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We introduce a notion of real-valued reward testing for piulistic processes by extending the tra-
ditional nonnegative-reward testing with negative rewgatd this richer testing framework, the may
and must preorders turn out to be inverses. We show that fMergent processes with finitely many
states and transitions, but not in the presence of divesgehe real-reward must-testing preorder
coincides with the nonnegative-reward must-testing gleorTo prove this coincidence we charac-
terise the usual resolution-based testing in terms of thekwransitions of processes, without having
to involve policies, adversaries, schedulers, resolstion similar structures that are external to the
process under investigation. This requires establistiagontinuity of our function for calculating
testing outcomes.

1 Introduction

Extending classical testing semantics [1, 7] to a settingtirth probability and nondeterminism co-exist
was initiated in[[13]. The application of a test to a procestdg a set of probabilities for reaching a
success stateReward testingvas introduced in [8]; here the success states are labelleditnegative
real numbers—rewards—to indicate degrees of success, and reaching a successaastaimulates the
associated reward. In_[12] an infinite set of success aci®used to report success, and the testing
outcomes are vectors of probabilities of performing thesmeass actions. Compared [to [8] this amounts
to distinguishing different qualities of success, rattmant different quantities.

In [13] and [12], both tests and testees are nondetermingstbabilistic processes, whereas [8]
allows nonprobabilistic tests only, thereby obtaining ssleiscriminating form of testing. Inl[6] we
strengthened reward testing by also allowing probahiligsts. Taking rewards testing in this form we
showed that for finitary processes, i.e. finite-state andefinbranching processes, all three modes of
testing lead to the same testing preorders. Thus, vectmebiesting is no more powerful thaoalar
testing that employs only one success action, and likevess@and testing is no more powerful than the
special case of reward testing in which all rewards afb 1.
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1in spite of this therés a difference in power between the notions of testing fronj g&l [12], but this is an issue that is
entirely orthogonal to the distinction between scalaiingstreward testing and vector-based testing[_In [12] ibhesexecution
of a succesactionthat constitutes success, whereas In [L, 7, 13, 8] it is irgehsuccesstate(even though typically success
actions are used to identify those states).[In [2, Ex 5.3] h@ved that state-based testing is (slightly) more powetfah
action-based testing. The results presentedlin [6] abeutdincidence of scalar, reward, and vector-based testewygers
pertain to action-based version of each, but in the cormfugiis observed that the same coincidence could be obtdared
their state-based versions. In the current paper we stistate-based testing.

M. Massink and G. Norman (Eds.): 9th Workshop on © Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan
Quantitative Aspects of Programming Languages (QAPL 2Uhig work is licensed under the
EPTCS 57, 2011, pp. 6373, doi:10.4204/EPTCS|57.5 [Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.57.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

62 Real-Reward Testing for Probabilistic Processes

12 1/2

Figure 1: Two processes with divergence and a test

In certain situations it is natural to introduce negativeaeds. This is the case, for instance, in the
theory of Markov Decision Processes [9]. Intuitively, waultbunderstand negative rewards as costs,
while positive rewards are often viewed as benefits or profiisis leads to the questiorif negative
rewards are also allowed, how would the original rewardtiteg semantics changeWe refer to the
more relaxed form of testing, using positive and negativeards, aseal-reward testingand the original
one (from [8], but with probabilistic tests as [n [6]) asnnegative-reward testing

The power of real-reward testing is illustrated in Fidurd fhe two (nonprobabilistic) processes in the
left- and central diagrams are equivalent under (prolsilaijimay- as well as must testing; thdoops in
the initial states cause both processes to fail any noatnwust test. Yet, if a reward 6f1 is associated
with performing the actiom, and a reward of 2 with the subsequent performande(ohplemented by
the test in the right diagram; see Examiplel 3.8 for more dgtaih the first process the net reward is
either O (if the process remains stuck in its initial statepasitive, whereas running the second process
may vield a loss. This example shows that for processes thgexhibit divergence, real-reward testing
is more discriminating than nonnegative-reward testimgpther forms of probabilistic testing. It also
illustrates that the extra power may be relevant in appboat

As remarked, in[[6] we established that for finitary process® nonnegative-reward must-testing
preorder Cnrmusy Coincides with the probabilistic must-testing preordep,s), and likewise for the
may preorders. Here we show that, in contrast to the situdiononnegative-reward (or scalar) testing,
for real-reward testing the may- and must preorders arentrase of each other, i.e. for any processes
Aandl,

ATy may r iff [ Crrmust. (l)

Our main result is that restricted to finitary convergenicpsses, the real-reward must preorder coincides
with the nonnegative-reward must preorder, i.e. for anydigiconvergent processasr,

A EI’I’ mustr Iff A Enrmustr- (2)

Here by convergence we mean that there is no infinite sequémarnal transitions of the formg -

A1 -5 -+ with distribution Ag (and thus its successors) reachable from either I'. This rules out
the processes of Figuké 1. Although it is easy to see thaf)ith@former implies the latter, to prove
the opposite is far from trivial. We employ a novel charasggion of the usual resolution-based testing
approach, without introducing concepts ligelicy [9], adversary[10], scheduler11] or resolution[6]

that are external to the process under investigation;adsiee describe the mechanism for gathering test
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The symbok between two relations means that they coincide for finitaryergent processes.

Figure 2: The relationship of different testing preorders.

results in terms of theveak T-movesor derivations[3] the investigated process can make, and hence
speak ofderivation-based testing

This allows us to exploit the failure simulation preordsts that in [3] was proven to coincide with
the probabilistic must testing preordepmystbased on resolutions, at least for finitary processes. Using
the derivational characterisation we can show that, fotdipiconvergent processésgs is contained in
Crrmust Convergence is essential here, even though it is not ndedesiablish thatrs is contained in
Chrmust Combining this with the results from|[6] and| [3] mentiondabge leads to our required result
that Crmust IS included inCy, myusy as far as finitary convergent processes are concerned eQusrsly,
in this case, all the relations of Figuire 2 collapse into one.

The rest of this paper is organised as follows. We start bgllieg notation for probabilistic labelled
transition systems. In Secti@h 3 we review the resolutiasel testing approach and show that the real-
reward may preorder is simply the inverse of the real-rewawndt preorder. Moreover, using the example
of Figure[1, we show that in the presence of divergence tHasmmmn of Ty, mustin Srr must IS Proper. In
Sectior 4 we present the derivation-based testing apparathlso show that the two approaches agree.
Then in Sectiofl5 we show for finitary convergent processatsréal-reward must testing coincides with
nonnegative-reward must testing. We conclude in Settion 6.

Due to lack of space, we omit all proofs: they are reporte@]n Besides the related work already
mentioned above, many other studies on probabilisticnigstnd simulation semantics have appeared in
the literature. They are reviewed [n [5, 2].

2 Probabilistic Processes

A (discrete) probabilitysubdistributionover a seSis a functionA : S— [0, 1] with Ys.sA(s) < 1; the
supportof such aA is [A] := {s€ S| A(s) > 0}, and itsmass|A| is Y scra1A(S). A subdistribution is a
(total, or full) distributionif |A| = 1. The point distributiors assigns probability 1 teand 0 to all other
elements ofS, so that[S| = {s}. With Zs,(S) we denote the set of subdistributions o@rand with
2(S) its subset of full distributions.

Let {Ax | k € K} be a set of subdistributions, possibly infinite. THaR Ak is the real-valued func-
tion in S— R defined by(T ek Ak)(S) = Ykek Ak(S). This is a partial operation on subdistributions
because for some stad¢he sum ofA,(s) might exceed 1. If the index set is finite, sl..n}, we often
write Ay + ...+ A,. For p a real number fronj0, 1] we usep-A to denote the subdistribution given by
(p-A)(s) := p-A(s). Finally we usee to denote the everywhere-zero subdistribution that theshgpty
support. These operations on subdistributions do not lseadapt themselves to distributions; yet if
> kek Pk =1 for somepy > 0, and the\ are distributions, then so By pk-Ax.

The expected valu§ ;-sA(s)- f(s) over a subdistributiodd of a bounded nonnegative functidn
to the reals or tuples of them is written EX), and the image of a subdistributidnthrough a func-
tion f : S— T, for some sef, is written Img (A) — the latter is the subdistribution ovérgiven by
Img; (A)(t) == 3 (s—t A(S) foreacht € T.
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Definition 2.1 A probabilistic labelled transition syste(pLTS) is a triple(S Act,—), where
(i) Sis a set of states,

(i) Actis a set of visible actions,
(iii) relation — is a subset 06x Act; x Z(S).
HereAct; denotesAct U {7}, wheret ¢ Act is the invisible- or internal action.

A (nonprobabilistic) labelled transition system (LTS) miag viewed as a degenerate pLTS — one in
which only point distributions are used. In this papdjpeobabilistic) processwill simply be a distri-
bution over the state set of a pLTS. As with LTSs, we wsités A for (s,a,A) € —, as well ass %

for 3A : s % A ands— for Ja: s -2+, with s -2 ands-4 representing their negations. A pLTS is
deterministicif for any states and labela there is at most one distributiah with s -+ A. It is finitely
branchingif the set{A|s-% A, a €L} is finite for all statess; if moreoverSis finite, then the pLTS

is finitary. A subdistributionA over the state sed of an arbitrary pLTS idinitary if restricting Sto the
states reachable fromyields a finitary sub-pLTS.

3 Testing probabilistic processes

A testis a distribution over the state set of a pLTS haviag,; UQ as its set of transition labels, whe@e

is a set of freslsuccessctions, not already iAct;, introduced specifically to report testing outcorfes.
For simplicity we may assume a fixed pLTS of processes—ounteeapply to any choice of such a
pLTS—and a fixed pLTS of tests. Since the power of testing ne@pen the expressivity of the pLTS of
tests—in particular certain types of tests are necessanufaesults—Ilet us just postulate that this pLTS
is sufficiently expressive for our purposes — for exampld thean be used to interpret all processes
from the languageCSP, as in our previous papets [5,2, 3].

Although we use succesxctions they are used merely to mark certain states as success, state
namely the sources of transitions labelled by successractibor this reason we systematically ignore
the distributions that can be reached after a success attlermpose two requirements on all states in
a pLTS of tests, namely
(A) if t -2 andt -2 with wy, wp € Q thenw, = wy.

(B) if t % with w € Q andt %+ A with o € Act; thenu -2 for all u € [A].

The first condition says that a success state can have onessuitentity only, whereas the second
condition is slight weakening of the requirement frorm [&tteuccess states must be end states; it allows
further progress from amw-success state, for somgee Q, but w must remain enable.

To apply test® to process\ we form a parallel compositio®||A in which all visible actions ofA
must synchronise wit®. The synchronisations are immediately renamed infbhe resulting composi-
tion is a process whose only possible actions are the eleé@t .= QU {t}. Formally, if (P, Act,—p)
and(T,ActUQ,—) are the pLTSs of processes and tests, then the pLTS of afplisaf tests to pro-
cesses isC,Q, —), with C = {t||p|t €T A peP} and— the transition relation generated by the rules in
Fig.[3. Here if® € 2(T) andA € 2(P), then®||A is the distribution given by®||A)(t||p) := O(t)-A(p).
The resulting pLTS also satisfies (A), (B) above; this woubd Ipe the case if we had strengthened (B)
to require that success states must be end states.

We will define the resulte7 (©,A) of applying the test to the procesd to be a set of testing
outcomes, exactly one of which results from each resolufdhe choices if®||A. Eachtesting outcome

2For vector-basedesting we normally tak€) to be countably infinite [12]. This way we have an unboundgubkuof
success actions for building tests, of course without el to use them allScalartesting is obtained by taking| = 1.
3Justification for imposing such restrictions can be foundppendix A of [€].
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t- %10 o & Act pi>pA o & Act t-3%70 piﬂ:A acAct
tilp < O|[p tilp = T)A tlp — 0]

Figure 3: Synchronous parallel composition between texigpaocesses

is anQ-tuple of real numbers in the interval [0,1], i.e. a functonQ — [0, 1], and itsw-component
o(w), for w € Q, gives the probability that the resolution in question wélhch arw-success statone
in which the success actian is possible.

Due to the presence of nondeterminism in pLTSs, we need aanisch to reduce a nondeterministic
structure into a set of deterministic structures, each ofltietermines a single possible outcome. Here
we adapt the notion aksolution defined in([6] for probabilistic automata, to pLTSs.

Definition 3.1 [Resolution] A resolutionof a subdistributio\ € Z5,(S) in a pLTS(S Q,—) is a triple
(R,A\,—R) Where(R Q,—g) is a deterministic pLTS and € Zs.(R), such that there existsrasolving
function f: R— Ssatisfying

(i) Img¢(A) =A
(i) if r A for a € Q; thenf(r) % Img; (N)
(iii) if f(r) % for a € Q; thenr L.

The reader is referred to Section 2 of [6] for a detailed disi@n of the concept of resolution, and the
manner in which a resolution represents a run of a procegsrircular in a resolution states $are
allowed to be resolved into distributions, and computasteps can b@robabilistically interpolated
Our resolutions match the results of applying a scheduleeéised in[11].

We now explain how to associate an outcome with a particelsolution, which in turn will associate
a set of outcomes with a subdistribution in a pLTS. Given ameinistic pLTS(R, Q, —r) consider the
functional Z : (R — [0,1]?) — (R— [0,1]%?) defined by

1 if r <%
Z(F)(r)(w) =10 if r <% andr %4 (3)
Expy(f)(w) if r %% andr 5 A.

We view the unit intervalO, 1] ordered in the standard manner as a complete lattice; ttiigas the
structure of a complete lattice on the prod{@t]° and in turn on the set of functior®— [0,1]%. The
functional Z is easily seen to be monotonic and therefore has a least foiat pvhich we denote by
VirRa,—g): this is abbreviated t& when the deterministic pLTS in question is understood.

Now we definesZ (©,A) to be the set of vectors

A (0,8) = {EXpr(Vira,—r) | (RA,—Rr) is aresolution oB||A} . 4

Example 3.2 Consider the procesg depicted in Figurel4d(a). Here states are represented hyffiddes

¢ and distributions by open nodesWe leave out point-distributions — diverting an incomirage to the
unique state in its support. When we apply the festpicted in Figurgl4(b) to it we get the procesg,
depicted in Figurél4(c). This process is already detertiinisence has essentially only one resolution:
itself. Moreover the outcome EW(V) = V(t||q1) associated with it is the least solution of the equation
V(t|jar) = 3 - V(t]lqr) + & whered : Q — [0,1] is theQ-tuple with & (w) = 1 and & (') = O for all

w' # w. In fact this equation has a unique solutior{Gn1]<, namelyc. Thuse/ (T,01) = {B}. O
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Figure 5: Testing the process

Example 3.3 Consider the process and the application of the tekto it, as outlined in Figurg]5. For
eachk > 1 the process]g, has a resolutiorfRy, A, —g,) such that Exp(V) = (1-4)&; intuitively it
goes around the loofk — 1) times before at last taking the right handction. Thuse/ (T, q;) contains
(1- 51;)3 for everyk > 1. But it also containﬁ, because of the resolution which takes the left hand

T-move every time. Thus? (t,0y) includes the set

(1-))d, 1-2)8,...,1-3,..., &}
As resolutions allow any interpolation between the twtvansitions from state;, <7 (T, @) is actually
the convex closure of the above set. O

There are two standard methods for comparing two sets ofentdmutcomes:

01 <ho Oz if for every 0, € O, there exists some, € O, such thab;, < 0,
01 <smOy if for every 0, € O, there exists some; € O; such thab; < 0

This gives us our definition of the probabilistic may- and triesting preorders; they are decorated with
- for the repertoireQ of testing actions they employ.
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Definition 3.4 [Probabilistic testing preorders]
(i) AC8mayl if for every Q-test®, 7 (0,A) <po 7 (O,I).
(i) ACHsl if for every Q-test®, o7 (©,A) <sm«/(O,T).
These preorders are abbreviatedtQ pmay " andA Cpmust” When|Q|= 1.

In [6] we established that for finitary processzagnay coincides withCpmay and ggmustwith Epmust
for any choice ofQ. We also defined the reward testing preorders in terms of #ehamism set up so
far. The idea is to associate with each success aatierQ a reward, which is a nonnegative number in
the unit interval[0, 1]; and then a run of a probabilistic process in parallel witest yields an expected
reward accumulated by those states which can enable suaxtésss. A reward tupla € [0,1]¢ is used
to assign rewardh(w) to success actiow, for eachw € Q. Due to the presence of nondeterminism,
the application of a tegD to a procesd) produces a set of expected rewards. Two sets of rewards
can be compared by examining their suprema/infima; thissgisetwo methods of testing called reward
may/must testing. In 6] all rewards are required to be ngatiee, so we refer to that approach of testing
asnonnegative-reward testindf we also allow negative rewards, which intuitively canielerstood as
costs, then we obtain an approach of testing catbetireward testing Technically, we simply let reward
tuplesh range over the sét-1,1]°. If o € [0,1]%, we use the dot-produtt- 0 = 5 ;,cq () - o(w). It
can apply to a séd C [0,1]? so thath-O = {h-0| 0 € O}. LetA C [-1,1]. We use the notatiop|A for
the supremum of se&¥, and[ | A for the infimum.

Definition 3.5 [Reward testing preorders]

@ A g%may [ if for every Q-test® and nonnegative-reward tughec [0,1]%,
LIh-27(0,A) <||h-«7(O,I).
(i) ACS sl if for every Q-test® and nonnegative-reward tughec [0,1]2,
[1h-«7(©,A) <[]h -« (O,I).
(i) ACfmay[ if for every Q-test® and real-reward tuple € [—1,1]?,
LIh-«7(©,A) <[ |h-27/(O,I).
(iv) ACR., T if for every Q-test® and real-reward tuplb € [—1,1]%,
[1h-«7(©,A) <[h-«7(O©,I).
This time we drop the superscri@iff Q is countably infinite.
It is shown in Corollary 1 of([6] that nonnegative-rewardtieg is equally powerful as probabilistic
testing.
Theorem 3.6 [6]For any finitary processesandl,
(i) AChrmayl ifand only if A Cpmay -
In this paper we focus on the real-reward testing preordgrsay and =y musy Dy comparing them with

the nonnegative reward testing preordegmay and Cprmust Although these two nonnegative-reward
testing preorders are in general incomparable we have:

Theorem 3.7 For any processes andl, it holds thatA i, may I if and only if I Cyy myst A.

Our next task is to compare,, must With Crmust The former is included in the latter, which directly

follows from Definition[3.5. Surprisingly, it turns out thédr finitary convergent processes the latter is
also included in the former, thus establishing that the twemmpers are in fact the same. The rest of
the paper is devoted to proving this result. However, we $ihgtw that this result does not extend to
divergent processes.
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Example 3.8 Consider the process&g and o, depicted in Figuré¢ll. Using the characterisations of
Cpmay and Epmustin [3], it is easy to see that these processes cannot begligired by probabilistic
may- and must testing, and hence not by nonnegative-rewatithg either. However, |étbe the test in
the right diagram of Figuriel 1 that first synchronises on thima@, and then with probabilit)% reaches
a state in which a reward of2 is allocated, and with the remaining probabilgysynchronises with the
actionb and reaches a state that yields a reward of 4. Thus the te&hysp/o success actions; and
wy, and we use the reward tugtavith h(w; ) = —2 andh(w;,) = 4. Then the resolution df; that does
not involve thet-loop contributes the value2- 5 +4-3 = —1+2 =1 to the seh- </ (f,qz), whereas
the resolution that only involves theloop contributes the value 0. Due to interpolatibn,o (T, 07) is
in fact the entire interval0,1]. On the other hand, the resolution corresponding toatheanch ofqy
contributes the value-1 andh- </ (T,0z) = [—1,1]. Thus[ |h- &/ (T,q7) =0> —1=[1h-#(f,0), and
hencequ .er must 2. U

4 Derivation-based testing

In this section we give an alternative definition@f©,A). Our definition has four ingredients. First of
all, for technical reasons we normalise our pLTS of applices of tests to processes by pruning away
all outgoing t-transitions from success states. This waycaasuccess state will only have outgoing
transitions labelledo.

Definition 4.1 [w-respecting] A pLTS (S Q,—) is said to bew-respectingwhenevers -, for any
w € Q, impliess 4.

It is straightforward to modify the pLTS of applications @sts to processes into one that itcs
respecting, namely by removing all transitiosis™ A for statess with s -%. With [0©]|A] we denote the
distribution®||A in this pruned pLTS.

Secondly, we recall the definition of weak derivations fr@h [n a pLTS actions are only performed
by states, in that actions are given by relations from stetedistributions. But processes in general
correspond to distributions over states, so in order to defihat it means for a process to perform an
action, we need tdift these relations so that they also apply to distributions fatrt we will find it
convenient to lift them to subdistributions.

Definition 4.2 Let(SL,—) be apLTS and? C Sx Zs,(S) be arelation from states to subdistributions.
ThenZ C ZsudS) x DsurS) is the smallest relation that satisfies:

(i) sZ AimpliessZ A, and

(i) (Linearity) [j 2 A for i€l implies (S pi-Ti) Z (Sic pi-A) for any pi€[0,1] (i€l) with
Yiet B < 1.

An application of this notion is when the relation-i8+ for a € Act;; in that case we also write?s

for -%. Thus, as source of a relatieA~ we now also allow distributions, and even subdistributiofs
subtlety of this approach is that for any actienwe haves %+ & simply by takingl =0 or ¥, pi =0

in Definition[4.2. That turns out to make especially useful for modelling the “chaotic” aspects of
divergence in[[3], in particular that in the must-case ajgat process can simulate any other.
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Definition 4.3 [Weak derivation] Suppose we have subdistributiohgh,”, A, for k > 0, with the fol-
lowing properties:
I Prop A= Dy A

Ay 5 AT +A]
DS o Diga+Dy -

Then we cally := 32 (A aweak derivativeof A, and writeA => A’ to mean tha\ can make aveak
derivationto its derivatived'.

There is always at least one weak derivative of any subldigtan (the subdistribution itself) and there
can be many.
Thirdly, we identify a class of special weak derivativedexdlextreme derivatives.

Definition 4.4 [Extreme derivatives] A statesin a pLTS is calledstableif s -4, and a subdistribution
A is calledstableif every state in its support is stable. We wrlie—= A’ wheneveiA — A’ andA' is
stable, and cal\’ anextremederivative ofA.

Referring to Definitio 4.3, we see this means that in theeexé derivation of\’ from A at every stage a
state must move on if it can, so that every stopping comporemcontain only states whichuststop:
forse [A’ + A ] we havese [A;] if and now als@nly if s—4. Moreover if the pLTS isv-respecting
then wheneves € [A. 7], it is not successful, i.es -9 for everyw € Q.

Lemma 4.5 [Existence of extreme derivatives]
(i) For every subdistributior there exists some (stabla) such thath — A'.
(i) In a deterministic pLTS ifA = A’ andA = A" thenA’ = 4.

Suldistributions are essential here. Consider a dtétat has only one transition, a seHloopt - f.
Then it diverges and it has a unique extreme derivativéhe empty subdistribution. More gener-
ally, suppose a subdistributioh diverges, that is there is an infinite sequence of interraaisitions
A5 A5 A5 ... Then one extreme derivative Afis €, but it may have others.

The final ingredient in the definition of a set of outcomes ofaplication of a test to a process is
the outcome of a particular extreme derivative. Note tHattatess € [A] in the support of an extreme
derivative either satisfg -+ for a uniquew € Q, or haves—4.

Definition 4.6 [Outcomes]The outcome & € [0, 1] of a stable subdistributioa is given by ®(w) =
Y{A(s) | s€ [A], s},

Putting all four ingredients together, we arrive at a debiniof .o79(©,A):
Definition 4.7 LetA be a process an@ anQ-test. Then79(0,4A) = {$A | [0]|A] = A}.
The role of pruning in the above definition can be seen viadahewing example.

Example 4.8 Let p be a process that first doesaaction, to the point distributioq, and then diverges,
via thet-loop q -+ g. LetT be the test used in Examples]3.2 3.3. THignhas a unique extreme
derivativee, whereadt||p] has a unique extreme derivatii®||g]. Here we give the name to the state
reachable fronf with the outgoingw-transition. The outcome in79(f, p) shows that process passes
testt with probability 1, which is what we expect for state-basesting. Without pruning we would get
an outcome saying thatpasse$ with probability 0. O
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As this example is nonprobabilistic, it also illustratesvhgruning enables the standard notion of non-
probabilistic testing to be captured by derivation-baseirtg.

Example 4.9 (Revisiting Examplé_3]2.) The pLTS in Figuré 4(c) is detenistic and unaffected by
pruning; from part[{li) of Lemm&a4l5 it follows that|q; has a unique extreme derivative Moreover

N\ can be calculated to bgkzlz—lk .53, which simplifies to the distributiomz. Therefore,or4(f,q1) =
(s} = (). O
Example 4.10 (Revisiting Examplé_3]3.) The application of the tésb processes]; is outlined in
Figure[®(c). Consider any extreme derivatiVefrom sy = [t||0z]; note that here again pruning actually
has no effect. Using the notation of Definitionl4.3, it is citwatA; andA;” must bes ands; respectively.
Similarly, A} andA;” must bee ands; respectively. Buts; is a nondeterministic state, having two
possible transitions:

(i) s1 - Ao where/g has suppor{so,s,} and assigns each of them the weight
(i) s1 - A1 whereA; has the suppoHss, s}, again dividing the mass equally among them.
So there are many possibilities f&g; from Definition[4.3 one sees that in faks can be of the form
p-No+(1—p)-N\1 (5)
for any choice ofp € [0, 1].

Let us consider one possibility, an extreme one wipgsachosen to be 0; only the transition (ii) above
is used. Herd\;’ is the subdistribution}ﬁ, andA,” = € wheneverk > 2. A simple calculation shows
that in this case the extreme derivative generate is- 3% + 35 which implies thatl & € «79(f, o).

Another possibility forA, is Ag, corresponding tg = 1 in (§) above. Continuing this derivation
leads toAz being 3 -5+ 5 - S5; thusAj = 3-S5 andA;” = 1 -51. Now in the generation a4 from A7’
again we resolve a transition from the nondeterministitesta by choosing some arbitragy< [0, 1] in

(®). Suppose we chooge=1 every time, completely ignoring transition (ii) above. efhthe extreme
derivative generated is 1

e __ JE—

0= Z x5

K>1
which simplifies to the distributioss. This in turn means thai ¢ YT, qR).

We have seen two possible derivations of extreme derivafieens;. But there are many others. In
general whenevek,” is of the formq-S; we have to resolve the nondeterminism by choosipg=¢0, 1]
in (8) above; moreover each such choice is independentrnis tout that every extreme derivatidé of
5 is of the formq- A§+ (1—0q) - A for some choice of) € [0, 1], which implies thate79(t, o) is the
convex closure of the s@%ﬁ, @Y O

We have now seen two ways of associating sets of outcomesthatiapplication of a test to a
process. The first, in Sectibh 3, associates with a test amatags a set of deterministic structures called
resolutions, while the second, in this section, uses exdmenivations in which nondeterministic choices
are resolved dynamically as the derivation proceeds. Weepabto show that these two approaches give
rise to the same outcomes. The key result to this end is

Proposition 4.11 Let A be a subdistribution in awm-respecting deterministic pLT&R Q, —g). If
A = N\ then EXE\(V(R.Q’*}RQ = EXpN (V<R.Q,*>R>)'

To obtain it, we need the crucial property that the evalwmatimctionV applied tow-respecting deter-
ministic pLTSs is continuous (with respect to the standardliiean metric).

The next proposition maintains that for each extreme dtvivdhere is a corresponding resolution,
and vice versa.
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Proposition 4.12 Let A be a subdistribution over the state set of a pB), —).

(i) Supposed =3 A’. Then there is a resolutiofik, A, —r) of A, with resolving functionf, such that
N =g N\ for some/ for whichA’ = Img; (N).

(i) Suppose(R A, —R) is a resolution of @& with resolving functionf.
ThenA =g N impliesA = Img; (\').

The definitions of outcomes, resolutions and the functiogatliirectly imply that if (R A, —g) is a
resolution of a subdistributio € Z5,4S) in a pLTS (S Q,—), with resolving functionf, and/\’ €
ZsuR) is stable, then Img /) is stable and

EXpn (ViRa,—r) = SN = $(Imgs (N)).
In combination with Propositioris 411 and 4.12, this yields

Corollary 4.13 In anw-respecting pLTSS Q, —), the following statements hold.
(i) If A== A'then there is a resolutiofR, A, —r) of A such that EXR(V(gra —q)) = $(4").
(i) For any resolution(R, A, —g) of A, there exists an extreme derivati such thatA = A’ and
EXpA (VR —r)) = $(4).
Together with an argument that pruning does not affé¢©,A), this proves:

Theorem 4.14 For any tes® and procesa we have thatr4(©,A) = <7 (0,A).

5 Agreement of nonnegative- and real-reward must testing

In this section we prove the agreementlof, must With T must fOr finitary convergent processes, by
using failure simulation [3] as a stepping stone. We staitt @efining the weak action relatioa& for

a € Act; and the refusal relationsys for A C Act that are the key ingredients in the definition of the
failure-simulation preorder.

Definition 5.1 LetA and its variants be subdistributions in a pLTSSAct, —).

e Forae Act write A =2 A wheneverh = AP 25 APOSt—, A/ for someAP™ and APt Extend
this toAct; by allowing as a special case thdt is simply=>, i.e. including identity (rather than
requiring at least one’s).

e For A C Act andse Swrite s 54 if s-9% for everya e AU {1}; write A 55 if s 5% for every
se[A].

o More generally writeh =54 if A = AP™ for someAP™ such that\P® 55,

Definition 5.2 [Failure simulation preorder] Define < to be the largest relation i8x Zs,4(S) such
that if s <. A then

(i) wheneves=% 7, for a € Acty, then there is &' € Zgu(S) with A =Z> A’ andl’ I 4,

(i) and wheneves =54 thenA —55.

Any relationZ C Sx Zs,4S) that satisfies the two clauses above is callddilare simulation The
failure simulation preordeCrs C Zsu(S) X Zsu(S) is defined by lettingd Ces ™ whenever there is a
A" with A = A" andl” I A"

Note that the simulating proceds, occurs at the right ofi_, but at the left of=fs.
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The failure simulation preorder is preserved under pdredimposition with a test, followed by pruning,
and it is sound and complete for probabilistic must testifnfinttary processes.

Theorem 5.3 [3]For finitary processed andl’,
(i) If ACEsT then for anyQ-test® it holds that{/A||©] Cgs [[]|©].
(i) ACrsT ifand only if A Cpmystl.

Because we prune our pLTSs before extracting values from,tiv@ will be concerned mainly with
w-respecting structures. Moreover, we require the pLTSstoolvergentin the sense that there is no
wholly divergent stata, i.e. withs = ¢.

Lemma5.4 Let A and ™ be two subdistributions in am-respecting convergent pLT& Q, —). If
A CgsT, then it holds that' (A) 2 ¥/ (). Here?'(A) denotes($A' | A == A'}.

This lemma shows that the failure-simulation preorder i®gy strong relation in the sense thatif

is related td™ by the failure-simulation preorder then the set of outcogmserated by includes the
set of outcomes given bly. It is mainly due to this strong requirement that we can shioat the
failure-simulation preorder is sound for the real-rewangstrtesting preorder. Convergence is a crucial
condition in this lemma.

Theorem 5.5 For any finitary convergent processeandl, if A Crs ™ then we have thahk Ty st

The proof of the above theorem is subtle. The failure-sitiaigpreorder is defined via weak derivations
(cf. Definition[5.2), while the reward must-testing prearigedefined in terms of resolutions (cf. Defini-
tion[3.5). Fortunately, we have shown in Corollary 4.14 tliatcan just as well characterise the reward
must-testing preorder in terms of weak derivations. Basethis observation, the proof can be carried
out by exploiting Theorem 5.3(i) and Leminals.4.

This result does not extend to divergent processes. Onesgitexample is given in Figuké 1. A
simpler example is as follows. Létbe a process that diverges, by performing-laop only, and lef
be a process that merely performs a single adidihholds thatA CgsI™ becausé = € and the empty
subdistribution can failure-simulate any processes. Hewef we apply the test from Example 3.2
again, and the reward tuphewith h(w) = —1, then

Oh-o%Ca) = [h-{sg} = [1{0} = 0O
Mh-o9Er) = Mh{@} = MN{-1} = -1

As[1h-«9(E,A) £ [Th- «9(E,T), we see thah Z; mustT. Since? ([{|T]) = {&} but @ ¢ 7 ([t|A)),
this also is a counterexample against an extension of Ledndhaith divergence.

Finally, by combining Theorems 3.6(ii) and b5.3(ii), togettwith Theoreni 5]5, we obtain the main
result of the paper which states that, in the absence ofgliwee, nonnegative-reward must testing is as
discriminating as real-reward must testing.

Theorem 5.6 For any finitary convergent process&sand [, it holds thatA C,, st I if and only if
A Enrmustr-

6 Conclusion

We have studied a notion of real-reward testing which exgehd traditional nonnegative-reward testing
with negative rewards. It turned out that real-reward magoper is the inverse of real-reward must
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preorder, and vice versa. More interestingly, for finitapneergent processes, the real-reward must
testing preorder coincides with the nonnegative-rewastirtg preorder. In order to prove this result,
we have presented two testing approaches and shown thegigence, which involved proving some
analytic properties such as the continuity of a functioncilculating testing outcomes.

Although for finitary convergent processes real-rewardtresting is no more powerful than non-
negative-reward must testing, the same does not hold fortestiyng. This is immediate from our result
that (the inverse of) real-reward may testing is as powexfuieal-reward must testing, that is known not
to hold for nonnegative-reward may- and must testing. Thesl-reward may testing is strictly more
discriminating than nonnegative-reward may testing, eviémout divergence.
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