
An extended abstract of this paper appears in the proceedings of CONCUR 2020. doi:10.4230/LIPIcs.CONCUR.2020.6

Reactive Bisimulation Semantics
for a Process Algebra with Time-Outs

Rob van Glabbeek
Data61, CSIRO, Sydney, Australia

School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

rvg@cs.stanford.edu

This paper introduces the counterpart of strong bisimilarity for labelled transition systems extended
with time-out transitions. It supports this concept through a modal characterisation, congruence
results for a standard process algebra with recursion, and a complete axiomatisation.

1 Introduction

This is a contribution to classic untimed non-probabilistic process algebra, modelling systems that move
from state to state by performing discrete, uninterpreted actions. A system is modelled as a process-
algebraic expression, whose standard semantics is a state in a labelled transition system (LTS). An LTS
consists of a set of states, with action-labelled transitions between them. The execution of an action is
assumed to be instantaneous, so when any time elapses the system must be in one of its states. With
“untimed” I mean that I will refrain from quantifying the passage of time; however, whether a system
can pause in some state or not will be part of my model.

Following [33], I consider reactive systems that interact with their environments through the syn-
chronous execution of visible actions a, b, c, ... taken from an alphabet A. At any time, the environment
allows a set of actions X ⊆ A, while blocking all other actions. At discrete moments the environment
can change the set of actions it allows. In a metaphor from [33], the environment of a system can be
seen as a user interacting with it. This user has a button for each action a ∈ A, on which it can exercise
pressure. When the user exercises pressure and the system is in a state where it can perform action a,
the action occurs. For the system this involves taking an a-labelled transition to a following state; for the
environment it entails the button going down, thus making the action occurrence observable. This can
trigger the user to alter the set of buttons on which it exercises pressure.

The current paper considers two special actions that can occur as transition labels: the traditional
hidden action τ [33], modelling the occurrence of an instantaneous action from which we abstract, and
the time-out action t, modelling the end of a time-consuming activity from which we abstract. The latter
was introduced in [18] and constitutes the main novelty of the present paper with respect to [33] and forty
years of research in process algebra. Both special actions are assumed to be unobservable, in the sense
that their occurrence cannot trigger any state-change in the environment. Conversely, the environment
cannot cause or block the occurrence of these actions.

Following [18], I model the passage of time in the following way. When a system arrives in a state
P , and at that time X is the set of actions allowed by the environment, there are two possibilities. If
P has an outgoing transition P α−→ Q with α ∈ X ∪ {τ}, the system immediately takes one of the
outgoing transitions P α−→ Q with α ∈ X ∪ {τ}, without spending any time in state P . The choice
between these actions is entirely nondeterministic. The system cannot immediately take a transition b−→

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2020.6

2 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

with b ∈ A\X , because the action b is blocked by the environment. Neither can it immediately take
a transition P t−→ Q, because such transitions model the end of an activity with a finite but positive
duration that started when reaching state P .

In case P has no outgoing transition P α−→ Q with α ∈ X ∪ {τ}, the system idles in state P for a
positive amount of time. This idling can end in two possible ways. Either one of the time-out transitions
P t−→ Q occurs, or the environment spontaneously changes the set of actions it allows into a different
set Y with the property that P a−→ Q for some a ∈ Y . In the latter case a transition P a−→ Q occurs,
with a ∈ Y . The choice between the various ways to end a period of idling is entirely nondeterministic.
It is possible to stay forever in state P only if there are no outgoing time-out transitions P t−→ Q.

The addition of time-outs enhances the expressive power of LTSs and process algebras. The process
a.P + t.b.Q, for instance, models a choice between a.P and b.Q where the former has priority. In
an environment where a is allowed it will always choose a.P and never b.Q; but in an environment
that blocks a the process will, after some delay, proceed with b.Q. Such a priority mechanism cannot
be modelled in standard process algebras without time-outs, such as CCS [33], CSP [6, 28] and ACP
[2, 10]. Additionally, mutual exclusion cannot be correctly modelled in any of these standard process
algebras [20], but adding time-outs makes it possible—see Section 11 for a more precise statement.

In [18] I characterised the coarsest reasonable semantic equivalence on LTSs with time-outs—the
one induced by may testing, as proposed by De Nicola & Hennessy [8]. In the absence of time-outs, may
testing yields weak trace equivalence, where two processes are defined equivalent iff they have the same
weak traces: sequence of actions the system can perform, while eliding hidden actions. In the presence
of time-outs weak trace equivalence fails to be a congruence for common process algebraic operators,
and may testing yields its congruence closure, characterised in [18] as (rooted) failure trace equivalence.

The present paper aims to characterise one of the finest reasonable semantic equivalences on LTSs
with time-outs—the counterpart of strong bisimilarity for LTSs without time-outs. Naturally, strong
bisimilarity can be applied verbatim to LTSs with time-outs—and has been in [18]—by treating t ex-
actly like any visible action. Here, however, I aim to take into account the essence of time-outs, and
propose an equivalence that satisfies some natural laws discussed in [18], such as τ.P + t.Q = τ.P and
a.P + t.(Q+ τ.R+ a.S) = a.P + t.(Q+ τ.R). To motivate the last law, note that the time-out transi-
tion a.P +t.(Q+τ.R+a.S) t−→ Q+τ.R+a.S can occur only in an environment that blocks the action
a, for otherwise a would have taken place before the time-out went off. The occurrence of this transition
is not observable by the environment, so right afterwards the state of the environment is unchanged, and
the action a is still blocked. Therefore, the process Q + τ.R + a.S will, without further ado, proceed
with the τ -transition to R, or any action from Q, just as if the a.S summand were not present.

Standard process algebras and LTSs without time-outs can model systems whose behaviour is trig-
gered by input signals from the environment in which they operate. This is why they are called “reactive
systems”. By means of time-outs one can additionally model systems whose behaviour is triggered by
the absence of input signals from the environment, during a sufficiently long period. This creates a
greater symmetry between a system and its environment, as it has always been understood that the en-
vironment or user of a system can change its behaviour as a result of sustained inactivity of the system
it is interacting with. Hence one could say that process algebras and LTSs enriched with time-outs form
a more faithful model of reactivity. It is for this reason that I use the name reactive bisimilarity for the
appropriate form of bisimilarity on systems modelled in this fashion.

Section 2 introduces strong reactive bisimilarity as the proper counterpart of strong bisimilarity in
the presence of time-out transitions. Naturally, it coincides with strong bisimilarity when there are no
time-out transitions. Section 3 derives a modal characterisation; a reactive variant of the Hennessy-
Milner logic. Section 4 offers an alternative characterisation of strong reactive bisimilarity that will be

R.J. van Glabbeek 3

more convenient in proofs, although it is lacks the intuitive appeal to be used as the initial definition.
Appendix C, reporting on work by Max Pohlmann [37], offers yet another characterisation of strong
reactive bisimilarity; one that reduces it to strong bisimilarity in a context that models a system together
with its environment.

Section 5 recalls the process algebra CCSP, a common mix of CCS and CSP, and adds the time-out
action, as well as two auxiliary operators that will be used in the forthcoming axiomatisation. Section 6
states that in this process algebra one can express all countably branching transition systems, and only
those, or all and only the finitely branching ones when restricting to guarded recursion.

Section 7 recalls the concept of a congruence, focusing on the congruence property for the recursion
operator, which is commonly the hardest to establish. It then shows that the simple initials equivalence,
as well as Milner’s strong bisimilarity, are congruences. Due to the presence of negative premises in the
operational rules for the auxiliary operators, these proofs are not entirely trivial. Using these results as
a stepping stone, Section 8 shows that strong reactive bisimilarity is a congruence for my extension of
CCSP. Here the congruence property for one of the auxiliary operators with negative premises is needed
in establishing the result for the common CCSP operators, such as parallel composition.

Section 9 shows that guarded recursive specifications have unique solutions up to strong reactive
bisimilarity. Using this, Section 10 provides a sound and complete axiomatisation for processes with
guarded recursion. My completeness proof combines three innovations in establishing completeness of
process algebraic axiomatisations. First of all, following [22], it applies to all processes in a Turing
powerful language like guarded CCSP, rather than the more common fragment merely employing finite
sets of recursion equations featuring only choice and action prefixing. Secondly, instead of the classic
technique of merging guarded recursive equations [31, 32, 40, 11, 30], which in essence proves two
bisimilar systems P and Q equivalent by equating both to an intermediate variant that is essentially a
product of P and Q, I employ the novel method of canonical solutions [24, 29], which equates both P
and Q to a canonical representative within the bisimulation equivalence class of P and Q—one that has
only one reachable state for each bisimulation equivalence class of states of P and Q. In fact I tried so
hard, and in vain, to apply the traditional technique of merging guarded recursive equations, that I came
to believe that it fundamentally does not work for this axiomatisation. The third innovation is the use of
the axiom of choice [41] in defining the transition relation on my canonical representative, in order to
keep this process finitely branching.

Section 11 describes a worthwhile gain in expressiveness caused by the addition of time-outs, and
presents an agenda for future work.

2 Reactive bisimilarity

A labelled transition system (LTS) is a triple (P, Act,→) with P a set (of states or processes), Act a set
(of actions) and→ ∈ P × Act × P. In this paper I consider LTSs with Act := A] {τ, t}, where A is
a set of visible actions, τ is the hidden action, and t the time-out action. The set of initial actions of a
process P ∈ P is I(P) := {α ∈ A ∪ {τ} | P α−→}. Here P α−→ means that there is a Q with P α−→ Q.

Definition 1 A strong reactive bisimulation is a symmetric relation R ⊆ (P×P(A)×P) ∪ (P×P)
(meaning that (P,X,Q) ∈ R ⇔ (Q,X,P) ∈ R and (P,Q) ∈ R ⇔ (Q,P) ∈ R), such that,

• if (P,Q) ∈ R and P τ−→ P ′, then there exists a Q′ such that Q τ−→ Q′ and (P ′, Q′) ∈ R,
• if (P,Q) ∈ R then (P,X,Q) ∈ R for all X ⊆ A,

and for all (P,X,Q) ∈ R,

4 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

• if P a−→ P ′ with a ∈X , then there exists a Q′ such that Q a−→ Q′ and (P ′, Q′) ∈ R,
• if P τ−→ P ′, then there exists a Q′ such that Q τ−→ Q′ and (P ′, X,Q′) ∈ R,
• if I(P) ∩ (X ∪ {τ}) = ∅, then (P,Q) ∈ R, and
• if I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′, then ∃Q′ such that Q t−→ Q′ and (P ′, X,Q′) ∈ R.

Processes P,Q ∈ P are strongly X-bisimilar, denoted P ↔X
r Q, if (P,X,Q) ∈ R for some strong

reactive bisimulation R. They are strongly reactive bisimilar, denoted P ↔rQ, if (P,Q) ∈ R for some
strong reactive bisimulation R.

Intuitively, (P,X,Q) ∈ R says that processes P andQ behave the same way, as witnessed by the relation
R, when placed in the environment X—meaning any environment that allows exactly the actions in X
to occur—whereas (P,Q) ∈ R says they behave the same way in an environment that has just been
triggered to change. An environment can be thought of as an unknown process placed in parallel with
P and Q, using the operator ‖A, enforcing synchronisation on all visible actions. The environment X
can be seen as a process

∑
i∈I ai.Ri + t.R where {ai | i ∈ I} = X . A triggered environment, on the

other hand, can execute a sequence of instantaneous hidden actions before stabilising as an environment
Y , for Y ⊆ A. During this execution, actions can be blocked and allowed in rapid succession. Since the
environment is unknown, the bisimulation should be robust under any such environment.

The first clause for (P,X,Q) ∈ R is like the common transfer property of strong bisimilarity [33]:
a visible a-transition of P can be matched by one of Q, such that the resulting processes P ′ and Q′ are
related again. However, I require it only for actions a ∈ X , because actions b ∈ A\X cannot happen at
all in the environment X , and thus need not be matched by Q. Since the occurrence of a is observable
by the environment, this can trigger the environment to change the set of actions it allows, so P ′ and Q′

ought to be related in a triggered environment.
The second clause is the transfer property for τ -transitions. Since these are not observable by the

environment, they cannot trigger a change in the set of actions allowed by it, so the resulting processes
P ′ and Q′ should be related only in the same environment X .

The first clause for (P,Q) ∈ R expresses the transfer property for τ -transitions in a triggered envi-
ronment. Here it may happen that the τ -transition occurs before the environment stabilises, and hence
P ′ and Q′ will still be related in a triggered environment. A similar transfer property for a-transitions is
already implied by the next two clauses.

The second clause allows a triggered environment to stabilise into any environment X .
The first two clauses for (P,X,Q) ∈ R imply that if (P,X,Q) ∈ R then I(P) ∩ (X ∪ {τ}) =

I(Q)∩(X∪{τ}). So P ↔rQ implies I(P) = I(Q). The condition I(P)∩(X∪{τ}) = ∅ is necessary
and sufficient for the system to remain a positive amount of time in state P when X is the set of allowed
actions. The next clause says that during this time the environment may be triggered to change the set of
actions it allows by an event outside our model, that is, by a time-out in the environment. So P and Q
should be related in a triggered environment.

The last clause says that also a t-transition of P should be matched by one of Q. Naturally, the
t-transition of P can be taken only when the system is idling in P , i.e., when I(P) ∩ (X ∪ {τ}) = ∅.
The resulting processes P ′ andQ′ should be related again, but only in the same environment allowingX .

Proposition 2 Strong X-bisimilarity and strong reactive bisimilarity are equivalence relations.

Proof: ↔X
r ,↔rare reflexive, as {(P,X, P), (P, P) | P ∈P∧X⊆A} is a strong reactive bisimulation.

↔X
r and↔r are symmetric, since strong reactive bisimulations are symmetric by definition.

↔X
r and↔r are transitive, for if R and S are strong reactive bisimulations, then so is

R; S = {(P,X,R) | ∃Q. (P,X,Q) ∈ R ∧ (Q,X,R) ∈ S } ∪ {(P,R) | ∃Q. (P,Q) ∈ R ∧ (Q,R) ∈ S }. 2

R.J. van Glabbeek 5

P

b t

τ

Q

a

R

b

S

a

t

τ

a

P

b t

Q

a

R

b

S

a

t

τ τ

a

Figure 1: Two strongly reactive bisimilar processes

Note that the union of arbitrarily many strong reactive bisimulations is itself a strong reactive bisimula-
tion. Therefore the family of relations↔r,↔X

r for X ⊆ A can be seen as a strong reactive bisimulation.
To get a firm grasp on strong reactive bisimilarity, the reader is invited to check the two laws men-

tioned in the introduction, and then to construct a strong reactive bisimulation between the two systems
depicted in Figure 1. Here P , Q, R and S are arbitrary subprocesses. The four processes that are targets
of t-transitions always run in an environment that blocks b. In an environment that allows a, the branch
b.R disappears, so that the left branch of the first process can be matched with the left branch of the
second process, and similarly for the two right branches. In an environment that blocks a, this matching
won’t fly, as the branch b.R now survives. However, the branches a.Q will disappear, so that the left
branch of the first process can be matched with the right branch of the second, and vice versa.

U

τ

τ

Q

a

R

t

S

a

τ

τ

a

V

τ

Q

a

R

t

S

a

τ

τ τ

a

Figure 2: Reactive bisimilarity is not fully determined by reactive X-bisimilarity

The processes U and V of Figure 2 show that the pairs that occur in a strong reactive bisimulation are
not completely determined by the triples. One has U ↔X

r V for any X ⊆ A, yet U 6↔r V . In particular,
when a ∈ X the branch t.R is redundant, and when a /∈ X the branch a.Q is redundant.

Appendix C, reporting on work by Max Pohlmann [37], offers a context C with the property that
P ↔r Q iff C (P) ↔ C (Q), thereby reducing strong reactive bisimilarity to strong bisimilarity. The
context C places a system in a most general environment in which it could be running. This result allows
any toolset for checking strong bisimilarity to be applicable for checking strong reactive bisimilarity.

6 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

2.1 A more general form of reactive bisimulation

The following notion of a generalised strong reactive bisimulation (gsrb) generalises that of a strong
reactive bisimulation; yet it induces the same concept of strong reactive bisimilarity. This makes the
relation convenient to use for further analysis. I did not introduce it as the original definition, because it
lacks a strong motivation.

Definition 3 A gsrb is a symmetric relation R⊆(P×P(A)×P)∪(P×P) such that, for all (P,Q)∈R,

• if P α−→ P ′ with α ∈A ∪ {τ}, then there exists a Q′ such that Q α−→ Q′ and (P ′, Q′) ∈ R,
• if I(P)∩(X∪{τ})=∅withX ⊆ A and P t−→ P ′, then ∃Q′ withQ t−→ Q′ and (P ′, X,Q′) ∈ R,

and for all (P, Y,Q) ∈ R,

• if P a−→ P ′ with either a∈Y or I(P)∩(Y ∪{τ})=∅, then ∃Q′ withQ a−→ Q′ and (P ′, Q′) ∈ R,
• if P τ−→ P ′, then there exists a Q′ such that Q τ−→ Q′ and (P ′, Y,Q′) ∈ R,
• if I(P)∩(X∪Y ∪{τ})=∅withX⊆A and P t−→ P ′ then ∃Q′ withQ t−→ Q′ and (P ′, X,Q′)∈R.

Unlike Definition 1, a gsrb needs the triples (P,X,Q) only after encountering a t-transition; two systems
without t-transitions can be related without using these triples at all.

Proposition 4 P ↔rQ iff there exists a gsrb R with (P,Q) ∈ R.
Likewise, P ↔X

r Q iff there exists a gsrb R with (P,X,Q) ∈ R.

Proof: Clearly, each strong reactive bisimulation satisfies the five clauses of Definition 3 and thus is a
gsrb. In the other direction, given a gsrb B, let

R := B ∪ {(P,X,Q) | (P,Q) ∈ B ∧X ⊆ A}
∪ {(P,Q), (P,X,Q) | ∃Y. (P, Y,Q) ∈ B ∧ I(P) ∩ (Y ∪ {τ}) = ∅ ∧X ⊆ A} .

It is straightforward to check that R satisfies the six clauses of Definition 1. 2

The above proof has been formalised in [37], using the interactive proof assistant Isabelle. The formali-
sation takes up around 250 lines of code.

3 A modal characterisation of strong reactive bisimilarity

The Hennessy-Milner logic [27] expresses properties of the behaviour of processes in an LTS.

Definition 5 The classO of infinitary HML formulas is defined as follows, where I ranges over all index
sets and α over A ∪ {τ}:

ϕ ::=
∧
i∈I

ϕi | ¬ϕ | 〈α〉ϕ

> abbreviates the empty conjunction, and ϕ1 ∧ ϕ2 stands for
∧
i∈{1,2} ϕi.

P |= ϕ denotes that process P satisfies formula ϕ. The first two operators represent the standard Boolean
operators conjunction and negation. By definition, P |= 〈α〉ϕ iff P α−→ P ′ for some P ′ with P ′ |= ϕ.

A famous result stemming from [27] states that

P ↔Q ⇔ ∀ϕ ∈ O. (P |= ϕ⇔ Q |= ϕ)

where↔ denotes strong bisimilarity [33, 27], formally defined in Section 7.2. It states that the Hennessy-
Milner logic yields a modal characterisation of strong bisimilarity. I will now adapt this result to obtain
a modal characterisation of strong reactive bisimilarity.

R.J. van Glabbeek 7

To this end I extend the Hennessy-Milner logic with a new modality 〈X〉, for X ⊆ A, and auxiliary
satisfaction relations |=X ⊆ P×O for eachX ⊆ A. The formula P |= 〈X〉ϕ says that in an environment
X , allowing exactly the actions in X , process P can perform a time-out transition to a process that
satisfies ϕ. P |=X ϕ says that P satisfies ϕ when placed in environment X . The relations |= and |=X

are the smallest ones satisfying:

P |=
∧
i∈I ϕi if ∀i ∈ I. P |= ϕi

P |= ¬ϕ if P 6|= ϕ

P |= 〈α〉ϕ with α ∈ A ∪ {τ} if ∃P ′. P α−→ P ′ ∧ P ′ |= ϕ

P |= 〈X〉ϕ with X ⊆ A if I(P) ∩ (X ∪ {τ}) = ∅ ∧ ∃P ′. P t−→ P ′ ∧ P ′ |=X ϕ

P |=X
∧
i∈I ϕi if ∀i ∈ I. P |=X ϕi

P |=X ¬ϕ if P 6|=X ϕ

P |=X 〈a〉ϕ with a ∈ A if a ∈ X ∧ ∃P ′. P a−→ P ′ ∧ P ′ |= ϕ

P |=X 〈τ〉ϕ if ∃P ′. P τ−→ P ′ ∧ P ′ |=X ϕ
P |=X ϕ if I(P) ∩ (X ∪ {τ}) = ∅ ∧ P |= ϕ

Note that a formula 〈a〉ϕ is less often true under |=X than under |=, due to the side condition a ∈ X .
This reflects the fact that a cannot happen in an environment that blocks it. The last clause in the above
definition reflects the fifth clause of Definition 1. If I(P) ∩ (X ∪ {τ}) = ∅, then process P , operating
in environment X , idles for a while, during which the environment can change. This ends the blocking
of actions a /∈ X and makes any formula valid under |= also valid under |=X .

Example 6 Both systems from Figure 1 satisfy 〈∅〉〈τ〉〈b〉>∧ 〈∅〉〈τ〉¬〈b〉>∧ 〈{a}〉〈a〉>∧ 〈{a}〉¬〈a〉>
and neither satisfies 〈∅〉(〈a〉> ∧ 〈τ〉〈b〉>) or 〈{a}〉(〈a〉> ∧ 〈τ〉〈b〉>).

Theorem 7 Let P,Q ∈ P and X ⊆ A. Then P ↔rQ ⇔ ∀ϕ ∈ O. (P |= ϕ⇔ Q |= ϕ)
and P ↔X

r Q ⇔ ∀ϕ ∈ O. (P |=X ϕ⇔ Q |=X ϕ).

Proof: “⇒”: I prove by simultaneous structural induction on ϕ ∈ O that, for all P,Q ∈ P and X ⊆ A,
P ↔r Q ∧ P |= ϕ ⇒ Q |= ϕ and P ↔X

r Q ∧ P |=X ϕ ⇒ Q |=X ϕ. For each ϕ, the converse
implications (Q |= ϕ ⇒ P |= ϕ and Q |=X ϕ ⇒ P |=X ϕ) follow by symmetry. In particular, these
converse directions may be used when invoking the induction hypothesis.

• Let P ↔rQ ∧ P |= ϕ.
– Let ϕ =

∧
i∈I ϕi. Then P |= ϕi for all i∈I . By inductionQ |= ϕi for all i, soQ |=

∧
i∈I ϕi.

– Let ϕ = ¬ψ. Then P 6|= ψ. By induction Q 6|= ψ, so Q |= ¬ψ.
– Let ϕ = 〈α〉ψ with α∈A∪{τ}. Then P α−→ P ′ for some P ′ with P ′ |= ψ. By Definition 3,
Q α−→ Q′ for some Q′ with P ′ ↔rQ

′. So by induction Q′ |= ψ, and thus Q |= 〈α〉ψ.
– Let ϕ = 〈X〉ψ for some X ⊆ A. Then I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′ for some P ′

with P ′ |=X ψ. By Definition 3, Q t−→ Q′ for some Q′ with P ′ ↔X
r Q

′. So by induction
Q′ |=X ψ. Moreover, I(Q)=I(P), as P ↔rQ, so I(Q)∩(X∪{τ})=∅. ThusQ |= 〈X〉ψ.

• Let P ↔X
r Q ∧ P |=X ϕ.

– Let ϕ =
∧
i∈I ϕi, and P |=X ϕi for all i ∈ I . By induction Q |=X ϕi for all i ∈ I , so

q |=X
∧
i∈I ϕi.

– Let ϕ = ¬ψ, and P 6|=X ψ. By induction Q 6|=X ψ, so Q |=X ¬ψ.
– Let ϕ = 〈a〉ψ with a ∈ X and P a−→ P ′ for some P ′ with P ′ |= ψ. By Definition 1,
Q a−→ Q′ for some Q′ with P ′ ↔rQ

′. By induction Q′ |= ψ, so Q |=X 〈a〉ψ.

8 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

– Let ϕ = 〈τ〉ψ, and P τ−→ P ′ for some P ′ with P ′ |=X ψ. By Definition 1, Q τ−→ Q′ for
some Q′ with P ′ ↔X

r Q
′. By induction Q′ |=X ψ, so Q |=X 〈τ〉ψ.

– Let I(P)∩ (X ∪ {τ}) = ∅ and P |= ϕ. By the fifth clause of Definition 1, P ↔rQ. Hence,
by the previous case in this proof,Q |= ϕ. Moreover, I(Q)∩(X∪{τ}) = I(P)∩(X∪{τ}),
since P ↔X

r Q. Thus Q |=X ϕ.

“⇐”: Write P ≡ Q for ∀ϕ∈O. (P |= ϕ⇔ Q |= ϕ), and P ≡X Q for ∀ϕ∈O. (P |=X ϕ⇔ Q |=X ϕ).
I show that the family of relations ≡, ≡X for X ⊆ A constitutes a gsrb.

• Suppose P ≡ Q and P α−→ P ′ with α ∈ A ∪ {τ}. Let Q† := {Q† ∈ P | Q α−→ Q† ∧ P ′ 6≡ Q†}.
For eachQ† ∈ Q†, let ϕQ† ∈ O be a formula such that P ′ |= ϕQ† andQ† 6|= ϕQ† . (Such a formula
always exists because O is closed under negation.) Define ϕ :=

∧
Q†∈Q† ϕQ† . Then P ′ |= ϕ, so

P |= 〈a〉ϕ. Consequently, also Q |= 〈a〉ϕ. Hence there is a Q′ with Q α−→ Q′ and Q′ |= ϕ. Since
none of the Q† ∈ Q† satisfies ϕ, one obtains Q′ /∈ Q† and thus P ′ ≡ Q′.
• Suppose P ≡ Q, X ⊆ A, I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′. Let

Q† := {Q† ∈ P | Q t−→ Q† ∧ P ′ 6≡X Q†}.

For each Q† ∈ Q†, let ϕQ† ∈ O be a formula such that P ′ |=X ϕQ† and Q† 6|=X ϕQ† . Define
ϕ :=

∧
Q†∈Q† ϕQ† . Then P ′ |=X ϕ, so P |= 〈X〉ϕ. Consequently, also Q |= 〈X〉ϕ. Hence there

is a Q′ with Q t−→ Q′ and Q′ |=X ϕ. Again Q′ /∈ Q† and thus P ′ ≡X Q′.

• Suppose P ≡Y Q and P α−→ P ′ with a ∈ A and either a ∈ Y or I(P) ∩ (Y ∪ {τ}) = ∅.
Let Q† := {Q† ∈ P | Q α−→ Q† ∧ P ′ 6≡ Q†}. For each Q† ∈ Q†, let ϕQ† ∈ O be a formula such
that P ′ |= ϕQ† and Q† 6|= ϕQ† . Define ϕ :=

∧
Q†∈Q† ϕQ† . Then P ′ |= ϕ, so P |= 〈a〉ϕ, and also

P |=Y 〈a〉ϕ, using either the third or last clause in the definition of |=X . Hence also Q |=Y 〈a〉ϕ.
Therefore there is a Q′ with Q α−→ Q′ and Q′ |= ϕ, using the third clause of either |=X or |=.
Since none of the Q† ∈ Q† satisfies ϕ, one obtains Q′ /∈ Q† and thus P ′ ≡ Q′.
• The fourth clause of Definition 3 is obtained exactly like the first, but using |=Y instead of |=.

• Suppose P ≡Y Q, P t−→ P ′ and I(P) ∩ (X ∪ Y ∪ {τ}) = ∅, with X ⊆ A. Let

Q† := {Q† ∈ P | Q t−→ Q† ∧ P ′ 6≡X Q†}.

For each Q† ∈ Q†, let ϕQ† ∈ O be a formula such that P ′ |=X ϕQ† and Q† 6|=X ϕQ† . Define
ϕ :=

∧
Q†∈Q† ϕQ† . Then P ′ |=X ϕ, so P |= 〈X〉ϕ, and thus P |=Y 〈X〉ϕ. Consequently, also

Q |=Y 〈X〉ϕ and therefore Q |= 〈X〉ϕ. Hence there is a Q′ with Q t−→ Q′ and Q′ |=X ϕ. Again
Q′ /∈ Q† and thus P ′ ≡X Q′. 2

4 Time-out bisimulations

I will now present a characterisation of strong reactive bisimilarity in terms of a binary relation B on
processes—a strong time-out bisimulation—not parametrised by the set of allowed actions X . To this
end I need a family of unary operators θX on processes, for X ⊆ A. These environment operators
place a process in an environment that allows exactly the actions in X to occur. They are defined by the
following structural operational rules.

x τ−→ y

θX(x) τ−→ θX(y)

x a−→ y

θX(x) a−→ y
(a ∈ X)

x α−→ y x β−6→ for all β ∈ X ∪ {τ}
θX(x) α−→ y

(α ∈ A ∪ {t})

R.J. van Glabbeek 9

The operator θX modifies its argument by inhibiting all initial transitions (here including also those that
occur after a τ -transition) that cannot occur in the specified environment. When an observable transition
does occur, the environment may be triggered to change, and the inhibiting effect of the θX -operator
comes to an end. The premises x β−6→ for all β ∈ X ∪ {τ} in the third rule guarantee that the process
x will idle for a positive amount of time in its current state. During this time, the environment may be
triggered to change, and again the inhibiting effect of the θX -operator comes to an end.

Below I assume that P is closed under θ, that is, if P ∈ P and X ⊆ A then θX(P) ∈ P.

Definition 8 A strong time-out bisimulation is a symmetric relation B ⊆ P×P, such that, for P B Q,

• if P α−→ P ′ with α ∈A ∪ {τ}, then ∃Q′ such that Q α−→ Q′ and P ′ B Q′,
• if I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′, then ∃Q′ such that Q t−→ Q′ and θX(P ′) B θX(Q′).

Proposition 9 P ↔rQ iff there exists a strong time-out bisimulation B with P B Q.

Proof: Let R be a gsrb on P. Define B ⊆ P × P by P B Q iff either (P,Q) ∈R or P = θX(P †),
Q = θX(Q†) and (P †, X,Q†) ∈ R. I show that B is a strong time-out bisimulation.

• Let P B Q and P a−→ P ′ with a ∈ A. First suppose (P,Q) ∈ R. Then, by the first clause of
Definition 3, there exists a Q′ such that Q a−→ Q′ and (P ′, Q′) ∈R. So P ′ B Q′.
Next suppose P = θX(P †), Q = θX(Q†) and (P †, X,Q†) ∈ R. Since θX(P †) a−→ P ′ it must be
that P † a−→ P ′ and either a ∈ X or P † β−6→ for all β ∈ X ∪ {τ}. Hence there exists a Q′ such that
Q† a−→ Q′ and (P ′, Q′)∈R, using the third clause of Definition 3. Recall that P † ↔X

r Q
† implies

I(P †)∩ (X ∪ {τ}) = I(Q†)∩ (X ∪ {τ}), and thus either a∈X or Q† β−6→ for all β ∈X ∪ {τ}. It
follows that Q = θX(Q†) a−→ Q′ and P ′ B Q′.
• Let P B Q and P τ−→ P ′. First suppose (P,Q) ∈ R. Then, using the first clause of Definition 3,

there is a Q′ with Q τ−→ Q′ and (P ′, Q′) ∈R. So P ′ B Q′.
Next suppose P = θX(P †),Q = θX(Q†) and (P †, X,Q†) ∈ R. Since θX(P †) τ−→ P ′, it must be
that P ′ has the form θX(P ‡), and P † τ−→ P ‡. Thus, by the fourth clause of Definition 3, there is
a Q‡ with Q† τ−→ Q‡ and (P ‡, X,Q‡) ∈R. Now Q = θX(Q†) τ−→ θX(Q‡) =: Q′ and P ′ B Q′.
• Let P B Q, I(P)∩(X∪{τ}) = ∅ and P t−→ P ′. First suppose (P,Q) ∈ R. Then, by the second

clause of Definition 3, there is a Q′ with Q t−→ Q′ and (P ′, X,Q′) ∈ R. So θX(P ′) B θX(Q′).
Next suppose P = θY (P †), Q = θY (Q†) and (P †, Y,Q†) ∈ R. Since θY (P †) t−→ P ′, it must
be that P † t−→ P ′ and P † β−6→ for all β ∈ Y ∪ {τ}. Consequently, I(P †) = I(P) and thus
I(P †) ∩ (X ∪ Y ∪ {τ}) = ∅. By the last clause of Definition 3 there is a Q′ such that Q† t−→ Q′

and (P,X,Q′) ∈ R. So θX(P ′) B θX(Q′). From (P †, Y,Q†) ∈ R and I(P †)∩ (Y ∪ {τ}) = ∅,
I infer I(Q†) ∩ (Y ∪ {τ}) = ∅. So Q† β−6→ for all β ∈ Y ∪ {τ}. This yields Q = θY (Q†) t−→ Q′.

Now let B be a time-out bisimulation. Define R ⊆ P ×P(A) × P by (P,Q) ∈ R iff P B Q, and
(P,X,Q) ∈ R iff θX(P) B θX(Q). I need to show that R is a gsrb.

• Suppose (P,Q) ∈ R and P α−→ P ′ with α ∈ A ∪ {τ}. Then P B Q, so there is a Q′ such that
Q α−→ Q′ and P ′ B Q′. Hence (P ′, Q′) ∈ R.
• Suppose (P,Q) ∈ R, X ⊆ A, I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′. Then P B Q, so ∃Q′ such

that Q t−→ Q′ and θX(P ′) B θX(Q′). Thus (P ′, X,Q′) ∈ R.
• Suppose (P,X,Q) ∈ R and P a−→ P ′ with either a ∈ X or I(P) ∩ (X ∪ {τ}) = ∅. Then
θX(P) B θX(Q). Moreover, θX(P) a−→ P ′. Hence there is a Q′ such that θX(Q) a−→ Q′ and
P ′ B Q′. It must be that Q a−→ Q′. Moreover, (P ′, Q′) ∈ R.

10 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

• Suppose (P,X,Q) ∈ R and P τ−→ P ′. Then θX(P) B θX(Q). Since P τ−→ P ′, one has
θX(P) τ−→ θX(P ′). Hence there is an R such that θX(Q) τ−→ R and θX(P ′) B R. The process
R must have the form θX(Q′) for some Q′ with Q τ−→ Q′. It follows that (P ′, X,Q′) ∈ R.

• Suppose (P, Y,Q) ∈ R,X ⊆ A, I(P)∩(X∪Y ∪{τ}) = ∅ and P t−→ P ′. Then θY (P) B θY (Q)
and θY (P) t−→ P ′. Moreover, I(θY (P)) = I(P), so by the second clause of Definition 8 there
exists a Q′ such that θY (Q) t−→ Q′ and θX(P ′) B θX(Q′). So Q t−→ Q′ and (P ′, X,Q′)∈R. 2

Note that the union of arbitrarily many strong time-out bisimulations is itself a strong time-out bisimula-
tion. Consequently, the relation↔r is a strong time-out bisimulation.

5 The process algebra CCSPθt
Let A be a set of visible actions and Var an infinite set of variables. The syntax of CCSPθt is given by

E ::= 0 | α.E | E +E | E ‖S E | τI(E) | R(E) | θUL (E) | ψX(E) | x | /\x|S\/ (with x ∈ VS)

with α ∈ Act := A] {τ, t}, S, I, U, L,X ⊆ A, L ⊆ U , R ⊆ A×A, x ∈ Var and S a recursive
specification: a set of equations {y = Sy | y ∈ VS} with VS ⊆ Var (the bound variables of S) and each
Sy a CCSPθt expression. I require that all sets {b | (a, b) ∈ R} are finite.

The constant 0 represents a process that is unable to perform any action. The process α.E first
performs the action α and then proceeds as E. The process E + F behaves as either E or F . ‖S is a
partially synchronous parallel composition operator; actions a ∈ S must synchronise—they can occur
only when both arguments are ready to perform them—whereas actions α /∈ S from both arguments are
interleaved. τI is an abstraction operator; it conceals the actions in I by renaming them into the hidden
action τ . The operatorR is a relational renaming: it renames a given action a ∈ A into a choice between
all actions b with (a, b) ∈R. The environment operators θUL and ψX are new in this paper and explained
below. Finally, /\x|S\/ represents the x-component of a solution of the system of recursive equations S.

The language CCSP is a common mix of the process algebras CCS [33] and CSP [6, 28]. It first
appeared in [34], where it was named following a suggestion by M. Nielsen. The family of parallel
composition operators ‖S stems from [35], and incorporates the two CSP parallel composition operators
from [6]. The relation renaming operators R() stem from [39]; they combine both the (functional)
renaming operators that are common to CCS and CSP, and the inverse image operators of CSP. The
choice operator + stems from CCS, and the abstraction operator from CSP, while the inaction constant
0, action prefixing operators a. for a ∈ A, and the recursion construct are common to CCS and CSP.
The time-out prefixing operator t. was added by me in [18]. The syntactic form of inaction 0, action
prefixing α.E and choice E + F follows CCS, whereas the syntax of abstraction τI() and recursion
/
\x|S\/ follows ACP [2, 10]. The fragment of CCSPθt without θUL and ψX is called CCSPt [18].

An occurrence of a variable x in a CCSPθt expression E is bound iff it occurs in a subexpression
/
\y|S\/ of E with x∈ VS ; otherwise it is free. Here each Sy for y ∈ VS counts as a subexpression of /\x|S\/.
An expression E is invalid if it has a subexpression θUL (F) or ψX(F) such that a variable occurrence in
F is free in F but bound in E. Let E be the set of valid CCSPθt expressions. Furthermore, P ⊆ E is the
set of closed valid CCSPθt expressions, or processes; those in which every variable occurrence is bound.

A substitution is a partial function ρ :Var⇀E. The application E[ρ] of a substitution ρ to an expres-
sion E ∈ E is the result of simultaneous replacement, for all x ∈ dom(ρ), of each free occurrence of x
in E by the expression ρ(x), while renaming bound variables in E if necessary to prevent name clashes.

R.J. van Glabbeek 11

Table 1: Structural operational interleaving semantics of CCSPθt

α.x α−→ x
x α−→ x′

x+ y α−→ x′
y α−→ y′

x+ y α−→ y′
x α−→ x′

R(x) β−→ R(x′)

(
α=β=τ

∨ α=β=t

∨ (α,β)∈R

)
x α−→ x′

x ‖S y
α−→ x′ ‖S y

(α 6∈ S)
x a−→ x′ y a−→ y′

x ‖S y
a−→ x′ ‖S y′

(a ∈ S)
y α−→ y′

x ‖S y
α−→ x ‖S y′

(α 6∈ S)

x α−→ x′

τI(x) α−→ τI(x′)
(α 6∈ I)

x a−→ x′

τI(x) τ−→ τI(x′)
(a ∈ I)

/
\Sx|S\/ α−→ y
/
\x|S\/ α−→ y

x τ−→ y

θUL (x) τ−→ θUL (y)

x a−→ y

θUL (x) a−→ y
(a ∈ U)

x α−→ y x β−6→ for all β ∈ L∪{τ}
θUL (x) α−→ y

(α ∈A∪{t})

x α−→ y

ψX(x) α−→ y
(α ∈ A ∪ {τ}) x t−→ y x β−6→ for all β ∈X ∪ {τ}

ψX(x) t−→ θX(y)

The semantics of CCSPθt is given by the labelled transition relation→ ⊆ P × Act × P, where the
transitions P α−→ Q are derived from the rules of Table 1. Here /

\E|S\/ for E ∈ E and S a recursive
specification denotes the result of substituting /

\y|S\/ for y in E, for all y ∈ VS .
The auxiliary operators θUL and ψX are added here to facilitate complete axiomatisation, similar to

the left merge and communication merge of ACP [2, 10]. The operator θXX is the same as what was
called θX in Section 4. It inhibits those transitions of its argument that are blocked in the environment
X , allowing only the actions from X ⊆ A. It stops inhibiting as soon as the system performs a visible
action or takes a break, as this may trigger a change in the environment. The operator θUL preserves
those transitions that are allowed in some environment X with L ⊆ X ⊆ U . The letters L and U stand
for lower and upper bound. The operator ψX places a process in the environment X when a time-out
transition occurs; it is inert if any other transition occurs. If P β−→ for β ∈ A ∪ {τ}, then a time-out
transition P t−→ Q cannot occur in an environment that allows β. Thus the transition P t−→ Q survives
only when considering an environments that blocks β, meaning β /∈ X ∪{τ}. Taking the contrapositive,
β ∈ X ∪ {τ} implies P β−6→.

The operator θU∅ features in the forthcoming law L3, which is a convenient addition to my axiomati-
sation, although only ψX and θX (= θXX) are necessary for completeness.

Stratification. Even though negative premises occur in Table 1, the meaning of this transition system
specification is well-defined, for instance by the method of stratification explained in [25, 15]. Assign
inductively to each expression E ∈ E an ordinal λE that counts the nesting depth of recursive specifi-
cations: if E = /

\x|S\/ then λE is 1 more than the supremum of the λSy for y ∈ VS ; otherwise λE is the
supremum of λ/\x|S\/ for all subterms /

\x|S\/ of E. Moreover κE ∈ N is the nesting depth of θUL and ψX
operators in E that remain after replacing any subterm F of E with λF < λE by 0. Now the ordered pair
(λP , κP) constitutes a valid stratification for closed literals P α−→ P ′. Namely, whenever a transition
P α−→ P ′ depends on a transition Q β−→ Q′, in the sense that that there is a closed substitution instance
r of a rule from Table 1 with conclusion P α−→ P ′, and Q β−→ Q′ occurring in its premises, then either
λQ < λP , or λQ = λP and κQ ≤ κP . Moreover, when P α−→ P ′ depends on a negative literal Q β−6→,

12 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

then λQ = λP and κQ < κP .
The above argument hinges on the exclusion of invalid CCSPθt expressions. The invalid expression

P := /
\x | {x = θ

{a}
{a}(b.0 +R(x))}\/ for instance, with R = {(b, a)}, does not have a well-defined

meaning, since the transition P b−→ 0 is derivable iff one has the premise P b−6→:

b.0 b−→ 0

b.0 +R(P) b−→ 0

P b−6→
R(P) a−6→

b.0 +R(P) a−6→

P τ−6→ (OK)

R(P) τ−6→
b.0 +R(P) τ−6→

θ
{a}
{a}(b.0 +R(P)) b−→ 0

P b−→ 0

However, the meaning of the valid expression /
\x | {x = θ

{a}
{a}(

/
\y|{y = b.y}\/) ‖∅ R(x)}\/, for instance, is

entirely unproblematic.

6 Guarded recursion and finitely branching processes

In many process algebraic specification approaches, only guarded recursive specifications are allowed.

Definition 10 An occurrence of a variable x in an expressionE is guarded if x occurs in a subexpression
α.F ofE, with α∈Act. An expressionE is guarded if all free occurrences of variables inE are guarded.
A recursive specification S is manifestly guarded if all expressions Sy for y ∈ VS are guarded. It is
guarded if it can be converted into a manifestly guarded recursive specification by repeated substitution
of expressions Sy for variables y ∈ VS occurring in the expressions Sz for z ∈ VS . Let guarded CCSPθt
be the fragment of CCSPθt allowing only guarded recursion.

Definition 11 The set of processes reachable from a given process P ∈ P is inductively defined by
(i) P is reachable from P , and

(ii) if Q is reachable from P and Q α−→ R for some α ∈ Act then R is reachable from P .
A process P is finitely branching if for all Q ∈ P reachable from P there are only finitely many pairs
(α,R) such that Q α−→ R. Likewise, P is countably branching if there are countably many such pairs.
A process is finite iff it is finitely branching, has finitely many reachable states, and is loop-free, in the
sense that there are no Q0

α1−→ Q1
α2−→ · · · αn−→ Qn with n > 0 and Q0 = Qn reachable from P .

Proposition 12 Each CCSPθt process is countably branching.

Proof: I show that for each CCSPθt process Q there are only countably many transitions Q α−→ R. Each
such transition must be derivable from the rules of Table 1. So it suffices to show that for each Q there
are only countably many derivations of transitions Q α−→ R.

A derivation of a transition is a well-founded, upwardly branching tree, in which each node models an
application of one of the rules of Table 1. Since each of these rules has finitely many positive premises,
such a proof tree is finitely branching, and thus finite. Let d(π), the depth of π, be the length of the
longest branch in a derivation π. If π derives a transition Q α−→ R, then I call Q the source of π.

It suffices to show that for each n ∈ N there are only finitely many derivations of depth n with a
given source. This I do by induction on n.

In caseQ = f(Q1, . . . , Qk), with f an k-ary CCSPθt operator, a derivation π of depth n is completely
determined by the concluding rule from Table 1, deriving a transition Q β−→ R, the subderivations of
π with source Qi for some of the i ∈ {1, . . . , k}, and the transition label β. (For the purposes of this
proof, Table 1 is understood to have only 15 rules, even if each of them can be seen as a template, with

R.J. van Glabbeek 13

an instance for each choice ofR, S, I , S etc., and for each fitting choice of a transition labels a, α and/or
β.) The choice of the concluding rule depends on f , and for each f there are at most three choices. The
subderivations of π with source Qi have depth < n, so by induction there are only finitely many. When
f is not a renaming operator R, there is no further choice for the transition label β, as it is completely
determined by the premises of the rule, and thus by the subderivations of those premises. In case f = R,
there are finitely many choices for β when faced with a given transition label α contributed by the premise
of the rule for renaming. Here I use the requirement of Section 5 that all sets {b | (a, b) ∈ R} are finite.
This shows there are only finitely many choices for π.

In case Q = /
\x|S\/, the last step in π must be application of the rule for recursion, so π is completely

determined by a subderivation π′ of a transition with source /
\Sx|S\/. By induction there are only finitely

many choices for π′, and hence also for π. 2

Proposition 13 Each CCSPθt process with guarded recursion is finitely branching.

Proof: A trivial structural induction shows that if P is a CCSPθt process with guarded recursion and Q
is reachable from P , then also Q has guarded recursion. Hence it suffices to show that for each CCSPθt
process Q with guarded recursion there are only finitely many derivations with source Q.

Let be the smallest binary relation on P such that (i) f(P1, . . . , Pk) Pi for each k-ary CCSPθt
operator f except action prefixing, and each i ∈ {1, . . . , k}, and (ii) /

\x|S\/ /
\Sx|S\/. This relation is

finitely branching. Moreover, on processes with guarded recursion, has no forward infinite chains
P0 P1 In fact, this could have been used as an alternative definition of guarded recursion. Let,
for any process Q with guarded recursion, e(Q) be the length of the longest forward chain Q P1
· · · Pe(Q). I show with induction on e(Q) that there are only finitely many derivations with source Q.
In fact, this proceeds exactly as in the previous proof. 2

Proposition 14 ([13]) Each finitely branching processes in an LTS can be denoted by a closed CCSPt

expression with guarded recursion. Here I only need the operations inaction (0), action prefixing (α.)
and choice (+), as well as recursion /

\x|S\/.

Proof: Let P be a finitely branching process in an LTS (P′, Act,→). Let

VS := {xQ | Q ∈ P′ is reachable from P} ⊆ Var .

For each Q reachable from P , let next(Q) be the finite set of pairs (α,R) ∈ Act×P′ such that there is
a transition Q α−→ R. Define the recursive specification S as {xQ =

∑
(α,R)∈next(Q) α.xR | xQ ∈ VS}.

Here the finite choice operator
∑

i∈I αi.Pi can easily be expressed in terms of inaction, action prefixing
and choice. Now the CCSPt process /

\xP |S\/ denotes P . 2

In fact, /\xP |S\/↔ P , where↔ denotes strong bisimilarity [33], formally defined in the next section.
Likewise, recursion-free CCSPθt processes are finite, and, up to strong bisimilarity, each finite process

is denotable by a closed recursion-free CCSPθt expression, using only 0, α. and +.

Proposition 15 ([13]) Each countably branching processes in an LTS can be denoted by a closed CCSPt

expression. Again I only need the CCSPt operations inaction, action prefixing, choice and recursion.

Proof: The proof is the same as the previous one, except that next(Q) now is a countable set, rather
than a finite one, and consequently I need a countable choice operator

∑
i∈N αi.Pi. The latter can be

expressed in CCSPt with unguarded recursion by
∑

i∈N αi.Pi := /
\zo|{zi = αi.Pi + zi+1 | i ∈ N}\/. 2

14 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

7 Congruence

Given an arbitrary process algebra with a collection of operators f , each with an arity n, and a recursion
construct /\x|S\/ as in Section 5, letP andE be the sets of [closed] valid expressions, and let a substitution
instance E[ρ] ∈ E for E ∈ E and ρ : Var ⇀ E be defined as in Section 5. Any semantic equivalence
∼ ⊆ P × P extends to ∼ ⊆ E × E by defining E ∼ F iff E[ρ] ∼ F [ρ] for each closed substitution
ρ : Var → P. It extends to substitutions ρ, ν : Var ⇀ E by ρ ∼ ν iff dom(ρ) = dom(ν) and
ρ(x) ∼ ν(x) for each x ∈ dom(ρ).

Definition 16 ([16]) A semantic equivalence ∼ is a lean congruence if E[ρ] ∼ E[ν] for any expression
E ∈ E and any substitutions ρ and ν with ρ ∼ ν. It is a full congruence if it satisfies

Pi ∼ Qi for all i = 1, ..., n ⇒ f(P1, ..., Pn) ∼ f(Q1, ..., Qn) (1)

Sy ∼ S ′y for all y ∈ VS ⇒ /
\x|S\/ ∼ /

\x|S ′\/ (2)

for all functions f of arity n, processes Pi, Qi ∈P, and recursive specifications S,S ′ with x ∈ VS = VS′

and /
\x|S\/, /\x|S ′\/ ∈ P.

Clearly, each full congruence is also a lean congruence, and each lean congruence satisfies (1) above.
Both implications are strict, as illustrated in [16].

A main result of the present paper will be that strong reactive bisimilarity is a full congruence for the
process algebra CCSPθt . To achieve it I need to establish first that strong bisimilarity [33],↔, and initials
equivalence [14, Section 16], =I , are full congruences for CCSPθt .

7.1 Initials equivalence

Definition 17 Two CCSPθt processesP andQ are initials equivalent, denotedP =I Q, if I(P) = I(Q).

Theorem 18 Initials equivalence is a full congruence for CCSPθt .

Proof: In Appendix A. 2

7.2 Strong bisimilarity

Definition 19 A strong bisimulation is a symmetric relation B on P, such that, whenever P B Q,

• if P α−→ P ′ with α ∈Act then Q α−→ Q′ for some Q′ with P ′ B Q′.

Two processes P,Q ∈P are strongly bisimilar, P ↔Q, if P R Q for some strong bisimulation B.

Contrary to reactive bisimilarity, strong bisimilarity treats the time-out action t, as well as the hidden
action τ , just like any visible action. In the absence of time-out actions, there is no difference between a
strong bisimulation and a time-out bisimulation, so↔rand↔ coincide. In general, strong bisimulation is
a finer equivalence relation than strong reactive bisimilarity and initials equivalence: P ↔ Q⇒ P ↔rQ
⇒ P =I Q, and both implications are strict.

Lemma 1 For each CCSPθt process P there exists a CCSPt process Q only built using inaction, action
prefixing, choice and recursion, such that P ↔ Q.

Proof: Immediately from Propositions 12 and 15. 2

R.J. van Glabbeek 15

Theorem 20 Strong bisimilarity is a full congruence for CCSPθt .

Proof: The structural operational rules for CCSPt (that is, CCSPθt without the operators θUL and ψX) fit
the tyft/tyxt format with recursion of [16]. By [16, Theorem 3] this implies that↔ is a full congruence for
CCSPt. (In fact, when omitting the recursion construct, the operational rules for CCSPt fit the tyft/tyxt
format of [26], and by the main theorem of [26],↔ is a congruence for the operators of CCSPt, that is,
it satisfies (1) in Definition 16. The work of [16] extends this result of [26] with recursion.)

The structural operational rules for all of CCSPθt fit the ntyft/ntyxt format with recursion of [16].
By [16, Theorem 2] this implies that ↔ is a lean congruence for CCSPθt . (In fact, when omitting the
recursion construct, the operational rules for CCSPθt fit the ntyft/ntyxt format of [25], and by the main
theorem of [25],↔ is a congruence for the operators of CCSPθt . The work of [16] extends this result of
[25] with recursion.)

To verify (2) for the whole language CCSPθt , let S and S ′ be recursive specifications with x ∈ VS =
VS′ , such that /

\x|S\/, /\x|S ′\/ ∈ P and Sy ↔ S ′y for all y ∈ VS . Let {Pi | i ∈ I} be the collection
of processes of the form θUL (Q) or ψX(Q), for some L, U , X , that occur as a closed subexpression
of Sy or S ′y for one of the y ∈ VS , not counting strict subexpressions of a closed subexpression R of
Sy or S ′y that is itself of the form θUL (Q) or ψX(Q). Pick a fresh variable zi /∈ VS for each i ∈ I ,
and let, for y ∈ VS , Ŝy be the result of replacing each occurrence of Pi in Sy by zi. Then Ŝy does
not contain the operators θUL (Q) or ψX(Q). In deriving this conclusion it is essential that /

\x|S\/ is a
valid expression, for this implies that the term Sy ∈ E, which may contain free occurrences of the
variables y ∈ VS , does not have a subterm of the form θUL (F) or ψX(F) that contains free occurrences
of these variables. Let Ŝ := {y = Ŝy | y ∈ VS}; it is a recursive specification in the language CCSPt.
The recursive specification Ŝ ′ is defined in the same way.

For each i ∈ I there is, by Lemma 1, a process Qi in the language CCSPt such that Pi ↔ Qi. Now
let ρ, η : {zi | i ∈ I} → P be the substitutions defined by ρ(zi) = Pi and η(zi) = Qi for all i ∈ I .
Then ρ ↔ η. Since ↔ is a lean congruence for CCSPθt , one has /

\x|Ŝ \/[ρ] ↔ /
\x|Ŝ \/[η] and likewise

/
\x|Ŝ ′ \/[ρ] ↔ /

\x|Ŝ ′ \/[η]. For the same reason one has Ŝy[η] ↔ Ŝy[ρ] = Sy ↔ S ′y ↔ Ŝ ′y[ρ] ↔ Ŝ ′y[η] for
all y ∈ VS . Since Ŝ[η] and Ŝ ′[η] are recursive specifications over CCSPt, /\x|Ŝ[η]\/ ↔ /

\x|Ŝ ′[η]\/. Hence
/
\x|S\/ = /

\x|Ŝ[ρ]\/ = /
\x|Ŝ\/[ρ]↔ /

\x|Ŝ\/[η] = /
\x|Ŝ[η]\/↔ /

\x|Ŝ ′[η]\/↔ /
\x|Ŝ ′[ρ]\/ = /

\x|S ′\/. 2

The following lemmas on the relation between θX and the other operators of CCSPθt deal with strong
bisimilarity, but are needed in the congruence proof for strong reactive bisimilarity. Their proofs can be
found in Appendix B.

Lemma 2 If P τ−6→, I(P) ∩X ⊆ S and Y =X \ (S \ I(P)), then θX(P ‖S Q)↔ θX(P ‖S θY (Q)).

Lemma 3 θX(τI(P))↔ θX(τI(θX∪I(P))).

Lemma 4 θX(R(P))↔ θX(R(θR−1(X)(P))).

8 Strong reactive bisimilarity is a full congruence for CCSPθt
The forthcoming proofs showing that↔r is a full congruence for CCSPθt follow the lines of Milner [33],
but are more complicated due to the nature of reactive bisimilarity. A crucial tool is Milner’s notion of
bisimilarity up-to. The above three lemmas play an essential rôle. Even if we would not be interested in
the operators θUL and ψX , the proof needs to take the operator θX (= θXX) along in order to deal with the
other operators. This is a consequence of the occurrence of θX in Definition 8.

16 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

Definition 21 Given a relation ∼ ⊆ P × P, a strong time-out bisimulation up to ∼ is a symmetric
relation B ⊆ P×P, such that, for P B Q,
• if P α−→ P ′ with α ∈A ∪ {τ}, then ∃Q′ such that Q α−→ Q′ and P ′ ∼B∼ Q′,
• if I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′, then ∃Q′ with Q t−→ Q′ and θX(P ′) ∼B∼ θX(Q′).

Here ∼B∼ := {(R, T) | ∃R′, T ′. R ∼ R′ B T ′ ∼ T}.

Proposition 22 If P B Q for some strong time-out bisimulation B up to↔, then P ↔rQ.

Proof: Using the reflexivity of ↔ it suffices to show that ↔B↔ is a strong time-out bisimulation.
Clearly this relation is symmetric, and that it satisfies the first clause of Definition 8 is straightforward,
using transitivity of ↔. So assume P ↔ R B T ↔ Q, I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′. Then
I(R) ∩ (X ∪ {τ}) = ∅. By the transfer property of↔, there exists an R′ with R t−→ R′ and P ′ ↔R′.
Since ↔ is a congruence for θX it follows that θX(P ′) ↔ θX(R′). By Definition 21, there exists a T ′

with T t−→ T ′ and θX(R′) ↔B↔ θX(T ′). Again using the transfer property of ↔, there exists a Q′

with Q t−→ Q′ and θX(T ′)↔ θX(Q′). Thus, θX(P ′)↔B↔ θX(Q′). 2

Theorem 23 Strong reactive bisimilarity is a lean congruence for CCSPθt . In other words, if ρ, ν :
Var ⇀E are substitutions with ρ↔r ν, then E[ρ]↔rE[ν] for any expression E ∈ E.

Proof: It suffices to prove this theorem for the special case that ρ, ν :Var → P are closed substitutions;
the general case then follows by means of composition of substitutions. Let B ⊆ P×P be the smallest
relation satisfying
• if P ↔rQ, then P B Q,

• if P B Q and α ∈ A ∪ {τ, t}, then α.P B α.Q,

• if P1 B Q1 and P2 B Q2, then P1 + P2 B Q1 +Q2,

• if P B Q, L ⊆ U ⊆ A and X ⊆ A, then θUL (P) B θUL (Q) and ψX(P) B ψX(Q),

• if P1 B Q1, P2 B Q2 and S ⊆ A, then P1 ‖S P2 B Q1 ‖S Q2,

• if P B Q and I ⊆ A, then τI(P) B τI(Q),

• if P B Q andR ⊆ A×A, thenR(P) B R(Q),

• if S is a recursive specification with z ∈ VS , and ρ, ν : Var \ VS → P are substitutions satisfying
ρ(x) B ν(x) for all x ∈ Var \ VS , then /

\z|S\/[ρ] B /
\z|S\/[ν].

A straightforward induction on the derivation of P B Q, employing Theorem 18, yields that

if P B Q then I(P) = I(Q), i.e., P =I Q. (@)

(For the last case, the assumption that ρ(x) B ν(x) for all x ∈ Var \ VS implies ρ =I ν by induction.
Since =I is a lean congruence by Theorem 18, this implies /

\z|S\/[ρ] =I
/
\z|S\/[ν].)

A trivial structural induction on E ∈ E shows that

if ρ, ν : Var → P satisfy ρ(x) B ν(x) for all x ∈ Var , then E[ρ] B E[ν]. (*)

For S a recursive specification and ρ : Var \VS → P, let ρS : Var → P be the closed substitution given
by ρS(x) := /

\x|S\/[ρ] if x ∈ VS and ρS(x) := ρ(x) otherwise. Then /
\E|S\/[ρ] = E[ρS] for all E ∈ E.

Hence an application of (*) with ρS and νS yields that under the conditions of the last clause for B above
one even has /

\E|S\/[ρ] B /
\E|S\/[ν] for all expressions E ∈ E. ($)

It suffices to show that B is a strong time-out bisimulation up to↔, because then P ↔rQ ⇔ P B Q,
and (*) implies that B is a lean congruence. Because↔r is symmetric, so is B. So I need to show that
B satisfies the two clauses of Definition 21.

R.J. van Glabbeek 17

• Let P B Q and P α−→ P ′ with α∈A∪{τ}. I have to find a Q′ with Q α−→ Q′ and P ′ ↔B↔Q′.
In fact, I show that even P ′ B Q′. This I will do by structural induction on the proof π of P α−→ P ′

from the rules of Table 1. I make a case distinction based on the derivation of P B Q.

– Let P ↔r Q. Using that the relation ↔r is a strong time-out bisimulation, there must be a
process Q′ such that Q α−→ Q′ and P ′ ↔rQ

′. Hence P ′ B Q′.
– Let P = β.P † and Q = β.Q† with β ∈ A∪{τ, t} and P † B Q†. Then α = β and P ′ = P †.

Take Q′ := Q†. Then Q α−→ Q′ and P ′ B Q′.
– Let P = P1 + P2 and Q = Q1 + Q2 with P1 B Q1 and P2 B Q2. I consider the first

rule from Table 1 that could have been responsible for the derivation of P α−→ P ′; the other
proceeds symmetrically. So suppose that P1

α−→ P ′. Then by induction Q1
α−→ Q′ for some

Q′ with P ′ B Q′. By the same rule from Table 1, Q α−→ Q′.
– Let P = θUL (P †), Q = θUL (Q†) and P † B Q†. First suppose α ∈ A. Since θUL (P †) α−→ P ′,

it must be that P † α−→ P ′ and either α ∈ U or P † β−6→ for all β ∈ L ∪ {τ}. In the latter case,
(@) yields I(P †) = I(Q†), and thus Q† β−6→ for all β ∈ L∪{τ}. By induction there exists a
Q′ such that Q† α−→ Q′ and P ′ B Q′. So, in both cases, Q = θUL (Q†) α−→ Q′.
Now suppose α = τ . Since θUL (P †) τ−→ P ′ it must be that P ′ has the form θUL (P ‡), and
P † τ−→ P ‡. By induction, there exists a Q‡ such that Q† τ−→ Q‡ and P ‡ B Q‡. Now
Q = θUL (Q†) τ−→ θUL (Q‡) =: Q′ and P ′ B Q′.

– Let P = ψX(P †), Q = ψX(Q†) and P † B Q†. Since ψX(P †) α−→ P ′, one has P † α−→ P ′.
By induction there exists a Q′ with Q† α−→ Q′ and P ′ B Q′. So Q = ψX(Q†) α−→ Q′.

– Let P = P1 ‖S P2 and Q = Q1 ‖S Q2 with P1 B Q1 and P2 B Q2. I consider the three
rules from Table 1 that could have been responsible for the derivation of P α−→ P ′.
First suppose that α /∈ S, P1

α−→ P ′1 and P ′ = P ′1 ‖S P2. By induction, Q1
α−→ Q′1 for some

Q′1 with P ′1 B Q′1. Consequently, Q1 ‖SQ2
α−→ Q′1 ‖SQ2, and P ′ = P ′1 ‖S P2 B Q′1 ‖SQ2.

Next suppose that α ∈ S, P1
α−→ P ′1, P2

α−→ P ′2 and P ′ = P ′1 ‖S P ′2. By induction,
Q1

α−→ Q′1 for some Q′1 with P ′1 B Q′1, and Q2
α−→ Q′2 for some Q′2 with P ′2 B Q′2.

Consequently, Q1 ‖S Q2
α−→ Q′1 ‖S Q′2, and P ′ = P ′1 ‖S P ′2 B Q′1 ‖S Q′2.

The remaining case proceeds symmetrically to the first.
– Let P = τI(P

†) and Q = τI(Q
†) with I ⊆ A and P † B Q†. Then P † β−→ P ‡ for some P ‡

with P ′ = τI(P
‡), and either β = α /∈ I , or β ∈ I and α = τ . By induction, Q† β−→ Q‡ for

some Q‡ with P ‡ B Q‡. Consequently, Q = τI(Q
†) α−→ τI(Q

‡) =: Q′ and P ′ B Q′.
– Let P = R(P †) and Q = R(Q†) with R ⊆ A × A and P † B Q†. Then P † β−→ P ‡ for

some P ‡ with P ′ = R(P ‡), and either (β, α) ∈ R or β = α = τ . By induction, Q† β−→ Q‡

for some Q‡ with P ‡ B Q‡. Consequently, Q = R(Q†) α−→ R(Q‡) =: Q′ and P ′ B Q′.
– Let P = /

\z|S\/[ρ] = /
\z|S[ρ]\/ and Q= /

\z|S\/[ν] = /
\z|S[ν]\/ where S is a recursive specification

with z ∈ VS , and ρ, ν : Var \VS → P satisfy ρ(x) B ν(x) for all x ∈ Var \VS . By Table 1
the transition /

\Sz|S[ρ]\/
α−→ P ′ is provable by means of a strict subproof of the proof π of

/
\z|S\/[ρ] α−→ P ′. By ($) above one has /

\Sz|S[ρ]\/ B /
\Sz|S[ν]\/. So by induction there is a Q′

such that /\Sz|S[ν]\/
a−→ Q′ and P ′ B Q′. By Table 1, Q = /

\z|S[ν]\/
α−→ Q′.

• Let P B Q, I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′. I have to find a Q′ such that Q t−→ Q′ and
θX(P ′) ↔B↔ θX(Q′). This I will do by structural induction on the proof π of P t−→ P ′ from
the rules of Table 1. I make a case distinction based on the derivation of P B Q.

– Let P ↔r Q. Using that the relation ↔r is a strong time-out bisimulation, there must be a
process Q′ such that Q t−→ Q′ and θX(P ′)↔r θX(Q′). Thus θX(P ′)↔B↔ θX(Q′).

18 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

– Let P = β.P † and Q = β.Q† with β ∈ A ∪ {τ, t} and P † B Q†. Then β = t and P ′ = P †.
Take Q′ := Q†. Then Q t−→ Q′ and P ′ B Q′. Thus θX(P ′)↔B↔ θX(Q′).

– LetP = P1+P2 andQ = Q1+Q2 withP1 B Q1 andP2 B Q2. I consider the first rule from
Table 1 that could have been responsible for the derivation of P t−→ P ′; the other proceeds
symmetrically. So suppose thatP1

t−→ P ′. Since I(P1)∩(X∪{τ}) ⊆ I(P)∩(X∪{τ}) = ∅,
by induction Q1

t−→ Q′ for some Q′ with P ′ ↔B↔ Q′. Hence Q t−→ Q′.
– Let P = θUL (P †), Q = θUL (Q†) and P † B Q†. Since θUL (P †) t−→ P ′ it must be that
P † t−→ P ′ and P † β−6→ for all β ∈ L ∪ {τ}. Consequently, P α−→ P ‡ iff P † α−→ P ‡, for
all α ∈ A ∪ {t}. So I(P †) ∩ (X ∪ {τ}) = ∅. By induction, Q† t−→ Q′ for some Q′ with
θX(P ′)↔B↔ θX(Q′). By (@), Q† β−6→ for all β ∈ L ∪ {τ}. Hence Q = θUL (Q†) t−→ Q′.

– Let P = ψY (P †), Q = ψY (Q†) and P † B Q†. Since ψY (P †) t−→ P ′ one has P † t−→ P ‡

for some P ‡ with P ′ = θY (P ‡), and P † β−6→ for all β ∈ Y ∪{τ}, i.e., I(P †)∩(Y ∪{τ}) = ∅.
By induction, Q† t−→ Q‡ for a Q† with θY (P ‡) ↔B↔ θY (Q‡). By (@), I(P †) = I(Q†),
so Q† β−6→ for all β ∈ Y ∪ {τ}. Let Q′ := θY (Q‡), so that Q = ψY (Q†) t−→ θY (Q‡) = Q′.
From θY (P ‡)↔ P ′′ B Q′′ ↔ θY (Q‡) one obtains

θX(θY (P ‡))↔ θX(P ′′) B θX(Q′′)↔ θX(θY (Q‡)),

using that↔ is a congruence for θX (= θXX). Thus θX(P ′)↔B↔ θX(Q′).
– Let P = P1 ‖S P2 and Q = Q1 ‖S Q2 with P1 B Q1 and P2 B Q2. I consider the

last rule from Table 1 that could have been responsible for the derivation of P t−→ P ′.
The other proceeds symmetrically. So suppose that P2

t−→ P ′2 and P ′ = P1 ‖S P ′2. Let
Y := X \ (S \ I(P1)) = (X \ S) ∪ (X ∩ S ∩ I(P1)). Then I(P2) ∩ (Y ∪ {τ}) = ∅. By
induction, Q2

t−→ Q′2 for some Q′2 with θY (P ′2) ↔B↔ θY (Q′2). Let Q′ := Q1 ‖S Q′2,
so that Q = Q1 ‖S Q2

t−→ Q1 ‖S Q′2 = Q′. From θY (P ′2) ↔ P ′′2 B Q′′2 ↔ θY (Q′2) and
P1 B Q1 one obtains P1 ‖S θY (P ′2)↔P1 ‖S P ′′2 B Q1 ‖S Q′′2 ↔Q1 ‖S θY (Q′2), using that
↔ is a congruence for ‖S . Therefore, since↔ is also a congruence for θX (= θXX),

θX(P1 ‖S θY (P ′2))↔ θX(P1 ‖S P ′′2) B θX(Q1 ‖S Q′′2)↔ θX(Q1 ‖S θY (Q′2)).

Since I(P1 ‖S P2) ∩ (X ∪ {τ}) = ∅, one has P1
τ−6→ and I(P1) ∩X ⊆ S. Moreover, since

P1 B Q1, one has I(P1) = I(Q1). Hence θX(P ′) = θX(P1‖SP ′2)↔ θX(P1‖S θY (P ′2))↔
B↔ θX(Q1 ‖S θY (Q′2))↔ θX(Q1 ‖S Q′2) = θX(Q′) by Lemma 2.

– Let P = τI(P
†) and Q = τI(Q

†) with I ⊆ A and P † B Q†. Then P † t−→ P ‡ for
some P ‡ with P ′ = τI(P

‡). Moreover, I(P †) ∩ (X ∪ I ∪ {τ}) = ∅. By induction,
Q† t−→ Q‡ for some Q‡ with θX∪I(P ‡) ↔B↔ θX∪I(Q

‡). Let Q′ := τI(Q
‡), so that

Q = τI(Q
†) t−→ τI(Q

‡) = Q′. From θX∪I(P
‡)↔ P ′′ B Q′′ ↔ θX∪I(Q

‡) one obtains

θX(τI(P
‡))↔ θX(τI(θX∪I(P

‡)))↔ θX(τI(P
′′)) B θX(τI(Q

′′))↔ . . .↔ θX(τI(Q
‡)),

using Lemma 3 and that↔ is a congruence for τI and θX . Thus θX(P ′)↔B↔ θX(Q′).
– Let P = R(P †) and Q = R(Q†) with R ⊆ A × A and P † B Q†. Then P † t−→ P ‡

for some P ‡ with P ′ = R(P ‡). Moreover, I(P †) ∩ (R−1(X) ∪ {τ}) = ∅. By induction,
Q† t−→ Q‡ for someQ‡ with θR−1(X)(P

‡)↔B↔ θR−1(X)(Q
‡). LetQ′ := R(Q‡), so that

Q=R(Q†) t−→ R(Q‡) =Q′. From θR-1(X)(P
‡)↔P ′′ B Q′′ ↔ θR-1(X)(Q

‡) one obtains

θX(R(P ‡))↔ θX(R(θR-1(X)(P
‡)))↔ θX(R(P ′′)) B θX(R(Q′′))↔ . . .↔ θX(R(Q‡)),

using Lemma 4 and that↔ is a congruence forR and θX . Thus θX(P ′)↔B↔ θX(Q′).

R.J. van Glabbeek 19

– Let P = /
\z|S\/[ρ] = /

\z|S[ρ]\/ and Q= /
\z|S\/[ν] = /

\z|S[ν]\/ where S is a recursive specification
with z ∈ VS , and ρ, ν : Var \VS → P satisfy ρ(x) B ν(x) for all x ∈ Var \VS . By Table 1
the transition /

\Sz|S[ρ]\/
t−→ P ′ is provable by means of a strict subproof of the proof π of

/
\z|S\/[ρ] t−→P ′. The rule for recursion in Table 1 also implies that I(/\z|S\/[ρ]) = I(/\Sz|S\/[ρ]).
Therefore, I(/\Sz|S\/[ρ]) ∩ (X ∪ {τ}) = ∅. By ($) above one has /

\Sz|S[ρ]\/ B /
\Sz|S[ν]\/.

So by induction there is a Q′ such that /\Sz|S[ν]\/
t−→ Q′ and θX(P ′) ↔B↔ θX(Q′). By

Table 1, Q = /
\z|S[ν]\/

t−→ Q′. 2

Proposition 24 If P B Q for some strong time-out bisimulation B up to↔r, then P ↔rQ.

Proof: Exactly as the proof of Proposition 22, now using that↔r is a congruence for θX . 2

Theorem 25 Strong reactive bisimilarity is a full congruence for CCSPθt .

Proof: Let B ⊆ P×P be the smallest relation satisfying

• if S and S ′ are recursive specifications with x ∈ VS = VS′ and /
\x|S\/, /\x|S ′\/ ∈ P, such that

Sy ↔ S ′y for all y ∈ VS , then /
\x|S\/ B /

\x|S ′\/,

in addition to the eight or nine clauses listed in the proof of Theorem 23. Again, a straightforward
induction on the derivation of P B Q, employing Theorem 18, yields that

if P B Q then I(P) = I(Q), i.e., P =I Q. (@)

(For the new case, the assumption that Sy ↔ S ′y for all y ∈ VS implies Sy =I S ′y for all y ∈ VS . So by
Theorem 18, /\x|S\/ =I

/
\x|S ′\/.) A trivial structural induction on E ∈ E shows again that

if ρ, ν : Var → P satisfy ρ(x) B ν(x) for all x ∈ Var , then E[ρ] B E[ν]. (*)

This again implies that in the last clause for B one even has /
\E|S\/[ρ] B /

\E|S ′\/[ν] for all E ∈ E, ($)
and likewise, in the new clause, /\E|S\/ B /

\E|S ′\/ for all E ∈ E with variables from VS . (#)
It suffices to show that B is a strong time-out bisimulation up to ↔r, because then B ⊆ ↔r with

Proposition 24, and the new clause for B implies (2). By construction B is symmetric.

• Let P B Q and P α−→ P ′ with α∈A∪{τ}. I have to find aQ′ withQ α−→ Q′ and P ′ ↔rB↔rQ
′.

In fact, I show that even P ′ B↔r Q
′. This I will do by structural induction on the proof π of

P α−→ P ′ from the rules of Table 1. I make a case distinction based on the derivation of P B Q.

– Let P = /
\x|S\/ ∈ P and Q = /

\x|S ′\/ ∈ P where S and S ′ are recursive specifications
with x ∈ VS = VS′ , such that Sy ↔ S ′y for all y ∈ VS , meaning that for all y ∈ W and
σ : VS → P one has Sy[σ]↔rS ′y[σ].
By Table 1 the transition /

\Sx|S\/ α−→ P ′ is provable by means of a strict subproof of π. By (#)
above one has /\Sx|S\/ B /

\Sx|S ′\/. So by induction there is anR′ ∈ P such that /\Sx|S ′\/ α−→ R′

and P ′ B↔rR
′. Since /

\ |S ′\/ is the application of a substitution of the form σ : VS′ → P,
one has /

\Sx|S ′\/ ↔r
/
\S ′x|S ′\/. Hence there is a Q′ with P ` /

\S ′x|S ′\/
α−→Q′ and R′ ↔rQ

′. So
P ′ B↔rQ

′. By Table 1, Q= /
\x|S ′\/ α−→Q′.

– The remaining nine cases proceed just as in the proof of Theorem 23, but with B↔r sub-
stituted for the blue occurrences of B. In the case for θUL with α = τ , I conclude from
P ‡ B↔r Q

‡ that θUL (P ‡) B↔r θ
U
L (Q‡). Besides applying the definition of B, this also

involves the application of Theorem 23 that↔r is already known to be a congruence for θUL .
The same reasoning applies in the cases for ‖S , τI andR.

20 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

• Let P B Q, I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′. I will find a Q′ such that Q t−→ Q′ and
θX(P ′) ↔B↔r θX(Q′). This I will do by structural induction on the proof π of P t−→ P ′ from
the rules of Table 1. I make a case distinction based on the derivation of P B Q.

– Let P = /
\x|S\/ ∈ P and Q = /

\x|S ′\/ ∈ P where S and S ′ are recursive specifications with
x ∈ VS = VS′ , such that for all y ∈ W and σ : VS → P one has Sy[σ] ↔r S ′y[σ]. By
Table 1 the transition /

\Sx|S\/ t−→ P ′ is provable by means of a strict subproof of the proof π
of /\x|S\/ t−→ P ′. The rule for recursion in Table 1 also implies that I(/\x|S\/) = I(/\Sx|S\/).
Therefore, I(/\Sx|S\/) ∩ (X ∪ {τ}) = ∅. By (#) above one has /

\Sx|S\/ B /
\Sx|S ′\/. So by

induction there is an R′ ∈ P such that /\Sx|S ′\/ t−→ R′ and θX(P ′) ↔B↔r θX(R′). Since
/
\ |S ′\/ is the application of a substitution of the form σ : VS′ → P, /\Sx|S ′\/ ↔r

/
\S ′x|S ′\/.

Using (@), I(/\Sx|S ′\/)∩ (X ∪ {τ}) = ∅. Hence ∃Q′ with P ` /
\S ′x|S ′\/

t−→Q′ and R′ ↔rQ
′,

and thus θX(R′) ↔r θX(Q′), using Theorem 23. So θX(P ′) ↔B↔r θX(Q′). By Table 1,
Q= /

\x|S ′\/ t−→Q′.
– The remaining eight cases proceed just as in the proof of Theorem 23, but with B↔r substi-

tuted for the blue occurrences of B↔. 2

9 The Recursive Specification Principle

For W ⊆ Var a set of variables, a W -tuple of expressions is a function ~E ∈ EW . It has a component
~E(x) for each variable x ∈ W . Note that a W -tuple of expressions is nothing else than a substitution.
Let idW be the identity function, given by idW (x) = x for all x ∈W . If G ∈ E and ~E ∈ EW then G[~E]
denotes the result of simultaneous substitution of ~E(x) for x in G, for all x ∈ W . Likewise, if ~G ∈ EV
and ~E ∈ EW then ~G[~E] ∈ EV denotes the V -tuple with components G(y)[~E] for y ∈ V . Henceforth,
I regard a recursive specification S as a VS-tuple with components S(y) = Sy for y ∈ VS . If ~E ∈ EW
and S ∈EV , then /

\
~E|S\/ ∈EW is the W -tuple with components /

\
~E(x)|S\/ ∈EW for x ∈W .

For S a recursive specification and ~E ∈EVS a VS-tuple of expressions, ~E ↔rS[~E] states that ~E is a
solution of S, up to strong reactive bisimilarity. The tuple /

\idVS |S\/ ∈ EVS is called the default solution.
In [2, 10] two requirements occur for process algebras with recursion. The recursive definition prin-

ciple (RDP) says that each recursive specification must have a solution, and the recursive specification
principle (RSP) says that guarded recursive specifications have at most one solution. When dealing with
process algebras where the meaning of a closed expression is a semantic equivalence class of processes,
these principles become requirements on the semantic equivalence employed.

Proposition 26 Let S be a recursive specification, and x ∈ VS . Then /
\x|S\/↔r

/
\Sx|S\/.

Proof: Let σ : Var → P be a closed substitution. I have to show that /\x|S\/[σ] ↔r
/
\Sx|S\/[σ]. Equiva-

lently I may show this for σ :Var\VS → P. Now /
\x|S\/[σ] = /

\x|S[σ]\/∈P and /
\Sx|S\/[σ] = /

\Sx[σ]|S[σ]\/
∈ P. Consequently, it suffices to prove the proposition under the assumption that /\x|S\/, /\Sx|S\/ ∈ P.
This follows immediately from the rule for recursion in Table 1 and Definition 8. 2

Proposition 26 says that the recursive definition principle holds for strong reactive bisimulation seman-
tics. The “default solution” of a recursive specification is in fact a solution. Note that the conclusion of
Proposition 26 can be restated as /

\idVS |S\/↔r
/
\S|S\/, and that S[/\idVS |S\/] = /

\S|S\/.
The following theorem establishes the recursive specification principle for strong reactive bisimula-

tion semantics. Some aspects of the proof that are independent of the notion of bisimilarity employed
are delegated to the following two lemmas.

R.J. van Glabbeek 21

Lemma 5 Let H ∈ E be guarded and have free variables from W ⊆ Var only, and let ~P , ~Q ∈ PW .
Then I(H[~P]) = I(H[~Q]).

Proof: In Appendix A. 2

Lemma 6 Let H ∈ E be guarded and have free variables from W ⊆ Var only, and let ~P , ~Q ∈ PW . If
H[~P] α−→ R′ with α ∈ Act, then R′ has the form H ′[~P] for some term H ′ ∈ E with free variables in W
only. Moreover H[~Q] α−→ H ′[~Q].

Proof: By induction on the derivation of H[~P] α−→ R′, making a case distinction on the shape of H .
Let H = α.G, so that H[~P] = α.G[~P]. Then R′ = G[~P] and H[~Q] α−→ G[~Q].
The case H = 0 cannot occur. Nor can the case H = x ∈ Var , as H is guarded.
Let H = H1 ‖S H2, so that H[~P] = H1[~P] ‖S H2[~P]. Note that H1 and H2 are guarded and have

free variables in W only. One possibility is that a /∈ S, H1[~P] α−→ R1 and R′ = R1 ‖S H2[~P]. By
induction, R′1 has the form H ′1[

~P] for some term H ′1 ∈ E with free variables in W only. Moreover,
H1[~Q] α−→ H ′1[

~Q]. Thus R′ = (H ′1 ‖S H2)[~P], and H ′ := H ′1 ‖S H2 has free variables in W only.
Moreover, H[~Q] = H1[~Q] ‖S H2[~Q] α−→ H ′1[

~Q] ‖S H2[~Q] = H ′[~Q].
The other two cases for ‖S , and the cases for the operators +, τI andR, are equally trivial.
Let H = θUL (H†), so that H[~P] = θUL (H†[~P]). Note that H† is guarded and has free variables in

W only. The case α = τ is again trivial, so assume α 6= τ . Then H†[~P] α−→ R′ and either α ∈ X or
H†[~P] β−6→ for all β ∈ L ∪ {τ}. By induction, R′ has the form H ′[~P] for some term H ′ ∈ E with free
variables in W only. Moreover, H†[~Q] α−→ H ′[~Q]. Since I(H†[~P]) = I(H†[~Q]) by Lemma 5, either
α ∈ X or H†[~Q] β−6→ for all β ∈ L ∪ {τ}. Consequently, H[~Q] = θUL (H†[~Q]) α−→ H ′[~Q].

Let H = ψX(H†), so that H[~P] = ψX(H†[~P]). Note that H† is guarded and has free variables in
W only. The case α ∈ A ∪ {τ} is trivial, so assume α = t. Then H†[~P] t−→ R† for some R† such that
R′ = θX(R†). Moreover, H†[~P] β−6→ for all β ∈ X ∪{τ}. By induction, R† has the formH ′[~P] for some
termH ′ ∈ E with free variables inW only. Moreover, H†[~Q] t−→ H ′[~Q]. Since I(H†[~P]) = I(H†[~Q])
by Lemma 5, H†[~Q] β−6→ for all β ∈ X ∪ {τ}. Consequently, H[~Q] = ψX(H†[~Q]) t−→ θX(H ′[~Q]).

Finally, let H = /
\x|S\/, so that H[~P] = /

\x|S[~P †]\/, where ~P † is the W\VS-tuple that is left of ~P after
deleting the y-components, for y ∈ VS . The transition /

\Sx[~P †]|S[~P †]\/
α−→ R′ is derivable through a

subderivation of the one for /\x|S[~P †]\/
α−→ R′. Moreover, /\Sx[~P †]|S[~P †]\/ = /

\Sx|S\/[~P]. So by induction,
R′ has the form H ′[~P] for some term H ′ ∈E with free variables in W only, and /

\Sx|S\/[~Q] α−→ H ′[~Q].
Since /

\Sx|S\/[~Q] = /
\Sx[~Q†]|S[~Q†]\/, it follows that H[~Q] = /

\x|S\/[~Q] = /
\x|S[~Q†]\/

α−→ H ′[~Q]. 2

Theorem 27 Let S be a guarded recursive specification. If ~E ↔rS[~E] and ~F ↔rS[~F] with ~E, ~F∈EVS ,
then ~E ↔r

~F .

Proof: It suffices to prove Theorem 27 under the assumptions that ~E, ~F ∈ PVS and only the variables
from VS occur free in the expressions Sx for x ∈ VS . For in the general case I have to establish that
~E[σ] ↔r

~F [σ] for an arbitrary closed substitution σ : Var → P. Let σ̂ : Var\VS → P be given by
σ̂(x) = σ(x) for all x ∈ Var\VS . Then ~E ↔r S[~E] implies ~E[σ] ↔r S[~E][σ] = S[σ̂][~E[σ]]. Hence, I
merely have to prove the theorem with ~E[σ], ~F [σ]and S[σ̂] in place of ~E, ~F and S.

It also suffices to prove Theorem 27 under the assumption that S is a manifestly guarded recursive
specification. Namely, for a general guarded recursive specification S, let S ′ be the manifestly guarded
specification into which S can be converted. Then ~E ↔rS[~E] implies ~E ↔rS ′[~E] by Theorem 23.

So let S be manifestly guarded with free variables from VS only, and let ~P , ~Q ∈ PVS be two of its
solutions, that is, ~P ↔rS[~P] and ~Q↔rS[~Q]. I will show that the symmetric closure of

B := {H[S[~P]], H[S[~Q]] | H ∈E has free variables in VS only}

22 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

is a strong time-out bisimulation up to↔r. Once I have that, takingH := x ∈ VS yields Sx[~P]↔rSx[~Q]
by Proposition 24, and thus P (x)↔rSx[~P]↔rSx[~Q]↔rQ(x) for all x ∈ VS . So ~P ↔r

~Q.

• LetR B T andR α−→ R′ with α∈A∪{τ}. I have to find a T ′ with T α−→ T ′ and P ′ ↔rB↔rQ
′.

Assume thatR=H[S[~P]] and T =H[S[~Q]]—the case thatR=H[S[~Q]] will follow by symmetry.
Note that H[S[~P]] can also be written as H[S][~P]. Since the expressions Sx for x ∈ VS have free
variables from VS only, so does H[S]. Moreover, since S is manifestly guarded, the expression
H[S] must be guarded. By Lemma 6, R′ must have the form H ′[~P], where H ′ ∈ E has free
variables in VS only. Moreover, T = H[S[~Q]] = H[S][~Q] α−→ H ′[~Q] =: T ′. Furthermore,
by Theorem 23, H ′[~P] ↔r H

′[S[~P]] and H ′[S[~Q]] ↔r H
′[~Q]. Thus, R′ = H ′[~P] ↔rB↔r

H ′[~Q] = T ′.

• Let R B T , I(R) ∩ (X ∪ {τ}) = ∅ and R t−→ R′. I have to find a T ′ such that T t−→ T ′

and θX(R′) ↔B↔r θX(T ′). The proof for this case proceeds exactly as that of the previous
case, up to the last sentence; the condition I(R) ∩ (X ∪ {τ}) = ∅ is not even used. Now from
R′ = H ′[~P]↔r H

′[S[~P]] B H ′[S[~Q]] ↔rH
′[~Q] = T ′ it follows that

θX(R′)↔r θX(H ′[S][~P]) B θX(H ′[S][~Q]) ↔r θX(T ′)

using Theorem 23 and the observation that θX(H ′[S[~P]]) = θX(H ′)[S[~P]]. 2

10 Complete axiomatisations

Let Ax denote the collection of axioms from Tables 2, 3 and 4, Ax′ the ones from Tables 2 and 3, and Ax′′

merely the ones from Table 2. Moreover, let Axf , resp. Ax′f and Ax′′f , be same collections without the
two axioms using the recursion construct /\x|S\/, RDP and RSP. In this section I establish the following.
Let P andQ be recursion-free CCSPt processes. Then P ↔Q ⇔ Ax′′f ` P = Q. (3)

Let P andQ be CCSPt processes with guarded recursion. Then P ↔Q ⇔ Ax′′ ` P = Q. (4)
Let P andQ be recursion-free CCSPθt processes. Then P ↔Q ⇔ Ax′f ` P = Q. (5)

Let P andQ be CCSPθt processes with guarded recursion. Then P ↔Q ⇔ Ax′ ` P = Q. (6)
Let P andQ be recursion-free CCSPθt processes. Then P ↔rQ ⇔ Axf ` P = Q. (7)
Let P andQ be CCSPθt processes with guarded recursion. Then P ↔rQ ⇔ Ax ` P = Q. (8)
In each of these cases “⇐” states the soundness of the axiomatisation and “⇒” completeness.

Section 10.1 recalls (4), which stems from [22], and (3), which is folklore. Then Section 10.2 extends
the existing proofs of (4) and (3) to obtain (6) and (5). In Section 10.3 I move from strong bisimilarity
to strong reactive bisimilarity; I discuss the merits of the axiom RA from Table 4, and establish its
soundness, thereby obtaining direction “⇐” of (8) and (7). I prove the completeness of Axf for recursion-
free processes—direction “⇒” of (7)—in Section 10.4. Sections 10.5–10.7 deal with the completeness
of Ax for guarded CCSPθt—direction “⇒” of (8). Section 10.8 explains why I need the axiom of choice
for the latter result.

10.1 A complete axiomatisation of strong bisimilarity on guarded CCSPt

The well-known axioms of Table 2 are sound for strong bisimilarity, meaning that writing↔ for =, and
substituting arbitrary expressions for the free variables x, y, z, or the meta-variables Pi and Qj , turns
them into true statements. In these axioms α, β range over Act and a, b over A. All axioms involving

R.J. van Glabbeek 23

Table 2: A complete axiomatisation of strong bisimilarity on guarded CCSPt

x+ (y + z) = (x+ y) + z τI(x+ y) = τI(x) + τI(y) R(x+ y) = R(x) +R(y)
x+ y = y + x τI(α.x) = α.τI(x) if α /∈ I R(τ.x) = τ.R(x)
x+ x = x τI(α.x) = τ.τI(x) if α ∈ I R(t.x) = t.R(x)
x+ 0 = 0 /

\x|S\/ = /
\Sx|S\/ (RDP) R(a.x) =

∑
{b|(a,b)∈R}

b.R(x)

If P =
∑
i∈I

αi.Pi and Q =
∑
j∈J

βj .Qj then

P ‖S Q =
∑

i∈I, αi /∈S

(αi.Pi ‖S Q) +
∑

j∈J, βj /∈S

(P ‖S βj .Qj) +
∑

i∈I, j∈J, αi=βj∈S
αi.(Pi ‖S Qj)

Recursive Specification Principle (RSP) S ⇒ x = /
\x|S\/ (S guarded)

variables are equations. The axiom involving P and Q is a template that stands for a family of equations,
one for each fitting choice of P and Q. This is the CCSPt version of the expansion law from [33]. The
axiom RDP (/\x|S\/ = /

\Sx|S\/) says that recursively defined processes /
\x|S\/ satisfy their set of defining

equations S. As discussed in the previous section, this entails that each recursive specification has a
solution. The axiom RSP [2, 10] is a conditional equation with the equations of a guarded recursive
specification S as antecedents. It says that the x-component of any solution of S—a vector of processes
substituted for the variables VS—equals /

\x|S\/. In other words, each solution of S equals the default
solution. This is a compact way of saying that solutions of guarded recursive specifications are unique.

Theorem 28 For CCSPt processes P,Q ∈ P with guarded recursion, one has P ↔ Q, that is, P and Q
are strongly bisimilar, iff P = Q is derivable from the axioms of Table 2.

In this theorem, “if”, the soundness of the axiomatisation of Table 2, is an immediate consequence of the
soundness of the individual axioms. “Only if” states the completeness of the axiomatisation.

A crucial tool in its proof is the simple observation that the axioms from the first box of Table 2
allow any CCSPt process with guarded recursion to be brought in the form

∑
i∈I αi.Pi—a head normal

form. Using this, the rest of the proof is a standard argument employing RSP, independent of the choice
of the specific process algebra. It can be found in [31, 33], [2], [10] and many other places. However,
in the literature this completeness theorem was always stated and proved for a small fragment of the
process algebra, allowing only guarded recursive specifications with a finite number of equations, and
whose right-hand sides Sy involve only the basic operators inaction, action prefixing and choice. Since
the set of true statements P ↔ Q, with P and Q processes in a process algebra like guarded CCSPt,
is well-known to be undecidable, and even not recursively enumerable, it was widely believed that no
sound and complete finitely presented axiomatisation of strong bisimilarity could exist. Only in March
2017, Kees Middelburg observed (in the setting of the process algebra ACP [2, 10]) that the standard
proof applies almost verbatim to arbitrary processes with guarded recursion, although one has to be a bit
careful in dealing with the infinite nature of recursive specifications. The argument has been carefully
documented in [22], in the setting of the process algebra ACP. This result does not contradict the non-
enumerability of the set of true statements P ↔Q, due to the fact that RSP is a proof rule with infinitely
many premises.

A well-known simplification of Theorem 28 and its proof also yields completeness without recursion:

Theorem 29 For CCSPt processes P,Q ∈ P without recursion, one has P ↔ Q iff P = Q is derivable
from the axioms of Table 2 minus RDP and RSP.

24 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

Table 3: A complete axiomatisation of strong bisimilarity on guarded CCSPθt

θUL (
∑

i∈I αi.xi) =
∑

i∈I αi.xi (αi /∈ L ∪ {τ} for all i ∈ I)

θUL (x+ α.y + β.z) = θUL (x+ α.y) (α ∈ L ∪ {τ} ∧ β /∈ U ∪ {τ})
θUL (x+ α.y + β.z) = θUL (x+ α.y) + θUL (β.z) (α ∈ L ∪ {τ} ∧ β ∈ U ∪ {τ})
θUL (β.x) = β.x (β 6= τ)

θUL (τ.x) = τ.θUL (x)

ψX(x+ α.z) = ψX(x) + α.z (α /∈ X ∪ {τ, t})
ψX(x+ α.y + t.z) = ψX(x+ α.y) (α ∈ X ∪ {τ})
ψX(x+ α.y + β.z) = ψX(x+ α.y) + β.z (α, β ∈ X ∪ {τ})
ψX(α.x) = α.x (α 6= t)

ψX(
∑

j∈I t.yi) =
∑

j∈I t.θX(yj)

10.2 A complete axiomatisation of strong bisimilarity on guarded CCSPθt
Table 3 extends Table 2 with axioms for the auxiliary operators θUL and ψX . With Table 1 it is straightfor-
ward to check the soundness of these axioms. The fourth axiom, for instance, follows from the second
or third rule for θUL in Table 1, depending on whether β ∈ L ∪ {t}. Moreover, a straightforward in-
duction shows that these axioms suffice to convert each CCSPθt process with guarded recursion into the
form

∑
I∈Iαi.Pi—a head normal form. The below proposition sharpens this observation by pointing out

that one can take the processes Pi for i ∈ I to be exactly the ones that are reachable by one αi-labelled
transition from P .

Definition 30 Given a CCSPθt process P ∈ P, let P̂ :=
∑
{(α,Q)|P α−→Q}

α.Q.

By Proposition 12, P is countably branching, so using Proposition 15 P̂ is a valid CCSPθt process. In
case P ∈P is a process with only guarded recursion, then P is finitely branching by Proposition 13, so
also P̂ is a valid CCSPθt process with only guarded recursion.

Proposition 31 Let P ∈ P have guarded recursion only. Then Ax′ ` P = P̂ . The conditional equation
RSP is not even needed here.

Proof: The proof is by induction on the measure e(P), defined in the proof of Proposition 13.
Let P = /

\x|S\/. Axiom RDP yields Ax ` P = /
\x|S\/ = /

\Sx|S\/. Moreover, e(/\Sx|S\/) < e(/\x|S\/). So
by induction, Ax ` /

\Sx|S\/ = /̂
\Sx|S\/. Moreover, {(α,Q) | /\Sx|S\/ α−→ Q} = {(α,Q) | /\x|S\/ α−→ Q}, so

/̂
\Sx|S\/ = /̂

\x|S\/ = P̂ . Thus Ax ` P = P̂ .
Let P = θUL (P ′). Using that e(P ′) < e(P), by induction Ax ` P ′ = P̂ ′ so Ax ` P = θUL (P̂ ′). Let

P̂ ′ =
∑
h∈H

τ.Ph +
∑
i∈I

ai.Qi +
∑
j∈J

bj .Rj +
∑
k∈K

γk.Tk ,

where ai ∈ L for all i ∈ I , bj ∈ U\L for all j ∈ J , and γk /∈ U ∪ {τ} for all k ∈K. (So γk may be t.)
In case H ∪ I = ∅, one has Ax ` P = θUL (P̂ ′) = P̂ ′ = P̂ , using the first axiom for θUL . Otherwise

Ax ` P =
∑
h∈H

τ.θUL (Ph) +
∑
i∈I

ai.Qi +
∑
j∈J

bj .Rj

R.J. van Glabbeek 25

by the remaining four axioms for θUL . The right-hand side is P̂ .
The cases for the remaining operators are equally straightforward. 2

In the special case that P is a recursion-free process, also the axiom RDP is not needed for this result.
Once we have head normalisation, the proofs of Theorems 28 and 29 are independent of the precise

syntax of the process algebra in question. Using Proposition 31 we immediately obtain (6) and (5):

Theorem 32 For CCSPθt processes P,Q ∈ P with guarded recursion, one has P ↔ Q iff P = Q is
derivable from the axioms of Tables 2 and 3. 2

Theorem 33 For CCSPθt processes P,Q ∈ P without recursion, one has P ↔ Q iff P = Q is derivable
from the axioms of Tables 2 and 3 minus RDP and RSP.

A law that turns out to be particularly useful in verifications modulo strong reactive bisimilarity is

θVK(θUL (x))↔ θV ∩UK∪L(x) provided U = V or K = L or K ⊆ L⊆ U ⊆ V or L⊆K ⊆ V ⊆ U (L1) .

Note that the right-hand side only exists if (K ∪L) ⊆ (V ∩U). This law is sound for strong bisimilarity,
as demonstrated by the following proposition. Yet it is not needed to add it to Table 3, as all its closed
instances are derivable. In fact, this is a consequence of the above completeness theorems.

Proposition 34 θVK(θUL (P))↔ θV ∩UK∪L(P), provided (K ∪L) ⊆ (V ∩U) and either U = V or K =L or
K ⊆ L⊆ U ⊆ V or L⊆K ⊆ V ⊆ U .

Proof: For givenK,L,U, V ⊆ Awith (K∪L) ⊆ (V ∩U) and either U=V orK=L orK⊆L⊆U⊆V
or L⊆K ⊆ V ⊆ U , let

B := Id ∪
{(
θVK(θUL (P)), θV ∩UK∪L(P)

)
| P ∈ P

}
.

It suffices to show that the symmetric closure B̃ of B is a strong bisimulation. So let R B̃ T and
R α−→ R′ with α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and R′ B̃ T ′.

• The case that R = T is trivial.

• Let R = θVK(θUL (P)) and T = θV ∩UK∪L(P).

First assume α = τ . Then P τ−→ P ′ for some P ′ such that R′ = θVK(θUL (P ′)).
Hence T = θV ∩UK∪L(P) τ−→ θV ∩UK∪L(P ′) =: T ′, and R′ B T ′.

Now assume α∈A∪{t}. Then θUL (P) α−→ R′ and either α ∈ V or θUL (P) β−6→ for all β ∈ K∪{τ}.
Using that K ⊆ U , this implies that either α ∈ V or P β−6→ for all β ∈ K ∪ {τ}. Moreover,
P α−→ R′ and either α ∈ U or P β−6→ for all β ∈ L ∪ {τ}. It follows that either α ∈ V ∩ U or
P β−6→ for all β ∈ K ∪ L ∪ {τ}. (Here I use that either U = V or K = L or K ⊆ L ⊆ U ⊆ V or
L⊆K ⊆ V ⊆ U .) Consequently, T = θV ∩UK∪L(P) α−→ R′.

• Let R = θV ∩UK∪L(P) and T = θVK(θUL (P)).

First assume α = τ . Then P τ−→ P ′ for some P ′ such that R′ = θV ∩UK∪L(P ′).
Hence T = θVK(θUL (P)) τ−→ θVK(θUL (P ′)) =: T ′, and R′ B̃ T ′.

Now assume α∈A∪{t}. Then P α−→ R′ and either α ∈ V ∩U or P β−6→ for all β ∈ K ∪L∪{τ}.
Consequently, θUL (P) α−→ R′ and thus T = θVK(θUL (P)) α−→ R′. 2

The side condition to L1 cannot be dropped, for θ{a,c}{c} θ
{c}
∅ (a.0 + c.0) a−→ 0, yet θ{c}{c}(a.0 + c.0) a−6→.

26 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

Table 4: A complete axiomatisation of strong reactive bisimilarity on guarded CCSPθt

ψX(x) = ψX(y) for all X ⊆ A
x = y

(RA)

10.3 A complete axiomatisation of strong reactive bisimilarity on guarded CCSPθt
To obtain a sound and complete axiomatisation of strong reactive bisimilarity for CCSPθt with guarded
recursion, one needs to combine the axioms of Tables 2, 3 and 4. These axioms are useful only in
combination with the full congruence property of strong reactive bisimilarity, Theorem 25. This is what
allows us to apply these axioms within subexpressions of a given expression. Since ↔ ⊆ ↔r, the
soundness of all equational axioms for strong reactive bisimilarity follows from their soundness for
strong bisimilarity. The soundness of RSP has been established as Theorem 27. The soundness of RA,
the reactive approximation axiom, is contributed by the following proposition.

Proposition 35 Let P,Q ∈ P. If ψX(P)↔rψX(Q) for all X ⊆ A, then P ↔rQ.

Proof: Given P,Q∈Pwith ψX(P)↔rψX(Q) for allX⊆A, I show that B :=↔r∪{(P,Q), (Q,P)}
is a strong time-out bisimulation.

Let P α−→ P ′ with α ∈ A∪{τ}. Take any X ⊆ A. Then ψX(P) α−→ P ′. Since ψX(P)↔rψX(Q),
this implies ψX(Q) α−→ Q′ for some Q′ with P ′ ↔rQ

′, and hence Q α−→ Q′.
Let P t−→ P ′ and I(P)∩(X∪{τ}) = ∅. Then ψX(P) t−→ θX(P ′) and I(ψX(P))∩(X∪{τ})=∅.

Since ψX(P) ↔r ψX(Q), this implies ψX(Q) t−→ Q′′ for some Q′′ with θX(θX(P ′)) ↔r θX(Q′′). It
must be that Q t−→ Q′ for some Q′ with Q′′ = θX(Q′). By Proposition 34, θX(θX(R)) ↔ θX(R) for
all R ∈P. Thus θX(P ′)↔ θX(θX(P ′))↔r θX(θX(Q′))↔ θX(Q′), which had to be shown. 2

At first sight it appears that axiom RA is not very handy, as, in case the alphabet A of visible actions
is finite, the number of premises to verify is exponential in the size A. In case A is infinite, there are
even uncountably many premises. However, in practical verifications this is hardly an issue, as one uses
a partition of the premises into a small number of equivalence classes, each of which requires only one
common proof. This technique will be illustrated on three examples below. Furthermore, one could
calculate the set of visible actions J (P) of a process P that can be encountered as initial actions after
one t-transition followed by a sequence of τ -transitions. For large classes of processes, J (P) will be a
finite set. Now axiom RA can be modified by changing X ⊆ A into X ⊆ J (P)∪J (Q). This preserves
the soundness of the axiom, because only the actions in J (P) play any rôle in evaluating ψX(P).

A crucial property of strong reactive bisimilarity was mentioned in the introduction:

τ.P + t.Q = τ.P (L2) .

It is an immediate consequence of RA, since ψX(τ.P + t.Q) = ψX(τ.P) for any X ⊆ A, by Table 3.
Another useful law in verifications modulo strong reactive bisimilarity is∑

i∈I ai.xi + t.y =
∑

i∈I ai.xi + t.θ
A\In
∅ (y), where In = {ai | i ∈ I}. (L3)

Its soundness is intuitively obvious: the t-transition to y will be taken only in an environment X with
X ∩ In = ∅. Hence one can just as well restrict the behaviour of y to those transitions that are allowed
in one such environment. This law was one of the prime reasons for extending the family of operators
θX (= θXX), which were needed to establish the key theorems of this paper, to the larger family θUL . Law
L3 for finite I is effortlessly derivable from its simple instance

R.J. van Glabbeek 27

a.x+ t.y = a.x+ t.θ
A\{a}
∅ (y). (L3′)

in combination with L1. I now show how to derive L3 from RA. For this proof I need to partition the set
of premises of RA in only two equivalence classes.

First let X ∩ In 6= ∅. Then ψX(
∑

i∈I ai.xi + t.y) =
∑

i∈I ai.xi = ψX(
∑

i∈I ai.xi + t.θ
A\In
∅ (y)).

Next let X ∩ In = ∅. Then ψX(
∑

i∈I ai.xi + t.y) =
∑

i∈I ai.xi + t.θX(y)

=
∑

i∈I ai.xi + t.θX(θ
A\In
∅ (y))

= ψX(
∑

i∈I ai.xi + t.θ
A\In
∅ (y)) ,

where the second step is an application of L1.
As an application of L3′ one obtains the law from [18] that was justified in the introduction:

a.P + t.(Q+ τ.R+ a.S) = a.P + t.θ
A\{a}
∅ (Q+ τ.R+ a.S)

= a.P + t.θ
A\{a}
∅ (Q+ τ.R)

= a.P + t.(Q+ τ.R) .

As a third illustration of the use of RA I derive an equational law that does not follow from L1, L2
and L3, namely

b.P + t.(a.Q+ τ.(b.R+ a.S)) + t.τ.a.S = b.P + t.(a.Q+ τ.a.S) + t.τ.(b.R+ a.S)

These are the systems depicted in Figure 1. These systems are surely not strongly bisimilar. Moreover,
L3 does not help in proving them equivalent, as applying θA\{b}∅ to any of the four targets of a t-transition
does not kill any of the transitions of those processes. In particular, θA\{b}∅ (b.R+ a.S) = b.R+ a.S. To
derive this law from RA, I partition P(A) into three equivalence classes.

First let b ∈ X . Then ψX(b.P + t.(a.Q+ τ.(b.R+ a.S)) + t.τ.a.S)
= b.P
= ψX(b.P + t.(a.Q+ τ.a.S) + t.τ.(b.R+ a.S)).

Next let b /∈ X and a ∈ X . Then

ψX
(
b.P + t.(a.Q+ τ.(b.R+ a.S)) + t.τ.a.S

)
= b.P + t.θX

(
a.Q+ τ.(b.R+ a.S)

)
+ t.θX

(
τ.a.S

)
= b.P + t.(a.Q+ τ.θX(b.R+ a.S)) + t.τ.θX(a.S)
= b.P + t.(a.Q+ τ.a.S) + t.τ.a.S
= b.P + t.(a.Q+ τ.θX(a.S)) + t.τ.θX

(
b.R+ a.S

)
= b.P + t.θX

(
a.Q+ τ.a.S

)
+ t.θX

(
τ.(b.R+ a.S)

)
= ψX

(
b.P + t.(a.Q+ τ.a.S) + t.τ.(b.R+ a.S)

)
.

Finally let a, b /∈ X . Then

ψX
(
b.P + t.(a.Q+ τ.(b.R+ a.S)) + t.τ.a.S

)
= b.P + t.θX

(
a.Q+ τ.(b.R+ a.S)

)
+ t.θX

(
τ.a.S

)
= b.P + t.τ.θX(b.R+ a.S) + t.τ.θX(a.S)
= b.P + t.τ.(b.R+ a.S) + t.τ.a.S
= b.P + t.τ.a.S + t.τ.(b.R+ a.S)
= b.P + t.τ.θX(a.S) + t.τ.θX

(
b.R+ a.S

)
= b.P + t.θX

(
a.Q+ τ.a.S

)
+ t.θX

(
τ.(b.R+ a.S)

)
= ψX

(
b.P + t.(a.Q+ τ.a.S) + t.τ.(b.R+ a.S)

)
.

28 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

10.4 Completeness for finite processes

Theorem 36 Let P andQ be closed recursion-free CCSPθt expressions. Then P ↔rQ⇒ Axf ` P=Q.

Proof: Let the length of a path P α1−→ P1
α2−→ . . . αn−→ Pn of a processes P be n. Let d(P), the depth of

P , be the length of its longest path; it is guaranteed to exists when P is a closed recursion-free CCSPθt
expression. I prove the theorem with induction on max(d(P), d(Q)).

Suppose P ↔r Q. By Proposition 31 one has Axf ` P = P̂ and Axf ` Q = Q̂. I will show that
Axf ` ψX(P̂) = ψX(Q̂) for all X ⊆ A. This will suffice, as then Axiom RA yields Axf ` P̂ = Q̂ and
thus Axf ` P = Q. So pick X ⊆ A. Let

P̂ =
∑
i∈I

αi.P
′
i +

∑
j∈J

t.P ′′j and Q̂ =
∑
k∈K

βk.Q
′
k +

∑
h∈H

t.Q′′h

with αj , βk ∈A∪{τ} for all i∈ I and k∈K. The following two claims are the crucial part of the proof.

Claim 1: For each i ∈ I there is a k ∈K with αi = βk and Axf ` P ′i = Q′k.
Claim 2: If I(P)∩ (X ∪{τ}) = ∅, then for each j∈J there is a h∈H with Axf ` θX(P ′′j) = θX(Q′′h).

With these claims, the rest of the proof is straightforward. Since P ↔r Q, one has I(P) = I(P̂) =
{αi | i ∈ I} = {βk | k ∈K} = I(Q̂) = I(Q). First suppose that I(P) ∩ (X ∪ {τ}) = ∅. Then

ψX(P̂) =
∑
i∈I

αi.P
′
i +

∑
j∈J

t.θX(P ′′j) and ψX(Q̂) =
∑
k∈K

βk.Q
′
k +

∑
h∈H

t.θX(Q′′h) .

Claim 1 yields Axf ` ψX(Q̂) = ψX(Q̂) + αi.P
′
i for each i ∈ I . Likewise, Claim 2 yields Axf `

ψX(Q̂) = ψX(Q̂) + t.θX(P ′′j) for each j ∈ J . Together this yields Axf ` ψX(Q̂) = ψX(Q̂) + ψX(P̂).
By symmetry one obtains Axf ` ψX(P̂) = ψX(P̂) + ψX(Q̂) and thus Axf ` ψX(P̂) = ψX(Q̂).

Next suppose I(P) ∩ (X ∪ {τ}) 6= ∅. Then ψX(P̂) =
∑

i∈I αi.P
′
i and ψX(Q̂) =

∑
k∈K βk.Q

′
k. The

proof proceeds just as above, but without the need for Claim 2.

Proof of Claim 1: Pick i ∈ I . Then P̂ αi−→ P ′i . So Q̂ αi−→ Q′ for some Q′ with P ′i ↔rQ
′. Hence there

is a k ∈ K with αi = βk and Q′ = Q′k. Using that d(P ′i) < d(P) and d(Q′i) < d(Q), by induction
Axf ` P ′i = Q′k.

Proof of Claim 2: Pick j ∈ J . Then P̂ t−→ P ′′j . Since I(P̂) ∩ (X ∪ {τ}) = ∅, there is a Q′′ such that
Q̂ t−→ Q′′ and θX(P ′′j) ↔r θX(Q′′). Hence there is a h ∈H with Q′′ = Q′′h. Using that d(θX(P ′′j)) ≤
d(P ′′j) < d(P) and d(θX(Q′′h)) ≤ d(Q′′h) < d(Q), by induction Axf ` θX(P ′′j) = θX(Q′′h). 2

10.5 The method of canonical representatives

The classic technique of proving completeness of axiomatisations for process algebras with recursion
involves merging guarded recursive equations [31, 32, 40, 11, 30]. In essence it proves two bisimilar
systems P and Q equivalent by equating both to an intermediate variant that is essentially a product of
P and Q. I tried so hard, and in vain, to apply this technique to obtain (8), that I came to believe that
it fundamentally does not work for this axiomatisation. The problem is illustrated in Figure 3. Here,
similar to the example of Figure 1, the processes 1 and 6 are strongly reactive bisimilar. The merging
technique constructs a transition system whose states are pairs of states reachable from 1 and 6. There is
a transition (s, t) α−→ (s′, t′) iff both s α−→ s′ and t α−→ t′. Normally, only those pairs (s, t) satisfying

R.J. van Glabbeek 29

1

P

b

2

t

4

τ

Q

a

R

b

S

a

3

t

T

a

5

τ

a

×

6

P

b

7

t

9Q

a

R

b

S

a

8

t

T

a
τ

10

τ

a

=

1,6

P

b

2,7

t
2,8

t

4,9

τ

R

b

S

a

3,7

t

5,10

τ

a

4,10

τ

a

Q

a

3,8

t

T

a

5,9

τ

a

Figure 3: A failed product construction

s ↔ t are included. Here the requirement s ↔r t would be to strong. Namely, although 1 ↔r 6, one has
neither 2 ↔r 7 nor 2 ↔r 8 nor 3 ↔r 7 nor 3 ↔r 8, so there would be no outgoing t-transitions from
(1, 6). Hence one has to include states (s, t) with s↔X

r t for some set X . Note that 2↔X
r 7 and 3↔X

r 8
when a ∈ X and b /∈ X , whereas 2↔X

r 8 and 3↔X
r 7 when a /∈ X . This yields the product depicted in

Figure 3.
In the reactive bisimulation game, the transition 1 t−→ 2 will be matched by 6 t−→ 8 only in an

environment X with a 6∈ X . Hence intuitively the state (2, 8) in the product should only be visited in
such an environment. Yet, when aiming to show that 1 ↔r (1, 6) ↔r 6, one cannot prevent taking the
transition (1, 6) t−→ (2, 8) in an environment X with a ∈ X and b /∈ X . However, since (2, 8) a−6→, this
t-transition cannot be simulated by process 2.

It may be possible to repair the construction, for instance by adding a transition (2, 8) a−→ Q or
(2, 8) a−→ T after all, but not both. However, each such ad hoc repair that I tried gave raise to further
problems, making the solution more and more complicated without sight on success.

Therefore, I here employ the novel method of canonical solutions [24, 29], which equates both P and
Q to a canonical representative within the bisimulation equivalence class of P and Q—one that has only
one reachable state for each bisimulation equivalence class of states of P and Q. Moreover, my proof
employs the axiom of choice [41] in defining the transition relation on my canonical representative, in
order to keep this process finitely branching.

To illustrate his technique on the example from Figure 3, the states 1 and 6, being strongly reactive
bisimilar, form one new state {1, 6} of the canonical representative. Likewise, there will be states {4, 9}

30 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

and {5, 10}. However, the states 2, 3, 7 and 8 remain separate. Within the new state {1, 6} my con-
struction chooses an arbitrary element, say 1. Based on this choice, the outgoing transitions of {1, 6}
are dictated by 1, and thus go to P , {2} and {3}. As a result, the canonical representative will look just
like the left-hand process. It could however be the case that S ↔r P , in which case the initial states
of these subprocesses are merged in the canonical representative, and again an element in the resulting
equivalence class will be chosen that dictates its outgoing transitions.

10.6 The canonical representative

Let Pg denote the set of CCSPθt processes with guarded recursion. Let [P] := {Q ∈ Pg | Q ↔r P}
be the strong reactive bisimulation equivalence class of a process P ∈ Pg. Below, by “abstract pro-
cess” I will mean such an equivalence class. Choose a function χ that selects an element out of each
↔

r-equivalence class of CCSPθt processes with guarded recursion—this is possible by the axiom of
choice [41]. Define the transition relations α−→, for α ∈ Act, between abstract processes by

R α−→ R′ ⇔ ∃P ′ ∈ R′. χ(R) α−→ P ′ . (9)

I will show that P ↔r [P] for all P ∈ Pg. Formally, ↔r has been defined only between processes
belonging to the same LTSP, and here [P] /∈ P. However, this restriction is not material: two processes
P ∈ P andQ ∈ Q from different LTSs can be compared by considering↔ron the disjoint unionP]Q.

Lemma 7 Let α ∈ A ∪ {τ}. Then [P] α−→ R′ iff P α−→ P ′ for some P ′ with R′ = [P ′].

Proof: Let P α−→ P ′ with α ∈ A ∪ {τ}. Since P ↔r χ([P]), by Definition 8 there is a Q′ such that
χ([P]) α−→ Q′ and P ′ ↔rQ

′. Hence [P] α−→ [Q′] by (9). Moreover, P ′ ∈ [Q′]=[P ′].
Let [P] α−→ R′ with α ∈ A ∪ {τ}. Then χ([P]) α−→ Q′ for some Q′ ∈ R′. Since χ([P]) ↔r P ,

there is a P ′ such that P α−→ P ′ and Q′ ↔rP
′. Hence P ′ ∈ R′ and thus R′ = [P ′]. 2

Corollary 37 I([P]) = I(P) for all P ∈ Pg. 2

Lemma 8 If I(P)∩ (X ∪ {τ}) = ∅ and P t−→ P ′ then [P] t−→ [Q′] for a Q′ with θX(P ′)↔r θX(Q′).
Moreover, if I(P) ∩ (X ∪ {τ}) = ∅ and [P] t−→ [Q′] then P t−→ P ′ for a P ′ with θX(Q′)↔r θX(P ′).

Proof: Let I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′. Since P ↔r χ([P]), by Definition 8 there is a Q′

such that χ([P]) t−→ Q′ and θX(P ′)↔r θX(Q′). Hence [P] t−→ [Q′] by (9).
Let I(P) ∩ (X ∪ {τ}) = ∅ and [P] t−→ [Q′]. Then χ([P]) t−→ R′ for some R′ ∈ [Q′]. Since

χ([P]) ↔rP (so I(χ([P])) = I(P)), there is a P ′ such that P t−→ P ′ and θX(R′) ↔r θX(P ′). As↔r

is a congruence for θX , one has θX(Q′)↔r θX(R′), and thus θX(Q′)↔r θX(P ′). 2

Definition 38 Let B∗:= {(R, T) | ∃n ≥ 0. ∃R0, . . . , Rn. R = R0 B R1 B · · · B Rn = T} denote
the reflexive and transitive closure of a binary relation B. A strong time-out bisimulation up to reflexivity
and transitivity is a symmetric relation B ⊆ P×P, such that, for P B Q,

• if P α−→ P ′ with α ∈A ∪ {τ}, then ∃Q′ such that Q α−→ Q′ and P ′ B∗ Q′,
• if I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′, then ∃Q′ with Q t−→ Q′ and θX(P ′) B∗ θX(Q′).

Proposition 39 If P B Q for a strong time-out bisimulation B up to reflexivity and transitivity, then
P ↔rQ.

Proof: It suffices to show that B∗ is a strong time-out bisimulation. Clearly this relation is symmetric.

R.J. van Glabbeek 31

• Suppose R0 B R1 B · · · B Rn for some n ≥ 0 and R0
α−→ R′0 with α ∈ A ∪ {τ}. I have to

find an R′n such that Rn
α−→ R′n and R′0 B∗ R′n. I proceed with induction on n. The case n = 0

is trivial. Fixing an n > 0, by Definition 38 there is an R′1 such that R1
α−→ R′1 and R′0 B∗ R′1.

Now by induction there is an R′n such that Rn
α−→ R′n and R′1 B∗ R′n. Hence R′0 B∗ R′n.

• Suppose R0 B R1 B · · · B Rn for some n ≥ 0, I(R0) ∩ (X ∪ {τ}) = ∅ and R0
t−→ R′0. By

Definition 38 I(R0) = I(R1) = · · · = I(Rn). I have to find an R′n such that Rn
t−→ R′n and

θX(R′0) B∗ θX(R′n). This proceeds exactly as for the case above. 2

Lemma 9 θX([P])↔r [θX(P)] for all P ∈ Pg and X ⊆ A.

Proof: I show that the symmetric closure of B := {(θX([P]), [θX(P)]) | P ∈ Pg ∧X ⊆ A} is a strong
time-out bisimulation up to reflexivity and transitivity.

• Let θX([P]) τ−→ R′. Then [P] τ−→ Q′ for someQ′ withR′ = θX(Q′). By Lemma 7, P τ−→ P ′ for
some P ′ with Q′ = [P ′]. Hence θX(P) τ−→ θX(P ′) and thus [θX(P)] τ−→ [θX(P ′)] by Lemma 7.
Moreover, R′ = θX([P ′]) B [θX(P ′)].

• Let [θX(P)] τ−→ R′. By Lemma 7, θX(P) τ−→ Q′ for some Q′ with R′ = [Q′]. Thus P τ−→ P ′

for some P ′ with Q′ = θX(P ′). Now [P] τ−→ [P ′] by Lemma 7, and thus θX([P]) τ−→ θX([P ′]).
Moreover, R′ = [θX(P ′)] B−1 θX([P ′]).

• Let θX([P]) a−→ R′ with a ∈ A. Then [P] a−→ R′ and either a ∈ I([P]) or [P] β−6→ for all
β ∈ X∪{τ}. Thus either a ∈ I(P) orP β−6→ for all β ∈ X∪{τ}, using Corollary 37. By Lemma 7,
P a−→ P ′ for some P ′ with R′ = [P ′]. Hence θX(P) a−→ P ′ and thus [θX(P)] a−→ [P ′] = R′.

• Let [θX(P)] a−→ R′ with a ∈ A. By Lemma 7, θX(P) a−→ P ′ for some P ′ with R′ = [P ′]. Thus
P a−→ P ′ and either a ∈ I(P) or P β−6→ for all β ∈ X ∪ {τ}. Therefore either a ∈ I([P]) or
[P] β−6→ for all β ∈ X ∪ {τ}, using Corollary 37. Moreover, [P] a−→ [P ′] by Lemma 7. It follows
that θX([P]) a−→ [P ′] = R′.

• Let I(θX([P])) ∩ (X ∪ {τ}) = ∅ and θX([P]) t−→ R′ = [Q′]. Then [P] t−→ [Q′] and [P] β−6→ for
all β ∈ X ∪ {τ}. Thus P β−6→ for all β ∈ X ∪ {τ}, using Corollary 37, so I(P) ∩ (X ∪ {τ}) = ∅
and I(θX(P)) ∩ (X ∪ {τ}) = ∅. By Lemma 8, P t−→ P ′ for some P ′ with θX(Q′) ↔r θX(P ′).
Hence θX(P) t−→ P ′ and thus, again applying Lemma 8, [θX(P)] t−→ [T ′] for some T ′ with
θX(P ′)↔r θX(T ′). Moreover, θX(R′) = θX([Q′]) B [θX(Q′)] = [θX(T ′)] B−1 θX([T ′]).

• Let I([θX(P)])∩(X∪{τ}) = ∅ and [θX(P)] t−→ [Q′]. By Lemma 8, θX(P) t−→ P ′ for a P ′ with
θX(Q′)↔r θX(P ′). Hence P t−→ P ′ and P β−6→ for all β ∈ X ∪ {τ}, so I(P) ∩ (X ∪ {τ}) = ∅.
Hence, by Lemma 8, [P] t−→ [T ′] for a T ′ with θX(P ′) ↔r θX(T ′). By Corollary 37, [P] β−6→ for
all β∈X∪{τ}. So θX([P]) t−→ [T ′]. Moreover, θX([Q′]) B [θX(Q′)] = [θX(T ′)] B−1 θX([T ′]).

2

Proposition 40 P ↔r [P] for all P ∈ Pg.

Proof: Using Proposition 24, I show that the symmetric closure of the relation B := {(P, [P]) | P∈Pg}
is a strong time-out bisimulation up to↔r. Here the right-hand side processes come from an LTS that is
closed under θ and contains the processes [P] for P ∈ Pg.

• Let P α−→ P ′ with α ∈A ∪ {τ}. Then [P] α−→ [P ′] by Lemma 7, and P ′ B [P ′].

• Let [P] α−→ R′ with α ∈ A ∪ {τ}. Then, by Lemma 7, P α−→ P ′ for some P ′ with R′ = [P ′].
Moreover, R′ B−1 P ′.

32 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

• Let I(P) ∩ (X ∪ {τ}) = ∅ and P t−→ P ′. By Lemma 8, [P] t−→ [Q′] for some Q′ such that
θX(P ′)↔r θX(Q′). Moreover, using Lemma 9, θX(P ′) B [θX(P ′)] = [θX(Q′)]↔r θX([Q′]).

• Let I([P]) ∩ (X ∪ {τ}) = ∅ and [P] t−→ [Q′]. Then, by Lemma 8, P t−→ P ′ for some P ′ with
θX(Q′)↔r θX(P ′). By Lemma 9, θX([Q′])↔r [θX(Q′)] = [θX(P ′)] B−1 θX(P ′). 2

By Proposition 13 each P ∈ Pg is finitely branching. By construction, so is [P].
No two states reachable from [P] are strongly reactive bisimilar. Hence the process [P] with its

above-generated transition relation can be seen as a version of P were each equivalence class of reachable
states is collapsed into a single state—a kind of minimisation. But it is not exactly a minimisation, as
not all states reachable from [P] need be strongly reactive bisimilar with reachable states of P . This is
illustrated by Process 6 of Figure 3, when χ({1, 6}) = 1. Now {2} and {3} are reachable from [P], but
not strongly reactive bisimilar with reachable states of 6.

10.7 Completeness for finitely branching processes

I will now give a syntactic representation of each process [P], for P ∈ Pg, as a CCSPθt process with
guarded recursion. Take a different variable xR for each ↔r-equivalence class R of CCSPθt processes
with guarded recursion. Let VS be the set of all those variables, and define the recursive specification S
by

xR =
∑

R
α−→R′

α.xR′ .

By construction, R ↔ /
\xR|S\/, that is, the process [P] := /

\x[P]|S\/ ∈ Pg is strongly bisimilar to [P].
In fact, the symmetric closure of the relation {([P], [P]) | P ∈ Pg} is a strong bisimulation. Thus, [P]
serves as a normal form within the↔r-equivalence class of P ∈ Pg.

The above construction will not work when there are not as many variables as equivalences classes
of CCSPθt processes with guarded recursion. Note that each real number in the interval [0, 1) can be
represented as an infinite sequence of 0s and 1s, and thus as a CCSPθt processes with guarded recursion
employing the finite alphabet A = {0, 1}. Hence there are uncountably many equivalences classes of
CCSPθt processes with guarded recursion.

To solve this problem, one starts here already with the proof of (8), and fixes two processes P0 and
Q0 ∈ Pg with P0 ↔r Q0. The task is to prove Ax ` P0 = Q0. Now call an equivalence class R of
CCSPθt processes with guarded recursion relevant if eitherR is reachable from [P0] = [Q0], or a member
of R is reachable from P0 or Q0. There are only countably many relevant equivalence classes. It suffices
to take a variable xR only for relevant R. Below, I will call a process P ∈ Pg relevant if it is a member
of a relevant equivalence class; in case we had enough variables to start with, all processes P ∈ Pg may
be called relevant.

Lemma 10 Let P,Q ∈ Pg be relevant. Then [P]↔r [Q]⇒ [P] = [Q].

Proof: Suppose [P]↔r [Q]. Then P ↔r [P]↔r [Q]↔rQ, so [P] = [Q], and hence [P] = [Q]. 2

Lemma 11 Let P,Q ∈ Pg be relevant. Then θX([P])↔r θX([Q])⇒ θX([P])↔ θX([Q]).

Proof: I show that B := Id ∪ {(θX([P]), θX([Q])) | θX([P])↔r θX([Q])} is a strong bisimulation.
Suppose θX([P]) ↔r θX([Q]). Then [P] β−6→ for all β ∈ X ∪ {τ} iff [Q] β−6→ for all β ∈ X ∪ {τ},

since I([P])∩(X∪{τ}) = I(θX([P]))∩(X∪{τ}) = I(θX([Q]))∩(X∪{τ}) = I([Q])∩(X∪{τ}).
First consider the case that [P] β−6→ for all β ∈ X ∪ {τ}. Then θX([P])↔ [P] and θX([Q])↔ [Q].

Hence [P]↔ θX([P])↔r θX([Q])↔ [Q]. So by Lemma 10, [P]=[Q], and thus θX([P]) Id θX([Q]).
Henceforth I suppose that [P] β−→ for some β ∈ X ∪ {τ}. So [P] t−6→ and [Q] t−6→.

R.J. van Glabbeek 33

• Let θX([P]) a−→ P ′′ with a ∈ A. Then θX([Q]) a−→ Q′′ for some Q′′ with P ′′ ↔rQ
′′. One has

[P] a−→ P ′′ and [Q] a−→ Q′′. The process P ′′ must have the form [P ′], and likewise Q′′ = [Q′].
Since [P ′]↔r [Q′], Lemma 10 yields [P ′] = [Q′].

• Let θX([P]) τ−→ P ′′. Then θX([Q]) τ−→ Q′′ for some Q′′ with P ′′ ↔rQ
′′. The process P ′′ must

have the form θX([P ′]), and likewise Q′′ = θX([Q′]). Hence P ′′ B Q′′. 2

Definition 41 Given a relevant CCSPθt process P ∈ Pg, let P̃ :=
∑
{(α,Q)|P α−→Q}

α.[Q].

Thus, P̃ is defined like the head-normal form P̂ of P ∈ Pg, except that all processes Q reachable from
P by performing one transition are replaced by the normal form within their ↔r-equivalence class. So
P ↔ P̂ ↔r P̃ . Note that [P] = χ̃([P]) is provable through a single application of the axiom RDP.

The following step is the only one where the reactive approximation axiom (RA) is used.

Proposition 42 Let P,Q ∈ Pg be relevant. Then P ↔rQ⇒ Ax ` P̃ = Q̃.

Proof: Suppose P ↔r Q. Then P̃ ↔r P ↔r Q ↔r Q̃. With Axiom RA it suffices to show that
Axf ` ψX(P̃) = ψX(Q̃) for all X ⊆ A. So pick X ⊆ A. Let

P̃ =
∑
i∈I

αi.P
′
i +

∑
j∈J

t.P ′′j and Q̃ =
∑
k∈K

βk.Q
′
k +

∑
h∈H

t.Q′′h

with αj , βk ∈A∪ {τ} for all i∈ I and k ∈K. As for Theorem 36, the following two claims are crucial.

Claim 1: For each i ∈ I there is a k ∈K with αi = βk and Ax ` P ′i = Q′k.
Claim 2: If I(P)∩ (X ∪ {τ}) = ∅, then for each j ∈ J there is a h∈H with Ax ` θX(P ′′j) = θX(Q′′h).

With these claims the proof proceeds exactly as the one of Theorem 36.

Proof of Claim 1: Pick i ∈ I . Then P̃ αi−→ P ′i . So Q̃ αi−→ Q′ for some Q′ with P ′i ↔rQ
′. Hence there

is a k ∈K with αi = βk and Q′ = Q′k. The processes P ′i and Q′k must have the form [P ′] and [Q′] for
some P ′, Q′ ∈ Pg. Hence, by Lemma 10, P ′i = Q′k, and thus certainly Ax ` P ′i = Q′k.

Proof of Claim 2: Pick j ∈ J . Then P̃ t−→ P ′′j . Since I(P̃) ∩ (X ∪ {τ}) = ∅, there is a Q′′ such that
Q̃ t−→ Q′′ and θX(P ′′j) ↔r θX(Q′′). Hence there is a h ∈ H with Q′′ = Q′′h. The processes P ′′j and
Q′′h have the form [P ′′] and [Q′′] for some P ′′, Q′′ ∈ Pg. So by Lemma 11, θX(P ′′j) ↔ θX(Q′′). The
completeness of Ax for strong bisimilarity (Theorem 32) now yields Ax ` θX(P ′′j) = θX(Q′′). 2

Theorem 43 Let P ∈ Pg be relevant. Then Ax ` P = [P].

Proof: Let reach(P) be the set of processes reachable from P . Take a different variable zR for each
R ∈ reach(P), and define the recursive specification S ′ by VS′ := {zR | R ∈ reach(P)} and

zR =
∑

R
α−→R′

α.zR′ .

By construction, R ↔ /
\xR|S\/. In fact, the symmetric closure of {(R, /\xR|S\/) | R ∈ reach(P)} is a

strong bisimulation. To establish Theorem 43 through an application of RSP, I show that both P and [P]
are xP -components of solutions of S ′. So I show

Ax ` R =
∑

R
α−→R′

α.R′ and Ax ` [R] =
∑

R
α−→R′

α.[R′]

34 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

b

t

τ

τ

a
b

τ
a

τ
a

b

τ

τ
τ

τ

τ

a
b

τ
a

τ
a

b

τ

τ
τ

τ

τ

a
b

τ
a

τ
a

b

τ

τ
τ

. . .

Figure 4: An uncountable variety of strongly reactive bisimilar processes

for all R ∈ reach(P). The first of these statements is a direct application of Proposition 31. The second

statement can be reformulated as Ax ` [R] = R̃. As remarked above, Ax ` [R] = χ̃([R]) through a

single application of RDP. Hence I need to show that Ax ` χ̃([R]) = R̃. Considering that χ([R])↔rR,
this is a consequence of Proposition 42. 2

Corollary 44 Let P,Q ∈ Pg be relevant. Then P ↔rQ⇒ Ax ` P = Q.

Proof: Let P ↔rQ. Then [P] = [Q] by Lemma 10, so Ax ` P = [P] = [Q] = Q. 2

10.8 Necessity of the axiom of choice

At first glance it may look like the above proof can be simplified so as to avoid using the axiom of choice,
namely by changing (9) into

R α−→ R′ ⇔ ∃P ∈ R,P ′ ∈ R′. P α−→ P ′ .

However, this would make some processes [P] infinitely branching, even when P is finitely branching.
Figure 4 shows an uncountable collection of strongly reactive bisimilar finitely branching processes.
Here each pair of a dashed b-transition and the dotted one right below it constitutes a design choice: either
the dashed or the dotted b-transition is present, but not both. Since there is this binary choice for infinitely
many pairs of b-transitions, this figure represents an uncountable collection of processes. All of them are
strongly reactive bisimilar, because the t-transition will only be taken in an environment that blocks b. In
case a is blocked as well, all the a-transitions from a state with an outgoing τ -transition can be dropped,
and the difference between these processes disappears. In case a is allowed by the environment, all
b transitions can be dropped, and again the difference between these processes disappears. Hence the
above alternative definition would yield uncountably many outgoing t-transitions from the equivalence
class of all these processes. This would make it impossible to represent such a “minimised” process in
CCSPθt .

R.J. van Glabbeek 35

11 Concluding remarks

This paper laid the foundations of the proper analogue of strong bisimulation semantics for a process al-
gebra with time-outs. This makes it possible to specify systems in this setting and verify their correctness
properties. The addition of time-outs comes with considerable gains in expressive power. An illustration
of this is mutual exclusion.

As shown in [20], it is fundamentally impossible to correctly specify mutual exclusion protocols in
standard process algebras, such as CCS [33], CSP [6, 28], ACP [2, 10] or CCSP, unless the correctness
of the specified protocol hinges on a fairness assumption. The latter, in the view of [20], does not
provide an adequate solution, as fairness assumptions are in many situations unwarranted and lead to
false conclusions. In [9] a correct process-algebraic rendering of mutual exclusion is given, but only after
making two important modifications to standard process algebra. The first involves making a justness
assumption. Here justness [21] is an alternative to fairness, in some sense a much weaker form of
fairness—meaning weaker than weak fairness. Unlike (strong or weak) fairness, its use typically is
warranted and does not lead to false conclusions. The second modification is the addition of a new
construct—signals—to CCS, or any other standard process algebra. Interestingly, both modifications are
necessary; just using justness, or just adding signals, is insufficient. Bouwman [4, 5] points out that since
the justness requirement was fairly new, and needed to be carefully defined to describe its interaction
with signals anyway, it is possible to specify mutual exclusion without adding signals to the language
at all, instead reformulating the justness requirement in such a way that it effectively turns some actions
into signals. Yet justness is essential in all these approaches. This may be seen as problematic, because
large parts of the foundations of process algebra are incompatible with justness, and hence need to be
thoroughly reformulated in a justness-friendly way. This is pointed out in [17].

The addition of time-outs to standard process algebra makes it possible to specify mutual exclusion
without assuming justness! Instead, one should make the assumption called progress in [21], which is
weaker than justness, uncontroversial, unproblematic, and made (explicitly or implicitly) in virtually all
papers dealing with issues like mutual exclusion. This claim is substantiated in [19].

Besides applications to protocol verification, future work includes adapting the work done here to
a form of reactive bisimilarity that abstracts from hidden actions, that is, to provide a counterpart for
process algebras with time-outs of, for instance, branching bisimilarity [23], weak bisimilarity [33] or
coupled similarity [36, 12, 3]. Other topics worth exploring are the extension to probabilistic processes,
and especially the relations with timed process algebras. Davies & Schneider in [7], for instance, added
a construct with a quantified time-out to the process algebra CSP [6, 28], elaborating the timed model of
CSP presented by Reed & Roscoe in [38].

Acknowledgement. My thanks to the CONCUR’20 and Acta Informatica referees for helpful feedback.

References

[1] J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1986): Syntax and defining equations for an interrupt mechanism
in process algebra. Fundamenta Informaticae IX(2), pp. 127–168, doi:10.3233/FI-1986-9202.

[2] J.C.M. Baeten & W.P. Weijland (1990): Process Algebra. Cambridge Tracts in Theoretical Computer Science
18, Cambridge University Press, doi:10.1017/CBO9780511624193.

[3] B. Bisping, U. Nestmann & K. Peters (2020): Coupled similarity: the first 32 years. Acta Informatica
57(3-5), pp. 439–463, doi:10.1007/s00236-019-00356-4.

http://dx.doi.org/10.3233/FI-1986-9202
http://dx.doi.org/10.1017/CBO9780511624193
http://dx.doi.org/10.1007/s00236-019-00356-4

36 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

[4] M.S. Bouwman (2018): Liveness analysis in process algebra: simpler techniques to model mutex algo-
rithms. Technical Report, Eindhoven University of Technology. Available at http://www.win.tue.
nl/˜timw/downloads/bouwman_seminar.pdf.

[5] M.S. Bouwman, B. Luttik & T.A.C. Willemse (2020): Off-the-shelf automated analysis of liveness properties
for just paths. Acta Informatica 57(3-5), pp. 551–590, doi:10.1007/s00236-020-00371-w.

[6] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes. Jour-
nal of the ACM 31(3), pp. 560–599, doi:10.1145/828.833.

[7] J. Davies & S. Schneider (1993): Recursion Induction for Real-Time Processes. Formal Aspects of Comput-
ing 5(6), pp. 530–553, doi:10.1007/BF01211248.

[8] R. De Nicola & M. Hennessy (1984): Testing equivalences for processes. Theoretical Computer Science 34,
pp. 83–133, doi:10.1016/0304-3975(84)90113-0.

[9] V. Dyseryn, R.J. van Glabbeek & P. Höfner (2017): Analysing Mutual Exclusion using Process Algebra with
Signals. In K. Peters & S. Tini, editors: Proceedings Combined 24th International Workshop on Expres-
siveness in Concurrency and 14th Workshop on Structural Operational Semantics, Electronic Proceedings in
Theoretical Computer Science 255, Open Publishing Association, pp. 18–34, doi:10.4204/EPTCS.255.2.

[10] W. J. Fokkink (2000): Introduction to Process Algebra. Texts in Theoretical Computer Science, An EATCS
Series, Springer, doi:10.1007/978-3-662-04293-9.

[11] R.J. van Glabbeek (1993): A complete axiomatization for branching bisimulation congruence of finite-state
behaviours. In A.M. Borzyszkowski & S. Sokołowski, editors: Proceedings 18th International Sympo-
sium on Mathematical Foundations of Computer Science, MFCS ’93, LNCS 711, Springer, pp. 473–484,
doi:10.1007/3-540-57182-5 39.

[12] R.J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II; The semantics of sequential
systems with silent moves. In E. Best, editor: Proceedings 4th International Conference on Concurrency
Theory, CONCUR’93, LNCS 715, Springer, pp. 66–81, doi:10.1007/3-540-57208-2 6.

[13] R.J. van Glabbeek (1994): On the expressiveness of ACP (extended abstract). In A. Ponse, C. Verhoef
& S.F.M. van Vlijmen, editors: Proceedings First Workshop on the Algebra of Communicating Processes,
ACP’94, Workshops in Computing, Springer, pp. 188–217, doi:10.1007/978-1-4471-2120-6 8.

[14] R.J. van Glabbeek (2001): The Linear Time – Branching Time Spectrum I; The Semantics of Concrete,
Sequential Processes. In J.A. Bergstra, A. Ponse & S.A. Smolka, editors: Handbook of Process Algebra,
chapter 1, Elsevier, pp. 3–99, doi:10.1016/B978-044482830-9/50019-9.

[15] R.J. van Glabbeek (2004): The Meaning of Negative Premises in Transition System Specifications II. Journal
of Logic and Algebraic Programming 60–61, pp. 229–258, doi:10.1016/j.jlap.2004.03.007.

[16] R.J. van Glabbeek (2017): Lean and Full Congruence Formats for Recursion. In: Proceedings 32nd An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS’17, IEEE Computer Society Press,
doi:10.1109/LICS.2017.8005142. Available at https://arxiv.org/abs/1704.03160.

[17] R.J. van Glabbeek (2019): Ensuring liveness properties of distributed systems: Open problems. Journal of
Logical and Algebraic Methods in Programming 109:100480, doi:10.1016/j.jlamp.2019.100480. Available
at http://arxiv.org/abs/1912.05616.

[18] R.J. van Glabbeek (2021): Failure Trace Semantics for a Process Algebra with Time-outs. Logical Methods
in Computer Science 17(2):11, doi:10.23638/LMCS-17(2:11)2021.

[19] R.J. van Glabbeek (2021): Modelling Mutual Exclusion in a Process Algebra with Time-outs. Available at
https://arxiv.org/abs/2106.12785.

[20] R.J. van Glabbeek & P. Höfner (2015): CCS: It’s not fair! Fair schedulers cannot be implemented in CCS-
like languages even under progress and certain fairness assumptions. Acta Informatica 52(2-3), pp. 175–205,
doi:10.1007/s00236-015-0221-6. Available at http://arxiv.org/abs/1505.05964.

[21] R.J. van Glabbeek & P. Höfner (2019): Progress, Justness and Fairness. ACM Computing Surveys 52(4):69,
doi:10.1145/3329125. Available at https://arxiv.org/abs/1810.07414.

http://www.win.tue.nl/~timw/downloads/bouwman_seminar.pdf
http://www.win.tue.nl/~timw/downloads/bouwman_seminar.pdf
http://dx.doi.org/10.1007/s00236-020-00371-w
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/BF01211248
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.4204/EPTCS.255.2
http://dx.doi.org/10.1007/978-3-662-04293-9
http://dx.doi.org/10.1007/3-540-57182-5_39
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/978-1-4471-2120-6_8
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.1109/LICS.2017.8005142
https://arxiv.org/abs/1704.03160
http://dx.doi.org/10.1016/j.jlamp.2019.100480
http://arxiv.org/abs/1912.05616
http://dx.doi.org/10.23638/LMCS-17(2:11)2021
https://arxiv.org/abs/2106.12785
http://dx.doi.org/10.1007/s00236-015-0221-6
http://arxiv.org/abs/1505.05964
http://dx.doi.org/10.1145/3329125
https://arxiv.org/abs/1810.07414

R.J. van Glabbeek 37

[22] R.J. van Glabbeek & C.A. Middelburg (2020): On Infinite Guarded Recursive Specifications in Process
Algebra. Available at http://arxiv.org/abs/2005.00746.

[23] R.J. van Glabbeek & W.P. Weijland (1996): Branching Time and Abstraction in Bisimulation Semantics.
Journal of the ACM 43(3), pp. 555–600, doi:10.1145/233551.233556.

[24] C. Grabmayer & W.J. Fokkink (2020): A Complete Proof System for 1-Free Regular Expressions Modulo
Bisimilarity. In H. Hermanns, L. Zhang, N. Kobayashi & D. Miller, editors: Proc. 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS’20, ACM, pp. 465–478, doi:10.1145/3373718.3394744.

[25] J.F. Groote (1993): Transition System Specifications with Negative Premises. Theoretical Computer Science
118, pp. 263–299, doi:10.1016/0304-3975(93)90111-6.

[26] J.F. Groote & F.W. Vaandrager (1992): Structured Operational Semantics and Bisimulation as a Congruence.
Information and Computation 100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[27] M. Hennessy & R. Milner (1985): Algebraic laws for nondeterminism and concurrency. Journal of the ACM
32(1), pp. 137–161, doi:10.1145/2455.2460.

[28] C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice Hall, Englewood Cliffs.

[29] X. Liu & T.Yu (2020): Canonical Solutions to Recursive Equations and Completeness of Equational Axioma-
tisations. In I. Konnov & L. Kovacs, editors: Proceedings 31st International Conference on Concurrency
Theory (CONCUR 2020), Leibniz International Proceedings in Informatics (LIPIcs) 171, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, doi:10.4230/LIPIcs.CONCUR.2020.35.

[30] M. Lohrey, P.R. D’Argenio & H. Hermanns (2005): Axiomatising divergence. Information and Computation
203(2), pp. 115–144, doi:10.1016/j.ic.2005.05.007.

[31] R. Milner (1984): A complete inference system for a class of regular behaviours. Journal of Computer and
System Sciences 28, pp. 439–466, doi:10.1016/0022-0000(84)90023-0.

[32] R. Milner (1989): A Complete Axiomatisation for Observational Congruence of Finite-State Behaviors. In-
formation and Computation 81(2), pp. 227–247, doi:10.1016/0890-5401(89)90070-9.

[33] R. Milner (1990): Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor:
Handbook of Theoretical Computer Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland),
pp. 1201–1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989,
of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980,
doi:10.1007/3-540-10235-3.

[34] E.-R. Olderog (1987): Operational Petri net semantics for CCSP. In G. Rozenberg, editor: Advances in Petri
Nets 1987, LNCS 266, Springer, pp. 196–223, doi:10.1007/3-540-18086-9 27.

[35] E.-R. Olderog & C.A.R. Hoare (1986): Specification-oriented semantics for communicating processes. Acta
Informatica 23, pp. 9–66, doi:10.1007/BF00268075.

[36] J. Parrow & P. Sjödin (1992): Multiway synchronization verified with coupled simulation. In W.R. Cleave-
land, editor: Proceedings CONCUR 92, Stony Brook, NY, USA, LNCS 630, Springer, pp. 518–533,
doi:10.1007/BFb0084813.

[37] M. Pohlmann (2021): Reducing Strong Reactive Bisimilarity to Strong Bisimilarity. Bachelor’s thesis, TU
Berlin. Available at https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf.

[38] G.M. Reed & A.W. Roscoe (1988): A Timed Model for Communicating Sequential Processes. Theoretical
Computer Science 58, pp. 249–261, doi:10.1016/0304-3975(88)90030-8.

[39] F.W. Vaandrager (1993): Expressiveness Results for Process Algebras. In J.W. de Bakker, W.P. de Roever &
G. Rozenberg, editors: Proceedings REX Workshop on Semantics: Foundations and Applications, Beekber-
gen, The Netherlands, 1992, LNCS 666, Springer, pp. 609–638, doi:10.1007/3-540-56596-5 49.

[40] D.J. Walker (1990): Bisimulation and divergence. Information and Computation 85(2), pp. 202–241,
doi:10.1016/0890-5401(90)90048-M.

[41] Ernst Zermelo (1908): Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen
65(2), pp. 261–281, doi:10.1007/bf01449999.

http://arxiv.org/abs/2005.00746
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1145/3373718.3394744
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2020.35
http://dx.doi.org/10.1016/j.ic.2005.05.007
http://dx.doi.org/10.1016/0022-0000(84)90023-0
http://dx.doi.org/10.1016/0890-5401(89)90070-9
http:dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-18086-9_27
http://dx.doi.org/10.1007/BF00268075
http://dx.doi.org/10.1007/BFb0084813
https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf
http://dx.doi.org/10.1016/0304-3975(88)90030-8
http://dx.doi.org/10.1007/3-540-56596-5_49
http://dx.doi.org/10.1016/0890-5401(90)90048-M
http://dx.doi.org/10.1007/bf01449999

38 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

A Initials congruence

This appendix contains the proofs of two facts about initials equivalence I need in this paper, namely
that it is a full congruence for CCSPθt , and that it is not affected by which processes are substituted for
variables whose free occurrences are guarded.

Theorem 18 Initials equivalence is a full congruence for CCSPθt .

Proof: Let B ⊆ P×P be the smallest relation satisfying
• if S and S ′ are recursive specifications with x ∈ VS = VS′ and /

\x|S\/, /\x|S ′\/ ∈ P, such that
Sy =I S ′y for all y ∈ VS , then /

\x|S\/ B /
\x|S ′\/,

• if P =I Q, then P B Q,

• if P B Q and α ∈ A ∪ {τ, t}, then α.P B α.Q,

• if P1 B Q1 and P2 B Q2, then P1 + P2 B Q1 +Q2,

• if P1 B Q1, P2 B Q2 and S ⊆ A, then P1 ‖S P2 B Q1 ‖S Q2,

• if P B Q and I ⊆ A, then τI(P) B τI(Q),

• if P B Q andR ⊆ A×A, thenR(P) B R(Q),

• if P B Q, L ⊆ U ⊆ A and X ⊆ A, then θUL (P) B θUL (Q) and ψX(P) B ψX(Q),

• if S is a recursive specification with z ∈ VS , and ρ, ν : Var \ VS → P are substitutions satisfying
ρ(x) B ν(x) for all x ∈ Var \ VS , then /

\z|S\/[ρ] B /
\z|S\/[ν].

A trivial structural induction on E ∈ E (not using the first two clauses) shows that

if ρ, ν : Var → P satisfy ρ(x) B ν(x) for all x ∈ Var , then E[ρ] B E[ν]. (*)

For S a recursive specification and ρ : Var \VS → P, let ρS : Var → P be the closed substitution given
by ρS(x) := /

\x|S\/[ρ] if x ∈ VS and ρS(x) := ρ(x) otherwise. Then /
\E|S\/[ρ] = E[ρS] for all E ∈ E.

Hence an application of (*) with ρS and νS yields that under the conditions of the last clause for B above
one even has /

\E|S\/[ρ] B /
\E|S\/[ν] for all expressions E ∈ E, ($)

and likewise, in the first clause, /\E|S\/ B /
\E|S ′\/ for all E ∈ E with variables from VS . (#)

It suffices to show that P B Q⇒ P =I Q, because then B = =I , and (*) implies that B is a lean
congruence. Moreover, the clauses for B (not needing the last) then imply that =I is a full congruence.
This I will do by induction on the stratum (λR, κR) of processes R ∈ P, as defined in Section 5. So pick
a stratum (λ, κ) and assume that P ′ B Q′ ⇒ P ′ =I Q

′ for all P ′, Q′ ∈ P with (λP , κP) < (λ, κ) and
(λQ, κQ) < (λ, κ). I need to show that P B Q ⇒ P =I Q for all P,Q ∈ P with (λP , κP) ≤ (λ, κ)
and (λQ, κQ) ≤ (λ, κ).

Because =I is symmetric, so is B. Hence, it suffices to show that P B Q ∧ P α−→ ⇒ Q α−→ for all
P,Q ∈ P with (λP , κP), (λQ, κQ) ≤ (λ, κ) and all α ∈ A ∪ {τ}. This I will do by structural induction
on the proof π of P α−→ from the rules of Table 1. I make a case distinction based on the derivation of
P B Q. So assume P B Q, (λP , κP), (λQ, κQ) ≤ (λ, κ), and P α−→ with α ∈ A ∪ {τ}.
• Let P = /

\x|S\/ ∈ P and Q = /
\x|S ′\/ ∈ P where S and S ′ are recursive specifications with

x ∈ VS = VS′ , such that Sy =I S ′y for all y ∈ VS , meaning that for all y ∈ VS and σ : VS → P

one has Sy[σ] =I S ′y[σ].
By Table 1 the transition /

\Sx|S\/ α−→ is provable by means of a strict subproof of π. By (#) above
one has /

\Sx|S\/ B /
\Sx|S ′\/. So by induction /

\Sx|S ′\/ α−→. Since /
\ |S ′\/ is the application of a

substitution of the form σ : VS′ → P, one has /
\Sx|S ′\/ =I

/
\S ′x|S ′\/. Hence /

\S ′x|S ′\/
α−→. By Table 1,

Q= /
\x|S ′\/ α−→.

R.J. van Glabbeek 39

• The case P =I Q is trivial.

• Let P = β.P † and Q = β.Q† with β ∈ A ∪ {τ, t} and P † B Q†. Then α = β and Q α−→.

• Let P = P1 + P2 and Q = Q1 + Q2 with P1 B Q1 and P2 B Q2. I consider the first rule
from Table 1 that could have been responsible for the derivation of P α−→; the other proceeds
symmetrically. So suppose that P1

α−→. Then by induction Q1
α−→. By the same rule, Q α−→.

• Let P = P1 ‖S P2 and Q = Q1 ‖S Q2 with P1 B Q1 and P2 B Q2. I consider the three rules
from Table 1 that could have been responsible for the derivation of P α−→.
First suppose that α /∈ S, and P1

α−→. By induction, Q1
α−→. Consequently, Q1 ‖S Q2

α−→.
Next suppose that α ∈ S, P1

α−→ and P2
α−→. By induction, Q1

α−→ and Q2
α−→. So Q1 ‖S Q2

α−→.
The remaining case proceeds symmetrically to the first.

• Let P = τI(P
†) and Q = τI(Q

†) with I ⊆ A and P † B Q†. Then P † β−→ and either β = α /∈ I ,
or β ∈ I and α = τ . By induction, Q† β−→. Consequently, Q = τI(Q

†) α−→.

• Let P = R(P †) and Q = R(Q†) with R ⊆ A × A and P † B Q†. Then P † β−→ and either
(β, α) ∈ R or β = α = τ . By induction, Q† β−→. Consequently, Q = R(Q†) α−→.

• Let P = θUL (P †), Q = θUL (Q†) and P † B Q†. Then (λP † , κP †)< (λ, κ) and (λQ† , κQ†)< (λ, κ),
as remarked in Section 5. So by induction P † =I Q

†. (This is the only use of stratum induction.)
Since θUL (P †) α−→, it must be that P † α−→ and either α ∈ U ∪{τ} or P † β−6→ for all β ∈ L∪{τ}. In
the latter case, Q† β−6→ for all β ∈ L∪{τ}. Moreover, Q† α−→. So, in both cases, Q = θUL (Q†) α−→.

• Let P = ψX(P †), Q = ψX(Q†) and P † B Q†. Since ψX(P †) α−→, one has P † α−→. By induction
Q† α−→. So Q = ψX(Q†) α−→.

• Let P = /
\z|S\/[ρ] = /

\z|S[ρ]\/ and Q= /
\z|S\/[ν] = /

\z|S[ν]\/ where S is a recursive specification with
z∈VS , and ρ, ν : Var \VS → P satisfy ρ(x) B ν(x) for all x∈Var \VS . By Table 1 the transition
/
\Sz|S[ρ]\/

α−→ is provable by means of a strict subproof of the proof π of /\z|S\/[ρ] α−→. By ($) above
one has /

\Sz|S[ρ]\/ B /
\Sz|S[ν]\/. So by induction, /\Sz|S[ν]\/

a−→. By Table 1, Q = /
\z|S[ν]\/

α−→. 2

Lemma 5 Let H ∈ E be guarded and have free variables from W ⊆ Var only, and let ~P , ~Q ∈ PW .
Then I(H[~P]) = I(H[~Q]).

Proof: Lemma 5 can be strengthened as follows.

Let H ∈ E be such that all free occurrences of variables from W ⊆ Var in H are guarded,
and let ~P , ~Q ∈ PW . Then H[~P] =I H[~Q].

The proof proceeds with structural induction on H .

• Let H = /
\x|S\/, so that H[~P] = /

\x|S[~P †]\/, where ~P † is the W\VS-tuple that is left of ~P after
deleting the y-components, for y ∈ VS , and H[~Q] = /

\x|S[~Q†]\/. For each y ∈ VS , all free
occurrences of variables from W\VS in Sy are guarded. Thus, by induction, Sy[~P †] =I Sy[~Q†].
Since =I is a full congruence for CCSPθt , it follows thatH[~P] = /

\x|S[~P †]\/ =I
/
\x|S[~Q†]\/ = H[~Q].

• LetH=α.H ′ for some α ∈ Act. Then I(H[~P])=I(H[~Q]) (namely ∅ if α=t and {α} otherwise).

• Let H = H1 ‖S H2. Since all free occurrences of variables from W ⊆ Var in H are guarded, so
are those in H1 and H2. Thus, by induction, H1[~P] =I H1[~Q] and H2[~P] =I H2[~Q]. Since =I is
a full congruence for S it follows that H[~P] =I H[~Q].

• The cases for all other operators go exactly like the case for ‖S . 2

40 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

B Proofs of lemmas on θX and strong bisimilarity from Section 7.2

The following lemmas on the relation between θX and the other operators of CCSPθt deal with strong
bisimilarity, but are needed in the congruence proof for strong reactive bisimilarity.

Lemma 12 If I(Q) ∩ (Y ∪ {τ}) = ∅ then θY (Q)↔Q.

Proof: This follows immediately from the operational rules for θY . 2

Lemma 2 If P τ−6→, I(P) ∩X ⊆ S and Y =X \ (S \ I(P)), then θX(P ‖S Q)↔ θX(P ‖S θY (Q)).

Proof: Let P ∈ P and S,X, Y ⊆ A be as indicated in the lemma. Let

B :=↔ ∪ {(θX(P ‖S Q), θX(P ‖S θY (Q))) | Q ∈ P}

It suffices to show that the symmetric closure B̃ of B is a strong bisimulation.
So let R B̃ T and R α−→ R′ with α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and R′ B̃ T ′.
• The case that R ↔T is trivial.

• Let R = θX(P ‖S Q) and T = θX(P ‖S θY (Q)), for some Q ∈ P.
First assume α = τ . Then Q τ−→ Q′ for some Q′ with R′ = θX(P ‖S Q′). Consequently,
T = θX(P ‖S θY (Q)) τ−→ θX(P ‖S θY (Q′)) =: T ′ and R′ B T ′.
Now assume α ∈ A∪{t}. Then P ‖SQ

α−→ R′. I first deal with the case that α ∈ X , and consider
the three rules from Table 1 that could have derived P ‖S Q

α−→ R′.
– The case that α /∈ S and P α−→ P ′ cannot occur, because I(P) ∩X ⊆ S.
– Let α ∈ S, P α−→ P ′, Q α−→ Q′ and R′ = P ′ ‖S Q′. Then α ∈ I(P), so α /∈ S \ I(P) and

thus α ∈ Y . Hence θY (Q) α−→ Q′. Now T = θX(P ‖S θY (Q)) α−→ P ′ ‖S Q′ = R′.
– Let α /∈ S, Q α−→ Q′ and R′ = P ‖S Q′. Then α ∈ Y , so θY (Q) α−→ Q′. Therefore,
P ‖S θY (Q) α−→ P ‖S Q′ and thus T = θX(P ‖S θY (Q)) α−→ P ‖S Q′ = R′.

Finally, assume α ∈ (A ∪ {t}) \ X . In that case P ‖S Q
β−6→ for all β ∈ X ∪ {τ}. Therefore,

Q β−6→ for all β ∈ (X \ S) ∪ {τ}, and for all β ∈ X ∩ S ∩ I(P), and thus for all β ∈ Y ∪ {τ}.
By Lemma 12, θY (Q) =I Q, and hence P ‖S θY (Q) β−6→ for all β ∈ X ∪ {τ}. Again, I consider
the three rules from Table 1 that could have derived P ‖S Q

α−→ R′.
– Let α /∈ S, P α−→ P ′ and R′ = P ′ ‖S Q. Then P ‖S θY (Q) α−→ P ′ ‖S θY (Q) and thus
T = θX(P ‖S θY (Q)) α−→ P ′ ‖S θY (Q) =: T ′. By Lemma 12, θY (Q) ↔Q. Since↔ is a
congruence for ‖S , it follows that R′ = P ′ ‖S Q↔P ′ ‖S θY (Q) = T ′.

– Let α ∈ S, P α−→ P ′, Q α−→ Q′ and R′ = P ′ ‖S Q′. Then θY (Q) α−→ Q′ and therefore
P ‖S θY (Q) α−→ P ′ ‖S Q′ and T = θX(P ‖S θY (Q)) α−→ P ′ ‖S Q′ = R′.

– Let α /∈ S, Q α−→ Q′ and R′ = P ‖S Q′. Then θY (Q) α−→ Q′, so P ‖S θY (Q) α−→ P ‖S Q′
and thus T = θX(P ‖S θY (Q)) α−→ P ‖S Q′ = R′.

• Let R= θX(P ‖S θY (Q)) and T = θX(P ‖S Q), for some Q ∈P.
First assume α = τ . Then Q τ−→ Q′ for some Q′ with R′ = θX(P ‖S θY (Q′)). Consequently,
T = θX(P ‖S Q) τ−→ θX(P ‖S Q′) =: T ′ and R′ B̃ T ′.
Now assume α ∈ A ∪ {t}. Then P ‖S θY (Q) α−→ R′ and either α ∈ X or P ‖S θY (Q) β−6→ for
all β ∈ X ∪ {τ}. In the latter case one obtains θY (Q) β−6→ for all β ∈ Y ∪ {τ} (as above), and
thus Q β−6→ for all β ∈ Y ∪ {τ}, that is, I(Q) ∩ (Y ∪ {τ}) = ∅. Furthermore, this implies that
P ‖S Q

β−6→ for all β ∈ X ∪ {τ}.
I consider the three rules from Table 1 that could have derived P ‖S Q

α−→ R′.

R.J. van Glabbeek 41

– Let α /∈ S, P α−→ P ′ and R′ = P ′ ‖S θY (Q). Then a /∈ X , because I(P) ∩X ⊆ S.
Hence P ‖S θY (Q) β−6→ for all β ∈ X ∪ {τ}, so I(Q) ∩ (Y ∪ {τ}) = ∅.
Now T = θX(P ‖S Q) α−→ P ′ ‖S Q =: T ′ and R′ ↔ T ′, using Lemma 12.

– Let α ∈ S, P α−→ P ′, θY (Q) α−→ Q′ and R′ = P ′ ‖S Q′. Then Q α−→ Q′.
Hence P ‖S Q

α−→ P ′ ‖S Q′ and thus T = θX(P ‖S Q) α−→ P ′ ‖S Q′ = R′.
– Let α /∈ S, θY (Q) α−→ Q′ and R′ = P ‖S Q′. Then Q α−→ Q′.

Consequently, P ‖S Q
α−→ P ‖S Q′ and thus T = θX(P ‖S Q) α−→ P ‖S Q′ = R′. 2

Lemma 3 θX(τI(P))↔ θX(τI(θX∪I(P))).

Proof: For given X and I , let B := Id ∪ {(θX(τI(P)), θX(τI(θX∪I(P)))) | P ∈ P}. It suffices to
show that the symmetric closure B̃ of B is a strong bisimulation. So let R B̃ T and R α−→ R′ with
α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and R′ B̃ T ′.

• The case that R = T is trivial.

• Let R = θX(τI(P)) and T = θX(τI(θX∪I(P))), for some P ∈ P.
First assume α = τ . Then τI(P) τ−→ R′′ for some R′′ such that R′ = θX(R′′). Therefore,
P β−→ P ′ for some β ∈ I ∪ {τ} and some P ′ with R′′ = τI(P

′). In case β = τ , it turns out
that T = θX(τI(θX∪I(P))) τ−→ θX(τI(θX∪I(P

′))) =: T ′. Moreover, R′ B T ′. In case β ∈ I ,
θX∪I(P) β−→ P ′, so τI(θX∪I(P)) τ−→ τI(P

′) and T = θX(τI(θX∪I(P))) τ−→ θX(τI(P
′)) = R′.

Now assume α ∈ A∪{t}. Then τI(P) α−→ R′ and either α ∈ X or τI(P) β−6→ for all β ∈ X∪{τ}.
It follows that α /∈ I and P α−→ P ′ for some P ′ with R′ = τI(P

′). Moreover, in case α /∈ X one
has P β−6→ for all β ∈ X ∪ I ∪ {τ}, and hence also θX∪I(P) β−6→ for all β ∈ X ∪ I ∪ {τ}, and
thus τI(θX∪I(P)) β−6→ for all β ∈ X ∪ {τ}. Now θX∪I(P) α−→ P ′, so τI(θX∪I(P)) α−→ τI(P

′)
and thus T = θX(τI(θX∪I(P))) α−→ τI(P

′) = R′.

• Let R = θX(τI(θX∪I(P))) and T = θX(τI(P)), for some P ∈ P.
First assume α = τ . Then τI(θX∪I(P)) τ−→ R′′ for some R′′ such that R′ = θX(R′′). Therefore,
θX∪I(P) β−→ P ′ for some β ∈ I∪{τ} and some P ′ withR′′ = τI(P

′). In case β = τ , it turns out
that P τ−→ P ′′ for some P ′′ such that P ′=θX∪I(P

′′). So T = θX(τI(P)) τ−→ θX(τI(P
′′)) =: T ′,

and R′ B̃ T ′. In case β ∈ I , one has P β−→ P ′, so τI(P) τ−→ τI(P
′) and T = θX(τI(P)) τ−→

θX(τI(P
′)) = R′.

Now assume α ∈ A ∪ {t}. Then τI(θX∪I(P)) α−→ R′, so α /∈ I and θX∪I(P) α−→ P ′ for some
P ′ such that R′ = τI(P

′). Thus P α−→ P ′ and either α ∈ X or P β−6→ for all β ∈ X ∪ I ∪ {τ}.
In the latter case τI(P) β−6→ for all β ∈ X ∪ {τ}. Now τI(P) α−→ τI(P

′) and consequently
T = θX(τI(P)) α−→ τI(P

′) = R′. 2

Lemma 4 θX(R(P))↔ θX(R(θR−1(X)(P))).

Proof: For givenX ⊆ A andR ⊆ A×A, let B := Id∪{(θX(R(P)), θX(R(θR−1(X)(P)))) | P ∈ P}.
It suffices to show that the symmetric closure B̃ of B is a strong bisimulation. So let R B̃ T and
R α−→ R′ with α ∈ A ∪ {τ, t}. I have to find a T ′ with T α−→ T ′ and R′ B̃ T ′.

• The case that R = T is trivial.

• Let R = θX(R(P)) and T = θX(R(θR−1(X)(P))), for some P ∈ P.

First assume α = τ . Then P τ−→ P ′ for some P ′ such that R′ = θX(R(P ′)).
Hence T = θX(R(θR−1(X)(P))) τ−→ θX(R(θR−1(X)(P

′))) =: T ′, and R′ B T ′.

42 Reactive Bisimulation Semantics for a Process Algebra with Time-Outs

Now assume α∈A∪{t}. ThenR(P) α−→ R′, and either α∈X orR(P) β−6→ for all β∈X∪{τ}. In
the latter case, P β−6→ for all β∈R−1(X)∪{τ}. Moreover, P γ−→ P ′, for some γ with γ = t = α
or (γ, α) ∈ R, and some P ′ with R′ = R(P ′). In case α ∈ X , one has γ ∈ R−1(X). Therefore,
θR−1(X)(P) γ−→ P ′, and thusR(θR−1(X)(P)) α−→ R(P ′).

Either α ∈X or θR−1(X)(P) β−6→ for all β ∈ R−1(X) ∪ {τ}, in which case R(θR−1(X)(P)) β−6→
for all β ∈X ∪ {τ}. Consequently, T = θX(R(θR−1(X)(P))) α−→ R(P ′) = R′.

• Let R = θX(R(θR−1(X)(P))) and T = θX(R(P)), for some P ∈ P.

First assume α = τ . Then P τ−→ P ′ for some P ′ such that R′ = θX(R(θR−1(X)(P
′))).

Hence T = θX(R(P)) τ−→ θX(R(P ′)) =: T ′, and R′ B̃ T ′.

Now assume α∈A∪{t}. ThenR(θR−1(X)(P)) α−→ R′ and either α ∈ X orR(θR−1(X)(P)) β−6→
for all β ∈X ∪ {τ}. Therefore, θR−1(X)(P) γ−→ P ′ for some γ with γ = t = α or (γ, α) ∈ R,
and some P ′ such that R′ = R(P ′). Hence P γ−→ P ′, and thusR(P) α−→ R(P ′). In case α /∈ X ,
one has θR−1(X)(P) β−6→ for all β ∈ R−1(X) ∪ {τ}, and thus P β−6→ for all β ∈ R−1(X) ∪ {τ},
soR(P) β−6→ for all β ∈X ∪ {τ}. Hence T = θX(R(P)) α−→ R(P ′) = R′. 2

C Reducing Strong Reactive Bisimilarity to Strong Bisimilarity

Pohlmann [37] introduces unary operators ϑ and ϑX for X ⊆ A that model placing their argument
process in an environment that is triggered to change, or allows exactly the actions in X , respectively.
Although inspired by my operators θX from Section 4,1 their semantics is different, and given by the
following structural operational rules (for all X ⊆ A).

x τ−→ y

ϑ(x) τ−→ ϑ(y) ϑ(x) εX−→ ϑX(x)

x a−→ y

ϑX(x) a−→ ϑ(y)
(a ∈ X)

x τ−→ y

ϑX(x) τ−→ ϑX(y)

x α−6→ for all α ∈X ∪ {τ}
ϑX(x) tε−→ ϑ(y)

x t−→ y x α−6→ for all α ∈X ∪ {τ}
ϑX(x) t−→ ϑX(y)

Here the actions tε /∈ A and εX /∈ A forX ⊆ A are generated by the new operators, but may not be used
by processes substituted for their arguments x. They model a time-out action taken by the environment,
and the stabilisation of an environment into one that allows exactly the set of actions X , respectively.

These rules mirror the clauses of Definition 1 of a strong reactive bisimulation.
• τ -transitions can be performed regardless of the environment,
• triggered environments can stabilise into arbitrary stable environments X for X ⊆ A,
• allowed visible transitions can be performed and can trigger a change in the environment,
• τ -transitions cannot be observed by the environment and hence cannot trigger a change,
• if the underlying system is idle, the environment may time-out and become triggered to change,
• if the underlying system is idle, it can perform a t-transition, not observed by the environment.

The main result from [37] reduces strong reactive bisimilarity to strong bisimilarity:

1Pohlmann [37] follows the original, 2020, version of this paper; this appendix was added in September 2021.

R.J. van Glabbeek 43

Theorem 45 Let P,Q∈P,X⊆A. Then P ↔rQ iff ϑ(P)↔ϑ(Q), and P ↔X
r Q iff ϑX(P)↔ϑX(Q).

Proof: If R is a strong reactive bisimulation, then

B:= {(ϑ(P), ϑ(Q)) | (P,Q) ∈ R} ∪ {(ϑ(P), ϑ(Q)) | (P,X,Q) ∈ R}

is a strong bisimulation. Moreover,

R := {(P,Q) | ϑ(P)↔ϑ(Q)} ∪ {(P,X,Q) | ϑX(P)↔ϑX(Q)}

is a strong reactive bisimulation. Both statements follows directly from the definitions, and they imply
the theorem. This proof stems from [37], where it is formalised in Isabelle. 2

Another notable result from [37] is a function ς that turns any formula ϕ from my extension of the
Hennessy-Milner logic into a formula ς(ϕ) in the regular Hennessy-Milner logic, such that P |= ϕ iff
ϑ(P) |= ς(ϕ) and P |=X ϕ iff ϑX(P) |= ς(ϕ).

Interestingly, the operators ϑ and ϑX from [37] can be expressed in terms of (fairly) standard process
algebra operators. Define the universal environment E as the recursive specification

{U =
∑
X⊆A

εX .X} ∪ {X = tε.U +
∑
a∈X

a.U | X ⊆ A}.

In case A is infinite, this requires an infinite choice operator
∑

, which was not included in the syntax of
CCSPt used in Section 5. Here VE = {U} ∪ {X | X ⊆ A} are the bound variables of E . The process
/
\U |E\/ denotes an environment that is triggered to change, and /

\X|E\/ one that allows exactly the actions
in X . The only actions that /\U |E\/ can do are stabilising into any /

\X|E\/. The process /
\X|E\/ can either

synchronise on any action a ∈ X or perform a time-out, in both cases returning to the state /
\U |E\/.

If we now drop the negative premises from the structural operational rules of the operators ϑX , and

add a rule x
t−→y

ϑ(x)
t−→ϑ(y)

, then ϑ(P) ↔ /
\U |E\/ ‖A P and ϑX(P) ↔ /

\X|E\/ ‖A P . Here the operator ‖A
enforces synchronisation on all visible actions a ∈ A, although actions εX and tε can occur when the
environment is ready do do them, and actions τ and t can be triggered by just the process P . Checking
strong bisimilarity between ϑ(P) and /

\U |E\/‖AP , and between ϑX(P) and /
\X|E\/‖AP , is straightforward.

To obtain the real process ϑ(P) from /
\U |E\/ ‖A P , or ϑX(P) from /

\X|E\/ ‖A P , all one has to do is
to inhibit any t- or tε-transition when a transition with a label in A ∪ {τ} ∪ {εX | X ⊆ A} is possible.
This can be achieved with the priority operator of Baeten, Bergstra & Klop [1]. This unary operator Θ is
parametrised by a partial order < on the set of actions, the priority order, and passes through a transition
of its argument process only if no transition with a higher priority is possible. Its operational semantic is
given by

x α−→ y x β−6→ for all β > α

Θ(x) α−→ Θ(y)
.

For the present application I take < := {(t, α), (tε, α) | α ∈ Act\{t, tε}}, thus giving t and tε a lower
priority than all other actions. This yields the desired properties

ϑ(P)↔Θ(/\U |E\/ ‖A P) and ϑX(P)↔Θ(/\X|E\/ ‖A P) .

	Introduction
	Reactive bisimilarity
	A more general form of reactive bisimulation

	A modal characterisation of strong reactive bisimilarity
	Time-out bisimulations
	The process algebra CCSP
	Guarded recursion and finitely branching processes
	Congruence
	Initials equivalence
	Strong bisimilarity

	Strong reactive bisimilarity is a full congruence for CCSP
	The Recursive Specification Principle
	Complete axiomatisations
	A complete axiomatisation of strong bisimilarity on guarded CCSP
	A complete axiomatisation of strong bisimilarity
	A complete axiomatisation of strong reactive bisimilarity
	Completeness for finite processes
	The method of canonical representatives
	The canonical representative
	Completeness for finitely branching processes
	Necessity of the axiom of choice

	Concluding remarks
	Initials congruence
	Proofs of lemmas on theta_X and strong bisimilarity from Section 7.2
	Reducing Strong Reactive Bisimilarity to Strong Bisimilarity

