
Cent rum
voor

Wiskunde
en

lnformatica
Centre for Mathematics and Computer Science

.
R.J. van Glabbeek, W.P. Weijland

Refinement in branching time semantics

Computer Science/Department of Software Technology Report CS-R8922 May

1989

Centrum voor Wiskunde en lnformatica
Centr~ for Mathematics and Computer Science

R.J. van Glabbeek, W.P. Weijland

Refinement in branching time semantics

Computer Science/Department of Software Technology Report CS-R8922 May

The Cer1tre for Mathematics and Computer Science is a research institute of

the Stichting Mathematisch Centrum, which was founded on February 11 ,

1946, as a nonprofit institution aiming at the promotion of mathematics, com

puter science, and their applications. It is sponsored by the Dutch Govern

ment through the Netherlands Organization for the Advancement of Research

(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Refinement in Branching Time Semantics

R.J. van Glabbeek and W.P. Weijland

Centre for Mathematics and Computer Science

P.O.Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: In this paper we consider branching time semantics for finite sequential

processes with silent moves. We show that Mllner's notion of observation equivalence

is not preserved under refinement of actions, even when no interleaving operators

are considered; however, the authors' notion of branching bislmu/ation is.

Key words & phrases: action refinement, semantics, process algebra, abstraction,

bisimulation, branching time.
1980 Mathematics subject classlflcatlon: 68810, 68C01, 68025, 68F20.

1985 Mathematics subject classlflcatlon: 68055, 68010, 68N15.

1987 CR Categories: F.3.2, F.1.2, F.4.1, D.3.1.

Note: This paper also appears in the proceedings of the AMAST conference, Iowa,

May 1989. It is sponsored In part by Esprit project no.432, METEOR.

INTRODUCTION

Virtually all semantic equivalences employed in theories of concurrency are defined in terms of

actions that concurrent systems may perform (cf. [1-7]). Mostly, these actions are taken to be

atomic, meaning that they are considered not to be divisible into smaller parts. In this case, the

defined equivalences are said to be based on action atomicity.

However, in the top-down design of distributed systems it might be fruitful to model processes at

different levels of abstraction. The actions on an abstract level then turn out to represent complex

processes on a more concrete level. This methodology does not seem compatible with non

divisibility of actions and for this reason, PRATI [7], LAMPORT [4] and others plead for the use of

semantic equivalences that are not based on action atomicity.

As indicated in CASTELLANO, DE MICHELlS & PC>MELLO [2], the concept of action atomicity can be

formalised by means of the notion of refinement of actions. A semantic equivalence is preserved

under action refinement if two equivalent processes remain equivalent after replacing all occurrences

of an action a by a more complicated process r(a). In particular, r(a) may be a sequence of two

actions a1 and az. An equivalence is strictly based on action atomicity if it is not preserved under

action refinement.

In a previous paper [3] the authors argued that MILNER's notion of observation equivalence [5] does

not respect the branching structure of processes, and proposed the finer notion of branching

bisimulation equivalence which does. In this paper we moreover find, that observation equivalence

is not preserved under action refinement, whereas branching bisimulation equivalence is.

Report CS-R8922
Centr.e for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

. ·»~,...._ - - - ---- - ---- -

2

1. PROCESS GRAPHS

As a simple model, let us represent a process by a state transition diagram or process graph. Such a

graph has a node for every one of the possible states of the process, and has arrows between nodes

to indicate whether or not a state is accessible from another. Furthennore, these arrows (directed

edges) are labelled, with labels from Au{'t}, where A= {a,b,c, ... } is some set of observable

signals, and 't stands for a silent step (cf. [5]).

DEFINITION 1.1 A process graph is a connected, rooted, edge-labelled and directed graph.

In an edge-labelled graph, one can have more than one edge between two nodes as long as they

carry different labels. A rooted graph has one special node which is indicated as the root node.

Graphs need not be finite, but in a connected graph one must be able to reach every node from the

root node by following a finite path. If r and s are nodes in a graph, then r ~a s denotes an edge

from r to s with label a (it is also used as a proposition stating that such an edge exists). In this

paper we limit ourselves to processes represented by finite, non-trivial process graphs. A graph is

finite if it is acyclic and contains only finitely many nodes and edges; it is trivial if it contains no

edges at all. The set of non-trivial, finite process graphs will be denoted by G.

In order to tum G into an algebraic structure, it is possible to define binary operators'+' and'·' for

alternative and sequential composition. For any two graphs g and h the process graph (g + h) is

obtained by simply identifying their root nodes, whereas (g·h) - often written as just (gh) - can be

found by identifying the root node of h with all endnodes of g. Furthennore, constants from

Au { 't} are interpreted as one-edge graphs, carrying the constant as their edge-label. The algebraic

structure allows us to study equational theories that emerge from any defined equivalence on G. For

instance, in branching time semantics, one often considers observation congruence (cf. MILNER [5])

- written as ,.,c - as a deciding criterion for equality in obseivable behaviour. Let us write r => r' for

a path from r to r' consisting of an arbitrary number ~) of 't-edges. Then its definition can be

rephrased as:

DEFINITION 1.2 Two graphs g and h are observation equivalent if there exists a symmetric

relation R !;; nodes(g)xnodes(h) u nodes(h)xnodes(g) (called a 't-bisimulation) such that:

1 . The roots are related by R.

2. If R(r,s) and r ~a r' (aeAu{'t}), then either a='t and R(r',s), or there exists a path

s => s1 ~a s2 => s' such that R(r',s').

Furthennore, g and h are observation congruent if we also have that

3. (root condition) Root nodes are related with root nodes only.

The root condition was first fonnulated by BERGSTRA & KLOP [1], and seives to tum the notion of

obseivation equivalence into a congruence with respect to the operators + and ·. It can be proved that

3

observation equivalence and observation congruence are equivalence relations on G, and that the

latter is the coarsest congruence contained in the fonner (cf. [5,1,3]). It was shown in [l] that with

respect to closed tenns the model G/=c is completely axiomatized by the theory

x+y=y+x Al X't= X Tl

x + (y + ·z) = (x + y) + z A2 'tX='tX+X T2

x+x=x A3 a('tX + y) = a('tX + y) + ax TI

x(yz) = (xy)z A4

(x + y)z = xy + xz A5 (aeAu{'t})

The 't-laws Tl-TI originate from MILNER [5], who gave a complete axiomatization for a similar

model with prefixing instead of general sequential composition. From these axioms, it is easy to

show why the notion of observation congruence is not preserved under refinement of actions:

replacing the action a by the tenn be, we obtain bc('tx + y) = bc('tX + y) + bcx from TI, which

obviously is not valid in G/=c. By TI, we do find bc('tx + y) = b(c('tx + y) + ex) which

unfortunately denotes a different process.

Apart from the problem with refinement, it was observed in VAN GLABBEEK & WEIJLAND [3] that

observation equivalence does not strictly preserve the branching structure of processes. This is

because an important feature of a bisimulation (cf. PARK [6]) is missing for't-bisimulation, which is

the property that any computation in the one process corresponds to a computation in the other, in

such a way that all intennediate states of these computations correspond as well. However, in

observation congruence, when satisfying the second requirement of definition 1.2 one may execute

arbitrarily many 't-steps in a graph without worrying about the status of the nodes that are passed in

the meantime.

In order to overcome this problem, in [3] a different notion was introduced, which yields a finer

equivalence on graphs.

DEFINITION 1.3 Two graphs g and h are branching equivalent if there exists a symmetric relation

R k nodes(g)xnodes(h) u node(h)xnodes(g) (called a branching bisimulation) such that:

1 . The roots are related by R

2. If R(r,s) and r ~a r' (ae Au{'t}), then either a='t and R(r',s), or there exists a path of the

fonn s => s1 ~as' such that R(r,s1) and R(r',s').

Furthermore, g and h are branching congruent if we also have that

3. (root condition) Root nodes are related with root nodes only.

Let us write R: g t:tb h if R is a branching bisimulation between g and hand R: g t:trb h if, in

addition, R satisfies the root condition. One can prove that the same equivalence is defined when in

definition 1.3 all intennediate nodes in s => s1 are required to be related with r. Furthennore,

4

observe that a branching bisimulation can also be defined as in definition 1.2, with as extra

requirements that R(r,s1) and R(r',s2).

It can be proved that branching equivalence and branching congruence are equivalence relations on

G. Furthermore, the latter is the coarsest congruence contained in the former. It was shown in [3]

that with respect to closed terms, the model G/t:irb is completely axiomatized by the axioms Al-AS

together with

X't = x Bl

x('t(y + z) + y) = x(y + z) B2.

Note that the axioms B l-B2 when applied from left to right only eliminate occurrences of 't's. Using

this property, it can be shown that the associated term rewriting system on G/=At-A5· i.e. G modulo

equality induced by the axioms Al-AS, is confluent and terminating. So any two closed branching

congruent terms can be reduced to the same normal form.

2. REFINEMENT

In this section we will prove that branching congruence is preserved under refinement of actions,

and so it allows us to look at actions as abstractions of much larger structures. Consider the

following definitions.

DEFINITION 2.1 (substitution)

Let r: A ~ G be a mapping from observable actions to graphs, and suppose ge G. Then, the

graph r(g) can be found as follows.

For every edge r ~a r' (ae A) in g, take a copy r(fil of r(a) (e G).Next, identify r with the

root node of ruu. and r' with all endnodes of r(al, and remove the edge r ~a r'.

Note that in this definition it is never needed to identify r and r', since graphs from G are non

trivial. This way, the mapping r is defined on the domain G. Note that since 't~ A, 't-edges cannot

be substituted by graphs. Finally, observe that every node in g is a node in r(g).

DEFINITION 2.2 (preservation under refinement of actions)

An equivalence = on G is said to be preserved under refinement of actions if for every mapping

r: A~ G, we have: g = h => r(g) = r(h).

In other words, an equivalence = is preserved under refinement if it is a congruence with respect to

every substitution operator r.

5

Starting from a relation R: g t:trb h, we construct a branching bisimulation r(R): r(g) t:trb r(h),

proving that preserving branching congruence, every edge with a label from A can be replaced by a

graph.

DEFINITION 2.3 Let r: A -t G be a mapping from observable actions to graphs, g,he G and

R: g t:trb h. Now r(R) is the smallest relation between nodes of r(g) and r(h), such that:

1. R ~ r(R).

2. If r -tar' and s -ta s' (ae A) are edges in g and h such that R(r,s) and R(r',s'), and both

edges are replaced by copies !(fil and r(a) of r(a) respectively, then nodes from !(fil and

r(a) are related by r(R), only if they are copies of the same node in r(a).

Edges r -ta r' and s -ta s' (ae A) such that R(r,s) and R(r' ,s'), will be called related by R, as well

as the copies r(a) and r(a) that are substituted for them. Observe, that on nodes from g and h the

relation r(R) is equal to R. Note that if r(R)(r,s), then r is a node in g iff s is a node in h.

THEOREM (refinement)

Branching congruence is preserved under refinement of actions.

PROOF We prove that R: g t:trb h => r(R): r(g) t:trb r(h) by checking the requirements.

1 . The root nodes of r(g) and r(h) are related by r(R).

2. Assume r(R)(r,s) and in r(g) there is an edge r -ta r'. Then there are two possibilities

(similarly in case r -ta r' stems from r(h)):

(i) The nodes r and s originate from g and h. Then R(r,s), and by the construction of r(g)

we find that either a='t and r -t't r' was already an edge in g, or g has an edge r -tb r* and

r -tar' is a copy of an initial edge from r(b). In the first case it follows from R: g t:trb h that

either R(r',s) - hence r(R)(r',s) - or in h there is a path s => s1 -t't s' such that R(r,s1) and

R(r',s'). By definition, the same path also exists in r(h), and we have r(R)(r,s1) and r(R)(r',s').

In the second case there must be a path s => s1 -tb s* in h such that R(r,s1) and R(r* ,s*).

Then, in r(h) we find a path s => s1 -ta s' (by replacing -tb by r(b)) such that r(R)(r,s1) and

r(R)(r' ,s') .

(ii) The nodes r and s originate from related copies r(Q). and r(b) of a substituted graph r(b)

(for some be A), and are no copies of root or endnodes in r(b). Then r-ta r' is an edge in I(Ql.

From r(R)(r,s) we find that r and s are copies of the same node from r(b). So, there is an edge

s -ta s' in r(b) where s' is a copy of the node in r(b), corresponding with r'. Clearly

r(R)(r' ,s') .

3. Since for nodes from g and h we have r(R)(r,s) iff R(r,s), the root condition is satisfied. D

6

With respect to closed terms, the refinement theorem can be proved much easier by syntactic

analysis of proofs, instead of working with equivalences between graphs. For observe that the

axioms A l-A5 + B l-B2, that form a complete axiomatization of branching congruence for closed

terms, do not contain any occurrences of (atomic) actions from A. Now assume we have a proof of

some equality s=t between closed terms, then this proof consists of a sequence of applications of

axioms from Al-AS+ Bl-B2. Since all these axioms are universal equations without actions from

A, the actions from s and t can be replaced by general variables, and the proof will still hold.

Hence, every equation is an instance of a universal equation without any actions. Immediately we

find that we can substitute arbitrary closed terms for these variables, obtaining refinement for closed

terms.

Nevertheless, the semantic proof of the refinement theorem is important as one may wish to

generalize the result to models of larger graphs than just finite ones from G.

REFERENCES

[I] J.A.BERGSTRA & J. W.KLOP, Algebra of communicating processes with abstraction, TCS 37

(1), pp.77-121, 1985.

[2] L. CASTELLANO, G .DEMICHELIS & L.POMELLO, Concurrency vs Interleaving: an instructive

example, Bulletin of the EATCS 31, pp.12-15, 1987.

[3] R.J.VAN GLABBEEK & W.P.WEIJLAND, Branching time and abstraction in bisimulation

semantics (extended abstract), Report CS-R891 l, Centrum voor Wiskunde en Informatica,

Amsterdam 1989, to appear in: proc. IFIP l lth World Computer Congress, San Francisco

1989.

[4] L.LAMPORT, On interprocess communication. Part 1: Basic formalism, Distributed Computing

1 (2), pp.77-85, 1986.

[5] R.MILNER, A calculus of communicating systems, Springer LNCS 92, 1980.

[6] D.PARK, Concurrency and automata on infinite sequences, proc. 5th GI conf. on Th. Comp.

Sci. (P.Dcussen ed.), Springer LNCS 104, pp.167-183, 1981.

[7] V.R.PRATT, Modelling concurrency with partial orders, International Journal of Parallel

Programming 15 (1), pp.33-71, 1986.

