
Lean and Full Congruence Formats for Recursion

Rob van Glabbeek1,2

1 Data61, CSIRO, Sydney
2 University of New South Wales, School of Comput. Sci. & Engineering, Sydney

Abstract. In this paper I distinguish two (pre)congruence requirements
for semantic equivalences and preorders on processes given as closed
terms in a system description language with a recursion construct. A
lean congruence preserves equivalence when replacing closed subexpres-
sions of a process by equivalent alternatives. A full congruence moreover
allows replacement within a recursive specification of subexpressions that
may contain recursion variables bound outside of these subexpressions.
I establish that bisimilarity is a lean (pre)congruence for recursion for
all languages with a structural operational semantics in the ntyft/ntyxt
format. Additionally, it is a full congruence for the tyft/tyxt format.

1 Introduction

Structural Operational Semantics [41,43] is one of the main methods for defining
the meaning of system description languages like CCS [41]. A system or process
is represented by a closed term built from a collection of operators, process
variables and usually a recursion construct, and the behaviour of a process is
given by its collection of (outgoing) transitions, each specifying the action the
process performs by taking this transition, and the process that results after
doing so. The transitions between states are obtained from a set of proof rules
called transition rules.

For purposes of representation and verification, several behavioural equiva-
lence relations have been defined on processes, of which the most well-known is
(strong) bisimilarity [41]. To allow compositional system verification, such equiv-
alences need to be congruences for the operators under consideration, meaning
that the equivalence class of an n-ary operator f applied to arguments p1, . . . , pn
is completely determined by the equivalence classes of these arguments.

Equally important is that the chosen equivalence relation ∼ is a congruence
for recursion. Recursion allows the specification of a process as a canonical solu-
tion of an equationX = E(X).1 Here E(X) is an expression that may contain the
variable X. If W is the collection of other variables occurring in E, not bound by
the recursive specification, then the canonical solution of X = E(X) is a W -ary
function that returns a process for each valuation of these variables as processes.
I call ∼ a lean congruence for recursion if each such operator satisfies the above-
mentioned congruence requirement. The lean congruence requirement plays a
key rôle in the study of expressiveness of system description languages [31].

1 The particular solution supplied by structural operational semantics is the one whose
transitions are determined by the transition rules.

2 Rob van Glabbeek

If F (X) is an expression like E(X), for simplicity assuming that neither
contains variables other than X, and E(p) ∼ F (p) regardless which process p
is substituted for the variable X, then the full congruence property demands
that the selected solutions of the equations X = E(X) and X = F (X) are
again equivalent. As an example in the language CCS, suppose that a process
is given as the solution of the equation X = a.X + a.X. Using the idempotence
of + under bisimilarity, one can now proceed to think of the same process, up
to bisimilarity, as the solution of X = a.X. This type of reasoning is a central
component in system verification by equivalence checking [7,17,6,34]. Yet it is
valid only if bisimilarity is a full congruence for recursion.

In order to streamline the process of proving that a certain equivalence is
a congruence for certain operators, and to guide sensible language definitions,
syntactic criteria (congruence formats) for the transition rules in structural op-
erational semantics have been developed, ensuring that the equivalence is a con-
gruence for any operator specified by rules that meet these criteria. The first
of these was proposed by Robert de Simone in [45,46] and is now called
the De Simone format. A generalisation featuring transition rules with negative
premises is the GSOS format of Bloom, Istrail & Meyer [11], and a gen-
eralisation with lookahead is the tyft/tyxt format of Groote & Vaandrager

[36]. The ntyft/ntyxt format of Groote [33] allows both negative premises and
lookahead and generalises the GSOS as well as the tyft/tyxt format. All this
work provides congruence formats for (strong) bisimilarity. Congruence formats
for other strong semantic equivalences—treating the internal action τ like any
other action—appear in [10,21].2 Formats for weak semantics—abstracting from
internal activity—can be found, e.g., in [47,9,18,48,49,30,23,20].

Extensions to probabilistic systems appear for instance in [8,38,37,24,40,5,16].
Rule formats ensuring properties of operators other than being a (pre)congruence
appear in [42] (commutativity), [15] (associativity), [2] (zero and unit elements),
[3] (distributivity) and [1] (idempotence). Overviews on work on congruence for-
mats and other rule formats, with many more references, can be found in [4,35].

Yet, to the best of my knowledge, no one has proposed a congruence format
for recursion. This hiatus is addressed here. I establish that bisimilarity is a
lean congruence for recursion for all languages with a structural operational
semantics in the ntyft/ntyxt format.3 I did not succeed in showing that it is even
a full congruence for all ntyft/ntyxt languages; nor did I find a counterexample.
Even for GSOS languages this remains an open question. However, I show that
bisimilarity is a full congruence for recursion for all tyft/tyxt languages.

My proof strategy follows the traditional method of [11,36,12]. The method
of modal decomposition [22] yields alternative congruence proofs for operators
specified in the tyft/tyxt and GSOS formats [22]. Extending this method to deal
with recursion might be a way to extend my full congruence result to transition
rules with negative premises.

2 These congruence formats also apply to behavioural preorders, and then ensure that
such a preorder is a precongruence.

3 Some of those languages have a 3-valued transition system semantics, where bisimi-
larity becomes an asymmetric preorder. Here I establish that it is a precongruence.

Lean and Full Congruence Formats for Recursion 3

2 Transition system specifications and their meaning

In this paper Var and A are two sets of variables and actions. Many concepts
that will appear are parameterised by the choice of Var and A, but as in this
paper this choice is fixed, a corresponding index is suppressed.

Definition 1 (Signatures). A function declaration is a pair (f, n) of a function
symbol f 6∈ V and an arity n ∈ N.4 A function declaration (c, 0) is also called a
constant declaration. A signature is a set of function declarations. The set T(Σ)
of terms with recursion over a signature Σ is defined inductively by:
– V ⊆ T(Σ),
– if (f, n) ∈ Σ and t1, . . . , tn ∈ T(Σ) then f(t1, . . . , tn) ∈ T(Σ).
– If VS ⊆ Var , S : VS → T(Σ) and X ∈ VS , then

/
\X|S\

/ ∈ T(Σ).
A term c() is abbreviated as c. A function S as appears in the last clause is
called a recursive specification. A recursive specification S is often displayed as
{X = SX | X ∈ VS}. An occurrence of a variable y in a term t is free if it does
not occur in a subterm of the form /

\X|S\
/ with y ∈ VS . Let var(t) denote the set

of variables occurring free in a term t ∈ T(Σ), and let T(Σ,W) be the set of
terms t over Σ with var(t) ⊆ W . T(Σ) := T(Σ, ∅) is set of closed terms over Σ.

Definition 2 (Substitution). A Σ-substitution σ is a partial function from V
to T(Σ). If σ is a substitution and S any syntactic object, then S[σ] denotes
the object obtained from S by replacing, for x in the domain of σ, every free
occurrence of x in S by σ(x), while renaming bound variables if necessary to
prevent name-clashes. In that case S[σ] is called a substitution instance of S. A
substitution instance t[σ] where σ is given by σ(xi) = ui for i ∈ I is denoted as
t[ui/xi]i∈I , and for S a recursive specification /

\t|S\
/ abbreviates t[

/
\Y |S\

//Y]Y ∈VS
.

Structural operational semantics [43] defines the meaning of system description
languages whose syntax is given by a signature Σ. It generates a transition sys-
tem in which the states, or processes, are the closed terms over Σ—representing
the remaining system behaviour from that state—and transitions between pro-
cesses are supplied with labels. The transitions between processes are obtained
from a transition system specification, which consists of a set of transition rules.

Definition 3 (Transition system specifications). Let Σ be a signature. A
positive Σ-literal is an expression t a−→ t′ and a negative Σ-literal an expression
t a−6→ with t, t′ ∈ T(Σ) and a ∈ A. For t, t′ ∈ T(Σ) the literals t a−→ t′ and t a−6→
are said to deny each other. A transition rule over Σ is an expression of the form
H
α

with H a set of Σ-literals (the premises or antecedents of the the rule) and α
a positive Σ-literal (the conclusion). The terms at the left- and right-hand side
of α are the source and target of the rule. A rule H

α
with H = ∅ is also written α.

4 This work generalises seamlessly to operators with infinitely many arguments. Such
operators occur, for instance, in [13, Appendix A.2]. Hence one may take n to be any
ordinal. An operator, like the summation or choice of CCS [41], that actually takes
any set of arguments, needs to be simulated by a family of operators with a sequence
of arguments (but yielding the same value upon reshuffling of the arguments), one
of for each cardinality of this set.

4 Rob van Glabbeek

A literal or transition rule is closed if it contains no free variables. A transition
system specification (TSS) is a pair (Σ,R) with Σ a signature and R a set of
transition rules over Σ; it is positive if all antecedents of its rules are positive.

The concept of a (positive) TSS presented above was introduced in Groote

& Vaandrager [36]; the negative premises t a−6→ were added in Groote [33].
The notion generalises the GSOS rule systems of [11] and constitutes the first
formalisation of Plotkin’s Structural Operational Semantics (SOS) [43] that is
sufficiently general to cover many of its applications.

The following definition (from [26]) tells when a transition is provable from
a TSS. It generalises the standard definition (see e.g. [36]) by (also) allowing
the derivation of transition rules. The derivation of a transition t a−→ t′ corre-
sponds to the derivation of the transition rule H

t
a

−→t′
with H =∅. The case H 6=∅

corresponds to the derivation of t a−→ t′ under the assumptions H .

Definition 4 (Proof). Let P = (Σ,R) be a TSS. A proof of a transition rule
H
α

from P is a well-founded, upwardly branching tree of which the nodes are
labelled by Σ-literals, such that:
– the root is labelled by α, and
– if β is the label of a node q and K is the set of labels of the nodes directly

above q, then
• either K = ∅ and β ∈ H ,
• or K

β
is a substitution instance of a rule from R.

If a proof of H
α

from P exists, then H
α

is provable from P , notation P ⊢ H
α
.

A TSS is meant to specify an LTS in which the transitions are closed positive
literals. A positive TSS specifies a transition relation in a straightforward way as
the set of all provable transitions. But as pointed out in Groote [33], it is not
so easy to associate a transition relation to a TSS with negative premises. In [29]
several solutions to this problem were reviewed and evaluated. Arguably, the best
method to assign a meaning to all TSSs is the well-founded semantics of Van
Gelder, Ross & Schlipf [25], which in general yields a 3-valued transition
relation T : T(Σ)×A×T(Σ) → {present, undetermined, absent}. I present such
a relation as a pair /

\CT, PT\
/ of 2-valued transition relations—the sets of certain

and possible transitions—with CT ⊆ PT . When insisting on 2-valued transition
relations, the best method is the same, declaring meaningful only those TSSs
whose well-founded semantics is 2-valued, meaning that CT = PT .

Below I give a new presentation of the well-founded semantics, strongly in-
spired by previous accounts in [44,12,29]. As Def. 4 does not allow the derivation
of negative literals, to arrive at an approximation AT+ of the set of transitions
that are in the transition relation intended by a TSS P , one could start from an
approximation AT− of the closed negative literals that ought to be generated,
and define AT+ as the set of closed positive literals provable from P under the
hypotheses AT−. Intuitively,
1. if AT− is an under- (resp. over-)approximation of the closed negative literals

that “really” hold, then AT+ will be an under- (resp. over-)approximation
of the intended (2-valued) transition relation, and

Lean and Full Congruence Formats for Recursion 5

2. if AT+ is an under- (resp. over-)approximation of the intended transition
relation, then the set of all closed negative literals that do not deny any
literal in AT+ is an over- (resp. under-)approximation of the closed negative
literals that agree with the intended transition relation.

Definition 5 (Over- and underapproximations of transition relations).
Let P be a TSS. For ordinals λ the sets CT+

λ and PT+
λ of closed positive literals,

and CT−

λ , PT−

λ of closed negative literals are defined inductively by:

PT−

λ

is the set of literals that do not
deny any β ∈ CT+

κ with κ < λ
β ∈ PT+

λ iff P ⊢
PT

−
λ

β

CT−

λ

is the set of literals that do not
deny any β ∈ PT+

λ

β ∈ CT+
λ iff P ⊢

CT
−
λ

β
.

Intuitively, CT+
λ is an underapproximation of the set of transitions that should

be in the transition relation specified by P , and PT+
λ an overapproximation.

Likewise, CT−

λ is an underapproximation of the set of closed negative literals that
should hold, and PT−

λ an overapproximation. The approximations get better
with increasing λ. To understand this inductively, note that PT−

0 is the set of
all closed negative literals, and thus surely an overapproximation. The induction
step is given by considerations 1 and 2 above.

Lemma 1. CT−

κ ⊆CT−

λ ⊆PT−

λ ⊆PT−

κ and CT+
κ ⊆CT+

λ ⊆PT+
λ ⊆PT+

κ for κ<λ.

Proof. Let κ < λ. The definition of PT−

λ immediately yields PT−

λ ⊆PT−

κ . From
this, applying Def. 5, one obtains PT+

λ ⊆ PT+
κ , CT−

κ ⊆ CT−

λ and CT+
κ ⊆ CT+

λ ,
respectively. The remaining claims follow by induction on λ.

As PT−

0 is the universal relation, certainly CT−

0 ⊆ PT−

0 , so CT+
0 ⊆ PT+

0 .
Let λ be a limit ordinal. Then PT−

λ =
⋂

µ<λ PT−

µ . For any κ, µ < λ one has

CT−

κ ⊆ PT−

µ by induction. Namely CT−

κ ⊆ CT−

µ ⊆ PT−

µ if κ ≤ µ < λ, and
CT−

κ ⊆ PT−

κ ⊆ PT−

µ if µ ≤ κ < λ. Hence CT−

κ ⊆
⋂

µ<λ PT−

µ = PT−

λ for any

κ < λ, and hence CT+
κ ⊆ PT+

λ . With Def. 5 this implies CT−

λ ⊆PT−

λ and hence
CT+

λ ⊆ PT+
λ .

Now let λ = µ+1. By induction CT+
µ ⊆ PT+

µ . With Def. 5 this implies

CT−

µ ⊆ PT−

λ , and hence CT+
µ ⊆ PT+

λ . With Def. 5 this implies CT−

λ ⊆ PT−

λ

and hence CT+
λ ⊆ PT+

λ . ⊓⊔

Since the closed literals over Σ form a proper set, there must be an ordinal κ
such that PT−

λ =PT−

κ for all λ>κ, and hence also PT+
λ =PT+

κ , CT−

λ =CT−

κ and
CT+

λ =CT+
κ . Define PT− :=PT−

κ , PT+ :=PT+
κ , CT− :=CT−

κ and CT+ := CT+
κ .

Remark 1. PT− =
⋂

λ PT−

λ , taking the intersection over all ordinals. Likewise,
PT+ =

⋂
λ PT+

λ , CT− =
⋃

λCT−

λ and CT+ =
⋃

λ CT+
λ .

Remark 2. PT− is the set of literals that do not deny any literal in CT+, and
likewise for CT− and PT+. Moreover, CT− ⊆ PT− and CT+ ⊆ PT+.

Definition 6 (Well-founded semantics). The 3-valued transition relation
/
\CT+, PT+\

/ constitutes the well-founded semantics of P .

6 Rob van Glabbeek

Below I show that the above account of the well-founded semantics is consistent
with the one in [29], and thereby with the ones in [12,44,25].

Definition 7 (Well-supported proof [29]). Let P = (Σ,R) be a TSS. A
well-supported proof from P of a closed literal α is a well-founded tree with the
nodes labelled by closed literals, such that the root is labelled by α, and if β is
the label of a node and K is the set of labels of the children of this node, then:
– either β is positive and K

β
is a substitution instance of a rule in R;

– or β is negative and for each set N of closed negative literals with P ⊢ N
γ

for γ a closed positive literal denying β, a literal in K denies one in N .
P ⊢ws α denotes that a well-supported proof from P of α exists.

Proposition 1. Let P be a TSS. Then P ⊢ws p a−→ q iff (p a−→ q) ∈ CT+, and

P ⊢ws p a−6→ iff (p a−6→) ∈ CT−.

Proof. ⇒ : Let π be a well-supported proof of a closed literal α. By consistently
applying the same closed substitution to all literals occurring in π, one can
assume, without loss of generality, that all literals in π are closed. With structural
induction on π I show that α ∈ CT+ ∪ CT−.

Suppose α is positive and K
α

is the closed substitution instance of the rule
of P applied at the root of π. Then for each β ∈ K the literal β is ws-provable
from P by means of a strict subproof of π. By induction β ∈ CT+ ∪ CT−. As
CT+ is CT+

κ for some ordinal κ, it is closed under deduction. Hence α ∈ CT+.
Suppose α is negative. Let β be closed positive literal denying α. By Def. 7,

each set N of closed negative literals with P ⊢ β contains a literal γN denying
a literal δN that is ws-provable from P by means of a strict subproof of π. By
induction δN ∈CT+. Hence γN /∈PT−. Consequently β /∈PT+. Hence α∈CT−.

⇐ : Suppose α ∈ CT+
λ ∪ CT−

λ . With induction on λ I show that P ⊢ws α.

First suppose α ∈ CT−

λ . Let N be a set of closed negative literals with P ⊢ N
γ

for γ a closed positive literal denying α. Assume that N ⊆ PT−

λ . Then γ would
be in PT+

λ , contradicting the definition of CT−

λ . So N contains a literal that
is not in PT−

λ , i.e., denies a literal δN in CT+
κ for some κ < λ. By induction,

P ⊢ws δN . It follows that P ⊢ws α.
Now suppose α ∈ CT+

λ . Then P ⊢
CT

−
λ

α
. By the case above P ⊢ws β for each

β ∈ CT−

λ . Hence P ⊢ws α. ⊓⊔

The above result, together with Theorem 1 in [29], and the observation in [29]
that literals t a−6→ t′ can be eliminated from consideration (as done here), implies
that the well-founded semantics given above agrees with the one from [29].

In [29] it was shown that ⊢ws is consistent, in the sense that no TSS admits
well-supported proofs of two literals that deny each other. This also follows
directly from the material above. A TSS P is called complete [29] if for each p
and a, either P ⊢ws p a−6→ or P ⊢ws p a−→ q for some q. This implies that CT− is
exactly the set of closed negative literals that do not deny any literal in CT+.
Hence CT− = PT− and thus CT+ = PT+. So the 3-valued transition system
associated to a complete TSS is 2-valued.

Lean and Full Congruence Formats for Recursion 7

Below I write P ⊢ p
a

−→λ q for (p
a

−→q)∈CT+
λ , P ⊢ p 6

a
−→λ for (p 6

a
−→)∈CT−

λ ,

P ⊢ p
a

−−→λq for (p
a

−→ q) ∈ PT+
λ and P ⊢ p 6a−−→λ for (p 6

a
−→) ∈ PT−

λ . Moreover,

p
a

−→ q, resp. p
a

−−→ q, will abbreviate p
a

−→κ q, resp. p
a

−−→κ q, where κ is the
closure ordinal used in Def. 6.

In my forthcoming lean congruence proof I will apply structural induction on
“the proof of a transition p

a
−→λ q or p a

−−→λ q from P”. There I will mean the

proofs of
CT

−
λ

p
a

−→q
and

PT
−
λ

p
a

−→q
, respectively, as this is what constitutes the evidence

for the statement P ⊢ p a−→λ q, resp. P ⊢ p
a

−−→λ q.

3 The bisimulation preorder

The goal of this paper is to show that bisimilarity is a congruence for recursion for
all languages with a structural operational semantics in the ntyft/ntyxt format.
Traditionally [41], bisimilarity is defined on 2-valued transition systems only,
whereas the structural operational semantics of a language specified by a TSS
can be 3-valued. Rather than limit my results to languages specified by complete
TSSs, I use an extension of the notion of bisimilarity to 3-valued transition
systems. Such an extension, called modal refinement, is provided in [39]. There,
3-valued transition systems are called modal transition systems.

Definition 8 (Bisimilarity). Let P be a TSS. A bisimulation R is a binary
relation on the states of T(Σ) such that, for p, q ∈ T(Σ) and a ∈ A,

– if p R q and P ⊢ p
a

−→ p′, then there is a q′ with P ⊢ q
a

−→ q′ and p′ R q′,
– if p R q and P ⊢ q

a
−−→ q′, then there is a p′ with P ⊢ p

a
−−→ p′ and p′ R q′.

A process q ∈ T(Σ) is a modal refinement of p ∈ T(Σ), notation p ⊑B q, if
there exists a bisimulation R with p R q. I call ⊑B the bisimulation preorder,
or bisimilarity. The kernel of ⊑, given by ≡B := ⊑B ∩ ⊒B, is bisimulation
equivalence.

Clearly, modal refinement is reflexive and transitive, and hence a preorder. The
underlying idea is that a process p with a 3-valued transition relation /

\CT, PT\
/

is a specification of a process with a 2-valued transition relation, in which the
presence or absence of certain transitions is left open. CT contains the transitions
that are required by the specification, and PT the ones that are allowed. If
p ⊑B q, then q may be closer to the eventual implementation, in the sense that
some of the undetermined transitions have been resolved to present or absent.
The requirements of Def. 8 now say that any transition that is required by
p should be (matched by a transition) required by q, whereas any transition
allowed by q, should certainly be (matched by a transition) allowed by p.

In case p and q are 2-valued (i.e. implementations) the modal refinement
relation is just the traditional notion of bisimilarity [41] (and thus symmetric).

While achieving a higher degree of generality of my lean congruence theorem
by interpreting incomplete TSSs as modal transition system, I do not propose
incomplete TSS as a tool for the specification of modal transition systems.

8 Rob van Glabbeek

4 Congruence properties

In the presence of recursion, two sensible notions of precongruence come to mind.

Definition 9. Let ⊑ be a preorder on the set T(Σ) of closed terms over Σ. For
ρ, ν :Var → T(Σ) closed substitutions write ρ⊑ν iff ρ(x)⊑σ(x) for each x∈Var .

A preorder ⊑ ⊆ T(Σ) × T(Σ) is a lean precongruence iff t[ρ] ⊑ t[ν] for any
term t ∈ T(Σ) and any closed substitutions ρ and ν with ρ ⊑ ν.

Definition 10. A preorder ⊑⊆T(Σ)×T(Σ) is a full precongruence iff it satisfies

pi ⊑ qi for all i = 1, ..., n ⇒ f(p1, ..., pn) ⊑ f(q1, ..., qn) (1)
SY [σ] ⊑ S′

Y [σ] for all Y ∈W and σ : W → T(Σ) ⇒ /
\X|S\

/ ⊑ /
\X|S′\

/ (2)

for all functions (f, n) ∈ Σ, closed terms pi, qi ∈ T(Σ), and recursive specifica-
tions S, S′ : W → T(Σ,W) with X ∈ W ⊆ Var .

A lean (resp. full) precongruence that is symmetric (i.e. an equivalence relation)
is called a lean (resp. full) congruence. Clearly, each full (pre)congruence is also
a lean (pre)congruence, and each lean (pre)congruence satisfies (1) above. Both
implications are strict, as the following examples illustrate.

Example 1. Consider the TSS given by the rules

a.x
a

−→ x
x

a
−→ x′

x‖y
a

−→ x′‖y

y
a

−→ y′

x‖y
a

−→ x‖y′

where a ranges over A, and the recursion rule from Def. 12 below. An infinite
trace of a process p is a sequence a1a2 · · · ∈ Aω such that there are processes
p1, p2, . . . with p

a1−→ p2
a2−→ p2

a3−→ Let p ⊑ q iff for each infinite trace σ
of p there is an infinite trace of q that has a suffix in common with σ. This is a
preorder indeed. It is not hard to check that ⊑ is a precongruence for both action
prefixing a. and parallel composition ‖ , in the sense that (1) holds. However,
if fails to be a lean congruence, because a./\X|X=c.X\

/ ≡ b./\X|X=c.X\
/, yet

when filled in for Y in /
\Z|Z=Y ‖Z\

/ (which can be seen as !Y , an infinite parallel
composition of copies of Y) the two are no longer equivalent.

Example 2. Consider the TSS with a constant 0 and action prefixing, and only
the rules for recursion from Def. 12 and a.x

a
−→ x for a ∈ A, with τ ∈ A the in-

ternal action. Consider any semantic equivalence ∼ satisfying x = τ.x, and such
that divergence /

\X|X=τ.X\
/ differs from deadlock or inaction 0. Such semantics

equivalences are abound in the literature and include the failures semantics of
CSP [14,27] and branching bisimilarity with explicit divergence [32,27]. They are
all lean congruences (at least when no other operators are present). Yet, since
0 ∼ /

\X|X=X\
/ 6∼ /

\X|X=τ.X\
/, they fail to be full congruences.

A lean congruence is required for treating processes as equivalence classes of
closed terms rather than as the closed terms themselves, in such a way that each
term t ∈ T(Σ,W) with free variables drawn from the set W models a W -ary
operator on such processes. This notion of congruence facilitates a formal com-
parison of the expressive power of system description languages [31]. However,
it does not allow equivalence preserving modifications of recursive specifications
themselves, as contemplated in the introduction. This requires a full congruence.

Lean and Full Congruence Formats for Recursion 9

5 The pure ntyxt/ntyft format with recursion

Definition 11. An ntytt rule is a rule in which the right-hand sides of positive
premises are variables that are all distinct, and that do not occur in the source.
An ntytt rule is an ntyxt rule if its source is a variable, an ntyft rule if its source
contains exactly one function symbol and no multiple occurrences of variables,
and an nxytt rule if the left-hand sides of its premises are variables.

The idea behind the names of the rules is that the ‘n’ in front refers to the
presence of negative premises, and the following four letters refer to the allowed
forms of left- and right-hand sides of premises and of the conclusion, respectively.
For example, ntyft means a rule with negative premises (n), where left-hand
sides of premises are general terms (t), right-hand sides of positive premises are
variables (y), the source contains exactly one function symbol (f), and the target
is a general term (t).

Definition 12. A TSS is in the ntyft/ntyxt format with recursion if for every
recursive specification S and X ∈ VS it has a rule

/
\SX |S\

/
a−→ z

/
\X|S\

/
a−→ z

and all of its other rules are ntyft or ntyxt rules.

Definition 13 (Well-founded and pure rules). The dependency graph of an
ntytt rule with {ti

ai−→ yi | i ∈ I} as set of positive premises is the directed graph
with as edges {〈x, yi〉 | x ∈ var(ti) for some i ∈ I}. A ntytt rule is well-founded
if each backward chain of edges in its dependency graph is finite. A variable in
a rule is free if it occurs neither in the source nor in the right-hand sides of the
premises of this rule. A rule is pure if it is well-founded and does not contain
free variables. A TSS is well-founded, resp. pure, if all of its rules are.

Let r = H

t
a

−→u
be a pure ntytt rule. The distance of a variable y ∈ var(r) to

the source of r is the ordinal number given by

distance(x) = 0 if x ∈ var(t),

distance(y) = 1 + sup({distance(x) | x ∈ var(t)}) if (t a−→ y) ∈ H .

Bol & Groote show that bisimilarity is a congruence for any language specified
by a complete TSS in the well-founded ntyft/ntyxt format (without recursion)
[12]. This generalises a result by Groote [33], showing the same for stratified
TSSs in the well-founded ntyft/ntyxt format; here stratified is a more restrictive
criterion than completeness, guaranteeing that a TSS has a well-defined meaning
as a 2-valued transition relation. That result, in turn, generalises the congruence
formats of Groote & Vaandrager [36] for the well-founded tyft/tyxt format
(obtained by leaving out negative premises) and for the GSOS format of Bloom,

Istrail & Meyer [11]. Both of these generalise the De Simone format [45,46].
Fokkink and van Glabbeek show that for any complete TSS in tyft/tyxt

(resp. ntyft/ntyxt) format there exists a pure (and thus well-founded) complete
TSS in tyft (resp. ntyft) format that generates the same transition relation [19].

10 Rob van Glabbeek

From this it follows that the restriction to well-founded TSSs can be dropped
from the congruence formats of [12] and [36]. The result of [19] generalises
straightforwardly to incomplete TSSs, and to formats with recursion.

Theorem 1. For each TSS in the tyft/tyxt (resp. ntyft/ntyxt) format with re-
cursion there exists a pure TSS in the tyft format (resp. ntyft) with recursion,
generating the same (3-valued) transition relation.

Proof. [19, Thm. 5.4] shows that for each TSS P in ntyft/ntyxt format there
exists a TSS P ′ in pure ntyft format, such that for any closed transition rule N

α

with only negative premises, one has P ⊢ N
α

⇔ P ′ ⊢ N
α
. This result generalises

seamlessly to TSS in the ntyft/ntyxt format with recursion; I leave it to the
reader to check that recursion causes no new complications in the proof.

[19] obtains the quoted result for complete TSSs from Thm. 5.4 by means of
an application of [19, Prop. 5.2], which says that if P and P ′ are TSSs such that
P ⊢ N

α
⇔ P ′ ⊢ N

α
for any closed transition rule N

α
with only negative premises,

then P is complete iff P ′ is, and in that case they determine the same transition
relation. This Prop. 5.2 was taken verbatim from [28, Prop. 29].

In [29], the journal version of [28], Prop. 29 was extended to also conclude,
under the same assumption, that P and P ′ determine the same 3-valued tran-
sition relation according to the well-founded semantics. Using this version of
Prop. 29 instead of Prop. 5.2 yields the required result. ⊓⊔

6 A lean congruence result

The following congruence proof is strongly inspired by the one in [12].

Theorem 2. Bisimilarity is a lean precongruence for any language specified by
a TSS in the pure ntyft format with recursion.

Proof: By Thm. 1 I may assume, without loss of generality, that P = (Σ,R)
is a TSS in the pure ntyft format with recursion. Let R be the smallest lean
precongruence containing bisimilarity, i.e., R ⊆ T(Σ) × T(Σ) is the smallest
relation on processes satisfying
– if p ⊑B q then p R q,
– if (f, n)∈Σ and piR qi for all i=1, ..., n, then f(p1, . . . , pn) R f(q1, . . . , qn),
– and if S : VS → T(Σ) with Z ∈ VS ⊆ Var , and ρ, ν : Var \ VS → T(Σ)

satisfy ρ(x) R ν(x) for all x ∈ Var \ VS , then
/
\Z|S\

/[ρ] R /
\Z|S\

/[ν].
A trivial structural induction on t∈T(Σ), using the last two clauses, shows that
if ρ, ν :Var → T(Σ) satisfy ρ(x)R ν(x) for all x ∈ var(t), then t[ρ] R t[ν]. (*)
As /

\ |S\
/[ρ] : VS → T(Σ) and /

\ |S\
/[ν] : VS → T(Σ), this implies that in the last

clause one even has /
\t|S\

/[ρ] R /
\t|S\

/[ν] for all terms t ∈ T(Σ, VS). ($)
It suffices to show that R is a bisimulation, because this implies R ⊆ ⊑B, so

that R equals ⊑B, and (*) says that R is a lean precongruence. Thus I need to
show that, for p, q ∈ T(Σ) and a ∈ A,

– if p R q and P ⊢ p
a

−→ p′, then there is a q′ with P ⊢ q
a

−→ q′ and p′ R q′,
– if p R q and P ⊢ q

a
−−→ q′, then there is a p′ with P ⊢ p

a
−−→ p′ and p′ R q′.

Lean and Full Congruence Formats for Recursion 11

To this end it suffices to establish, for all ordinals λ, that

4. if p R q and P ⊢ p
a

−→λ p′, then there is a q′ with P ⊢ q
a

−→ q′ and p′ R q′,
2. if p R q and P ⊢ q

a
−−→ q′, then there is a p′ with P ⊢ p

a
−−→λ p

′ and p′ R q′.

The desired result is then obtained by taking λ to be the closure ordinal κ, used
in Def. 6. This I will do by induction on λ, at the same time establishing that

3. if p R q and P ⊢ p 6
a
−→λ, then P ⊢ q 6

a
−→,

1. if p R q and P ⊢ q 6a−−→, then P ⊢ p 6a−−→λ.

So assume Claims 1–4 have been established for all κ < λ.

Suppose p R q and P ⊢ q 6a−−→. By Remark 2 there is no q′ ∈ T(Σ) with
P ⊢ q

a
−→ q′. So by induction, using Claim 4 above, there is no p′ ∈ T(Σ) with

P ⊢ p
a

−→κ p′ for some κ < λ. By Def. 5 P ⊢ p 6a−−→λ. This yields Claim 1.

Now suppose p R q and P ⊢ q
a

−−→ q′. I need to find a p′ with P ⊢ p
a

−−→λ p
′

and p′ R q′. This I will do by structural induction on the proof π of P ⊢ q
a

−−→q′

from P . I make a case distinction based on the derivation of p R q.

– Let p ⊑B q. Using that ⊑B is a bisimulation, there must be a process p′ such
that P ⊢ p

a
−−→ p′ and p′ ⊑B q′, hence p′ R q′. Since P ⊢ p

a
−−→ p′, certainly

P ⊢ p
a

−−→λ p′, by Remark 1.
– Let p = f(p1, . . . , pn) and q = f(q1, . . . , qn) where pi R qi for i = 1, . . . , n.

Let π be a proof of q
a

−−→ q′ from P . By Defs. 4 and 12, there must be
a pure ntyft rule r = H

f(x1,...,xn)
a

−→t
in R and a closed substitution ν with

ν(xi) = qi for i= 1, ..., n and t[ν] = q′, such that for each (ty
c−→ y) ∈ H the

transition ty[ν]
c

−−→ ν(y) is provable from P by means of a strict subproof
of π, and P ⊢ u[ν] 6c−−→ for each (u c−6→) ∈ H. Next, I define a substitution
σ : var(r) → T(Σ) such that

(i) σ(xi) = pi for i = 1, . . . , n,
(ii) σ(y) R ν(y) for each y ∈ var(r),
(iii) P ⊢ ty[σ]

c
−−→λ σ(y) for each (ty

c−→ y) ∈ H.
The definition of σ(y) and the inference of (i)–(iii) above proceed with in-
duction on the distance of y ∈ var(y) from the source of r,

Base case: Let σ(xi) := pi for i = 1, . . . , n, so that Property (i) is satisfied.
Regarding Property (ii), σ(xi) R ν(xi) for i = 1, . . . , n.

Induction step: When defining σ(y) for some y∈Var with (ty
c−→ y) ∈ H, by

induction σ(x) has been defined already for all x∈ var(ty), so I may assume
that σ(x) R ν(x) for all x ∈ var(ty) and hence ty[σ] R ty[ν] by (*).
By induction on π, there is a py with P ⊢ ty[σ]

c
−−→λ py and py R ν(y).

Define σ(y) := py. Properties (ii) and (iii) now hold for y.

Take p′ := t[σ]. So p′= t[σ] R t[ν]=q′ by (*) and Property (ii) of σ. For each
premise (u c−6→) ∈ H one has u[σ] R u[ν] by (*) and Property (ii) of σ. So
P ⊢ u[σ] 6c−−→λ by Claim 1. By Defs. 4 and 12, together with Property (iii)
of σ, this implies P ⊢ p = f(p1, . . . , pn)

a
−−→λ t[σ] = p′.

– Let p= /
\Z|S\

/[ρ] =
/
\Z|S[ρ]\/ and q= /

\Z|S\
/[σ] =

/
\Z|S[σ]\/ where S : VS → T(Σ)

with Z ∈ VS ⊆ Var , ρ, σ : Var\VS → T(Σ), and for all x ∈ Var \ VS

one has ρ(x) R σ(x). Let π be a proof of q
a

−−→ q′ from P . By Defs. 4
and 12 /

\SZ |S[σ]\/
a

−−→ q′ is provable from P by means of a strict subproof

12 Rob van Glabbeek

of π. By ($) above one has /
\SZ |S[ρ]

\
/ R /

\SZ |S[σ]
\
/. So by induction there

is a p′ such that P ⊢ /
\SZ |S[ρ]

\
/

a
−−→λ p′ and p′ R q′. By Defs. 4 and 12,

P ⊢ p = /
\Z|S[σ]\/

a
−−→λ p′.

Next, suppose that p R q and P ⊢ p 6
a
−→λ. By Def. 5 there is no p′ ∈ T(Σ)

with P ⊢ p
a

−−→λ p′. Using Claim 2, there is no q′∈T(Σ) with P ⊢ q
a

−−→ q′. By
Remark 2, P ⊢ q 6

a
−→. This yields Claim 3.

Finally, suppose p R q and P ⊢ p
a

−→λ p′. I need to find a q′ with P ⊢ q
a

−→ q′

and p′ R q′.This I will do by structural induction on the proof π of p a−→λ p′

from P . I make a case distinction based on the derivation of p R q.
– Let p ⊑B q. Since P ⊢ p

a
−→λ p′, certainly P ⊢ p

a
−→ p′, by Remark 1. Using

that ⊑B is a bisimulation, there must be a process q′ such that P ⊢ q a−→ q′

and p′ ⊑B q′, hence p′ R q′.
– Let p = f(p1, . . . , pn) and q = f(q1, . . . , qn) where pi R qi for i = 1, . . . , n.

Let π be a proof of p a−→λ p′ from P . By Defs. 4, 5 and 12, there must be
a pure ntyft rule r = H

f(x1,...,xn)
a

−→t
in R and a closed substitution σ with

σ(xi) = pi for i= 1, ..., n and t[σ] = p′, such that for each (ty
c−→ y) ∈ H the

transition ty[σ]
c−→λ σ(y) is provable from P by means of a strict subproof

of π, and P ⊢ u[σ] c−6→λ for each (u c−6→) ∈ H. Next, I define a substitution
ν :var(r)→ T(Σ) such that

(i) ν(xi) = qi for i = 1, . . . , n,
(ii) σ(y) R ν(y) for each y ∈ var(r),
(iii) P ⊢ ty[ν]

c−→ ν(y) for each (ty
c−→ y) ∈ H .

The definition of ν(y) and the inference of (i)–(iii) above proceed with in-
duction on the distance of y ∈ var(y) from the source of r,

Base case: Let ν(xi) := qi for i = 1, . . . , n, so that Property (i) is satisfied.
Regarding Property (ii), σ(xi) R ν(xi) for i = 1, . . . , n.

Induction step: When defining ν(y) for some y∈Var with (ty
c−→ y) ∈ H , by

induction ν(x) has been defined already for all x∈ var(ty), so I may assume
that σ(x) R ν(x) for all x ∈ var(ty) and hence ty[σ] R ty[ν] by (*).
By induction on π, there is a qy with P ⊢ ty[ν]

c−→ qy and σ(y) R qy. Define
ν(y) := qy. Properties (ii) and (iii) now hold for y.

Take q′ := t[ν]. So p′ = t[σ] R t[ν] = q′ by (*) and Property (ii) of ν. For
each premise (u c−6→) ∈ H one has u[σ] R u[ν] by (*) and Property (ii) of ν.
So P ⊢ u[ν] c−6→ by Claim 3. Since CT+ is closed under deduction, together
with Property (iii) of ν this implies P ⊢ q = f(q1, . . . , qn)

a−→ t[ν] = q′.
– Let p= /

\Z|S\
/[ρ] =

/
\Z|S[ρ]\/ and q= /

\Z|S\
/[ν] =

/
\Z|S[ν]\/ where S : VS → T(Σ)

with Z ∈ VS ⊆ Var , ρ, ν : Var\VS → T(Σ), and for all x ∈ Var \ VS one
has ρ(x) R ν(x). Let π be a proof of p a−→λ p′ from P . By Defs. 4, 5 and 12
/
\SZ |S[ρ]\/

a−→λ p′ is provable from P by means of a strict subproof of π. By ($)
above one has /

\SZ |S[ρ]
\
/ R /

\SZ |S[ν]
\
/. So by induction there is a q′ such that

P ⊢ /
\SZ |S[ν]

\
/

a−→ q′ and p′ R q′. By Defs. 4 and 12, P ⊢ q = /
\Z|S[ν]\/

a−→ q′.
This yields Claim 4. ✷

The above result implies that any ntyft/ntyxt language with recursion satisfies
congruence requirement (1) up to ⊑B, but is not strong enough to yield (2).

Lean and Full Congruence Formats for Recursion 13

7 A full congruence result

In this section I deal with positive TSSs only. Here the relations
a

−−→λ and
a

−→µ

for ordinals λ and µ all coincide, and ⊑B = ≡B. The following auxiliary concept
was used in [41] to show that CCS satisfies Condition (2) of Def. 10.

Definition 14. A symmetric relation R ⊆ T(Σ) × T(Σ) is a bisimulation up
to ∼ if p R q and P ⊢ p

a
−→ p′ imply that there is a q′ with P ⊢ q

a
−→ q′ and

p′ ∼R∼ q′, for all a ∈ A. Here ∼R∼ := {(r, s) | ∃r′, s′. r ∼ r′ R s′ ∼ s}.

Proposition 2 ([41]). If p R q for some bisimulation R up to ≡B, then p ≡B q.

Proof. Using the reflexivity of ≡B it suffices to show that ≡BR≡B is a bisimu-
lation. Using symmetry and transitivity of ≡B this is straightforward. ⊓⊔

Theorem 3. Bisimilarity is a full congruence for any language specified by a
TSS in the tyft/tyxt format with recursion.

Proof: By Thm. 1 I may assume, without loss of generality, that P = (Σ,R)
is a TSS in the pure tyft format with recursion. Let S, S′ : W → T(Σ,W) be
recursive specifications with SY [σ] ≡B S′

Y [σ] for all Y ∈ W and σ : W → T(Σ).5

I need to show that /
\X|S\

/ ≡B
/
\X|S′\

/ for all X ∈ W . Let R ⊆ T(Σ)× T(Σ) be
the smallest relation on processes satisfying
– /

\X|S\
/ R /

\X|S′\
/ and /

\X|S′\
/ R /

\X|S\
/ for all X ∈ W ,

– if (f, n)∈Σ and piR qi for all i=1, ..., n, then f(p1, . . . , pn) R f(q1, . . . , qn),
– and if S′′ : VS′′ → T(Σ) with Z ∈ VS′′ ⊆ Var , and ρ, ν : Var \ VS′′ → T(Σ)

satisfy ρ(x) R ν(x) for all x ∈ Var \ VS′′ , then /
\Z|S′′\

/[ρ] R /
\Z|S′′\

/[ν].
A trivial structural induction on t∈T(Σ), using the last two clauses, shows that
if ρ, ν : Var → T(Σ) satisfy ρ(x) R ν(x) for all x ∈ Var , then t[ρ] R t[ν]. (*)
So in the first clause one even has /

\t|S\
/ R /

\t|S′\
/ for all t ∈ T(Σ,W), (#)

and in the last clause /
\t|S′′\

/[ρ] R /
\t|S′′\

/[ν] for all t ∈ T(Σ, VS′′). ($)
It suffices to show that R is a bisimulation, because this implies R ⊆ ≡B.

By construction R is symmetric. So with Prop. 2 it suffices to show that,

if p R q and P ⊢ p a−→ p′, then there is a q′ with P ⊢ q a−→ q′ and p′ R≡B q′,

for all p, q ∈ T(Σ) and a ∈ A, This I will do by structural induction on the proof

π of p a−→ p′ from P . I make a case distinction based on the derivation of p R q.
– Let p = /

\X|S\
/ and q = /

\X|S′\
/ with X ∈W . Let π be a proof of p a−→ p′ from

P . By Definitions 4 and 12 /
\SX |S\

/
a−→ p′ is provable from P by means of a

strict subproof of π. By (#) above one has /
\SX |S\

/ R /
\SX |S′\

/. So by induction
there is an r′ such that P ⊢ /

\SX |S′\
/

a−→ r′ and p′ R≡B r′. Since /
\ |S′\

/ is a
substitution of the form σ : W → T(Σ), one has /

\SX |S′\
/ ≡B

/
\S′

X |S′\
/. Hence

there is a q′ such that P ⊢ /
\S′

X |S′\
/

a−→ q′ and r′ ≡B q′. So p′ R≡B q′. By
Definitions 4 and 12 P ⊢ q = /

\X|S′\
/

a−→ q′.
– The case p = /

\X|S′\
/ and q = /

\X|S\
/ goes likewise, swapping the rôles of S′

X

and SX , and using the substitution /
\ |S\

/. 5

5 This proof shows that in the full congruence property (2) one only needs to assume
SY [σ] ≡B S′

Y [σ] for two specific substitutions σ: namely σ(Y) := /
\Y |S′\

/, resp.
/
\Y |S\

/.

14 Rob van Glabbeek

– The remaining two cases proceed in the same way as in the proof of Claim 4
for Thm. 2, but suppressing λ and with R≡B substituted for the blue oc-
currences of R. In the last case there are no further changes, so I will not
repeat it here. The remaining case needs a few elaborations—these involve
the blue coloured segments in the proof of Claim 4:

– Let p = f(p1, . . . , pn) and q = f(q1, . . . , qn) where pi R qi for i = 1, . . . , n.
Let π be a proof of p a−→ p′ from P . By Defs. 4 and 12, there must be a pure
tyft rule r = H

f(x1,...,xn)
a

−→t
in R and a closed substitution σ with σ(xi) = pi

for i= 1, ..., n and t[σ] = p′, such that for each (ty
c−→ y) ∈ H the transition

ty[σ]
c−→ σ(y) is provable from P by means of a strict subproof of π. Next, I

define a substitution ν :var(r)→ T(Σ) such that
(i) ν(xi) = qi for i = 1, . . . , n,
(ii) σ(y) R≡B ν(y) for each y ∈ var(r),
(iii) P ⊢ ty[ν]

c−→ ν(y) for each (ty
c−→ y) ∈ H .

The definition of ν(y) and the inference of (i)–(iii) above proceed with in-
duction on the distance of y ∈ var(y) from the source of r,

Base case: Let ν(xi) := qi for i = 1, . . . , n, so that Property (i) is satisfied.
Regarding Property (ii), σ(xi) R ν(xi) for i = 1, . . . , n.

Induction step: When defining ν(y) for some y ∈ Var with (ty
c−→ y) ∈ H,

by induction ν(x) has been defined already for all x ∈ var(ty), so I may
assume that σ(x) R≡B ν(x) for all x∈var(ty), i.e., there exists a substitution
ρ :var(r)→T(Σ) with σ(x)Rρ(x)≡Bν(x) for all x∈var(ty). Now ty[σ]Rty[ρ]
by (*) and ty[ρ]≡B ty[ν] by Thm. 2.
By induction on π, there is an ry with P ⊢ ty[ρ]

c−→ ry and σ(y) R≡B ry. By
the definition of bisimilarity, there is a qy with P ⊢ ty[ν]

c−→ qy and ry ≡B qy.
Define ν(y) := qy. Properties (ii) and (iii) now hold for y.

Take q′ := t[ν]. So p′ = t[σ] R≡ t[ν] = q′ by (*), Property (ii) of ν, and
Thm. 2. By Defs. 4 and 12, together with Property (iii) of ν, this implies
P ⊢ q = f(q1, . . . , qn)

a−→ t[ν] = q′. ✷

It remains an open question whether the above result can be generalised to
the ntyft/ntyxt format with recursion. A direct combination of the proofs of
Thms. 2 and 3 does not work, however. An attempt in this direction would
substitute either R⊑B or ⊑BR for the red R in Claim 2 in the proof of Thm. 2.
Both attempts fail on the case p = /

\X|S\
/ and q = /

\X|S′\
/ in the proof of Thm. 3.

The first attempt would from P ⊢ /
\S

′

X |S′\
/

a
−−→q′ infer P ⊢ /

\SX |S′\
/

a
−−→r′ by

bisimilarity, and then infer P ⊢ /
\SX |S\

/

a
−−→λ p

′ by induction. However, one may
not use induction, as the transition /

\SX |S′\
/

a
−−→ r′ may be derived later than

/
\X|S′\

/

a
−−→q′. In fact, if a variant of this approach would work, skipping /

\X|S′\
/ R

/
\X|S\

/ from the definition of R, one could prove a false version of (2) that assumes
the antecedent only for the single substitution /

\ |S′\
/ (cf. Footnote 5); it is trivial

to find a counterexample in the GSOS format with unguarded recursion.
The second attempt would from P ⊢ /

\S′

X |S′\
/

a
−−→q′ infer P ⊢ /

\S′

X |S\
/

a
−−→λ r

′

by induction, and then P ⊢ /
\SX |S\

/

a
−−→λ p′ by bisimilarity. The latter step is

invalid, as /
\SX |S′\

/

a
−−→λ r′ is only an overapproximation of P ⊢ /

\SX |S′\
/

a
−−→ r′.

Lean and Full Congruence Formats for Recursion 15

References

1. L. Aceto, A. Birgisson, A. Ingólfsdóttir, M.R. Mousavi & M.A. Reniers (2012):
Rule formats for determinism and idempotence. Science of Computer Programming

77(7-8), pp. 889–907, doi:10.1016/j.scico.2010.04.002.
2. L. Aceto, M. Cimini, A. Ingólfsdóttir, M.R. Mousavi & M.A. Reniers (2011): SOS

rule formats for zero and unit elements. Theoretical Computer Science 412(28),
pp. 3045–3071, doi:10.1016/j.tcs.2011.01.024.

3. L. Aceto, M. Cimini, A. Ingólfsdóttir, M.R. Mousavi & M.A. Reniers (2012): Rule
formats for distributivity. Theoretical Computer Science 458, pp. 1–28, doi:10.
1016/j.tcs.2012.07.036.

4. L. Aceto, W.J. Fokkink & C. Verhoef (2000): Structural Operational Semantics.
In J.A. Bergstra, A. Ponse & S.A. Smolka, editors: Handbook of Process Algebra,
chapter 3, Elsevier, pp. 197–292.

5. G. Bacci & M. Miculan (2015): Structural operational semantics for continuous
state stochastic transition systems. Journal of Computer and System Sciences

81(5), pp. 834–858, doi:10.1016/j.jcss.2014.12.003.
6. J. C. M. Baeten, T. Basten & M. A. Reniers (2010): Process Algebra: Equational

Theories of Communicating Processes. Cambridge University Press.
7. J.C.M. Baeten, editor (1990): Applications of Process Algebra. Cambridge Tracts

in Theoretical Computer Science 17, Cambridge University Press.
8. F. Bartels (2002): GSOS for Probabilistic Transition Systems. Electr. Notes Theor.

Comput. Sci. 65(1), pp. 29–53, doi:10.1016/S1571-0661(04)80358-X.
9. B. Bloom (1995): Structural operational semantics for weak bisimulations. Theo-

retical Computer Science 146, pp. 25–68, doi:10.1016/0304-3975(94)00152-9.
10. B. Bloom, W.J. Fokkink & R.J. van Glabbeek (2004): Precongruence Formats for

Decorated Trace Semantics. Transactions on Computational Logic 5(1), pp. 26–78,
doi:10.1145/963927.963929.

11. B. Bloom, S. Istrail & A.R. Meyer (1995): Bisimulation Can’t be Traced. Journal

of the ACM 42(1), pp. 232–268, doi:10.1145/200836.200876.
12. R.N. Bol & J.F. Groote (1996): The meaning of negative premises in transition sys-

tem specifications. Journal of the ACM 43(5), pp. 863–914, doi:10.1145/234752.
234756.

13. E. Bres, R.J. van Glabbeek & P. Höfner (2016): A Timed Process Algebra for Wire-
less Networks with an Application in Routing. Technical Report 9145, NICTA.
Available at http://arxiv.org/abs/1606.03663. Extended abstract in P. Thie-
mann (editor): Proc. ESOP’16, LNCS 9632, Springer, 2016, pp. 95-122.

14. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating
sequential processes. Journal of the ACM 31(3), pp. 560–599, doi:10.1145/828.
833.

15. S. Cranen, M. R. Mousavi & M. A. Reniers (2008): A Rule Format for Associativity.
In F. van Breugel & M. Chechik, editors: Proc. CONCUR’08, LNCS 5201, Springer,
pp. 447–461, doi:10.1007/978-3-540-85361-9_35.

16. P.R. D’Argenio, D. Gebler & M.D. Lee (2016): A general SOS theory for the speci-
fication of probabilistic transition systems. Information and Computation 249, pp.
76–109, doi:10.1016/j.ic.2016.03.009.

17. W. J. Fokkink (2000): Introduction to Process Algebra. Texts in Theoretical Com-
puter Science, An EATCS Series, Springer, doi:10.1007/978-3-662-04293-9.

18. W.J. Fokkink (2000): Rooted Branching Bisimulation as a Congruence. Journal of
Computer and System Sciences 60(1), pp. 13–37, doi:10.1006/jcss.1999.1663.

http://dx.doi.org/10.1016/j.scico.2010.04.002
http://dx.doi.org/10.1016/j.tcs.2011.01.024
http://dx.doi.org/10.1016/j.tcs.2012.07.036
http://dx.doi.org/10.1016/j.tcs.2012.07.036
http://dx.doi.org/10.1016/j.jcss.2014.12.003
http://dx.doi.org/10.1016/S1571-0661(04)80358-X
http://dx.doi.org/10.1016/0304-3975(94)00152-9
http://dx.doi.org/10.1145/963927.963929
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/234752.234756
http://dx.doi.org/10.1145/234752.234756
http://arxiv.org/abs/1606.03663
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1007/978-3-540-85361-9_35
http://dx.doi.org/10.1016/j.ic.2016.03.009
http://dx.doi.org/10.1007/978-3-662-04293-9
http://dx.doi.org/10.1006/jcss.1999.1663

16 Rob van Glabbeek

19. W.J. Fokkink & R.J. van Glabbeek (1996): Ntyft/ntyxt rules reduce to ntree rules.
Information and Computation 126(1), pp. 1–10, doi:10.1006/inco.1996.0030.

20. W.J. Fokkink & R.J. van Glabbeek (2016): Divide and Congruence II: Delay and
Weak Bisimilarity. In: Proc. LICS’16, to appear, doi:10.1145/2933575.2933590.
Available at http://theory.stanford.edu/~rvg/abstracts.html#116.

21. W.J. Fokkink & R.J. van Glabbeek (2016): Divide and Congruence with Lookahead.
Submitted to FoSSaCS 2016.

22. W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2006): Compositionality of
Hennessy-Milner Logic by Structural Operational Semantics. Theoretical Com-

puter Science 354(3), pp. 421–440, doi:10.1016/j.tcs.2005.11.035.

23. W.J. Fokkink, R.J. van Glabbeek & P. de Wind (2012): Divide and congru-
ence: From decomposition of modal formulas to preservation of branching and η-
bisimilarity. Information and Computation 214, pp. 59–85, doi:10.1016/j.ic.
2011.10.011.

24. D. Gebler & S. Tini (2013): Compositionality of Approximate Bisimulation for
Probabilistic Systems. In Johannes Borgström & Bas Luttik, editors: Proc. EX-
PRESS/SOS’13, EPTCS 120, Open Publishing Association, pp. 32–46, doi:10.
4204/EPTCS.120.4.

25. A. van Gelder, K. Ross & J.S. Schlipf (1991): The well-founded semantics for
general logic programs. Journal of the ACM 38(3), pp. 620–650, doi:10.1145/
116825.116838.

26. R.J. van Glabbeek (1993): Full abstraction in structural operational semantics (ex-
tended abstract). In M. Nivat, C. Rattray, T. Rus & G. Scollo, editors: Proc.
AMAST’93, Workshops in Computing, Springer, pp. 77–84. Available at http://
theory.stanford.edu/~rvg/abstracts.html#28.

27. R.J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II;
The semantics of sequential systems with silent moves (extended abstract). In
E. Best, editor: Proc. CONCUR’93, LNCS 715, Springer, pp. 66–81, doi:10.1007/
3-540-57208-2_6.

28. R.J. van Glabbeek (1995): The Meaning of Negative Premises in Transition Sys-
tem Specifications II. Technical Report STAN-CS-TN-95-16, Stanford University.
Available at http://theory.stanford.edu/~rvg/abstracts.html#32. Extended
abstract in F. Meyer auf der Heide & B. Monien, editors: Proc. ICALP’96, LNCS
1099, Springer, pp. 502–513, doi: 10.1007/3-540-61440-0_154.

29. R.J. van Glabbeek (2004): The Meaning of Negative Premises in Transition System
Specifications II. Journal of Logic and Algebraic Programming 60–61, pp. 229–258,
doi:10.1016/j.jlap.2004.03.007.

30. R.J. van Glabbeek (2011): On Cool Congruence Formats for Weak Bisimulations.
Theoretical Computer Science 412(28), pp. 3283–3302, doi:10.1016/j.tcs.2011.
02.036.

31. R.J. van Glabbeek (2012): Musings on Encodings and Expressiveness. In B. Luttik
& M.A. Reniers, editors: Proc. EXPRESS/SOS’12, EPTCS 89, Open Publishing
Association, pp. 81–98, doi:10.4204/EPTCS.89.7.

32. R.J. van Glabbeek, B. Luttik & N. Trčka (2009): Branching Bisimilarity with
Explicit Divergence. Fundamenta Informaticae 93(4), pp. 371–392.

33. J.F. Groote (1993): Transition System Specifications with Negative Premises. The-
oretical Computer Science 118, pp. 263–299, doi:10.1016/0304-3975(93)90111-6.

34. J.F. Groote & M.R. Mousavi (2014): Modeling and Analysis of Communicating
Systems. MIT Press.

http://dx.doi.org/10.1006/inco.1996.0030
http://dx.doi.org/10.1145/2933575.2933590
http://theory.stanford.edu/~rvg/abstracts.html#116
http://dx.doi.org/10.1016/j.tcs.2005.11.035
http://dx.doi.org/10.1016/j.ic.2011.10.011
http://dx.doi.org/10.1016/j.ic.2011.10.011
http://dx.doi.org/10.4204/EPTCS.120.4
http://dx.doi.org/10.4204/EPTCS.120.4
http://dx.doi.org/10.1145/116825.116838
http://dx.doi.org/10.1145/116825.116838
http://theory.stanford.edu/~rvg/abstracts.html#28
http://theory.stanford.edu/~rvg/abstracts.html#28
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-57208-2_6
http://theory.stanford.edu/~rvg/abstracts.html#32
http://dx.doi.org/10.1007/3-540-61440-0_154
http://dx.doi.org/10.1016/j.jlap.2004.03.007
http://dx.doi.org/10.1016/j.tcs.2011.02.036
http://dx.doi.org/10.1016/j.tcs.2011.02.036
http://dx.doi.org/10.4204/EPTCS.89.7
http://dx.doi.org/10.1016/0304-3975(93)90111-6

Lean and Full Congruence Formats for Recursion 17

35. J.F. Groote, M.R. Mousavi & M.A. Reniers (2006): A Hierarchy of SOS Rule
Formats. Electr. Notes Theor. Comput. Sci. 156(1), pp. 3–25, doi:10.1016/j.
entcs.2005.11.077.

36. J.F. Groote & F.W. Vaandrager (1992): Structured Operational Semantics and
Bisimulation as a Congruence. Information and Computation 100(2), pp. 202–
260, doi:10.1016/0890-5401(92)90013-6.

37. B. Klin & V. Sassone (2013): Structural operational semantics for stochastic and
weighted transition systems. Information and Computation 227, pp. 58–83, doi:10.
1016/j.ic.2013.04.001.

38. R. Lanotte & S. Tini (2009): Probabilistic bisimulation as a congruence. ACM

Transactions on Computational Logic 10(2):9, doi:10.1145/1462179.1462181.
39. K.G. Larsen & B. Thomsen (1988): A Modal Process Logic. In: Proc. LICS’88,

IEEE Computer Society Press, pp. 203–210, doi:10.1109/LICS.1988.5119.
40. M. Miculan & M. Peressotti (2014): GSOS for non-deterministic processes

with quantitative aspects. In Nathalie Bertrand & Luca Bortolussi, editors:
Proc. QAPL’14, EPTCS 154, Open Publishing Association, pp. 17–33, doi:10.
4204/EPTCS.154.2.

41. R. Milner (1990): Operational and algebraic semantics of concurrent processes. In
J. van Leeuwen, editor: Handbook of Theoretical Computer Science, chapter 19,
Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242. Alternatively see
Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989, of which
an earlier version appeared as A Calculus of Communicating Systems, LNCS 92,
Springer, 1980.

42. M.R. Mousavi, M.A. Reniers & J.F. Groote (2005): A syntactic commutativity
format for SOS. Information Processing Letters 93(5), pp. 217–223, doi:10.1016/
j.ipl.2004.11.007.

43. G.D. Plotkin (2004): A Structural Approach to Operational Semantics. The Jour-

nal of Logic and Algebraic Programming 60–61, pp. 17–139, doi:10.1016/j.jlap.
2004.05.001. Originally appeared in 1981.

44. T.C. Przymusinski (1990): The Well-founded Semantics Coincides with the Three-
valued Stable Semantics. Fundamenta Informaticae XIII(4), pp. 445–463.

45. R. de Simone (1984): Calculabilité et Expressivité dans l’Algebra de Processus Par-
allèles Meije. Thèse de 3e cycle, Univ. Paris 7.

46. R. de Simone (1985): Higher-level synchronising devices in Meije-SCCS. Theoret-
ical Computer Science 37, pp. 245–267, doi:10.1016/0304-3975(85)90093-3.

47. I. Ulidowski (1992): Equivalences on Observable Processes. In: Proc. LICS’92, IEEE
Computer Society Press, pp. 148–159, doi:10.1109/LICS.1992.185529.

48. I. Ulidowski (2000): Finite axiom systems for testing preorder and De Simone
process languages. Theoretical Computer Science 239(1), pp. 97–139, doi:10.1016/
S0304-3975(99)00214-5.

49. I. Ulidowski & I. Phillips (2002): Ordered SOS Rules and Process Languages for
Branching and Eager Bisimulations. Information and Computation 178(1), pp.
180–213, doi:10.1006/inco.2002.3161.

http://dx.doi.org/10.1016/j.entcs.2005.11.077
http://dx.doi.org/10.1016/j.entcs.2005.11.077
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1016/j.ic.2013.04.001
http://dx.doi.org/10.1016/j.ic.2013.04.001
http://dx.doi.org/10.1145/1462179.1462181
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.4204/EPTCS.154.2
http://dx.doi.org/10.4204/EPTCS.154.2
http://dx.doi.org/10.1016/j.ipl.2004.11.007
http://dx.doi.org/10.1016/j.ipl.2004.11.007
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1016/0304-3975(85)90093-3
http://dx.doi.org/10.1109/LICS.1992.185529
http://dx.doi.org/10.1016/S0304-3975(99)00214-5
http://dx.doi.org/10.1016/S0304-3975(99)00214-5
http://dx.doi.org/10.1006/inco.2002.3161

	Lean and Full Congruence Formats for Recursion

