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Abstract: In this paper we consider branching time semantics for finite sequential 

processes with silent moves. We show that Mllner's notion of observation equivalence 

is not preserved under refinement of actions, even when no interleaving operators 

are considered; however, the authors' notion of branching bislmu/ation is. 
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INTRODUCTION 

Virtually all semantic equivalences employed in theories of concurrency are defined in terms of 

actions that concurrent systems may perform (cf. [1-7]). Mostly, these actions are taken to be 

atomic, meaning that they are considered not to be divisible into smaller parts. In this case, the 

defined equivalences are said to be based on action atomicity. 

However, in the top-down design of distributed systems it might be fruitful to model processes at 

different levels of abstraction. The actions on an abstract level then turn out to represent complex 

processes on a more concrete level. This methodology does not seem compatible with non

divisibility of actions and for this reason, PRATI [7], LAMPORT [4] and others plead for the use of 

semantic equivalences that are not based on action atomicity. 

As indicated in CASTELLANO, DE MICHELlS & PC>MELLO [2], the concept of action atomicity can be 

formalised by means of the notion of refinement of actions. A semantic equivalence is preserved 

under action refinement if two equivalent processes remain equivalent after replacing all occurrences 

of an action a by a more complicated process r(a). In particular, r(a) may be a sequence of two 

actions a1 and az. An equivalence is strictly based on action atomicity if it is not preserved under 

action refinement. 

In a previous paper [3] the authors argued that MILNER's notion of observation equivalence [5] does 

not respect the branching structure of processes, and proposed the finer notion of branching 

bisimulation equivalence which does. In this paper we moreover find, that observation equivalence 

is not preserved under action refinement, whereas branching bisimulation equivalence is. 
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1. PROCESS GRAPHS 

As a simple model, let us represent a process by a state transition diagram or process graph. Such a 

graph has a node for every one of the possible states of the process, and has arrows between nodes 

to indicate whether or not a state is accessible from another. Furthennore, these arrows (directed 

edges) are labelled, with labels from Au{'t}, where A= {a,b,c, ... } is some set of observable 

signals, and 't stands for a silent step (cf. [5]). 

DEFINITION 1.1 A process graph is a connected, rooted, edge-labelled and directed graph. 

In an edge-labelled graph, one can have more than one edge between two nodes as long as they 

carry different labels. A rooted graph has one special node which is indicated as the root node. 

Graphs need not be finite, but in a connected graph one must be able to reach every node from the 

root node by following a finite path. If r and s are nodes in a graph, then r ~a s denotes an edge 

from r to s with label a (it is also used as a proposition stating that such an edge exists). In this 

paper we limit ourselves to processes represented by finite, non-trivial process graphs. A graph is 

finite if it is acyclic and contains only finitely many nodes and edges; it is trivial if it contains no 

edges at all. The set of non-trivial, finite process graphs will be denoted by G. 

In order to tum G into an algebraic structure, it is possible to define binary operators'+' and'·' for 

alternative and sequential composition. For any two graphs g and h the process graph (g + h) is 

obtained by simply identifying their root nodes, whereas (g·h) - often written as just (gh) - can be 

found by identifying the root node of h with all endnodes of g. Furthennore, constants from 

Au { 't} are interpreted as one-edge graphs, carrying the constant as their edge-label. The algebraic 

structure allows us to study equational theories that emerge from any defined equivalence on G. For 

instance, in branching time semantics, one often considers observation congruence (cf. MILNER [5]) 

- written as ,.,c - as a deciding criterion for equality in obseivable behaviour. Let us write r => r' for 

a path from r to r' consisting of an arbitrary number ~) of 't-edges. Then its definition can be 

rephrased as: 

DEFINITION 1.2 Two graphs g and h are observation equivalent if there exists a symmetric 

relation R !;; nodes(g)xnodes(h) u nodes(h)xnodes(g) (called a 't-bisimulation) such that: 

1 . The roots are related by R. 

2. If R(r,s) and r ~a r' (aeAu{'t}), then either a='t and R(r',s), or there exists a path 

s => s1 ~a s2 => s' such that R(r',s'). 

Furthennore, g and h are observation congruent if we also have that 

3. (root condition) Root nodes are related with root nodes only. 

The root condition was first fonnulated by BERGSTRA & KLOP [1], and seives to tum the notion of 

obseivation equivalence into a congruence with respect to the operators + and ·. It can be proved that 
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observation equivalence and observation congruence are equivalence relations on G, and that the 

latter is the coarsest congruence contained in the fonner (cf. [5,1,3]). It was shown in [l] that with 

respect to closed tenns the model G/=c is completely axiomatized by the theory 

x+y=y+x Al X't= X Tl 

x + (y + ·z) = (x + y) + z A2 'tX='tX+X T2 

x+x=x A3 a('tX + y) = a('tX + y) + ax TI 

x(yz) = (xy)z A4 

(x + y)z = xy + xz A5 (aeAu{'t}) 

The 't-laws Tl-TI originate from MILNER [5], who gave a complete axiomatization for a similar 

model with prefixing instead of general sequential composition. From these axioms, it is easy to 

show why the notion of observation congruence is not preserved under refinement of actions: 

replacing the action a by the tenn be, we obtain bc('tx + y) = bc('tX + y) + bcx from TI, which 

obviously is not valid in G/=c. By TI, we do find bc('tx + y) = b(c('tx + y) + ex) which 

unfortunately denotes a different process. 

Apart from the problem with refinement, it was observed in VAN GLABBEEK & WEIJLAND [3] that 

observation equivalence does not strictly preserve the branching structure of processes. This is 

because an important feature of a bisimulation (cf. PARK [6]) is missing for't-bisimulation, which is 

the property that any computation in the one process corresponds to a computation in the other, in 

such a way that all intennediate states of these computations correspond as well. However, in 

observation congruence, when satisfying the second requirement of definition 1.2 one may execute 

arbitrarily many 't-steps in a graph without worrying about the status of the nodes that are passed in 

the meantime. 

In order to overcome this problem, in [3] a different notion was introduced, which yields a finer 

equivalence on graphs. 

DEFINITION 1.3 Two graphs g and h are branching equivalent if there exists a symmetric relation 

R k nodes(g)xnodes(h) u node(h)xnodes(g) (called a branching bisimulation) such that: 

1 . The roots are related by R 

2. If R(r,s) and r ~a r' (ae Au{'t}), then either a='t and R(r',s), or there exists a path of the 

fonn s => s1 ~as' such that R(r,s1) and R(r',s'). 

Furthermore, g and h are branching congruent if we also have that 

3. (root condition) Root nodes are related with root nodes only. 

Let us write R: g t:tb h if R is a branching bisimulation between g and hand R: g t:trb h if, in 

addition, R satisfies the root condition. One can prove that the same equivalence is defined when in 

definition 1.3 all intennediate nodes in s => s1 are required to be related with r. Furthennore, 
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observe that a branching bisimulation can also be defined as in definition 1.2, with as extra 

requirements that R(r,s1) and R(r',s2). 

It can be proved that branching equivalence and branching congruence are equivalence relations on 

G. Furthermore, the latter is the coarsest congruence contained in the former. It was shown in [3] 

that with respect to closed terms, the model G/t:irb is completely axiomatized by the axioms Al-AS 

together with 

X't = x Bl 

x('t(y + z) + y) = x(y + z) B2. 

Note that the axioms B l-B2 when applied from left to right only eliminate occurrences of 't's. Using 

this property, it can be shown that the associated term rewriting system on G/=At-A5· i.e. G modulo 

equality induced by the axioms Al-AS, is confluent and terminating. So any two closed branching 

congruent terms can be reduced to the same normal form. 

2. REFINEMENT 

In this section we will prove that branching congruence is preserved under refinement of actions, 

and so it allows us to look at actions as abstractions of much larger structures. Consider the 

following definitions. 

DEFINITION 2.1 (substitution) 

Let r: A ~ G be a mapping from observable actions to graphs, and suppose ge G. Then, the 

graph r(g) can be found as follows. 

For every edge r ~a r' (ae A) in g, take a copy r(fil of r(a) (e G).Next, identify r with the 

root node of ruu. and r' with all endnodes of r(al, and remove the edge r ~a r'. 

Note that in this definition it is never needed to identify r and r', since graphs from G are non

trivial. This way, the mapping r is defined on the domain G. Note that since 't~ A, 't-edges cannot 

be substituted by graphs. Finally, observe that every node in g is a node in r(g). 

DEFINITION 2.2 (preservation under refinement of actions) 

An equivalence = on G is said to be preserved under refinement of actions if for every mapping 

r: A~ G, we have: g = h => r(g) = r(h). 

In other words, an equivalence = is preserved under refinement if it is a congruence with respect to 

every substitution operator r. 



5 

Starting from a relation R: g t:trb h, we construct a branching bisimulation r(R): r(g) t:trb r(h), 

proving that preserving branching congruence, every edge with a label from A can be replaced by a 

graph. 

DEFINITION 2.3 Let r: A -t G be a mapping from observable actions to graphs, g,he G and 

R: g t:trb h. Now r(R) is the smallest relation between nodes of r(g) and r(h), such that: 

1. R ~ r(R). 

2. If r -tar' and s -ta s' (ae A) are edges in g and h such that R(r,s) and R(r',s'), and both 

edges are replaced by copies !(fil and r(a) of r(a) respectively, then nodes from !(fil and 

r(a) are related by r(R), only if they are copies of the same node in r(a). 

Edges r -ta r' and s -ta s' (ae A) such that R(r,s) and R(r' ,s'), will be called related by R, as well 

as the copies r(a) and r(a) that are substituted for them. Observe, that on nodes from g and h the 

relation r(R) is equal to R. Note that if r(R)(r,s), then r is a node in g iff s is a node in h. 

THEOREM (refinement) 

Branching congruence is preserved under refinement of actions. 

PROOF We prove that R: g t:trb h => r(R): r(g) t:trb r(h) by checking the requirements. 

1 . The root nodes of r(g) and r(h) are related by r(R). 

2. Assume r(R)(r,s) and in r(g) there is an edge r -ta r'. Then there are two possibilities 

(similarly in case r -ta r' stems from r(h)): 

(i) The nodes r and s originate from g and h. Then R(r,s), and by the construction of r(g) 

we find that either a='t and r -t't r' was already an edge in g, or g has an edge r -tb r* and 

r -tar' is a copy of an initial edge from r(b). In the first case it follows from R: g t:trb h that 

either R(r',s) - hence r(R)(r',s) - or in h there is a path s => s1 -t't s' such that R(r,s1) and 

R(r',s'). By definition, the same path also exists in r(h), and we have r(R)(r,s1) and r(R)(r',s'). 

In the second case there must be a path s => s1 -tb s* in h such that R(r,s1) and R(r* ,s*). 

Then, in r(h) we find a path s => s1 -ta s' (by replacing -tb by r(b)) such that r(R)(r,s1) and 

r(R)(r' ,s') . 

(ii) The nodes r and s originate from related copies r(Q). and r(b) of a substituted graph r(b) 

(for some be A), and are no copies of root or endnodes in r(b). Then r-ta r' is an edge in I(Ql. 

From r(R)(r,s) we find that r and s are copies of the same node from r(b). So, there is an edge 

s -ta s' in r(b) where s' is a copy of the node in r(b), corresponding with r'. Clearly 

r(R)(r' ,s') . 

3. Since for nodes from g and h we have r(R)(r,s) iff R(r,s), the root condition is satisfied. D 
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With respect to closed terms, the refinement theorem can be proved much easier by syntactic 

analysis of proofs, instead of working with equivalences between graphs. For observe that the 

axioms A l-A5 + B l-B2, that form a complete axiomatization of branching congruence for closed 

terms, do not contain any occurrences of (atomic) actions from A. Now assume we have a proof of 

some equality s=t between closed terms, then this proof consists of a sequence of applications of 

axioms from Al-AS+ Bl-B2. Since all these axioms are universal equations without actions from 

A, the actions from s and t can be replaced by general variables, and the proof will still hold. 

Hence, every equation is an instance of a universal equation without any actions. Immediately we 

find that we can substitute arbitrary closed terms for these variables, obtaining refinement for closed 

terms. 

Nevertheless, the semantic proof of the refinement theorem is important as one may wish to 

generalize the result to models of larger graphs than just finite ones from G. 
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