/w} ≡S P{z/y}S (14)
Pε ≡S P (15)

U ≡S (x(y).P)σ ⇒ U = x[σ](w).V with
V ≡S Pσ[y 7→ w]

(16)

U ≡S (νy)P ⇒ U = (νw)V with
V ≡S P{y/w} (17)

Here w ∈N \ FN((νy)P) in (10), y ∈N and w ∈ FN(x(y)P)
in (14), w ∈ N \(FN((νy)P) ∪ dom(σ) ∪ range(σ)) in (7),
A(~x)

def
= P in (4) and (9), and ε is the empty substitution.

As is easy to check, these properties hold for the original π-
calculus, that is, when using {z/y} and {~y/~x} for {z/y}S and
{~y/~x}S , ≡ for ≡S , fn for FN (i.e., FN(P)−y := FN(P)\{y}),
and Pσ[y 7→ z] := P{z/y}σ.

First I state two standard properties of names in transitions.
Define the input arguments ι(α) of an action α by

ι(Mx̄(y)) = ι(Mx̄y) = ι(Mτ) := ∅ and ι(Mxz) = {z}.

Lemma 35: If P α−→ Q then n(α)\(ι(α)∪bn(α)) ⊆ FN(P).

Proof. A trivial induction on the inference of P α−→ Q, using
(4) and (5) when P α−→ Q is derived by IDE or ALPHA.

Lemma 36: If P α−→ Q then FN(Q) ⊆ FN(P)∪ι(α)∪bn(α).

Proof. A trivial induction on the inference of P α−→ Q, using
(6) when P

α−→ Q is derived by EARLY INPUT, Lemma 35
when P α−→ Q is derived by E-S-COM, and (4) and (5) when
P

α−→ Q is derived by IDE or ALPHA.

Definition 17: The depth of an interference of a transition
(from the rules in the operational semantics) is the length of the
longest path in the proof tree of that inference. The α-depth is
defined likewise, but not counting applications of rule ALPHA.

Following [24], in the following lemmas the phrase
if P α−→ P ′ then equally Q α−→ Q′

means that if P α−→ P ′ may be inferred then so, by an
inference of the same α-depth, may be Q α−→ Q′.

For σ : N ⇀ N a substitution and α an action Mτ ,
Mxy, Mx̄y or Mx̄(z), write α[σ] for M [σ]τ , M [σ]x[σ]y[σ],
M [σ]x̄[σ]y[σ] and M [σ]x̄[σ](z[σ]), respectively.

Lemma 41 below shows how substitutions preserve be-
haviour. On the way to obtain it, I start with the special case
of input and (bound) output transitions.

Lemma 37: If R α−→ R′, with α not of the form Mτ , and
σ is a substitution with bn(α[σ])∩ FN(Rσ) = ∅, then equally
Rσ

α[σ]−−→≡S R′σ.

Proof. With induction on the inference of R α−→ R′.
• Suppose R α−→R′ is derived by rule EARLY-INPUT. Then
R = Mx(y).P , α = Mxz and R′ = P{z/y}S . So Rσ =
M [σ]x[σ](w).(Pσ[y 7→ w])∧α[σ]=M [σ]x[σ]z[σ] where

11For substitutions σ1 and σ2, their composition σ2 ◦ σ1 is defined by
dom(σ2 ◦ σ1) = dom(σ1) ∪ dom(σ2) and x[σ2 ◦ σ1] = x[σ1][σ2].

28

w is chosen outside FN((νy)P)∪dom(σ)∪range(σ). By
rule EARLY-INPUT and (7)

Rσ
α[σ]−−→ Pσ[y 7→ w]{z[σ]/w}S ≡S P{z/y}Sσ = R′σ.

• The case that R α−→ R′ is derived by OUTPUT is trivial.
• Suppose R α−→R′ is derived by rule IDE. Then R=A(~y).

Let A(~x)
def
= P . By rule IDE, P{~y/~x}S α−→ R′. Since

FN(P{~y/~x}Sσ) ⊆ FN(Rσ) by (4) and (8), bn(α[σ]) ∩
FN(P{~y/~x}Sσ) = ∅. Hence P{~y/~x}Sσ α[σ]−−→≡S R′σ, by
induction. By Property (9), P{~y[σ]/~x}S ≡S P{~y/~x}Sσ.
Therefore P{~y[σ]/~x}S α[σ]−−→≡SR′σ, by rule ALPHA. Thus
Rσ = A(~y[σ])

α[σ]−−→≡S R′σ by IDE.
• The cases that R α−→ R′ is derived by rule SUM, SYMB-

MATCH or ALPHA (using (5)) are trivial.
• Suppose R α−→ R′ is derived by PAR. Then R = P |Q,
P

α−→ P ′ and R′ = P ′|Q. Since bn(α[σ])∩FN(Rσ) = ∅,
bn(α[σ])∩FN(Pσ)=∅. So by induction Pσ α[σ]−−→≡SP ′σ.
Moreover Rσ=Pσ|Qσ and bn(α[σ])∩ FN(Qσ) = ∅. So
Rσ

α[σ]−−→≡S P ′σ|Qσ = R′σ by rule PAR.
• Let R α−→ R′ be derived by rule RES. Then R= (νy)P ,
P

α−→ P ′, y 6∈ n(α) and R′ = (νy)P ′. Pick a w outside

FN((νy)P ′)∪FN((νy)P)∪dom(σ)∪range(σ)∪n(α[σ]).

Then Rσ ≡S ((νw)(P{w/y}))σ = (νw)(P{w/y}σ) by
(10) and (13). Since w /∈ bn(α[σ]) and bn(α[σ]) ∩
FN(Rσ) = ∅, by (5) also bn(α[σ]) ∩ FN(P{y/w}σ) = ∅.
So by induction, using (11) and the substitution σ◦{w/y},

P{y/w}σ ≡S α[σ]−−→≡S P ′{y/w}σ.

Thus Rσ α[σ]−−→≡S (νw)(P ′{y/w}σ) by RES and ALPHA.
Furthermore, (νw)(P ′{y/w}σ) ≡S R′σ by (10) and (13).

• Let R Mx̄(y)−−−−→ R′ be derived by rule SYMB-OPEN. Then
R=(νy)P , P Mx̄y−−−→ R′, y 6= x and y 6∈n(M). Now Rσ =
(νz)(P{z/y}σ) for some z /∈ FN((νy)P) ∪ dom(σ) ∪
range(σ). Since w := y[σ] /∈ FN(Rσ) (the side-condition
of this lemma), Rσ ≡S (νw)(P{z/y}σ{w/z}) by (10).
Note that u[{w/z} ◦ σ ◦ {z/y}] = u[σ] for u ∈ FN(P).
Hence P{z/y}σ{w/z} ≡S Pσ by (11) and (12). By
induction,

Pσ
M [σ]x̄[σ]w−−−−−−→≡S R′σ.

By Lemma 35, n(M)∪ {x, y} ⊆ FN(P). Hence n(M)∪
{x} ⊆ FN(R) = FN(P)\{y}, using that y /∈ n(M)∪{x}.
Thus n(M [σ]) ∪ {x[σ]} ⊆ FN(Rσ) by (8), and therefore
w /∈ n(M [σ])∪{x[σ]}. Thus, by SYMB-OPEN and ALPHA,

Rσ ≡S (νw)(Pσ)
M [σ]x̄[σ](w)−−−−−−−−→≡S R′σ.

Before generalising the above result to include the case α =
Mτ , I cover three more helpful standard properties.

Lemma 38: If R Mxz−−−→ Rz and w /∈ FN(R) then equally
R

Mxw−−−→ Rw for some process Rw with Rz ≡S Rw{z/w}.

Proof. With induction on the inference of P Mxz−−−→ Pz .
• Suppose R

Mxz−−−→ Rz is derived by rule EARLY-INPUT.
Then R = Mx(y).P and Rz = P{z/y}S . Moreover,
R

Mxw−−−→ Rw := P{w/y}S . By (14), Rz ≡S Rw{z/w}.

• Suppose R Mxz−−−→ Rz is derived by PAR. Then R = P |Q,
P

Mxz−−−→ Pz and Rz = Pz|Q. So by induction there is a
process Pw such that P Mxw−−−→ Pw and Pz ≡S Pw{z/w}.
Thus R Mxw−−−→ Pw|Q by PAR. Moreover, (Pw|Q){z/w} =
Pw{z/w}|Q{z/w} ≡S Pz|Q = Rz by (12) and (15), using
that w /∈ FN(Q).

• Let R Mxz−−−→ Rz be derived by rule RES. Then R=(νy)P ,
P

Mxz−−−→ Pz , y 6∈ n(M) ∪ {x, z} and Rz = (νy)Pz . Pick
a v /∈ FN(P) ∪ n(M) ∪ {x, y}. By induction there is a
process Pv such that P Mxv−−−→ Pv and Pz ≡S Pv{z/v}.
So R Mxv−−−→ (νy)Pv by RES. By (12), (15) and Lemma 37,

R ≡S R{w/v} Mxw−−−→ Rw ≡S ((νy)Pv){w/v}

for some Rw. Hence R Mxw−−−→ Rw by rule ALPHA.
By Lemma 36 FN(Pv)\{y, v}⊆FN(P)\{y}=FN(R) 63w.
Pick u /∈ FN(Pv) ∪ FN(Pv{z/v}) ∪ {v, w}. Then

Rw{z/w}≡S ((νy)Pv){w/v}{z/w} ≡S
((νu)Pv{u/v}){w/v}{z/w}≡S (νu)(Pv{u/y}{w/v}{z/w})
≡S (νu)(Pv{z/v}{u/y})≡S (νy)(Pv{z/v}) ≡S Rz

by (10)–(13), using that v 6= y 6= z and w 6= u 6= v.
• The other four cases are trivial, using (4) and (5) when
P

α−→ Q is derived by IDE or ALPHA.

Lemma 39: If R Mxw−−−→ Rw with w /∈ FN(R), and z a name,
then equally R Mxz−−−→Rz for some Rz with Rz ≡S Rw{z/w}.

Proof. With induction on the inference of R Mxw−−−→ Rw.
• Let R Mxw−−−→ Rw be derived by rule RES. Then R=(νy)P ,
P

Mxw−−−→ Pw, y 6∈n(M)∪{x,w} and Rw = (νy)Pw. Pick
a v /∈FN(P)∪FN(Pw)∪n(M)∪{x, y}. By induction there
is a process Pv with P

Mxv−−−→ Pv and Pv ≡S Pw{z/w}.
So R Mxv−−−→ (νy)Pv by RES. By (12), (15) and Lemma 37,

R ≡S R{z/v} Mxz−−−→ Rz ≡S ((νy)Pv){z/v}

for some Rz . Hence R
Mxz−−−→ Rz by rule ALPHA. Pick

u /∈ FN(Pw) ∪ FN(Pv) ∪ {z, v, w}. Then

Rw{z/w}≡S ((νy)Pw){z/w} ≡S
((νu)Pw{u/y}){z/w}≡S ((νu)Pw{u/y}{z/w}) ≡S

(νu)(Pw{z/w}{u/y}{z/v})≡S (νu)(Pv{u/y}{z/v})
≡S (νu)(Pv{u/y}){z/v}≡S ((νy)Pv){z/v} ≡S Rz

by (10)–(13), using that v 6= z 6= y 6= w 6= u 6= v.
• All other cases proceed as in the proof of Lemma 38.

The above proofs caters both to the full π-calculus and to
πIM, namely by considering explicitly the input prefix Mx(y).
Henceforth I focus on the full π-calculus, and drop the M from
the input prefix. It can always be retrieved via an application
of SYMB-MATCH.

Lemma 40: If R Mx(z)−−−−→ R′ and w /∈ FN(R) then equally
R

Mx(w)−−−−→≡S R′{w/z}.

Proof. With induction on the inference of R Mx(z)−−−−→ R′.
• Let R Mx̄(z)−−−−→ R′ be derived by rule SYMB-OPEN. Then
R = (νz)P , P Mx̄z−−−→ R′, z 6= x and z 6∈ n(M). By

29

Lemma 37, P{w/z} Mx̄w−−−→≡S R′{w/z}. By Lemma 35,
n(M)∪{x} ⊆ FN(R). Hence w /∈ n(M)∪{x}. By (10),
R ≡S (νw)(P{w/z}), so rules SYMB-OPEN and ALPHA

yield R Mx̄(w)−−−−→≡S R′{w/z}.
• Let R Mx̄(z)−−−−→R′ be derived by rule RES. Then R=(νy)P ,
P

Mx̄(z)−−−−→ P ′, y 6∈ n(M)∪{x, z} and R′ = (νy)P ′. Pick
a v /∈ {y}∪ FN(P)∪ FN(P ′)∪n(M)∪{x}. By induction
P

Mx̄(v)−−−−→≡S P ′{v/z}. So R
Mx̄(v)−−−−→≡S (νy)(P ′{v/z})

by RES. By (12), (15) and Lemma 37,

R≡S R{w/v} Mx̄(w)−−−−→≡S ((νy)(P ′{v/z})){w/v}.

Pick a u /∈ FN(P ′) ∪ FN(P ′{v/z}) ∪ {z, v, w}. Then

((νy)(P ′{v/z})){w/v} ≡S (νu)(P ′{v/z}{u/y}{w/v}) ≡S
(νu)(P ′{u/y}{w/z}) ≡S ((νy)P ′){w/z} = R′{w/z},

by (10)–(13), using that FN(P ′) 63 v 6= y 6= z 6= u 6= v.
By rule ALPHA, R Mx̄(w)−−−−→≡S R′{w/z}.

• The other five cases are trivial.

Lemma 41: If R
α−→ R′ and σ is a substitution with

bn(α[σ]) ∩ FN(Rσ) = ∅ then equally Rσ α[σ]−−→≡S R′σ.

Proof. With induction on the inference of R α−→ R′.
• The case that R α−→ R′ is derived by rule TAU is trivial.
• The cases that R α−→ R′ is derived by rule OUTPUT,

EARLY-INPUT, SUM, SYMB-MATCH, IDE, PAR, RES, SYMB-
OPEN or ALPHA are already covered by Lemma 37.

• The case that R α−→ R′ is derived by E-S-COM is trivial.
• Suppose R

α−→ R′ is derived by E-S-CLOSE. Then
R = P |Q, P Mx̄(z)−−−−→ P ′, Q Nv̄z−−→ Q′, z /∈ FN(Q), α =
[x=v]MNτ and R′ = (νz)(P ′|Q′). Pick w /∈ FN(R) ∪
FN(R′)∪dom(σ)∪range(σ). Now P

Mx̄(w)−−−−→≡SP ′{w/z}
and Q

Nv̄w−−−→≡S Q′{w/z} by Lemmas 40 and 39. Thus
Pσ

M [σ]x̄[σ](w)−−−−−−−−→≡SP ′{w/z}σ, Qσ N [σ]v̄[σ]w−−−−−−→≡SQ′{w/z}σ
by Lemma 37, using that w[σ] = w /∈ FN(Pσ), which
follows by (8) from w /∈ FN(P) ∪ range(σ). Hence

Rσ
[x[σ]=v[σ]]M [σ]N [σ]τ−−−−−−−−−−−−−→ (νw)((P ′|Q′){w/z}σ)

by rule E-S-CLOSE. As w /∈ FN((νz)(P ′|Q′)), by (10),

R′σ ≡S (νw)((P ′|Q′){w/z}σ).

Next I would have liked to show that substitutions also re-
flect behaviour, in the sense that, possibly under the same side
condition as in Lemma 41, Rσ β−→ U implies R α−→ R′ for
some α and R′ with α[σ] = β and R′σ ≡S U . Unfortunately,
this property does not hold.

Example 10: (x(y).P){w/z} xz−→ P{w/z}{z/y}, yet there is
no α such that α[{w/z}] = xz.

In order to rescue the reflection property, I restrict attention
to surjective substitutions.

Definition 18: A substitution σ : N⇀N is called surjective
if dom(σ) ⊆ range(σ).

Using rule ALPHA, the below reflection lemma can equally well
be formulated with Rσ

β−→ U ′ instead of Rσ ≡S U β−→ U ′.
However, its inductive proof requires the form stated.

Lemma 42: If Rσ ≡S U β−→ U ′ and σ is a surjective
substitution, then equally R

α−→ R′ for some α and R′ with
α[σ] = β and R′σ ≡S U ′.

Proof. With induction on the α-depth of the inference of
U

β−→ U ′, with a nested induction on the number of applica-
tions of rule ALPHA at the end of that inference.

• The cases that U β−→ U ′ is derived by rule TAU or
OUTPUT are trivial.

• Suppose U β−→ U ′ is derived by EARLY-INPUT. Then R =
x(y).P and U = x[σ](w).V with V ≡S (Pσ[y 7→ w])
by (16). So β = x[σ]v and U ′ = V {v/w}S . Since σ is
surjective, there is a z with z[σ] = v. By EARLY-INPUT

R
α−→ R′ with α=Mxz and R′=P{z/y}S . Now α[σ]=β

and R′σ = P{z/y}Sσ ≡S Pσ[y 7→ w]{z[σ]/w}S ≡S
V {v/w}S = U ′, using (7) and (12).

• Suppose U β−→ U ′ is derived by IDE. Then R = A(~y) and
U=Rσ=A(~y[σ]). Let A(~x)

def
=P . Then P{~y[σ]/~x} β−→U ′.

Since P{~y[σ]/~x} ≡S P{~y/~x}σ by (9), P{~y/~x}σ β−→ U ′

by ALPHA. Moreover, the inference of P{~y/~x}σ β−→ U ′

has the same α-depth as that of P{~y[σ]/~x} β−→U ′, which
is smaller than the α-depth of the inference of U β−→ U ′.
Hence, by induction, P{~y/~x} α−→ R′ for some α and R′

with α[σ] = β and R′σ ≡S U ′. By rule IDE R
α−→ R′.

• The cases that U β−→ U ′ is derived by rule SUM or SYMB-
MATCH are trivial.

• Suppose U β−→ U ′ is derived by PAR. Then R = P |Q,
Rσ = Pσ|Qσ, U = V |W , Pσ ≡S V β−→ V ′, Qσ ≡S W ,
bn(β)∩FN(W)=∅ and U ′=V ′|W . By induction P α−→P ′
for some α and P ′ with α[σ]=β and P ′σ ≡S V ′. By (5)
bn(α[σ]) ∩ FN(Qσ) = ∅, so by (8) bn(α) ∩ FN(Q) = ∅.
Consequently, R = P |Q α−→ P ′|Q by rule PAR, and
(P ′|Q)σ ≡S V ′|W = U ′.

• Suppose U β−→ U ′ is derived by E-S-COM. In that case
R = P |Q, Rσ = Pσ|Qσ, U = V |W , β = [x=v]MNτ ,
Pσ≡S V Mx̄y−−−→ V ′, Qσ≡SW Nvy−−→W ′ and U ′=V ′|W ′.
By induction, there are matching sequences K,L with
K[σ] =M and L[σ] =N , names q, r, z, u with q[σ] = x,
r[σ] = v, z[σ] = y and u[σ] = y, and processes P ′

and Q′ with P ′σ ≡S V ′ and Q′σ ≡S W ′, such that
P

Kq̄z−−→ P ′ and Q Lru−−→ Q′.
Pick w /∈ FN(Q). By Lemma 38 there is a process Pw
such that Q Lrw−−→Qw and Q′ ≡S Qw{u/w}. By Lemma 39
there is a Pz such that Q Lrz−−→Qz and Qz ≡S Qw{z/w}.
By rule E-S-COM R

[q=r]KLτ−−−−−−→ R′ := P ′|Qz . By (11)–
(13) Q′σ ≡S Qzσ. So ([q=r]KLτ)[σ] = [x=v]MNτ
and R′σ = (P ′|Qz)σ ≡S V ′|W ′ = U ′.

• Suppose U β−→ U ′ is derived by rule E-S-CLOSE. Then
R = P |Q, Rσ = Pσ|Qσ, U = V |W , β = [x=v]MNτ ,
Pσ ≡S V Mx̄(z)−−−−→ V ′, Qσ ≡S W Nvz−−→ W ′ and U ′ =
(νz)(V ′|W ′) for some z /∈ FN(W). Pick w /∈ FN(U) ∪
dom(σ) ∪ range(σ). By (5) w /∈ FN(W) = FN(Qσ) so
w /∈ FN(Q) by (8). Now V

Mx̄(w)−−−−→≡S V ′{w/z} and
W

Nvw−−−→≡S W ′{w/z} by Lemmas 40 and 39. Moreover,
the inferences of these transitions have a smaller α-depth

30

than that of U β−→ U ′. By induction, using that w /∈
dom(σ) ∪ range(σ), there are matching sequences K,L
with K[σ] =M and L[σ] =N , names q, r with q[σ] = x
and r[σ] = v, and processes P ′ and Q′ with P ′σ ≡S
V ′{w/z} and Q′σ ≡S W ′{w/z}, such that P Kq̄(w)−−−−→ P ′

and Q Lrw−−→ Q′. Therefore R [q=r]KLτ−−−−−−→ (νw)(P ′|Q′) by
E-S-COM. Moreover, ([q=r]KLτ)[σ] = β. By Lemma 36,
FN(U ′) ⊆ FN(U) 63 w. So by (10) ((νw)(P ′|Q′))σ =
(νw)(P ′σ|Q′σ) ≡S (νw)(V ′{w/z}|W ′{w/z}) ≡S U ′.

• Suppose U β−→ U ′ is derived by RES. Then R = (νy)P
and Rσ = (νz)(P{z/y}σ) for some z /∈ FN((νy)P) ∪
dom(σ) ∪ range(σ). By (17), U = (νw)V with V ≡S
P{z/y}σ{w/z}. So w /∈n(β), V β−→ V ′ and U ′=(νw)V ′.
Since σ is surjective, there is a u with z[σ] = w. Now
V ≡S P{z/y}σ{w/z} ≡S P{u/y}σ by (11) and (12). By
rule ALPHA P{u/y}σ β−→ V ′. Moreover, the inference
of P{u/y}σ β−→ V ′ has the same α-depth as that of
V

β−→ V ′, which is smaller than the one of U β−→ U ′.
So by induction P{u/y} α−→ P ′ for some α and P ′ with
α[σ] = β and P ′σ ≡S V ′. Since w /∈ n(β) one has
u /∈ n(α). Hence (νu)(P{u/y}) α−→ (νu)P ′ by RES.
Moreover, since w /∈ FN((νw)V) = FN(U) = FN(Rσ),
using (5), u /∈ FN(R) by (8). Hence R ≡S (νu)(P{u/y})
by (10) and R α−→ (νu)P ′ by ALPHA.
Suppose that there is an x ∈ FN((νu)P ′) with x[σ] = w.
Then, by Lemma 36, x ∈ n(α) or x ∈ FN(R). In the first
case w ∈ n(α[σ]) = n(β), which has been ruled out. In
the second case, by (8), w ∈ FN(Rσ) = FN(U), contra-
dicting U = (νw)V . Hence there is no such x. Now pick
v /∈ FN(P ′)∪ dom(σ)∪ range(σ)∪ FN(P ′σ) and obtain

((νu)P ′)σ ≡S ((νv)(P ′{v/u}))σ by (10), (13)
= (νv)(P ′{v/u}σ) by definition
≡S (νv)(P ′σ{v/w}) by (11), (12)
≡S (νw)(P ′σ) by (10)
≡S (νw)V ′ = U ′.

• Suppose U
β−→ U ′ is derived by SYMB-OPEN. Then

R = (νy)P and Rσ = (νz)(P{z/y}σ) for some z /∈
FN((νy)P) ∪ dom(σ) ∪ range(σ). By (17), U = (νw)V

with V ≡S P{z/y}σ{w/z}. So β = Mx̄(w), V Mx̄w−−−→ U ′

and w /∈ n(M) ∪ {x}. Since σ is surjective, there is a u
with u[σ] = w. Now V ≡S P{z/y}σ{w/z} ≡S P{u/y}σ
by (11) and (12). By rule ALPHA P{u/y}σ Mx̄w−−−→ U ′.
Moreover, the inference of P{u/y}σ Mx̄w−−−→ U ′ has the
same α-depth as that of V Mx̄w−−−→ U ′, which is smaller
than the one of U β−→ U ′. By induction P{u/y} Kq̄r−−→ P ′

for some K, q, r and P ′ with K[σ]=M , q[σ]=x, r[σ]=w
and P ′σ ≡S U ′.
Since u[σ] = w /∈ FN((νw)V) = FN(U) = FN(Rσ),
using (5), u /∈ FN(R) by (8). Hence R ≡S (νu)(P{u/y})
by (10). By Lemma 35 r ∈ FN(P{u/y}). So if r 6= u
then r∈ FN((νu)(P{u/y}) = FN(R), again using (5), and
w = r[σ] ∈ FN(Rσ) by (8), yielding a contradiction.
Thus r = u. Since w = u[σ] /∈ n(M) ∪ {x} one has
y /∈ n(K) ∪ {q}. Hence (νu)(P{u/y}) Kq̄(u)−−−−→ P ′ by
SYMB-OPEN and R Kq̄(u)−−−−→ P ′ by ALPHA.

• Suppose U β−→ U ′ is derived by ALPHA. Then there is
a V ≡S U such that V α−→ U ′ is derived by a simpler
proof. So Rσ ≡S V and by induction R α−→ R′ for some
α and R′ with α[σ] = β and R′σ ≡S U ′.

B. A π-calculus with surjective substitutions

When needed I will address the π-calculus of Section V as
π(N), to make the choice of the set N of names explicit.
Here I introduce a variant πS(N) of the π-calculus that
additionally employs a countably infinite collection of spare
names S = {s1, s2, . . .}, disjoint with N . Its syntax is the
same as the one of π(N] S), except that in expressions
x(y).P one must take y ∈ N . Moreover, in defining equations
A(~x)

def
= P I require that x1, . . . , xn ∈ N . The definition of

substitution on πS(N) is fine-tuned by requiring that when a
bound name y ∈ N is changed into a bound name z to avoid
name capture, one always chooses z ∈ N .

As semantics of πS(N) I use the variant α−→SES of the early
symbolic transition relation α−→ES where the substitutions
{z/y} and {~y/~x} introduced by the operational rules EARLY-
INPUT and IDE are changed into surjective substitutions {z/y}S
and {~y/~x}S . The motivation for this is to make Lemma 42
applicable to these substitutions. In order to preserve the
validity of (4)–(17), this change forces new definitions of ≡S ,
FN and σ[y 7→ w].

Definition 19: Let H be the set of all names currently in
use, for now that is N ∪ S. For ~x = (x1, . . . , xn) ∈ Nn and
~y = (y1, . . . , yn) ∈ Hn, where the names xi are all distinct,
define the surjective substitution

{~x/~y}S : S ∪ {x1, . . . , xn} → S ∪ {x1, . . . , xn, y1, . . . , yn}

by {~x/~y}S(xi) = yi and {~x/~y}S(si) = xi for i = 1, . . . , n,
and {~x/~y}S(si) = si−n for i > n.

This is in fact the simplest possible adaptation of the sub-
stitution {~y/~x} that makes it surjective. It is essential for my
purposes that the axioms (4)–(17) of Section A be satisfied, so
that Lemmas 41 and 42 hold for πS(N). In view of Property
(11), to obtain (7) I need to ensure that

{z[σ]/w}S ◦ σ[y 7→ w] = σ ◦ {z/y}S . (18)

The definition of σ[y 7→ w] can be found by solving this
equation. In Table VII, σ : H⇀ H is an arbitrary substitution,
y, w ∈ N , and w /∈ dom(σ) ∪ range(σ). Thus, σ[y 7→ w] is
defined as the substitution that sends a name from the first
column to the corresponding name from the last column. The
middle columns show that now (18) is satisfied.

Definition 20: For x ∈ H and y ∈ N , let

x−y :=

y if x = s1

sk if x = sk+1

x otherwise
and x+

y :=

s1 if x = y
sk+1 if x = sk
x otherwise.

Now σ[y 7→ w], with y, w ∈ N , is the substitution with
dom(σ[y 7→ w]) = dom(σ) ∪ {y, w} ∪ S given by

x[σ[y 7→ w]] :=

{
w if x = y
(x−y [σ])+

w otherwise.

31

Name n n[{z/y}S] n[{z/y}S][σ] =
n[σ[y 7→ w]][{z[σ]/w}S] n[σ[y 7→ w]]

y z z[σ] w
w (if 6=y) w w s1

s1
if y=w

w w s1

s1
if y 6=w y y[σ] 6=w if y[σ] ∈ N

if y[σ] = sk
y[σ]
sk+1

si+1 si si[σ] 6=w if si[σ] ∈ N
if si[σ] = sk

si[σ]
sk+1

x ∈ N
x 6=y,w x x[σ] 6=w if x[σ] ∈ N

if x[σ] = sk
x[σ]
sk+1

TABLE VII
SOLVING (18)

As far as the computational interpretation of the π-calculus
concerns, the replacement of P{~y/~x} by P{~y/~x}S in rule IDE

is of no consequence, as the names from S do not occur
free in P anyway. However, the replacement of P{z/y} by
P{z/y}S in rule EARLY-INPUT changes the meaning of the
construct x(y).P . In the original π-calculus there are no free
occurrences of y in x(y).P , and thus, after receiving a name
z 6= y, the resulting process P{z/y} cannot do an action ȳw−→.
Here, however, upon receiving a name z 6= y, in the resulting
process P{z/y}S the spare name s1 is elevated to y, so that
P{z/y}S ȳw−→ is possible. For this reason, y can be considered
a free name of x(y).P when s1 is a free name of P . More
in general, a spare name sk can be seen as a potential name
y∈N. This potential is realised when sk occurs in the scope of
k input prefixes, and the choice of y is made by the outermost
of these. Hence the definition of FN, partly given in Section A,
is completed by defining FN(P)−y := {x−y | x ∈ FN(P)\{y}}.

Definition 20 matches this intuition. To apply σ[y 7→ w] to
a name x 6= y, first elevate x one level, then apply σ, and
finally undo the elevation.

Note that Tπ(N) ⊆ TπS(N), that is, the ordinary π-calculus
processes form a subset of the processes in the π-calculus with
surjective substitutions. A process P ∈ Tπ(N) by definition
satisfies fn(P) ⊆ N . The following lemma implies that on
Tπ(N) there is no difference between FN and fn.

Lemma 43: If fn(P) ⊆ N then FN(P) = fn(P).

Proof. A trivial structural induction on P .

I now proceed to show that the axioms (4), (6) and (8) from
Section A—the ones not mentioning ≡S—are satisfied.

Lemma 44: FN(Pσ) = {x[σ] | x ∈ FN(P)}.

Proof. With induction on the size of the parse tree of P . Note
that this size is preserved under substitution. All cases are
trivial, except for the two detailed below.

Let P = x(y).Q. Then Pσ = x[σ](z).(Qσ[y 7→ z]), so
FN(Pσ) = {x[σ]} ∪ FN(Qσ[y 7→ z])−z . By induction,

FN(Qσ[y 7→ z]) = {v[σ[y 7→ z]] | v ∈ FN(Q)} =
{z | y ∈ FN(Q)} ∪ {(v−y [σ])+

z | v ∈ FN(Q)\{y}},

so FN(Qσ[y 7→ z])−z = {x−z | x ∈ FN(Qσ[y 7→ z])\{z}} =
{v−y [σ] | v ∈ FN(Q)\{y}}. Here I use that u+

z 6= z and
(u+
z)−z = u for all names u.
Since FN(P) = {x} ∪ {v−y | v ∈ FN(Q)\{y}}, it follows

that FN(Pσ) = {x[σ] | x ∈ FN(P)}.
Now let P = (νy)Q. Then Pσ = (νz)(Q{z/y}σ), so

FN(Pσ) = FN(Q{z/y}σ)\{z}. By induction (applied twice)
FN(Q{z/y}σ) = {v[{z/y}][σ] | v ∈ FN(Q)}. Considering that
z /∈ FN(Q) ∪ dom(σ) ∪ range(σ),

FN(Q{z/y}σ)\{z} = {v[σ] | v ∈ FN(Q)\{y}}.

Since FN(P) = FN(Q)\{y}, again the claim follows.

For recursion equations A(~x)
def
= P the π-calculus requires

that fn(P) ⊆ {x1, . . . , xn}, and I didn’t bother to change
that for πS . Since I require that x1, . . . , xn ∈ N , Lemma 43
implies that also FN(P) ⊆ {x1, . . . , xn}. Using this, (4)
immediately follows from (8), which is Lemma 44.

Lemma 45: FN(P{z/y}S) ⊆ FN(x(y).P) ∪ {z}.

Proof. If v ∈ FN(P{z/y}S) then v = x[{z/y}S] for some
x ∈ FN(P), using Lemma 44. If moreover v 6= z then v = x−y .
Hence v ∈ FN(P)−y ⊆ FN(x(y).P).

Now I define ≡S in such a way that (5) holds.

Definition 21: For y, z ∈ N with y 6= z, let {z/y}3 be the
substitution σ with dom(σ) = {y, z, s1}, σ(y) = z, σ(z) = s1

and σ(s1)=y. Moreover, let {y/y}3 := ε, the substitution with
dom(ε) = ∅. Let ≡S be the smallest congruence satisfying

(i) (νy)P ≡S (νz)(P{z/y}) for any z /∈ FN((νy)P),
(ii) and x(y).P ≡S x(z).(P{z/y}3) for any z ∈ N .

Note that in x(y).P the spare name s1 occurring in P will be
elevated to y, but in x(z).Q it will be elevated to z. Therefore,
when renaming the bound name y into z, the spare name s1

should be renamed into y right away. Moreover, there is no
reason to require that z not occur free in P ; its free occurrences
can simply be renamed into s1.12

Lemma 46: P ≡S Q⇒ FN(P) = FN(Q).

Proof. Using transitivity of ≡S , it suffices to prove this for
the special case that P and Q differ by only one application
of the generating equations from Definition 21. Below I deal
with the special case that this single application does not occur
within a proper subterm of P ; the general case then follows
by a straightforward structural induction on P . There are two
possibilities to consider.

Let P = x(y).R and Q = x(z).(R{z/y}3). In this case
FN(P) = {x} ∪ FN(R)−y and FN(Q) = {x} ∪ FN(R{z/y}3)−z .
Moreover, FN(R)−y ={v−y | v∈FN(R)\{y}} and, by Lemma 44,

FN(R{z/y}3)−z = {v[{z/y}3]−z | v ∈ FN(R) ∧ v[{z/y}3] 6= z}.

12An alternative form of Definition 21 requires (ii) only for z /∈FN((νy)P).
This yields the same equivalence ≡S as Definition 21, since even when z ∈
FN((νy)P) one derives x(y).P ≡S x(w).(P{w/y}3) ≡S x(z).(P{z/y}3)
for some w /∈ FN((νy)P), using (19), that P{z/y}3{w/z}3 ≡S P{w/y}3.

32

Note that v = y iff v[{z/y}3] = z. So take v 6= y. A simple
case distinction shows that v[{z/y}3]−z = v−y . Consequently,
FN(R)−y = FN(R{z/y}3)−z and thus FN(P) = FN(Q).

Let P=(νy).R and Q=(νz).(R{z/y}) with z /∈FN((νy)P).
Then FN(P) = FN(R)\{y} and FN(Q) = FN(R{z/y})\{z}.
By Lemma 44, FN(R{z/y}) = {v[{z/y}] | v ∈ FN(R)}. When
v 6= y, z one has v = v[{z/y}] 6= z, and when v[{z/y}] 6= z
then v 6= y, z. Consequently, FN(P) = FN(Q).

The next two lemmas pave the way for Lemma 49, which
establishes the validity of Properties (11) and (12).

Lemma 47: Let y, w, z ∈ N , Then, for all x ∈ H,

x[σ1[y 7→ w]][σ2[w 7→ z]] = x[(σ2 ◦ σ1)[y 7→ z]].

Proof. By Definition 20, x[σ1[y 7→w]] = w only if x = y. So

x[σ1[y 7→w]][σ2[w 7→z]] =

{
z if x = y
((x−y [σ1])+

w)−w [σ2]+z otherwise.

Moreover,

x[(σ2 ◦ σ1)[y 7→ z]] =

{
z if x = y
(x−y [σ1][σ2])+

z otherwise.

Since (v+
w)−w = v for all v ∈ H, the lemma follows.

Lemma 48: Let y, w, z ∈N . Then, for all x ∈H,

x[σ[y 7→ w]][{z/w}3] = x[σ[y 7→ z]]

x[{w/y}3][σ[w 7→ z]] = x[σ[y 7→ z]].

Proof. If x=y then x[σ[y 7→ w]][{z/w}3] = z = x[σ[y 7→ z]].
Otherwise, considering that v+

w [{z/w}3] = v+
z for any v ∈ H,

x[σ[y 7→ w]][{z/w}3] = (x−y [σ])+
w [{z/w}3] = (x−y [σ])+

z =
x[σ[y 7→ z]]. The second statement follows likewise, using
that x[{w/y}3]−w = x−y when x 6= y,

Lemma 49:
1) (Pσ1)σ2 ≡S P (σ2 ◦ σ1).
2) (∀x ∈ FN(P). x[σ] = x[σ′])⇒ Pσ ≡S Pσ′.

Proof. I prove both statements by simultaneous structural
induction on P .

1) All cases are trivial, except for the ones where P has the
form x(y).Q or (νy)Q.
Let P = x(y).Q. By the definition of substitution, there
is a u such that the last step in the below derivation holds.
Likewise, there are w and z such that the first two steps
hold.

(Pσ1)σ2 =
(
x[σ1](w).(Qσ1[y 7→ w])

)
σ2

= x[σ1][σ2](z).
(
(Qσ1[y 7→ w])σ2[w 7→ z]

)
≡S x[σ2 ◦σ1](z).

(
Q(σ2[y 7→ w] ◦σ1[w 7→ z])

)
≡S x[σ2 ◦σ1](z).

(
Q((σ2 ◦σ1)[y 7→ z])

)
≡S x[σ2 ◦σ1](u).

(
Q((σ2 ◦σ1)[y 7→ z]{u/z}3)

)
≡S x[σ2 ◦σ1](u).

(
Q((σ2 ◦σ1)[y 7→ u])

)
= P (σ2 ◦ σ1).

Here the third step is an application of the induction
hypotheses regarding statement 1) and the fourth step

applies the induction hypotheses regarding statement 2),
also using Lemma 47. The fifth step applies Definition 21
of ≡S . The sixth step applies the induction hypotheses
regarding both statements, also using Lemma 48.
Let P = (νy)Q. By the definition of substitution, there is
an u such that the last step in the below derivation holds.
Likewise, there are w and z such that the first two steps
hold. Now choose a name v outside
FN
(
Q{w/y}σ1{z/w}σ2

)
∪ FN

(
Q{u/y}(σ2 ◦σ1)

)
∪{z, u}.

(Pσ1)σ2 = ((νw)(Q{w/y}σ1))σ2

= (νz)(Q{w/y}σ1{z/w}σ2)
≡S (νv)(Q{w/y}σ1{z/w}σ2{v/z})
≡S (νv)(Q{u/y}(σ2 ◦ σ1){v/u})
≡S (νu)(Q{u/y}(σ2 ◦ σ1))
= P (σ2 ◦ σ1).

The third and fifth step apply Definition 21 of ≡S . The
fourth applies the induction hypotheses regarding both
statements, also using that, for all x ∈ FN(Q),

x[{w/y}][σ1][{z/w}][σ2][{v/z}]=x[{u/y}][σ2 ◦σ1][{v/u}].

The latter follows by a straightforward case distinction,
considering that w /∈ FN(Q)\{y}∪dom(σ1)∪range(σ1),
that z /∈ FN(Q{w/y}σ1)\{w}∪dom(σ2)∪range(σ2) and
that u /∈ FN((νy)Q) ∪ dom(σ2 ◦ σ1) ∪ range(σ2 ◦ σ1).

2) Again all cases are trivial, except for the ones that P has
the form x(y).Q or (νy)Q.
Let P = x(y).Q and u[σ] = u[σ′] for all u ∈ FN(P).
Then, for certain z, w ∈ N , Pσ = x[σ](z).(Qσ[y 7→ z])
and Pσ′ = x[σ′](w).(Qσ′[y 7→ w]). By Definition 21,
Pσ′ ≡S x[σ′](z).(Qσ′[y 7→w]{z/w}3). By the induction
hypotheses and Lemma 48, Pσ′≡Sx[σ′](z).(Qσ′[y 7→z]).
By Lemma 35, x ∈ FN(P), and thus x[σ] = x[σ′]. To
round of the proof by another appeal to the induction
hypotheses regarding statement 2), it suffices to show
that u[σ[y 7→ z]] = u[σ′[y 7→ z]] for all u ∈ FN(Q).
This amounts to showing that (u−y [σ])+

z = (u−y [σ′])+
z for

all u ∈ FN(Q)\{y}. Now for each u ∈ FN(Q)\{y} one
has u−y ∈ FN(P), by the definition of FN(Q)−y . Hence
u−y [σ] = u−y [σ′], and the proof of this case is done.
Let P = (νy)Q and let u[σ] = u[σ′] for all u ∈ FN(P).
Then Pσ = (νz)(Q{z/y}σ) and Pσ′ = (νw)(Q{w/y}σ′)
for certain names z, w. Pick v /∈ FN(Pσ) ∪ {z, w} ∪
dom(σ) ∪ dom(σ′). Then, by Definition 21, Pσ ≡S
(νv)(Q{z/y}σ{v/z}) and Pσ′≡S (νv)(Q{w/y}σ′{v/w}).
Now u[{z/y}][σ][{v/z}] = u[{v/y}][σ] for all u ∈ FN(Q),
using that z /∈FN(P)∪dom(σ)∪range(σ) and v /∈dom(σ).
Hence, by induction, Q{z/y}σ{v/z} ≡S Q{v/y}σ. Like-
wise, Q{w/y}σ′{v/w} ≡S Q{v/y}σ′. By Lemma 44
FN(Q{v/y})\{v} ⊆ FN(P), so, again by induction,
Q{v/y}σ ≡S Q{v/y}σ′, and hence Pσ ≡S Pσ′.

Property (10) follows immediately from Definition 21, and
(7) follows from (11) (i.e. Lemma 49.1) and (18). Also (9)
follows from Lemma 49, since FN(P) ⊆ {x1, . . . , xn}. Hence
it remains to verify Properties (13)–(17).

33

Lemma 50: P ≡S Q⇒ Pσ ≡S Qσ.

Proof. Using transitivity of ≡S , it suffices to prove this for
the special case that P and Q differ by only one application
of the generating equations from Definition 21. Below I deal
with the special case that this single application does not occur
within a proper subterm of P ; the general case then follows
by a structural induction on the size of the parse tree of P ,
recalling that this size is preserved under substitution.

There are two possibilities to consider.
Let P = x(y).R and Q = x(z).(R{z/y}3). In this case

Pσ=x[σ](w).(Rσ[y 7→w]), Qσ=x[σ](u).((R{z/y}3)σ[z 7→u]).
By Definition 21 Qσ ≡S x[σ](w).(R{z/y}3σ[z 7→ u]{w/u}3),
so it suffices to show that

Rσ[y 7→ w] ≡S R{z/y}3σ[z 7→ u]{w/u}3,

which follows from Lemmas 48 and 49.
Let P = (νy)R and Q = (νz)(R{z/y}) with z /∈ FN(R).

Then Pσ = (νw)(R{w/y}σ), Qσ = (νu)(R{z/y}{u/z}σ) for
names w, u with w, u /∈ FN(P) ∪ dom(σ) ∪ range(σ) (using
that FN(P) = FN(Q), by Lemma 46). Choose a fresh name
v /∈FN(R{w/y}σ)∪FN(R{z/y}{u/z}σ)∪{w, u}. Then Pσ ≡S
(νv)(R{w/y}σ{v/w}) and Qσ ≡S (νv)(R{z/y}{u/z}σ{v/u}).
It suffices to show that R{w/y}σ{v/w}≡SR{z/y}{u/z}σ{v/u}.
This follows from Lemma 49, provided that, for all x∈FN(R),

x[{w/y}][σ][{v/w}] = x[{z/y}][{u/z}][σ][{v/u}].

The latter is established by a simple case distinction.

Lemma 51: Let y ∈ N and w /∈ FN(x(y).P).
Then P{w/y}S{z/w} ≡S P{z/y}S .

Proof. Since w /∈ FN(P)−y , one has w+
y /∈ FN(P). Now the

statement follows from Lemma 49, considering that, for all
x ∈ FN(P), x[{w/y}S][{z/w}] = x[{z/y}S].

Property (15) follows by a straightforward structural induc-
tion on P , using Lemma 49 for the cases that P = x(y).Q or
P = (νy)Q.

Using Lemma 49 it is trivial to check, for y, w, z ∈ N , that

P{w/y}3{z/w}3 ≡S P{z/y}3 (19)

P{w/y}3{u/w}S ≡S P{u/y}S . (20)

Lemma 52: If U ≡S x(y).P then U = x(w).V for some
V ≡S P{w/y}3. Likewise, if U ≡S (νy)P then U = (νw)V
for some w /∈ FN(U) and V ≡S P{w/y}.

Proof. Since U ≡S x(y).P , one has U = U0 ≡S U1 ≡S
U2 ≡S · · · ≡S Un = x(y).P , and each step Ui ≡S Ui+1

involves exactly one application of the generating equations
from Definition 21. I prove the statement by induction on n.

The case that n = 0 is trivial; take w := y.
Let n>0. By induction U1 =x(w).V with V ≡S P{w/y}3.
If for U = U0 ≡S U1 = x(w).V the application of the

generating equation from Definition 21 occurs entirely within
V , one has U = x(w).W with W ≡S V ≡S P{w/y}3.

If the application is at top level, then U = x(z).W and
either W = V {z/w}3 or V = W{w/z}3. By (19), (15), in
either case W ≡S V {z/w}3. Thus W ≡S P{z/y}3 by (19).

The second statement is obtained in the same way.

The last property to be checked, (16), follows from Lemma 52.

Corollary 2: If U ≡S (x(y).P)σ then U = x[σ](w).V with
V ≡S Pσ[y 7→ w].

Proof. By definition (x(y).P)σ = x[σ](z).(Pσ[y 7→ z]) for
some z ∈ N . By Lemma 52 U = x(w).V for some V ≡S
Pσ[y 7→ z]{w/z}3. By Lemmas 48 and 49 V ≡S Pσ[y 7→w].

Since the axioms (4)–(17) of Section A hold for πS(N), so
do Lemmas 35–42 from Section A.

As mentioned earlier, the classical π-calculus π(N) can be
seen as a subcalculus of the π-calculus with surjective substitu-
tions πS(N); its processes P satisfy fn(P) ⊆ N . Lemma 43
shows that on this subcalculus one has fn(P) = FN(P), so
that FN can be seen as an extension of fn from π(N) to all
of πS(N).

Likewise, the application Pσ of a substitution σ to a process
P is unchanged up to ≡ when fn(P) ⊆ N and σ : H ⇀ N .
Namely, if fn(Q) ⊆ N , w /∈ FN((νy)Q)∪dom(σ)∪range(σ)
and σ : H⇀ N , then Qσ[y 7→ w] ≡ Q{w/y}σ.

The next lemma shows that also ≡S and ≡ coincide on the
subcalculus π(N) of πS(N).

Lemma 53: Let fn(P |Q) ⊆ N . Then P ≡S Q⇔ P ≡ Q.

Proof. “⇒”: It suffices to consider the case that P and Q
differ by only one application of the generating equations from
Definition 21. Below I deal with the special case that this
single application does not occur within a proper subterm of
P ; the general case then follows by structural induction on P .

The case that P = (νy)R and Q = (νz)(R{z/y}) with
z /∈ FN((νy)R) is trivial.

So let P =x(y).R and Q=x(z).(R{z/y}3). As fn(P)⊆N
and fn(Q) ⊆ N , also fn(R) ⊆ N and fn(R{z/y}3) ⊆ N , so
z /∈ fn((νy)R). Considering that v[{z/y}3] = v[{z/y}] for all
v ∈ FN(R), and that the classical notion of substitution may
be applied here, R{z/y}3 ≡ R{z/y}. Hence P ≡ Q.

“⇐”: It suffices to consider the case that P and Q differ
by only one application of the generating equations from
Section V. Below I deal with the special case that this single
application does not occur within a proper subterm of P ; the
general case then follows by structural induction on P .

The case that P = (νy)R and Q = (νz)(R{z/y}) with
z /∈ fn((νy)R) is trivial.

So let P = x(y).R and Q = x(z).(R{z/y}) with z /∈
fn((νy)R). In that case FN(R) = fn(R) ⊆ N . Considering
that v[{z/y}] = v[{z/y}3] for all v ∈ FN(R), Lemma 49.2
yields R{z/y} ≡S R{z/y}3. Hence P ≡S Q.

Now I will show that the identity id : TπES(N) → TπSES(N)

is a valid translation from πES(N) to πSES(N). My definition
of R α−→ES R

′ implies that R,R′ ∈TπES(N) and n(α) ⊆ N .

34

Lemma 54: If R α−→ES R′ then equally R
α−→SES U ′ for

some πSES(N) process U ′ with U ′ ≡S R′.

Proof. With induction on the inference of R α−→ES R
′.

• Suppose R α−→ES R′ is derived by rule EARLY-INPUT.
Then R = x(y).P , α = xz and R′ = P{z/y}. Using
EARLY-INPUT from πSES(N), R α−→SES U ′ := P{z/y}S .
By Lemma 43 FN(P) ⊆ N . So by (12) U ′ ≡S R′.

• Suppose R α−→ES R
′ is derived by IDE. Then R=A(~y).

Let A(~x)
def
= P . Then P{~y/~x} α−→ES R

′. So by induction
P{~y/~x} α−→SES U ′ for some U ′ ≡S R′. As fn(P) ⊆ N ,
P{~y/~x} ≡S P{~y/~x}S by (12) and Lemma 43. Hence
P{~y/~x}S α−→SES U ′ by ALPHA. Thus R α−→SES U ′ by
rule IDE from πSES(N).

• All other cases are trivial.

Lemma 55: If R ∈ TπES(N) and R ≡S U α−→SES U ′ with
ι(α)∪bn(α)⊆N , then equally R α−→ES R

′ for some R′≡SU ′.

Proof. With induction on the α-depth of the inference of
U

α−→SES U ′, with a nested induction on the number of
applications of rule ALPHA at the end of that inference.
• Suppose U α−→SES U ′ is derived by rule EARLY-INPUT.

Then R = x(y).P and U = x(w).V with V ≡S P{w/y}3
by Lemma 52. Moreover, α = xz and y, w, z ∈ N . So
U ′=V {z/w}S ≡S P{w/y}3{z/w}S ≡S P{z/y}S by (20).
By EARLY-INPUT from πES(N), R α−→ES R

′ := P{z/y}.
By Lemma 43 FN(P) ⊆ N . By (12) R′≡SP{z/y}S≡SU ′.

• Suppose U α−→SES U ′ is derived by rule IDE. Then R =
U = A(~y). Let A(~x)

def
= P . Then P{~y/~x}S α−→SES U ′.

As P ∈ TπES(N), and {y1, . . . , yn} = fn(R) ⊆ N , also
P{~y/~x} ∈ TπES(N). Using (12), P{~y/~x} ≡S P{~y/~x}S .
So by induction P{~y/~x} α−→ES R

′ for some R′ ≡S U ′.
Consequently, R α−→ES R

′ by rule IDE from πES(N).
• Suppose U

α−→SES U ′ is derived by E-S-CLOSE. Then
R = P |Q, U = V |W , P ≡S V

Mx̄(z)−−−−→SES V ′,
Q ≡S W

Nvz−−→SES W ′, α = [x=v]MNτ and U ′ =
(νz)(V ′|W ′) for some z /∈ FN(Q). Pick w ∈ N\FN(R).
Now V

Mx̄(w)−−−−→SES≡S V ′{w/z} and W
Nvw−−−→SES≡S

W ′{w/z} by Lemmas 40 and 39. Moreover, the infer-
ences of these transitions have a smaller α-depth than
that of R α−→SES U ′. So P

Mx̄(w)−−−−→ES P ′ ≡S V ′{w/z}
and Q Nvw−−−→ES Q

′ ≡S W ′{w/z} by induction. Applying
rule E-S-CLOSE, R α−→ESR

′ := (νw)(P ′|Q′). Lemma 36
yields FN(R′) ⊆ FN(R) 63 w. Using this, one obtains
R′ ≡S (νw)(V ′{w/z}|W ′{w/z}) ≡S (νz)(V ′|W ′) = U ′.

• All other cases are trivial. In the case of E-S-COM apply
Lemma 35 to obtain y ∈ N .

Theorem 10: P •∼ id(P) for any P ∈ TπES(N).

Proof. It suffices to show that the symmetric closure of

R := {(R,U) | R ∈ TπES(N), U ∈ TπSES(N) ∧R ≡S U}

is a strong barbed bisimulation. Let (R,U) ∈ R.
Let R τ−→ES R′. By Lemma 54, R τ−→SES U ′ for some

U ′ ≡S R′. So U τ−→SES U ′ by rule ALPHA of πSES(N).

Let U τ−→SES U ′. By Lemma 55, ∃R′. R τ−→ES R
′ ≡S U ′.

Let U↓b with b∈Z∪Z . Then U by−→SES U ′ or U b(y)−−→SES U ′
for some y and U ′, using the definition of O in Section IV. By
Lemmas 38 and 40 I may assume, without loss of generality,
that y ∈ N in case of input or bound output actions. So
R

by−→ES R
′ or R b(y)−−→ES R

′ by Lemma 55. Thus R↓b.
The implication R↓b ⇒ U↓b proceeds likewise.

C. The elimination of ALPHA

Let α−→S• be the transition relation on Tπ generated by the
rules of Table VIII. Here {z//y} denotes the substitution σ with
dom(σ) = {y, z}, σ(y) = z and σ(z) = y.13 Compared to the
operational semantics of πSES(N), rule ALPHA is omitted, but
applications of this rule are incorporated in rules RES-ALPHA

and SYMB-OPEN-ALPHA.14 Lemmas 56 and 57 below say that
up to strong bisimilarity the transitions relations α−→SES and
α−→S• of πSES(N) are equivalent.

Lemma 56: If R α−→S• R′ then equally R α−→SES≡S R′.

Proof. With induction on the inference of R α−→S• R′. The
only nontrivial cases are when R α−→S• R′ is derived by rule
RES-ALPHA or SYMB-OPEN-ALPHA.

By (12), P{z//y} ≡S P{z/y} when z /∈ FN((νy)P). Hence
(νy)P ≡S (νz)(P{z/y}) ≡S (νz)(P{z//y}). Using this,
each application of rule RES-ALPHA can be mimicked by an
application of RES followed by one of ALPHA.

Now suppose R α−→S• R′ is derived by SYMB-OPEN-ALPHA.
Then R = (νy)P , α = Mx̄(z), y 6= x, z /∈ FN(R), y /∈ n(M),
P

Mx̄y−−−→S• P ′ and R′=P ′{z//y}. By induction P Mx̄y−−−→SES≡S P ′.
By Lemma 35 n(M) ∪ {x} ⊆ FN(P)\{y} = FN(R) 63 z. So
by Lemma 37 P{z//y} Mx̄z−−−→SES≡S P ′{z//y}. By SYMB-OPEN

(νz)(P{z//y}) Mx̄(z)−−−−→SES≡S P ′{z//y} = R′. So by rule ALPHA

R
α−→SES≡S R′.

Lemma 57: If R ≡S U and R
α−→SES R′ then equally

U
α−→S• U ′ for some U ′ with R′ ≡S U ′.

Proof. With induction on the α-depth of the inference of
R

α−→SES R′, with a nested induction on the number of
applications of rule ALPHA at the end of the inference.
• The cases that R α−→SES R′ is derived by rule TAU or

OUTPUT are trivial.
• Suppose R α−→SES R′ is derived by EARLY-INPUT. Then
R = x(y).P , α = xz and R′ = P{z/y}S . By Lemma 52
U = x(w).V for some V ≡S P{w/y}3. Consequently,
U

α−→S• V {z/w}S . Using (13) and (20) V {z/w}S ≡S
P{w/y}3{z/w}S ≡S P{z/y}S = R′.

13In rule RES-ALPHA, thanks to the side condition z 6∈ FN((νy)P), using
(12), P{z//y}≡S P{z/y}. For this reason, the versions with {z//y} and {z/y}
are equivalent, up to strong bisimilarity. The use of {z//y} instead of {z/y}
makes the substitution surjective, which will be needed in Section D.

The same can be said about SYMB-OPEN-ALPHA, since FN((νy)P ′) ⊆
FN((νy)P) by Lemma 36.

14Besides the insignificant difference of {z//y} versus {z/y}, rule SYMB-
OPEN-ALPHA differs from SYMB-ALPHA-OPEN in the more restrictive side
condition z /∈ FN((νy)P) versus z /∈ FN((νy)P ′). Whereas the two rules
are interchangeable up to strong barbed bisimilarity, they are not up to strong
bisimilarity, for the transition (νy)(x̄y.0 + z̄x.0)

x̄(z)−−→ 0 is not derivable
from Table VIII. I need SYMB-OPEN-ALPHA to obtain a transition relation that
is strongly bisimilar with the one of πSES(N).

35

TABLE VIII
EARLY SYMBOLIC STRUCTURAL OPERATIONAL SEMANTICS OF THE π-CALCULUS WITHOUT RULE ALPHA

TAU:
Mτ.P

Mτ−−→ P

OUTPUT:
Mx̄y.P

Mx̄y−−−→ P

EARLY-INPUT:
Mx(y).P

Mxz−−−→ P{z/y}S

SUM:
P

α−→ P ′

P +Q
α−→ P ′

SYMB-MATCH:
P

α−→ P ′

[x=y]P
[x=y]α−−−−→ P ′

IDE:
P{~y/~x}S α−→ P ′

A(~y)
α−→ P ′

(A(~x)
def
= P)

PAR:
P

α−→ P ′

P |Q α−→ P ′|Q
(bn(α) ∩ FN(Q) = ∅)

E-S-COM:
P

Mx̄y−−−→ P ′, Q
Nvy−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ P ′|Q′

E-S-CLOSE:
P

Mx̄(z)−−−−→ P ′, Q
Nvz−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ (νz)(P ′|Q′)
(z /∈ FN(Q))

RES-ALPHA:
P{z//y} α−→ P ′

(νy)P
α−→ (νz)P ′

(
z 6∈ FN((νy)P)
z 6∈ n(α)

) SYMB-OPEN-ALPHA:
P

Mx̄y−−−→ P ′

(νy)P
Mx̄(z)−−−−→ P ′{z//y}

y 6= x
z /∈ FN((νy)P)
y /∈ n(M)

• Suppose R α−→SES R′ is derived by IDE. Then R = A(~y),
so U = R. Let A(~x)

def
= P . Then P{~y/~x}S α−→SES R′. By

induction P{~y/~x}S α−→S• U ′ for some U ′ with R′ ≡S U ′.
By IDE U

α−→S• U ′.
• Suppose R α−→SES R′ is derived by PAR. Then R = P |Q,
P

α−→SES P ′, R′ = P ′|Q and bn(α) ∩ FN(Q) = ∅. Thus
U=V |W with P≡SV , Q≡SW and bn(α)∩FN(W)=∅.
By induction V α−→S• V ′ for some V ′ with P ′ ≡S V ′. So
U = V |W α−→S• V ′|W by rule PAR, and R′ ≡S V ′|W .

• The cases that R α−→S• R′ is derived by rule E-S-COM,
E-S-CLOSE, SUM or SYMB-MATCH are (also) trivial.

• Suppose R
α−→SES R′ is derived by rule RES. Then

R= (νz)P , P α−→SES P ′, z 6∈ n(α) and R′= (νz)P ′. So
U = (νy)V for some y /∈ FN((νz)P) and V ≡S P{y/z},
using Lemma 52. Employing (13), (15) and Lemma 49,
V {z//y} ≡S P{y/z}{z//y} ≡S P{z//z} ≡S P . So by
induction V {z//y} α−→S• V ′ for some V ′ ≡S P ′. By (5)
z 6∈ FN((νz)P) = FN((νy)(P{y/z})) = FN((νy)V).
Hence U = (νy)V

α−→S• (νz)V ′ by rule RES-ALPHA.
Moreover, R′ = (νz)P ′ ≡S (νz)V ′.

• Suppose R Mx̄(z)−−−−→SES R′ is derived by SYMB-OPEN. Then
R = (νz)P , P Mx̄z−−−→SES R′, z 6= x and z 6∈ n(M).
Thus U = (νy)V for y /∈ FN((νz)P) and V ≡S P{y/z},
using Lemma 52. Now P{y/z} Mx̄y−−−→SES R′{y/z} by
Lemma 37. Moreover, the α-depth of the inference of
P{y/z} Mx̄y−−−→SES R′{y/z} equals that of P Mx̄z−−−→SES R′,
which is smaller than that of R

Mx̄(z)−−−−→SES R′. By
induction V

Mx̄y−−−→S• V ′ for some V ′ ≡S R′{y/z}.
By (5), z 6∈ FN(R) = FN(U). Employing Lemma 35,
n(M) ∪ {x} ⊆ FN(P)\{z} = FN(R) 63 y. Consequently,
U = (νy)V

Mx̄(z)−−−−→S• V ′{z//y} by SYMB-OPEN-ALPHA.
Moreover, V ′{z//y} ≡S R′{y/z}{z//y} ≡S R′ by (11)–
(13) and (15), using that y /∈ FN(R) ⊇ FN(R′)\{z}.

• Suppose R α−→SES R′ is derived by ALPHA. Then there is
a Q ≡S R such that Q α−→SES R′ is derived by a simpler
proof. So U ≡S Q and by induction U α−→S•≡S R′.

Combining Lemmas 56 and 57 yields the following result,

stating that rule ALPHA is not needed on top of the rules of
Table VIII.

Corollary 3: If R ≡S U and R
α−→S• R′ then equally

U
α−→S• U ′ for some U ′ with R′ ≡S U ′.

Together, Lemmas 56 and 57 imply that the relation ≡S
is a strong (barbed) bisimulation between πSES(N) expres-
sions equipped with the semantics of Table VI, amended as
described in Sections A and B, and πSES(N) expressions
equipped with the semantics of Table VIII. Hence, up to •∼ it
doesn’t matter whether which of these semantics one employs.

Although I will not need this in this paper, a trivial adap-
tation of the above proofs shows that also the early and early
symbolic semantics of the π-calculus, displayed in Tables IV
and VI can be equivalently adapted by dropping rule ALPHA

at the cost of strengthening RES and OPEN (or SYMB-OPEN)
into RES-ALPHA and OPEN-ALPHA (or SYMB-OPEN-ALPHA).

D. Replacing substitution by relabelling

Let π ρ•ES(N) be the variant of the π-calculus with sur-
jective substitutions πSES(N), enriched with a postfix-written
relabelling operator [σ] for each surjective substitution σ. Its
operational semantics is given by the rules of Table VIII,
together with the rule RELABELLING

P
α−→ P ′

P [σ]
α[σ]−−→ P ′[σ]

(bn(α[σ]) ∩ FN(P [σ]) = ∅)

for the relabelling operators, except that the substitutions
{z/y}S and {~y/~x}S that appear in rules EARLY-INPUT and
IDE are replaced by applications of the relabelling operators
[{z/y}S] and [{~y/~x}S], respectively, and the substitution {z//y}
that appears in rules RES-ALPHA and SYMB-OPEN-ALPHA is re-
placed by the relabelling operator [{z//y}]. Moreover, rules PAR

and E-S-CLOSE gain side conditions bn(α)∩ FN(P) = ∅ and
z /∈ FN(P), respectively.15 Except for IDE, π ρ•ES(N) has the

15These side conditions are not essential—they could be left out here, or
added to the original π-calculus, without ill effects—but are included to obtain
a stronger and simpler version of Lemmas 67 and 71 in Sections F and G.

36

semantics of Table IX. The function FN, used in several rules,
is extended to π ρ•ES(N) by FN(P [σ]) := {x[σ] | x ∈ FN(P)}.
Recall that names are chosen from N] S , except that
in x(y).P one always has y ∈ N . Moreover, in defining
equations A(~x)

def
= P I require that x1, . . . , xn ∈ N , and

fn(P) ⊆ {x1, . . . , xn}.16

I will show that the identity id : TπSES(N) → Tπ ρ•ES(N) is
a valid translation from πSES(N) to π ρ•ES(N). As justified in
Section C, at the side of πSES(N) I will use the transition
relation −→S• generated by Table VIII. Lemmas 56 and 57
imply that Lemmas 39–42 also hold for −→S• . I will denote
the transition relation of π ρ•ES(N) simply by α−→.

For P a π ρ•ES(N) process, let P̂ be the πSES(N) process
obtained from P by recursively replacing each subterm Q[σ]
by Qσ, and each agent identifier A by A .̂ Here Aˆ is
a fresh agent identifier with defining equation A (̂~x)

def
= P̂

when A(~x)
def
= P was the defining equation of A. Note that

FN(P̂) = FN(P) for each P ∈ Tπ ρ•ES(N).

Lemma 58: If R β−→ R′ then equally R̂ β−→S•≡S R̂′.

Proof. By induction of the inference of R β−→ R′.
• Suppose R

β−→ R′ is derived by TAU. Then R = τ.P ,
β = τ and R′ = P . Moreover, R̂ = τ.P̂ and R̂ β−→S• R̂′.

• The case that R β−→R′ stems from OUTPUT goes likewise.
• Suppose R

β−→ R′ is derived by EARLY INPUT. Then
R = x(y).P , β = xz and R′ = P [{z/y}S]. Moreover,
R̂ = x(y).P̂ and R̂ β−→S• P̂{z/y}S = ̂P [{z/y}S] = R̂′.

• Suppose R β−→ R′ is derived by SUM. Then R = P +Q
and P

β−→ R′. Now R̂ = P̂ + Q̂. So P̂
β−→S•≡S R̂′ by

induction. Hence, by SUM, R̂ β−→S•≡S R̂′.
• Suppose R

β−→ R′ is derived by SYMB-MATCH. Then
R = [x=y]P , P α−→ R′ and β = [x=y]α. Now R̂ =

[x=y]P̂ . By induction P̂ α−→S•≡S R̂′. By SYMB-MATCH,
R̂

β−→S•≡S R̂′.
• Suppose R β−→ R′ is derived by IDE. Then R = A(~y)

with A(~x)
def
= P and P [{~y/~x}S]

β−→ R′. Now R̂ = A (̂~y)

with A (̂~x)
def
= P̂. Moreover, ̂P [{~y/~x}S] = P̂{~y/~x}S. By

induction P̂{~y/~x}S β−→S•≡S R̂′. By IDE, R̂ β−→S•≡S R̂′.
• Suppose R β−→ R′ is derived by PAR. Then R = P |Q,
P

β−→ P ′, bn(β) ∩ FN(Q) = ∅ and R′ = P ′|Q. Now
R̂=P̂ |Q̂, bn(β)∩FN(Q̂) = ∅ and R̂′=P̂ ′|Q̂. By induction
P̂

β−→S•≡S P̂ ′. Thus R̂ β−→S•≡S R̂′, by PAR.
• Suppose R

β−→ R′ is derived by E-S-COM. Then
R = P |Q, P Mx̄y−−−→ P ′, Q Nvy−−→ Q′, R′ = P ′|Q′, and
β = [x=v]MNτ . Now R̂ = P̂ |Q̂ and R̂′ = P̂ ′|Q̂′.
By induction P̂ Mx̄y−−−→S•≡S P̂ ′ and Q̂ Nvy−−→S•≡S Q̂′. Thus
R̂

β−→S•≡S R̂′, by E-S-COM.
• Suppose R β−→ R′ is derived by E-S-CLOSE. Then R =
P |Q, P Mx̄(z)−−−−→ P ′, Q Nvz−−→ Q′, R′ = (νz)(P ′|Q′), z /∈
FN(Q) and β = [x=v]MNτ . Now R̂ = P̂ |Q̂, z /∈ FN(Q̂)

and R̂′ = (νz)(P̂ ′|Q̂′). By induction P̂
Mx̄(z)−−−−→S•≡S P̂ ′

and Q̂ Nvz−−→S•≡S Q̂′. Thus R̂ β−→S•≡S R̂′, by E-S-CLOSE.

16Optionally, one could furthermore require that no relabelling operators
may occur in defining equations; this would simplify the definition of P̂ .

• Suppose R β−→ R′ is derived by RES-ALPHA. Then R =
(νy)P , P [{z//y}] β−→ P ′, R′ = (νz)P ′, z /∈ FN(R) and
z /∈ n(β). Now R̂= (νy)P̂ , z /∈ FN(R̂) and R̂′ = (νz)P̂ ′.
By induction P̂{z//y} β−→S•≡S P̂ ′. Hence, R̂ β−→S•≡S R̂′.

• Suppose R
β−→ R′ is derived by SYMB-OPEN-ALPHA.

Then R=(νy)P , β=Mx̄(z), P Mx̄y−−−→ P ′, R′=P ′[{z//y}],
y /∈ x, z /∈ FN(R) and y /∈ n(M). Now R̂ = (νy)P̂ , z /∈
FN(R̂) and R̂′= P̂ ′{z//y}. By induction P̂ Mx̄y−−−→S•≡S P̂ ′.
Hence, R̂ β−→S•≡S R̂′ by SYMB-OPEN-ALPHA.

• Suppose R
β−→ R′ is derived by RELABELLING. Then

R= P [σ], P α−→ P ′, R′ = P ′[σ], β = α[σ] and bn(β) ∩
FN(R)=∅. By induction P̂ α−→S•≡S P̂ ′. As FN(R)=FN(R̂)
= FN(P̂ σ), by Lemma 41 R̂= P̂ σ

β−→S•≡S P̂ ′σ= R̂′.

Lemma 59: If R̂ β−→S• U with bn(β) ∩ FN(R) = ∅ then
equally R β−→ R′ for some R′ with R̂′ ≡S U .

Proof. By induction on the depth of the inference of R̂ β−→S• U ,
with a nested induction on the number of topmost relabelling
operators in R.

• First suppose R = P [σ]. Then R̂ = P̂ σ. By Lemma 42
P̂

α−→S• V for some α and V with α[σ]=β and V σ≡SU .
Moreover, the depth of the inference of P̂ α−→S• V is the
same as that of P̂ σ β−→S• U . As bn(α[σ])∩FN(P [σ]) = ∅,
also bn(α) ∩ FN(P) = ∅. So by induction P α−→ P ′ for
some P ′ with P̂ ′ ≡S V . By RELABELLING R

β−→ P ′[σ].
Furthermore one has P̂ ′[σ] = P̂ ′σ ≡S V σ ≡S U .
Henceforth I suppose that R is not of the form P [σ].

• Suppose R̂
β−→S• U is derived by rule E-S-COM. Then

R = P |Q, R̂ = P̂ |Q̂, β = [x=v]MNτ , P̂ Mx̄y−−−→S• V ,
Q̂

Nvy−−→S• W and U = V |W . By induction P
Mx̄y−−−→ P ′

and Q Nvy−−→ Q′ for some P ′ and Q′ with P̂ ′ ≡S V and
Q̂′ ≡S W . By E-S-COM R

β−→ P ′|Q′ ≡S V |W = U .
• Suppose R̂ β−→S• U is derived by rule RES-ALPHA. Then
R = (νy)P , R̂ = (νy)P̂ , P̂{z//y} β−→S• V , z /∈ FN(R̂),
z /∈ n(β) and U = (νz)V . As bn(β) ∩ FN((νy)P) = ∅
and z /∈n(β)∪FN((νy)P), also bn(β)∩FN(P [{z//y}])=∅.
So by induction P [{z//y}] β−→ P ′ for some P ′ such that
P̂ ′ ≡S V . Now R

β−→ (νz)P ′ by RES-ALPHA. Moreover,
(̂νz)P ′ = (νz)P̂ ′ ≡S (νz)V = U .

• The cases that R̂ β−→S• U is derived by TAU, OUTPUT,
EARLY-INPUT, SUM, SYMB-MATCH, IDE, PAR or SYMB-
OPEN-ALPHA are also trivial.

• Suppose R̂ β−→S• U is derived by rule E-S-CLOSE. Then
R = P |Q, R̂ = P̂ |Q̂, β = [x=v]MNτ , P̂ Mx̄(z)−−−−→S• V ,
Q̂

Nvz−−→S• W , z /∈ FN(Q̂) and U = (νz)(V |W). Pick
w /∈ FN(R̂) ∪ FN(U). Then P̂

Mx̄(w)−−−−→S• V ′ ≡S V {w/z}
and Q̂

Nvw−−−→S• W ′ ≡S W{w/z} by Lemmas 40 and 39.
Moreover, the inferences of these transitions have a
smaller depth than that of R̂ β−→S• U . So by induction
P

Mx̄(w)−−−−→ P ′ and Q Nvw−−−→ Q′ for some P ′ and Q′ with
P̂ ′ ≡S V ′ and Q̂′ ≡S W ′. Hence R β−→ (νw)(P ′|Q′) by
E-S-CLOSE. Moreover,

̂(νw)(P ′|Q′) = (νw)(P̂ ′|Q̂′) ≡S (νw)(V ′|W ′) ≡S
(νw)((V |W){w/z}) ≡S (νz)(V |W) = U.

37

Let Tρ be the identity translation from πSES(N) to π ρ•ES(N).

Theorem 11: Tρ(P) •∼ P for any P ∈ TπSES(N).

Proof. It suffices to show that the symmetric closure of

R := {(R,U) | R ∈ Tπ ρ•ES(N), U ∈ TπSES(N) ∧ R̂ ≡S U}

is a strong barbed bisimulation, as it contains (Tρ(P), P).
Let (R,U) ∈ R. Let R τ−→ R′. Then R̂

τ−→S•≡S R̂′ by
Lemma 58 and U τ−→S•≡S R̂′ by Corollary 3. So U τ−→S• U ′
for some U ′ with (R′, U ′) ∈ R.

Let U τ−→S• U ′. Then R̂
τ−→S•≡S U ′ by Corollary 3. By

Lemma 59 R τ−→ R′ for some R′ with R̂′ ≡S U ′.
Let U↓b with b ∈ Z ∪ Z . Then U by−→S• U ′ or U b(y)−−→S• U ′

for some y and U ′, using the definition of O in Section IV.
Hence R̂ by−→S• or R̂ b(y)−−→S• by Corollary 3. In the second case,
by Lemma 40 I may assume, without loss of generality, that
y 6∈ FN(R̂). So R

by−→SES or R b(y)−−→SES by Lemma 59. Thus
R↓b.

The implication R↓b ⇒ U↓b proceeds likewise.

The following example shows why the side condition
bn(α[σ]) ∩ FN(P [σ]) = ∅ in rule RELABELLING is necessary.

Example 11: Let P = x̄z.x(w).w̄q | x(y).(νv)x̄v.y(r).
In the π-calculus, or in πSES(N), this process can do two
successive τ -steps in a row, but not three:

P
τ−→ x(w).w̄q | (νv)x̄v.z(r)

τ−→ (νu)(ūq | z(r)) 6τ−→ .

In the above expression the bound name u may be chosen
freely from N\{x, z, q}. The side condition of rule SYMB-
OPEN-ALPHA prevents the choices u = x, z, since x and z are
free in (νv)x̄(v).z(r). The side condition of (the symmetric
counterpart of) rule E-S-CLOSE prevents the choices u = x, q.

In a version of π ρ•ES(N) in which rule RELABELLING does
not have the side condition bn(α[σ]) ∩ FN(P [σ]) = ∅, and
E-S-CLOSE lacks the side condition z ∈ FN(P), one obtains
(νv)x̄v.y(r)

x̄(z)−−→ y(r)[z//v] and thus(
(νv)x̄v.y(r)

)
[z/y]

x̄(z)−−→ y(r)[z//v][z/y]
zq−→ 0[z//v][z/y][q/r]

which yields

P
τ−→ x(w).w̄q |

(
(νv)x̄v.y(r)

)
[z/y]

τ−→ (νz)(w̄q[z/w] | y(r)[z//v][z/y])
τ−→ (νz)(0[z/w] | 0[z//v][z/y][q/r]),

in violation of Theorem 11.
Although (νv)x̄v.y(r)

x̄(z)−−→S• y(r){z//v}, one does not have(
(νv)x̄v.y(r)

)
{z/y} 6x̄(z)−−→S• y(r){z//v}{z/y}. This shows that

the necessity of the side condition bn(α[σ])∩ FN(Rσ) = ∅ in
Lemma 37/41. Hence

(
(νv)x̄v.y(r)

)
[z/y]

x̄(z)−−→ y(r)[z//v][z/y]
violates Lemma 58. Since rule SYMB-OPEN-ALPHA is in-
voked before the relabelling [z/y] is applied—in contrast with
πSES(N), where it is invoked after applying the substitu-
tion {z/y}—the choice u = z cannot be avoided. Here
the side condition of RELABELLING comes to the rescue; it
rules out the offending transition because z ∈ bn(x̄(z)) ∩
FN(
(
(νv)x̄v.y(r)

)
[z/y]).

E. α-conversion for π ρ•ES(N)

For π ρ•ES(N)-processes P and Q write P ≡ Q iff P̂ ≡S Q̂.
If P ≡ Q then FN(P) = FN(P̂) = FN(Q̂) = FN(Q).

Lemma 60: If P ≡Q and P α−→ P ′ with bn(α)∩FN(Q)=∅
then equally Q α−→ Q′ for some Q′ with P ′ ≡ Q′.

Proof. Suppose P ≡ Q and P α−→ P ′ with bn(α)∩FN(P)=∅.
Then P̂ ≡S Q̂, and P̂ α−→S•≡S P̂ ′ by Lemma 58. Therefore,
Q̂

α−→S• U for some U ≡S P̂ ′ by Corollary 3. By Lemma 59
Q

α−→ Q′ for some Q′ with Q̂′ ≡S U . Now P ′ ≡ Q′.

Lemma 61:
(a) (∀x ∈ FN(P). x[σ] = x[σ′])⇒ P [σ] ≡ P [σ′],
(b) P [σ1][σ2] ≡ P [σ2 ◦ σ1],
(c) P [ε] ≡ P , where ε is the empty substitution,
(d) (P |Q)[σ] ≡ P [σ] | Q[σ],
(e) ((νy)P)[σ] ≡ (νy)(P [σ]), when y /∈ dom(σ)∪range(σ),
(f) (νy)P ≡ (νz)(P [{z//y}]), when z /∈ FN((νy)P),
(g) if P1 ≡ Q1 and P2 ≡ Q2 then P1|P2 ≡ Q1|Q2, and
(h) if P ≡ Q then (νy)P ≡ (νy)Q and P [σ] ≡ Q[σ].

Proof. (a), (b) and (c) follow immediately from (12), (11) and
(15), (d) and (e) from the definition of substitution, (g) and (h)
from the congruence property of ≡S and (13), and (f) follows
from (10), using (a) and (h) to replace {z/y} by {z//y}.

The following five lemmas are counterparts for π ρ•ES(N) of
Lemmas 35, 36, 40, 39 and 38 for πES(N), adapted to avoid
non-surjective substitutions {w/z}.

Lemma 62: If P α−→ Q then n(α)\(ι(α)∪bn(α)) ⊆ FN(P).

Proof. Immediately from Lemmas 58, 56 and 35.

Lemma 63: If P α−→ Q then FN(Q) ⊆ FN(P)∪ι(α)∪bn(α).

Proof. Immediately from Lemmas 58, 56 and 36.

Lemma 64: If R Mx̄(z)−−−−→ Rz and w /∈ FN(R) then equally
R

Mx̄(w)−−−−→≡ Rz[{w//z}].

Proof. Let R Mx̄(z)−−−−→Rz . Then R̂ Mx̄(z)−−−−→S•≡S R̂z by Lemma 58.
So R̂ Mx̄(z)−−−−→SESU≡S R̂z by Lemma 56. Using that w /∈ FN(R)

= FN(R̂), by Lemma 40 R̂ Mx̄(w)−−−−→SES V for a V ≡S U{w/z}.
By Lemma 36, FN(U)\{z} ⊆ FN(R̂) 63 w, and therefore
U{w//z} ≡S U{w/z} by (12). By Lemma 57 R̂

Mx̄(w)−−−−→S• W
for a W ≡S V . By Lemma 59, using that w /∈ FN(R),
R

Mx̄(w)−−−−→ R′ for an R′ with R̂′ ≡S W . Using (13)
R̂′ ≡S R̂z{w//z}= ̂Rz[{w//z}], and thus R′ ≡Rz[{w//z}].

Lemma 65: If R Mxz−−−→ Rz and z, w /∈ FN(R), then equally
R

Mxw−−−→Rw for some Rw with Rw ≡Rz[{w//z}].

Proof. The proof is the same as the one of Lemma 64, but
using Lemma 39 instead of Lemma 40, thereby also using the
precondition z /∈ FN(R).

Lemma 66: If R Mxz−−−→ Rz and w is a name, then equally
R

Mxw−−−→ Rw for some Rw such that Rw[σ] ≡ Rz[σ] for each
surjective substitution σ with z[σ] = w[σ].

38

TABLE IX
STRUCTURAL OPERATIONAL SEMANTICS OF THE π-CALCULUS WITH RELABELLING

TAU:
Mτ.P

Mτ−−→ P

OUTPUT:
Mx̄y.P

Mx̄y−−−→ P

EARLY-INPUT:
Mx(y).P

Mxz−−−→ P [{z/y}S]

SUM:
P

α−→ P ′

P +Q
α−→ P ′

SYMB-MATCH:
P

α−→ P ′

[x=y]P
[x=y]α−−−−→ P ′

IDE:
P

α−→ P ′

A(~x)
α−→ P ′

(A(~x)
def
= P)

PAR:
P

α−→ P ′

P |Q α−→ P ′|Q

(
bn(α)∩ FN(P) = ∅
bn(α)∩ FN(Q) = ∅

)E-S-COM:
P

Mx̄y−−−→ P ′, Q
Nvy−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ P ′|Q′

E-S-CLOSE:
P

Mx̄(z)−−−−→ P ′, Q
Nvz−−→ Q′

P |Q [x=v]MNτ−−−−−−−→ (νz)(P ′|Q′)

(
z /∈ FN(P)
z /∈ FN(Q)

)
RES-ALPHA:
P [{z//y}] α−→ P ′

(νy)P
α−→ (νz)P ′

(
z 6∈ FN((νy)P)
z 6∈ n(α)

) SYMB-OPEN-ALPHA:
P

Mx̄y−−−→ P ′

(νy)P
Mx̄(z)−−−−→ P ′[{z//y}]

y 6= x
z 6∈ FN((νy)P)
y /∈ n(M)

 RELABELLING:
P

α−→ P ′

P [σ]
α[σ]−−→ P ′[σ]

(
bn(α[σ]) ∩
FN(P [σ]) = ∅

)

Proof. Let R Mxz−−−→ Rz . Then R̂ Mxz−−−→S•≡S R̂z by Lemma 58.
So R̂ Mxz−−−→SES U ≡S R̂z by Lemma 56. Pick v /∈ FN(R̂). By
Lemma 38 R̂ Mxv−−−→SES V for some V with U ≡S V {z/v}, and
by Lemma 39 R̂ Mxw−−−→SES W for some W with W≡SV {w/v}.
By Lemma 57 R̂

Mxw−−−→S• W † for some W † ≡S W . By
Lemma 59 R Mxw−−−→ Rw for some Rw with R̂w ≡S W †.

Now let σ be a surjective substitution with z[σ] = w[σ].
Then R̂w[σ] = R̂wσ ≡S V {w/v}σ = V {z/v}σ ≡S R̂zσ ≡S

R̂z[σ] by(11), (12) and (13), so Rw[σ] ≡ Rz[σ].

F. Agent identifiers without parameters

Let π ρES(N) be the variant of π ρ•ES(N) in which agent
identifiers may be called only with their own declared names
as parameters, i.e. such that ~y = ~x in rule IDE. As a result, the
relabelling operator [{~y/~x}S] in this rule can be dropped. The
operational semantics of π ρES(N) is displayed in Table IX.

Let Tr : Tπ ρ•ES(N) → Tπ ρES(N) be the compositional
translation satisfying Tr(A(~y)) := Ar(~x)[{~y/~x}S], and act-
ing homomorphically on all other operators. Here Ar is a
fresh agent identifier with defining equation Ar(~x)

def
= Tr(P)

when A(~x)
def
= P was the defining equation of A. Clearly

FN(Tr(P)) = FN(P). I will show that Tr is a valid translation
from π ρ•ES(N) to π ρES(N), up to strong barbed bisimilarity.

Lemma 67: If R β−→ R′ and bn(β) ∩ FN(R) = ∅ then
Tr(R)

β−→ Tr(R
′).

Proof. By induction of the inference of R β−→ R′.

• Suppose R β−→ R′ is derived by EARLY INPUT. Then R =
x(y).P , β = xz and R′ = P [{z/y}S]. Now Tr(R) =

x(y).Tr(P)
β−→ Tr(P)[{z/y}S] = Tr(R

′).
• Suppose R β−→ R′ is derived by IDE. Then R = A(~y),
A(~x)

def
= P and P [{~y/~x}S]

β−→ R′. As bn(β)∩FN(R)=∅
and FN(P [{~y/~x}S])⊆FN(R), bn(β)∩FN(P [{~y/~x}S])=∅.
By induction

Tr(P)[{~y/~x}S] = Tr(P [{~y/~x}S])
β−→ Tr(R

′).

so by RELABELLING Tr(P)
α−→ P ′ for some α and P ′

with α[{~y/~x}S] = β and P ′[{~y/~x}S] = Tr(R
′). By rule

IDE from π ρES(N), Ar(~x)
α−→ P ′. So by RELABELLING

Tr(R) = Ar(~x)[{~y/~x}S]
β−→ P ′[{~y/~x}S] = Tr(R

′), here
using the side condition that bn(β) ∩ FN(R) = ∅.

• Using that FN(Tr(Q)) = FN(Q) for all Q, all remaining
cases are trivial.

Lemma 68: If Tr(R)
β−→ U then R

β−→ R′ for some R′

with Tr(R
′) = U .

Proof. By induction of the inference of Tr(R)
β−→ U .

• Suppose R = A(~y). Then Tr(R) = Ar(~x)[{~y/~x}S]. By
RELABELLING bn(β)∩FN(Tr(R)) = ∅ and Ar(~x)

α−→ V
for some α and V with α[{~y/~x}S]=β and V [{~y/~x}S]=U .
Let A(~x)

def
= P , so that Ar(~x)

def
= Tr(P). Via rule IDE

Tr(P)
α−→ V . By induction P α−→ P ′ for some P ′ with

Tr(P
′) = V . As FN(P [{~y/~x}S])⊆ FN(R) = FN(Tr(R)),

bn(β) ∩ FN(P [{~y/~x}S]) = ∅. So by RELABELLING

P [{~y/~x}S]
β−→ P ′[{~y/~x}S] . By rule IDE from π ρ•ES(N),

R
β−→ P ′[{~y/~x}S]. Moreover,

Tr(P
′[{~y/~x}S]) = Tr(P

′)[{~y/~x}S] = V [{~y/~x}S] = U.

• Using that FN(Tr(Q)) = FN(Q) for all Q, all other cases
are trivial.

Theorem 12: Tr(P) •∼ P for any P ∈ Tπ ρ•ES(N).

Proof. It suffices to show that the symmetric closure of

R := {(R,Tr(R)) | R ∈ Tπ ρ•ES(N)}

is a strong barbed bisimulation. This follows from Lemmas 67
and 68, also using Lemma 64 to handle the barbs from R.

G. Clash-free processes

For R a collection of private names, disjoint with N]S =:
Z , I define π ρES(N ,R) as the variant of π ρES(N]R) where
in all expressions x(y).Q the name y must be chosen from N ,

39

and in defining equations A(~x)
def
= P one has x1, . . . , xn ∈ N .

The semantics of π ρES(N ,R) equals that of π ρES(N]R).
Clearly, the relation ≡ and all results from Section E are

inherited by π ρES(N ,R).

Definition 22: The set RN(P) of restriction-bound names
of a π ρES(N ,R) process P is inductively defined by
• if R = (νy)P then RN(R) ⊇ RN(P) ∪ {y},
• if R = τ.P or x̄y.P or x(y).P then RN(R) ⊇ RN(P),
• if R = [x=y]P then RN(R) ⊇ RN(P),
• if R = P [σ] then RN(R) ⊇ {x[σ] | x ∈ RN(P)},
• if R = P +Q or P |Q then RN(R) ⊇ RN(P) ∪ RN(Q),
• if R = A(~x) and A(~x)

def
= P then RN(R) ⊇ RN(P).

Each statement y∈RN(R) can be proven using y∈RN((νy)P)
as an axiom, and each of the six clauses above as proof rules.
It follows that in fact one has = wherever ⊇ is written in
Definition 22.

Definition 23: The collection C of clashing π ρES(N ,R)
processes is the smallest such that

(i) if FN(R) ∩ RN(R) 6= ∅ then R ∈ C ,
(ii) if R = P |Q and RN(P) ∩ RN(Q) 6= ∅ then R ∈ C ,

(iii) if R = (νy)P and y ∈ RN(P) then R ∈ C ,
(iv) if R = P [σ] and y[σ] = z[σ] for different y, z ∈ RN(P)

then R ∈ C ,
(v) if P ∈ C then also τ.P ∈ C , x̄y.P ∈ C , x(y).P ∈ C ,

[x=y]P ∈ C , (νy)P ∈ C and P [σ] ∈ C ,
(vi) if P ∈ C or Q ∈ C then also P +Q ∈ C and P |Q ∈ C ,

(vii) if A(~x)
def
= P and P ∈ C then also A(~x) ∈ C ,

(viii) and if RN(R) ∩ Z 6= ∅ then R ∈ C .
A process P is clash-free if P /∈ C .

Now take R as given in Section IX, where also the relabelling
operators [`], [r], [e] and [py] are defined, with py = {p//y}◦e.
Let the translation Tcf : Tπ ρES(N) → Tπ ρES(N ,R) satisfy

Tcf((νy)P) := (νp)(Tcf(P)[py])
Tcf(P | Q) := Tcf(P)[`] ‖Tcf(Q)[r]
Tcf(A(~x)) := Acf(~x)

and act homomorphically on all other operators. Here Acf is a
fresh agent identifier with defining equation Acf(~x)

def
= Tcf(P)

when A(~x)
def
= P was the defining equation of A.

Lemma 69: Let P ∈ Tπ ρES(N) be a π ρES(N) process. Then
FN(Tcf(P)) = FN(P) ⊆ Z and Tcf(P) is clash-free.

Proof. The first statement follows by a straightforward struc-
tural induction on P .

Let R0 := {ςp | ς∈{e, `, r}∗}; these are the names ςpυ ∈ R
with υ = ε. A straightforward induction on the derivation of
y ∈ RN(Tcf(P)) from the rules of Definition 22 shows that
RN(Tcf(P)) ⊆ R0.

Using these facts to handle Requirements (i) and (viii), a
straightforward induction on the derivation of Tcf(P) ∈ C
from the rules of Definition 23 leads to a contradiction. For (ii)
use that ∀y, z ∈ R0. y[`] 6= z[r]. For (iii) use that z[py] 6= p
for all z ∈ R0. For (iv) use that py , ` and r are injective

substitutions, whereas any relabelling operator [σ] inherited
from π ρES(N) satisfies dom(σ) ∩R = ∅.

I will show that Tcf is a valid translation, up to strong
barbed bisimilarity.

Lemma 70: Tcf((νy)P) ≡ (νy)Tcf(P) for P ∈ Tπ ρES(N).

Proof. By definition Tcf((νy)P) = (νp)(Tcf(P)[py]). Since
FN(Tcf(P))=FN(P)⊆Z by Lemma 69, y /∈ FN(Tcf(P)[py]).
(νp)(Tcf(P)[py]) ≡ (νy)(Tcf(P)[py][{y//p}]) ≡ (νy)Tcf(P)
by Lemma 61(f,b,a,c,h).

Lemma 71: If R β−→ R′ then Tcf(R)
β−→≡ Tcf(R

′).

Proof. By induction of the inference of R β−→ R′. Since R is
a π ρES(N) process, n(β) ∪ n(R) ⊆ Z .

• Suppose R β−→ R′ is derived by EARLY INPUT. Then R =
x(y).P , β = xz and R′ = P [{z/y}S]. Now Tcf(R) =

x(y).Tcf(P)
β−→ Tcf(P)[{z/y}S] = Tcf(R

′).
• Suppose R β−→ R′ is derived by IDE. Then R = A(~x).

Let A(~x)
def
= P , so Acf(~x)

def
= Tcf(P). Then P

β−→ R′.
By induction Tcf(P)

β−→≡ Tcf(R
′). Applying rule IDE,

Tcf(R) = Acf(~x)
β−→≡ Tcf(R

′).
• The cases that R β−→ R′ is derived by TAU, OUTPUT, SUM

or SYMB-MATCH are (also) trivial.
• Suppose R β−→ R′ is derived by PAR. Then R = P |Q,
P

β−→ P ′, bn(β)∩FN(R) = ∅ and R′ = P ′|Q. By induc-
tion Tcf(P)

β−→ V ≡ Tcf(P
′). As n(β) ⊆ Z , β[`] = β.

Moreover, Z ⊇ FN(P) = FN(Tcf(P)) = FN(Tcf(P)[`])
by Lemma 69, so bn(β) ∩ FN(Tcf(P)[`]) = ∅. Thus,
Tcf(P)[`]

β−→ V [`] ≡ Tcf(P
′)[`] by rule RELABELLING

and Lemma 61(h). Since Z ⊇ FN(Q) = FN(Tcf(Q)) =
FN(Tcf(Q)[r]) by Lemma 69, bn(β)∩FN(Tcf(Q)[r])=∅.
Hence, by rule PAR, Tcf(R) = Tcf(P)[`]|Tcf(Q)[r]

β−→
V [`]|Tcf(Q)[r] ≡ Tcf(P

′)[`]|Tcf(Q)[r] = Tcf(R
′), in

the ≡-step using Lemma 61(g).
• Suppose R

β−→ R′ is derived by E-S-COM. Then R =
P |Q, P Mx̄y−−−→ P ′, Q Nvy−−→ Q′, R′ = P ′|Q′, and β =

[x=v]MNτ . By induction Tcf(P)
Mx̄y−−−→ V ≡ Tcf(P

′)

and Tcf(Q)
Nvy−−→ W ≡ Tcf(Q

′). By rule RELABELLING

and Lemma 61(h) Tcf(P)[`]
Mx̄y−−−→ V [`] ≡ Tcf(P

′)[`]

and Tcf(Q)[r]
Nvy−−→ W [r] ≡ Tcf(Q

′)[r]. Thus, by E-S-
COM and Lemma 61(g) Tcf(R) = Tcf(P)[`]|Tcf(Q)[r]
β−→ V [`]|W [r] ≡ Tcf(P

′)[`]|Tcf(Q
′)[r] = Tcf(R

′).
• Suppose R

β−→ R′ is derived by E-S-CLOSE. Then
R = P |Q, P Mx̄(z)−−−−→ P ′, Q Nvz−−→ Q′, z /∈ FN(R),
β = [x=v]MNτ and R′ = (νz)(P ′|Q′). By induction
Tcf(P)

Mx̄(z)−−−−→ V ≡ Tcf(P
′) and Tcf(Q)

Nvz−−→ W ≡
Tcf(Q

′). Since z /∈FN(P)=FN(Tcf(P))=FN(Tcf(P)[`]),
by rule RELABELLING and Lemma 61(h) one obtains
Tcf(P)[`]

Mx̄(z)−−−−→ V [`] ≡ Tcf(P
′)[`] and likewise

Tcf(Q)[r]
Nvz−−→ W [r] ≡ Tcf(Q

′)[r]. Thus, by E-S-
CLOSE and Lemma 61(g,h) Tcf(R)=Tcf(P)[`]|Tcf(Q)[r]
β−→ (νz)(V [`]|W [r]) ≡ (νz)(Tcf(P

′)[`]|Tcf(Q
′)[r]) ≡

Tcf(R
′). The last step follows by Lemma 70.

• Suppose R β−→ R′ is derived by RES-ALPHA. Then R =

40

(νy)P , P [{z//y}] β−→ P ′, R′ = (νz)P ′, z /∈ FN(R) and
z /∈n(β). By induction Tcf(P [{z//y}]) β−→ V ≡ Tcf(P

′).
By Lemma 69 z 6∈ FN(Tcf(R)). Using this, Lemma 70,
RES-ALPHA, Lemma 61(h), and the observation that
Tcf(P [{z//y}]) = Tcf(P)[{z//y}], one obtains Tcf(R) ≡
(νy)Tcf(P)

β−→ (νz)V ≡ (νz)Tcf(P
′) ≡ Tcf(R

′).
As P [{z//y}] β−→ P ′ must be derived by rule RELA-
BELLING, bn(β) ∩ FN(P [{z//y}]) = ∅. Since z /∈ bn(β)
this implies bn(β) ∩ FN(R) = ∅. Using this, Lemma 60
yields Tcf(R)

β−→≡ Tcf(R
′).

• Suppose R
β−→ R′ is derived by SYMB-OPEN-ALPHA.

Then R = (νy)P , β = Mx̄(z), P Mx̄y−−−→ P ′, y 6= x,
z /∈ FN(R), y 6∈ n(M) and R′ = P ′[{z//y}]. By in-
duction Tcf(P)

Mx̄y−−−→ V ≡ Tcf(P
′). By Lemma 70

Tcf(R) ≡ (νy)Tcf(P). By Lemma 69 z /∈ FN(R) =
FN(Tcf(R)) = FN((νy)Tcf(P)). So by rule SYMB-OPEN-
ALPHA (νy)Tcf(P)

Mx̄(z)−−−−→ V [{z//y}]. By Lemma 60
Tcf(R)

Mx̄(z)−−−−→≡ V [{z//y}]. Moreover, by Lemma 61(h),
V [{z//y}] ≡ Tcf(P

′)[{z//y}] = Tcf(R
′).

• Suppose R
β−→ R′ is derived by RELABELLING. Then

R = P [σ], P α−→ P ′, α[σ] = β, bn(β)∩ FN(R) = ∅ and
R′ = P ′[σ]. By induction Tcf(P)

α−→ V ≡ Tcf(P
′).

As bn(β) ∩ FN(Tcf(R)) = ∅, by RELABELLING and
Lemma 61(h) Tcf(R)=Tcf(P)[σ]

β−→ V [σ]≡Tcf(P
′)[σ]

= Tcf(R
′).

Lemma 72: If Tcf(R)
β−→ U with ι(β) ∪ bn(β) ⊆ Z then

R
β−→ R′ for some R′ with Tcf(R

′) ≡ U .

Proof. By induction of the depth of the inference of the
transition Tcf(R)

β−→ U . Since R is a π ρES(N) process, using
Lemma 69, FN(Tcf(R)) = FN(R) ⊆ Z .
• The case that Tcf(R)

β−→ U is derived by EARLY-INPUT

proceeds as in the proof of Lemma 71, but using ι(β)⊆N.
• Suppose Tcf(R)

β−→ U is derived by IDE. Then R=A(~x).
Let A(~x)

def
= P , so Acf(~x)

def
= Tcf(P). Then Tcf(P)

β−→U.
By induction P β−→ R′ for some R′ with Tcf(R

′) ≡ U .
Applying rule IDE, R β−→ R′.

• The cases that Tcf(R)
β−→ U is derived by TAU, OUTPUT,

SUM or SYMB-MATCH are (also) trivial.
• Suppose Tcf(R)

β−→ U is derived by PAR. Then R=P |Q,
Tcf(R) = Tcf(P)[`]|Tcf(Q)[r], Tcf(P)

α−→ V , α[`] =
β, bn(β) ∩ FN(Tcf(R)) = ∅ and U = V [`]|Tcf(Q)[r].
Since ι(β) ∪ bn(β) ⊆ Z , also ι(α) ∪ bn(α) ⊆ Z .
Therefore, by induction, P α−→ P ′ for some P ′ with
Tcf(P

′) ≡ V . So n(α) ⊆ Z and α = α[`] = β. By
rule PAR, using that bn(β) ∩ FN(R) = ∅ via Lemma 69,
R = P |Q β−→ P ′|Q. By Lemma 61(g,h), Tcf(P

′|Q) =
Tcf(P

′)[`]|Tcf(Q)[r] ≡ V [`]|Tcf(Q)[r] = U .
• Suppose Tcf(R)

β−→ U is derived by E-S-COM. Then
R=P |Q, Tcf(R)=Tcf(P)[`]|Tcf(Q)[r], β=[x=v]MNτ ,
Tcf(P)

Mx̄y−−−→ V , Tcf(Q)
Nvz−−→ W , y[`] = z[r] and

U = V [`]|W [r]. Here I use Lemma 62 to infer that
n(M)∪n(N)∪{x, y, v} ⊆ N , so that these names are not
affected by [`] or [r]. It follows that z = y. By induction

P
Mx̄y−−−→ P and Q

Nvy−−→ Q′ for processes P ′, Q′ with
Tcf(P

′) ≡ V and Tcf(Q
′) ≡ W . Applying E-S-COM,

R
β−→ P ′|Q′. Moreover, employing Lemma 61(g,h),

Tcf(P
′|Q′) = Tcf(P

′)[`] | Tcf(Q
′)[r] ≡ V [`]|W [r] = U .

• Suppose Tcf(R)
β−→ U is derived by E-S-CLOSE. Then

R=P |Q, Tcf(R) = Tcf(P)[`]|Tcf(Q)[r], Tcf(P)
α−→ V ,

Tcf(Q)
γ−→W , β = [x=v]MNτ , α[`] = Mx̄(z), γ[r] =

Nvz, z /∈ FN(Tcf(R)) and U = (νz)((V [`]|W [r]). By
Lemma 62 {x, v} ∪ n(M) ∪ n(N) ⊆ FN(Tcf(R)) ⊆ Z .
So α = Mx̄(w) and γ = Nvu with w[`] = u[r] = z.
Note that w, u /∈ FN(Tcf(R)) ⊆ Z . Pick q ∈ Z\FN(R).
By taking q 6=w, u one also has q /∈ FN(V |W |V [`]|W [r]).
By Lemmas 64 and 65 Tcf(P)

Mx̄(q)−−−−→ V ′ ≡ V {q//w}
and Tcf(Q)

Nxq−−→ W ′ ≡ W{q//w}, and the inferences
of these transitions have a smaller depth than the one of
Tcf(R)

β−→ U . Therefore, by induction, P Mx̄(q)−−−−→ P ′ and
Q

Nxq−−→ Q′ for some P ′ and Q′ with Tcf(P
′) ≡ V ′ and

Tcf(Q
′) ≡W ′. By rule E-S-CLOSE R

β−→ (νq)(P ′|Q′).
By Lemma 70 and Lemma 61(g,h,b,a,d,f)

Tcf((νq)(P
′|Q′)) ≡ (νq)

(
(Tcf(P

′)[`] | Tcf(Q
′)[r])

)
≡ (νq)

(
(V ′[`] |W ′[r])

)
≡ (νq)

(
(V [{q//w}][`] |W [{q//u}][r])

)
≡ (νq)

(
(V [`][{q//z}] |W [r][{q//z}])]

)
≡ (νq)

(
(V [`] |W [r])[{q//z}]

)
≡ (νz)(V [`] |W [r]) ≡ U.

• Suppose R has the form (νy)P , i.e., Tcf(R)
β−→ U

is derived by RES-ALPHA or SYMB-OPEN-ALPHA. By
Lemma 70 Tcf(R) ≡ (νy)Tcf(P), so by Lemma 60
(νy)Tcf(P)

β−→ V ≡ U , and the inference of this
transition has the same depth as the one of Tcf(R)

β−→ U .

First suppose (νy)Tcf(P)
β−→ V is derived by RES-

ALPHA. Then Tcf(P [{z//y}]) = Tcf(P)[{z//y}] β−→ W
and V = (νz)W for some W and z /∈ FN(R) ∪ n(β).
So by induction P [{z//y}] β−→ P ′ for some P ′ with
Tcf(P

′) ≡ W . By RES-ALPHA R = (νy)P
β−→ (νz)P ′.

Moreover, by Lemma 70 and Lemma 61(h),

Tcf((νz)P
′) ≡ (νz)Tcf(P

′) ≡ (νz)W = V ≡ U.

Next suppose (νy)Tcf(P)
β−→ V is derived by SYMB-

OPEN-ALPHA. Then β=Mx̄(z), Tcf(P)
Mx̄y−−−→W , y 6=x,

z /∈ FN(R), y /∈ n(M) and V = W [{z//y}]. By induction
P

Mx̄y−−−→ P ′ for some P ′ with Tcf(P
′) ≡ W . By RES-

ALPHA R
β−→ P ′[{z//y}]. By Lemma 61(h),

Tcf(P
′[{z//y}]) = Tcf(P

′)[{z//y}]≡W [{z//y}] = V ≡ U.

• Suppose Tcf(R)
β−→ U is derived by RELABELLING.

Then R = P [σ], Tcf(R) = Tcf(P)[σ], Tcf(P)
α−→ V ,

α[σ] = β, bn(β) ∩ FN(R) = ∅ and U = V [σ]. Since the
relabelling operator [σ] stems from π ρES(N), dom(σ) ⊆
Z . Hence ι(β) ∪ bn(β) ⊆ Z implies ι(α) ∪ bn(α) ⊆ Z .
By induction P α−→ P ′ for some P ′ with Tcf(P

′) ≡ V .
By RELABELLING R = P [σ]

β−→ P ′[σ]. Moreover, by
Lemma 61(h), Tcf(P

′[σ]) = Tcf(P
′)[σ] ≡ V [σ] = U .

41

Theorem 13: Tcf(P) •∼ P for any P ∈ Tπ ρES(N).

Proof. It suffices to show that the symmetric closure of

R := {(R,U) | R ∈ Tπ ρES(N) ∧ U ≡ Tcf(R)}

is a strong barbed bisimulation, as it contains (P,Tcf(P)).
Let (R,U)∈R. Let R τ−→ R′. Then Tcf(R)

τ−→≡ Tcf(R
′)

by Lemma 71 and U
τ−→≡ Tcf(R

′) by Lemma 60. Thus
U

τ−→ U ′ for some U ′ with (R′, U ′) ∈ R.
Let U τ−→ U ′. Then Tcf(R)

τ−→≡ U ′ by Lemma 60. By
Lemma 72 R τ−→ R′ for some R′ with Tcf(R

′) ≡ U ′.
Let U↓b with b∈Z ∪Z . Then U by−→ U ′ or U b(y)−−→ U ′ for

some y and U ′, using the definition of O in Section IV. By
Lemmas 66 and 64 I may assume, without loss of generality,
that y ∈ Z\FN(U) in case of input or bound output actions.
Hence Tcf(R)

by−→ or Tcf(R)
b(y)−−→ by Lemma 60. So R by−→

or R b(y)−−→ by Lemma 72. Thus R↓b.
The implication R↓b ⇒ U↓b proceeds likewise.

H. Eliminating α-conversion for clash-free processes

Let α−→• be the transition relation on Tπ ρES(N ,R) obtained
by from the transition relation α−→ by replacing the rules
RES-ALPHA and SYMB-OPEN-ALPHA from Table IX by the
rules rules RES and SYMB-OPEN from Table VI. Thus, the α-
conversion implicit in these rules has been removed.

As witnessed by Example 1, on π ρES(N ,R) the transition
relation α−→• differs essentially from α−→, and fails to derive
some crucial transitions. However, I will show that restricted to
the clash-free processes within π ρES(N ,R) this transition rela-
tion is just as suitable as α−→; up to strong barbed bisimilarity
there is no difference. Since the only the clash-free processes
in π ρES(N ,R) occur as the target of the previous translation
step, the relation α−→• may be used in the source of the next.

Lemma 73: If P Mx̄(y)−−−−→• Q then y ∈ RN(P).

Proof. A trivial induction on the inference of P Mx̄(y)−−−−→•Q.

Lemma 74: If R is clash-free and R α−→•R′ then R α−→≡R′.

Proof. By induction on the derivation of R α−→• R′.
• Suppose R Mx̄(y)−−−−→• R′ is derived by SYMB-OPEN. Then
R = (νy)P , P Mx̄y−−−→• R′, y 6= x and y /∈ n(M). By
induction P Mx̄y−−−→ U for a process U ≡ R′. So by SYMB-
OPEN-ALPHA R

Mx̄(y)−−−−→ U [{y//y}]. Moreover, U [{y//y}] ≡
U ≡ R′ by Lemma 61(c,a).

• Suppose R α−→• R′ is derived by RES. Then R = (νy)P ,
P

α−→• P ′, R′ = (νy)P ′ and y /∈ n(α). For u ∈ bn(α),
by Lemma 73 u∈RN(P), so by the clash-freedom of P ,
u /∈ FN(P). By induction P

α−→ V for some V ≡ P ′.
So by RELABELLING P [{y//y}] α−→ V [{y//y}] and by rule
RES-ALPHA R

α−→ (νy)(V [{y//y}]). By Lemma 61(c,a,h)
(νy)(V [{y//y}]) ≡ (νy)V ≡ (νy)P ′ = R′

• All other cases are trivial with Lemma 61(g,h).

Lemma 75: Let R be clash-free. If R α−→ R′, bn(α) = ∅
and ι(α)∩RN(R)=∅, then R α−→• U for some U with R′≡U .

If R Mx̄(z)−−−−→ R′ then R
Mx̄(y)−−−−→• U for some y and U with

R′ ≡ U [{z//y}] and z /∈ FN(U)\{y}.

Proof. By induction on the depth of the derivation of R α−→R′.

• The cases that R α−→• R′ is derived by TAU, OUTPUT,
EARLY-INPUT, SUM, SYMB-MATCH or IDE are trivial.

• Suppose R α−→ R′ is derived by PAR. Then R = P |Q,
P

α−→ P ′, bn(α) ∩ FN(Q) = ∅ and R′ = P ′|Q.
First assume bn(α) = ∅. Since ι(α) ∩ RN(R) = ∅, also
ι(α) ∩ RN(P) = ∅. By induction P

α−→• V for some
V with P ′ ≡ V . By rule PAR R

α−→• V |Q. Moreover,
R′ = P ′|Q ≡ V |Q by Lemma 61(g).
Next assume α = Mx̄(z). So z /∈ FN(R). By induction
P

Mx̄(y)−−−−→• V for some y, V with P ′ ≡ V [{z//y}]. By
Lemma 73, y ∈ RN(P), so y /∈ FN(R) by the clash-
freedom of R. Hence R Mx̄(y)−−−−→• V |Q by rule PAR. More-
over, R′ = P ′|Q ≡ V [{z//y}]|Q[{z//y}] ≡ (V |Q)[{z//y}]
by Lemma 61(c,a,g,d), using that y, z /∈ FN(Q). Finally,
by Lemma 63, FN(V |Q)\{y} ⊆ FN(R) 63 z.

• Suppose R
α−→ R′ is derived by rule E-S-COM. Then

R = P |Q, α = [x=v]MNτ , P Mx̄y−−−→ P ′, Q Mvy−−−→ Q′

and R′ = P ′|Q′. By Lemma 62 y ∈ FN(P). So by the
clash-freedom of R, y /∈RN(Q). By induction P Mx̄y−−−→• V
and Q

Mvy−−−→• W with P ≡ V and Q′ ≡ W . Hence by
E-S-COM R

α−→• V |W , and R′ = P ′|Q′ ≡ V |W .
• Suppose R α−→ R′ is derived by rule E-S-CLOSE. Then
R = P |Q, α = [x=v]MNτ , P Mx̄(z)−−−−→ P ′, Q Mvz−−−→ Q′,
z /∈ FN(R) and R′= (νz)(P ′|Q′). By induction, one has
P

Mx̄(y)−−−−→• V for some y and V with P ′ ≡ V [{z//y}]
and z /∈ FN(V)\{y}. By Lemma 73 y ∈ RN(P), so by
the clash-freedom of R, y /∈ RN(Q) and y /∈ FN(R).
By Lemma 65 Q

Mvy−−−→ Wy for some Wy ≡ Q′[{y//z}].
So by induction Q

Mvy−−−→• W for some W ≡ Wy . By
E-S-CLOSE R

α−→• (νy)(V |W). Moreover,

R′ = (νz)(P ′|Q′) ≡ (νz)(V [{z//y}] | Q′[{z//y}][{z//y}])
≡ (νz)(V [{z//y}] |Wy[{z//y}])
≡ (νz)((V |W)[{z//y}])
≡ (νy)(V |W)

by Lemma 61(h,a,b,c,h,d,f), in the last step using that
z /∈ FN(R) ⊇ FN((νy)(V |W)) by Lemma 63.

• Suppose R
α−→ R′ is derived by RELABELLING. Then

R = P [σ], P β−→ P ′, β[σ] = α and R′ = P ′[σ].
First assume bn(α) = ∅. Since ι(α) ∩ RN(R) = ∅, also
ι(β) ∩ RN(P) = ∅. By induction P

β−→• V for some
V with P ′ ≡ V . Now R

α−→• V [σ] by RELABELLING.
Moreover, R′ = P ′[σ]≡ V [σ] by Lemma 61(h).
Next assume α=Mx̄(z) and β =Kq̄(w). So w[σ] = z.
Then z /∈ FN(R) by the side-condition of RELABELLING.
By induction P Kq̄(v)−−−→• V for some v and V with P ′ ≡
V [{w//v}]. Let y := v[σ]. By Lemma 73, v ∈ RN(P), so
y ∈ FN(R). Hence y /∈ FN(R) by the clash-freedom of
R. So there is no n ∈ FN(P) with n[σ] = y or n[σ] = z.
Since FN(V) ⊆ FN(P)∪{v} by Lemma 63, the name v is
the only possible n ∈ FN(V) with n[σ] = y or n[σ] = z.

42

By rule RELABELLING R
Mx̄(y)−−−−→• V [σ]. Lemma 61(h,b,a)

yields R′ = P ′[σ] ≡ V [{w//v}][σ] ≡ V [σ][{z//y}].
Finally, by Lemma 63, FN(V [σ])\{y} ⊆ FN(R) 63 z.

• Suppose R Mx̄(z)−−−−→ R′ is derived by SYMB-OPEN-ALPHA.
Then R = (νy)P , P Mx̄y−−−→ P ′, R′ = P ′[{z//y}], y 6= x,
z /∈ FN(R) and y /∈ n(M). By induction P Mx̄y−−−→• U for
a process U with P ′≡U . So by SYMB-OPEN R

Mx̄(y)−−−−→•U.
Moreover, R′ = P ′[{z//y}] ≡ U [{z//y}] by Lemma 61(h).
Finally, by Lemma 63, FN(U)\{y} ⊆ FN(R) 63 z.

• Suppose R α−→ R′ is derived by rule RES-ALPHA. Then
R = (νy)P , P [{z//y}] α−→ P ′, R′ = (νz)P ′ and z /∈
FN(R) ∪ n(α).
First assume bn(α) = ∅. As ι(α)∩RN(R) = ∅, y /∈ ι(α)
and ι(α) ∩ RN(P) = ∅. Hence y /∈ n(α) by Lemma 62.
By RELABELLING P

α−→ V for a V with V [{z//y}] = P ′.
So by induction P α−→• W for some W ≡ V . So by RES

R
α−→• (νy)W . By Lemma 63 FN(V)\{y} ⊆ n(α) ∪

FN(P)\{y} = n(α)∪ FN(R) 63 z. Hence R′ = (νz)P ′ =
(νz)(V [{z//y}]) ≡ (νy)V by Lemma 61(f).
Next assume α = Mx̄(w). By Lemma 62 n(M)∪{x} ⊆
FN(R) 63 y. So by RELABELLING P

Mx̄(u)−−−−→ W for a W
with W [{z//y}] = P ′. Here u := w[{z/y}]. By induction
P

Mx̄(v)−−−−→• V for some v and V with W ≡ V [{u//v}] and
w /∈ FN(V)\{v}. By Lemma 73 v ∈ RN(P). So v 6= y

by the clash-freedom of R. Hence R Mx̄(v)−−−−→• (νy)V by
RES. Pick a name q /∈ FN(R′)∪FN((νy)V)∪{w, v}. Now

R′ = (νz)P ′ = (νz)(W [{z//y}])
≡ (νq)(W [{z//y}][{q//z}])
≡ (νq)(V [{u//v}][{z//y}][{q//z}])
≡ (νq)(V [{q//y}][{w//v}])
≡ ((νq)(V [{q//y}]))[{w//v}]
≡ ((νy)V)[{w//v}]

by Lemma 61(f,h,b,a,e,f,h), provided that

n[{u//v}][{z//y}][{q//z}] = n[{q//y}][{w//v}] (21)

for all n ∈ FN(V). This has to be checked only for
n ∈ {y, v}, because q /∈ FN(V)\{y}, w /∈ FN(V)\{v},
u is either w or z, and z /∈ FN(R) ⊇ FN(V)\{y, v} by
Lemma 63. To check (21) I recall that y 6= v 6= q 6=w 6= z
and consider two cases.

– Let w 6= y. Then u = w, and (21) holds for n = y, v.
– Let w = y. Then u = z 6= y 6= q and again (21)

holds for n = y, v.
Finally, w /∈ FN((νy)V)\{v}.

Below a substitution σ is called clash-free on a π ρES(N ,R)
process P iff RN(P) ∩ (dom(σ) ∪ range(σ)) = ∅.

Observation 4: If P is clash-free and σ is clash-free on P ,
then P [σ] is clash-free and RN(P [σ]) = RN(P).

Lemma 76: If x(y).P is clash-free and z /∈ RN(x(y).P)
then substitution {z/y}S from EARLY-INPUT is clash-free on P.

Proof. By definition dom({z/y}S) ⊆ Z and range({z/y}S) ⊆
Z ∪ {z}. Since x(y).P is clash-free, so is process P by

Definition 23(v), and RN(P) = RN(x(y).P) by Definition 22.
Hence RN(P) ⊆ R and z /∈ RN(x(y).P) = RN(P).

Lemma 77: If R α−→• R′ with ι(α) ∩ RN(R) = ∅ and R
is clash-free, then so is R′. Moreover, RN(R′) ⊆ RN(R) and
bn(α) ∩ RN(R′) = ∅.

Proof. By induction on the derivation of R α−→• R′. Since R
is clash-free, RN(R) ⊆ R.

• By Definition 23(iv-v) a subexpression P of a clash-free
process R is also clash-free, and by Definition 22
RN(P) ⊆ RN(R). Using this, the cases that R α−→• R′ is
derived by TAU, OUTPUT, SUM or SYMB-MATCH are trivial.

• Suppose R
α−→• R′ is derived by EARLY-INPUT. Then

R=x(y).P , α=xz with z /∈RN(R), and R′=P [{z/y}S].
By Definition 23(v) P is clash-free and by Definition 22
RN(P) = RN(R). By Lemma 76 and Observation 4 R′ is
clash-free and RN(R′) = RN(R). Moreover, bn(α) = ∅.

• Suppose R α−→• R′ is derived by IDE. Then R = A(~x).
Let A(~x)

def
= P . Then P

α−→• R′. Process P is clash-
free by Definition 23(vii), and RN(P) = RN(R) by
Definition 22. By induction RN(R′) ⊆ RN(P) = RN(R),
process R′ is clash-free, and bn(α) ∩ RN(R′) = ∅.

• Suppose R α−→• R′ is derived by PAR. Then R = P |Q,
P

α−→• P ′ and R′ = P ′|Q. Since ι(α) ∩ RN(R) = ∅
and RN(P) ⊆ RN(R), also ι(α) ∩ RN(P) = ∅. Using
that P is clash-free, by induction P ′ is clash-free and
RN(P ′) ⊆ RN(P). Moreover, bn(α)∩RN(P ′) = ∅. Now
RN(R′)= RN(P ′)∪RN(Q)⊆RN(P)∪RN(Q)= RN(R).

Let z ∈ bn(α). Then z ∈ RN(P) by Lemma 73, so by
the clash-freedom of R one has z /∈ RN(Q). Moreover,
z /∈ RN(P ′) by the above, so z /∈ RN(R′).

To show that R′ is clash-free, using that P ′ and Q are
clash-free, it suffices to show (i) FN(R′) ∩ RN(R′) = ∅
and (ii) RN(P ′) ∩ RN(Q) = ∅. The latter follows since
RN(P)∩RN(Q) = ∅ by the clash-freedom of R. For the
former, Lemma 63 yields FN(R′) ⊆ FN(R)∪ι(α)∪bn(α).
Moreover FN(R)∩RN(R) = ∅ by the clash-freedom of R,
ι(α)∩RN(R)=∅ by assumption, and bn(α)∩RN(R′)=∅
as derived above. This entails (i).

• Suppose R
α−→• R′ is derived by rule E-S-COM. Then

R = P |Q, α = [x=v]MNτ , P Mx̄y−−−→• P ′, Q Mvy−−−→• Q′
and R′ = P ′|Q′. By Lemma 62 y ∈ FN(P), so y /∈
RN(Q) by the clash-freedom of R. Using that P and
Q are clash-free, by induction P ′ and Q′ are clash-free,
RN(P ′) ⊆ RN(P) and RN(Q′) ⊆ RN(Q). It follows that
RN(R′)=RN(P ′)∪RN(Q′)⊆RN(P)∪RN(Q)=RN(R).

To show that R′ is clash-free, using that P ′ and Q′ are
clash-free, it suffices to show (i) FN(R′) ∩ RN(R′) = ∅
and (ii) RN(P ′) ∩ RN(Q′) = ∅. The latter follows since
RN(P)∩RN(Q) = ∅ by the clash-freedom of R. For the
former, Lemma 63 yields FN(R′) ⊆ FN(R). As FN(R)∩
RN(R) = ∅ by the clash-freedom of R, this entails (i).

• Suppose R α−→• R′ is derived by rule E-S-CLOSE. Then
R = P |Q, α = [x=v]MNτ , P Mx̄(z)−−−−→• P ′, Q Mvz−−−→• Q′

43

and R′ = (νz)(P ′|Q′). By Lemma 73 z ∈ RN(P), so
y /∈ RN(Q) by the clash-freedom of R. Using that P and
Q are clash-free, by induction P ′ and Q′ are clash-free,
RN(P ′) ⊆ RN(P), RN(Q′) ⊆ RN(Q) and z /∈ RN(P ′).
It follows that RN(R′) = RN(P ′) ∪ RN(Q′) ∪ {z} ⊆
RN(P) ∪ RN(Q) = RN(R).

To show that R′ is clash-free, using that P ′ and Q′ are
clash-free, it suffices to show (i) FN(R′) ∩ RN(R′) = ∅,
(ii) RN(P ′)∩RN(Q′) = ∅ and (iii) z /∈ RN(P ′|Q′). That
(i) and (ii) hold follows exactly as in the case of E-S-COM

above. For (iii), using that z ∈ RN(P) and z /∈ RN(P ′),
in case z ∈ RN(P ′|Q′) then z ∈ RN(Q′) ⊆ RN(Q),
contradicting the clash-freedom of R.

• Suppose R α−→• R′ is derived by RES. Then R = (νy)P ,
P

α−→• P ′, y /∈ n(α) and R′ = (νy)P ′. Since ι(α) ∩
RN(R) = ∅ and RN(P) ⊆ RN(R), also ι(α)∩RN(P)=∅.
Using that P is clash-free, by induction P ′ is clash-free
and RN(P ′) ⊆ RN(P). Moreover, bn(α) ∩ RN(P ′) = ∅.
Now RN(R′) = RN(P ′)∪{y} ⊆ RN(P)∪{y} = RN(R).

As bn(α)∩RN(P ′)=∅ and y /∈ n(α), bn(α)∩RN(R′)=∅.
To show that R′ is clash-free, using that P ′ is clash-free,
it suffices to show (i) FN(R′) ∩ RN(R′) = ∅ and (iii)
y /∈ RN(P ′). The latter follows since y /∈ RN(P) by the
clash-freedom of R. The former follows exactly as in the
case of PAR.

• Suppose R α−→• R′ is derived by rule SYMB-OPEN. Then
R=(νy)P , α=Mx̄(y), P Mx̄y−−−→• R′, y 6=x and y /∈n(M).
Using that P is clash-free, by induction R′ is clash-free
and RN(R′) ⊆ RN(P) ⊆ RN(R). Since R is clash-free,
y /∈ RN(P) ⊇ RN(R′), so bn(α) ∩ RN(R′) = ∅.

• Suppose R
α−→• R′ is derived by rule RELABELLING.

Then R=P [σ], P β−→• P ′, β[σ]=α, bn(α)∩ FN(R)=∅
and R′ = P ′[σ]. Since ι(α) ∩ RN(R) = ∅, also ι(α) ∩
RN(P)=∅. Using that P is clash-free, by induction P ′ is
clash-free, RN(P ′) ⊆ RN(P) and bn(α) ∩ RN(P ′) = ∅.
It follows that RN(R′) ⊆ RN(R).

Suppose z ∈ bn(α)∩RN(R′). Then there are v ∈ bn(β)
and w∈RN(P ′) with v[σ]=w[σ]. As bn(α)∩RN(P ′)=∅
one has v 6= w,. By Lemma 73 v ∈ RN(P). Moreover,
w ∈ RN(P). This contradicts Condition (iv) of the clash-
freedom of R.

To show that R′ is clash-free, using that P ′ is clash-
free, it suffices to show (i) FN(R′) ∩ RN(R′) = ∅ and
(iv) y[σ] 6= z[σ] for different y, z ∈ RN(P ′). The latter
follows from the same condition for RN(P). The former
follows exactly as in the case of PAR.

Let T• be the identity translation from the clash-free
processes in π ρES(N ,R) equipped with the standard transition
relation α−→ to clash-free processes in π ρES(N ,R) equipped
with the alternative transition relation α−→•. The results above
imply that T• is valid up to strong barbed bisimilarity.

Theorem 14: T•(P) •∼P for any clash-free P ∈ Tπ ρES(N ,R).

Proof. It suffices to show that the symmetric closure of

R := {(U,R) | U,R ∈ Tπ ρES(N ,R) ∧ U ≡ R ∧R clash-free}

is a strong barbed bisimulation. Take (R,U) ∈ R.
Let U τ−→ U ′. By Lemma 60 R τ−→ R† for some R† ≡ U ′.

So R τ−→• R′ for some R′ ≡ R† by Lemma 75. By Lemma 77
R′ is clash-free. Hence (U ′, R′) ∈ R.

Let R τ−→• R′. Then R
τ−→ R† for some R† ≡ R′ by

Lemma 74. By Lemma 60 U τ−→ U ′ for some U ′ ≡ R†. By
Lemma 77 R′ is clash-free. Hence (U ′, R′) ∈ R.

Let U↓b with b∈Z ∪Z . Then U by−→ U ′ or U b(y)−−→ U ′ for
some y and U ′, using the definition of O in Section IV. By
Lemmas 66 and 64 I may assume, without loss of generality,
that y /∈ RN(R) in case of an input action by, and y /∈ FN(R)

in case of a bound output action b(y). Hence R by−→ or R b(y)−−→
by Lemma 60 and R

by−→• or R b(y)−−→• by Lemma 75. Thus
R↓b.

The implication R↓b ⇒ U↓b proceeds likewise.

I. Eliminating restriction

Let π†ES(N ,R) be the variant of π ρES(N ,R) without
restriction operators. Hence there is no need for rules RES

and SYMB-OPEN. Since the resulting semantics cannot generate
transitions labelled Mx̄(z), rule E-S-CLOSE can be dropped as
well. Moreover, bn(α) = ∅ for all transition labels α. So the
side condition of rules PAR and RELABELLING can be dropped
too. Hence one is left with Table IX without the orange part.

In π†ES(N ,R) I also drop the restriction that fn(P) ⊆
{x1, . . . , xn} in defining equations A(~x)

def
= P . Thus A(~x) can

just as well be denoted A.17 On π†ES(N ,R) I don’t use FN.
The fifth step Tν of my translation goes from π ρES(N ,R)

to π†ES(N ,R). It simply drops all restriction operators. It
is defined compositionally by Tν((νy)P) = Tν(P) and
Tν(A(~x)) = Aν(~x), where Aν is a fresh agent identifier with
defining equation Aν(~x)

def
= Tν(P) when A(~x)

def
= P was the

defining equation of A; the translation Tν acts homomorphi-
cally on all other constructs.

Although this translation in not valid in general, I proceed
to prove its validity for clash-free processes. By Theorem 14
I may use the transition relation α−→• on π ρES(N ,R).

For α an action in π ρES(N ,R) one defines the debinding
of α by 〈α〉 := α if α has the form Mτ , Mxz or Mx̄y, and
〈Mx̄(y)〉 := Mx̄y.

Lemma 78: If R α−→• R′, then Tν(R)
〈α〉−−→ Tν(R′).

Proof. By induction on the derivation of R α−→• R′.
• Suppose R

α−→• R′ is derived by rule EARLY-INPUT.
Then R=x(y).P , α=xz, R′ = P [{z/y}S] and Tν(R)=

x(y).Tν(P). Moreover, Tν(R)
〈α〉−−→ Tν(P)[{z/y}S] =

Tν(P [{z/y}S]).
• The cases that R α−→• R′ is derived by TAU or OUTPUT

are even more trivial.

17Here I assume that all sets Kn are disjoint, i.e., the same π-calculus
agent identifier A does occur with multiple arities. When this assumption is
not met, an arity-index at the π†ES(N ,R) identifier A is needed.

44

• Suppose R α−→• R′ is derived by IDE. Then R = A(~x),
say with A(~x)

def
= P , and therefore P α−→• R′. Moreover

Tν(R) = Aν(~x), with Aν defined by Aν(~x)
def
= Tν(P).

Now Tν(P)
〈α〉−−→ Tν(R′) by induction. With rule IDE

one infers Tν(R)
〈α〉−−→ Tν(R′).

• The cases that R α−→• R′ is derived by SUM, SYMB-
MATCH, PAR or E-S-COM are trivial.

• Suppose R
α−→• R′ is derived by E-S-CLOSE. Then

R = P |Q, α = [x=v]MNτ , P Mx̄(z)−−−−→• P ′, Q Nvz−−→• Q′,
R′ = (νz)(P ′|Q′) and Tν(R) = Tν(P)|Tν(Q). Now
Tν(P)

Mx̄z−−−→ Tν(P ′) and Tν(Q)
Nvz−−→ Tν(Q′) by

induction. Thus Tν(R)
〈α〉−−→ Tν(P ′)|Tν(Q′) = Tν(R′)

by application of rule E-S-COM.
• Suppose R α−→• R′ is derived by RES. Then R = (νy)P ,
R′ = (νy)P ′, P α−→• P ′. Now Tν(P)

〈α〉−−→ Tν(P ′) by
induction. So Tν(R) = Tν(P)

〈α〉−−→ Tν(P ′) = Tν(R′).
• Suppose R

α−→• R′ is derived by SYMB-OPEN. Then
R = (νy)P , α = Mx̄(y) and P Mx̄y−−−→• R′. By induction
Tν(P)

Mx̄y−−−→ Tν(R′). So Tν(R) = Tν(P)
〈α〉−−→ Tν(R′).

• Suppose R α−→• R′ is derived by RELABELLING. Then
R = P [σ], P β−→• P ′, β[σ] = α and R′ = P ′[σ].
By induction Tν(P)

〈β〉−−→ Tν(P ′). Hence Tν(R) =

Tν(P)[σ]
〈α〉−−→ Tν(P ′)[σ] = Tν(R′).

The next lemma makes use of the set no(β) of non-output
names of an action β in π†ES(N ,R). Here no(β) := n(β) if β
has the form Mτ or Mxz, whereas no(Mx̄y) := n(M)∪{x}.

Lemma 79: If R is clash-free and Tν(R)
β−→ U , where

no(β)∩RN(R) = ∅, then R α−→• R′ for some α and R′ with
〈α〉 = β and Tν(R′) = U .

Proof. By induction on the derivation of Tν(R)
β−→ U , and

a nested structural induction on R.

• The cases R = τ.P and R = x̄y.P are trivial.
• Let R = x(y).P . Then Tν(R) = x(y).Tν(P). Hence
β = xz and U = Tν(P)[{z/y}S]. Furthermore, R xz−→•
P [{z/y}S] and Tν(P [{z/y}]S) = Tν(P)[{z/y}S] = U .

• Let R = A(~x) with A(~x)
def
= P . Then Tν(R) = Aν(~x)

with Aν(~x)
def
= Tν(P). So Tν(P)

β−→ U . Process P is
clash-free by Definition 23(vii), and RN(P) = RN(R) by
Definition 22. So no(β) ∩ RN(P [{~y/~z}S]) = ∅. Thus, by
induction, P α−→• R′ for some α and R′ with 〈α〉 = β
and Tν(R′) = U . Now R

α−→• R′ by IDE.
• The cases that R is 0, P +Q or [x=y]P are trivial.
• Let R=P [σ]. Then Tν(R) =T (P)[σ] and T (P)

δ−→V
for some δ with δ[σ] = β, and some V with V [σ] = U .
By definition P is clash-free. Considering that RN(R) ⊇
{y[σ] | y ∈ RN(P)}, one has no(δ) ∩ RN(P) = ∅. So by
induction P

γ−→• P ′ for some γ and P ′ with 〈γ〉 = δ
and Tν(P ′) = V . Let α := γ[σ]. Then 〈α〉 = 〈γ[σ]〉 =
〈γ〉[σ] = δ[σ] = β. In case z ∈ bn(α) then z = w[σ]
with w ∈ fn(γ), so w ∈ RN(P) by Lemma 73 and hence
z∈RN(R), so the clash-freedom of R implies z /∈FN(R).
Therefore, by RELABELLING, R = P [σ]

α−→• P ′[σ], and
Tν(P ′[σ]) = Tν(P ′)[σ] = V [σ] = U .

• Let R = P |Q. Then Tν(R) = Tν(P)|Tν(Q). Suppose
Tν(R)

β−→ U is derived by PAR. Then Tν(P)
β−→ V

and U = V |Tν(Q). By definition P is clash-free. Since
RN(P) ⊆ RN(P |Q), no(β) ∩ RN(P) = ∅. So by
induction P α−→• P ′ for some α and P ′ with 〈α〉=β and
Tν(P ′) = V . By Lemma 73 bn(α) ⊆ RN(P) ⊆ RN(R),
so bn(α) ∩ FN(R) = ∅ by the clash-freedom of R. Thus
R

α−→• P ′|Q by PAR, and Tν(P ′|Q) = V |Tν(Q) = U .

Now suppose Tν(R)
β−→ U is derived by E-S-COM. Then

β = [x=v]MNτ , Tν(P)
Mx̄y−−−→ V , Tν(Q)

Nvy−−→ W and
U = V |W . By definition P and Q are clash-free. Since
RN(P) ⊆ RN(P |Q), no(Mx̄y) ∩ RN(P) = ∅. So by
induction either P Mx̄y−−−→• P ′ or P Mx̄(y)−−−−→• P ′ for some
P ′ with Tν(P ′) = V .
In the first case y ∈ FN(P) ⊆ FN(R) by Lemma 62, so
y /∈ RN(R) ⊇ RN(Q) by the clash-freedom of R. Hence
also no(Nvy) ∩ RN(Q) = ∅. By induction Q

Nvy−−→• Q′
for some Q′ with Tν(Q′) = W . So R

α−→• P ′|Q′ by
E-S-COM, and Tν(P ′|Q′) = V |W = U .
In the second case y ∈ RN(P) ⊆ RN(R) by Lemma 73,
so y /∈ FN(R)∪RN(Q) by the clash-freedom of R. Hence
no(Nvy) ∩ RN(Q) = ∅. By induction Q

Nvy−−→• Q′ for
some Q′ with Tν(Q′) = W . So R

α−→• (νy)(P ′|Q′)
by E-S-CLOSE, and Tν((νy)(P ′|Q′)) = Tν(P ′|Q′) =
V |W = U .

• Finally, let R = (νy)P . Then Tν(R) = Tν(P). More-
over, no(β) ∩ RN(P) = ∅. By induction, P α−→• P ′ for
some α and P ′ with 〈α〉 = β and Tν(P ′) = U .
In case y /∈ n(α), R α−→• (νy)P ′ by RES. Moreover,
Tν((νy)P ′) = Tν(P ′) = U .
In case y ∈ n(α) = n(β), using that RN(R)3 y /∈no(β),
β must have the form Mx̄y with y 6= x and y /∈ n(M).
So α is either Mx̄(y) or Mx̄y. If α = Mx̄(y) then y ∈
RN(P) by Lemma 73, contradicting the clash-freedom of
R. So α = Mx̄y. Now R

Mx̄(y)−−−−→• P ′ by SYMB-OPEN.

Theorem 15: If P is clash-free then Tν(P) •∼ P .

Proof. It suffices to show that the symmetric closure of

R := {(R,Tν(R)) | R in π ρES(N ,R) is clash-free} .

is a strong barbed bisimulation. So suppose R is clash-free.
Let R τ−→• R′. Then Tν(R)

τ−→ Tν(R′) by Lemma 78.
Moreover, R′ is clash-free by Lemma 77, so R′ R Tν(R′).

Let Tν(R)
τ−→ U ′. Then, by Lemma 79, R τ−→• R′ for

some R′ with Tν(R′) = U ′. Moreover, R′ is clash-free by
Lemma 77, so R′ R U ′.

Now let R↓b with b ∈ Z ∪Z . Then R by−→• or R b(y)−−→• for
some y, using the definition of O in Section IV. So Tν(R)

by−→
by Lemma 78. Thus Tν(R)↓b.

Finally, let Tν(R)↓b with b = x ∈ Z or b = x̄ with x ∈ Z .
Then Tν(R)

by−→ U ′ for some y and U ′. Since R is clash-free,
RN(R)⊆R, so x /∈RN(P). By Lemma 66 I may assume that
if b= x then y /∈ RN(R). Hence no(by) ∩ RN(R) = ∅. Thus,
by Lemma 79, R by−→• R′ or R b(y)−−→• R′ for some R′. Hence
R↓b.

45

J. The last step

The language π†ES(N ,R) can almost be recognised as an
instance of CCStrig

γ . Let Act be the set of all actions Mτ ,
Mx̄y and Mxy with names fromH. As parameters of CCStrig

γ

I take K to be the disjoint union of all the sets Kn for
n ∈ IN, of n-ary agent identifiers from the chosen instance
of the π-calculus, and A := Act\{τ}. The set S ⊆ A of
synchronisations consists of all actions Mτ with M 6= ε. The
communication function γ : (A \S)2 ⇀S ∪{τ} is given by
γ(Mx̄y,Nvy) = [x=v]MNτ , and its commutative variant.
Now the parallel composition of π†ES(N ,R) turns out to be
the same as for this instance of CCStrig

γ . Likewise, the silent
and output prefixes are instances of CCStrig

γ prefixing, and the
agent identifiers of π†ES(N ,R) are no different from CCStrig

γ

agent identifiers. However, the input prefix of π†ES(N ,R)
does not occur in CCStrig

γ . Yet, one can identify Mx(y).P
with

∑
z∈HMxz.(P [{z/y}S]), for both processes have the

very same outgoing transitions. The π†ES(N ,R) matching
operator is no different from the triggering operator of MEIJE
or CCStrig

γ (see Section XI): both rename only the first actions
their argument process can perform, namely by adding a
single match [x=y] in front of each of them—this match is
suppressed when x=y.

This yields to the following translation from π†ES(N ,R) to
CCStrig

γ :

Tγ(0) := 0
Tγ(Mτ.P) := Mτ.Tγ(P)
Tγ(Mx̄y.P) := Mx̄y.Tγ(P)
Tγ(Mx(y).P) :=

∑
z∈HMxz.

(
Tγ(P)[{z/y}]

)
Tγ([x=y]P) := [x=y]⇒Tγ(P)
Tγ(P | Q) := Tγ(P)‖Tγ(Q)
Tγ(P +Q) := Tγ(P) + Tγ(Q)
Tγ(A) := A

where the CCStrig
γ defining equations A = Tγ(P) of agent

identifiers A are inherited verbatim from π†ES(N ,R).
Here the use of the triggering operator can be avoided by

restricting attention to the π-calculus with implicit matching.
For that language the clause for Tγ([x=y]P) can be dropped,
at the expense of the addition of the blue Ms above, which
are absent when dealing with the full π-calculus.

Theorem 16: Tγ(P)↔ P for each π†ES(N ,R) process P .

Proof. Trivial.

Putting all steps of my translation from πL(N) to CCStrig
γ

together, I obtain

T (0) := 0
T (Mτ.P) := Mτ.T (P)
T (Mx̄y.P) := Mx̄y.T (P)
T (Mx(y).P) :=

∑
z∈HMxz.

(
T (P)[{z/y}S]

)
T ((νy)P) := T (P)[py]
T ([x=y]P) := [x=y]⇒T (P)
T (P | Q) := T (P)[`] ‖T (Q)[r]
T (P +Q) := T (P) + T (Q)
T (A(~y)) := A[{~y/~x}S]

where the CCSγ agent identifier A has the defining equation
A = T (P) when A(~x)

def
= P was the defining equation of

the πL(N) agent identifier A. Abbreviating [{z/y}S] by [z/y]
and [{~y/~x}S] by [~y/~x], this is the translation presented in
Section IX.

46

	Introduction
	CCS
	CCS-gamma
	Strong barbed bisimilarity
	The pi-calculus
	The semantics of the pi-calculus
	Valid translations
	The unencodability of pi into CCS
	A valid translation of pi into CCS-gamma
	The ideas behind this encoding
	Triggering
	Examples
	The unencodability of CCS into pi
	Related work
	Conclusion
	References
	Appendix 1
	Clash-free processes
	The elimination of alpha
	Eliminating restriction operators from the pi-calculus
	Replacing substitution by relabelling
	Making processes clash-free
	Replacing ruthless substitution by relabelling
	The last steps
	A small simplification

	Appendix 2
	Substitution
	A pi-calculus with surjective substitutions
	The elimination of alpha
	Replacing substitution by relabelling
	Alpha-conversion for the pi-calculus with relabelling
	Agent identifiers without parameters
	Clash-free processes
	Eliminating alpha-conversion for clash-free processes
	Eliminating restriction
	The last step

