
Assuming Just Enough Fairness to make
Session Types Complete for Lock-freedom
Rob van Glabbeek

Data61, CSIRO and UNSW, Australia
Sydney, Australia

Email: rvg@cs.stanford.edu

Peter Höfner
Australian National University

Canberra, Australia
Email: peter.hoefner@anu.edu.au

Ross Horne
Computer Science, University of Luxembourg

Esch-sur-Alzette, Luxembourg
Email: ross.horne@uni.lu

Abstract—We investigate how different fairness assumptions
affect results concerning lock-freedom, a typical liveness property
targeted by session type systems. We fix a minimal session
calculus and systematically take into account all known fairness
assumptions, thereby identifying precisely three interesting and
semantically distinct notions of lock-freedom, all of which having
a sound session type system. We then show that, by using a
general merge operator in an otherwise standard approach to
global session types, we obtain a session type system complete
for the strongest amongst those notions of lock-freedom, which
assumes only justness of execution paths, a minimal fairness
assumption for concurrent systems.

I. INTRODUCTION

It has long been known that there is an intimate relationship
between liveness properties and fairness assumptions. Seminal
work by Owicki and Lamport [1] draws attention to the fact
that liveness properties, such as “each request will eventually
be answered” are indispensable to create correct concurrent
programs.

Typically, a liveness property does not hold for all execution
paths of a concurrent system: imagine two sellers and two buy-
ers: buyer1 repeatedly requests product A from seller1, who
is able to sell the product. Similarly, buyer2 and seller2 are
able to exchange product B. Assuming that both buyers try to
request infinitely many products, there is an infinite execution
path where product A is always requested and bought, and
B is never sold. When taking all infinite execution paths into
consideration, the rudimentary liveness property mentioned by
Owicki and Lamport does not hold. Ranging over all infinite
or completed executions – the default assumption for many
model checkers – essentially assumes only that the system as
a whole progresses if there is some work to do and there is
no deadlock.

When reasoning about starvation-sensitive liveness proper-
ties, i.e, properties that avoid situations where a component
wants to do something but is denied forever, Owicki and
Lamport state explicitly that such liveness properties depend
on a fairness assumption.

Assuming that the parties in our example act independently,
claiming that the aforementioned liveness property fails is
unrealistic, for both sellers should be able to react on any
request. It is reasonable to make some fairness assumption

that ensures that the parties requesting and selling A do not
impair the parties involved with B. This simple example can
be used as a litmus test that any realistic fairness assumption
for a concurrent system should pass.

Thus, liveness properties have to be parametrised with a
fairness assumption that rules out potential executions of a
system. As the fairness assumption becomes weaker (permit-
ting more executions), the liveness property becomes stronger
(systems can do more, so the liveness property is more likely
to be rejected).

A reason why there exist different notions of fairness is
that some notions are not realistic for some applications.
For example, an implication of making the strongest of all
fairness assumptions might be that you will phone every-
one in your phone book repeatedly, which is unlikely. The
minimal assumption justness [2] does not entail this, but it
does imply that you will not be prevented from having a
phone conversation due to unrelated calls between others. A
recent survey [2] of fairness assumptions classifies dozens of
semantically distinct notions by their strength in ruling out
potential executions. Thus, for every liveness property, there
are dozens of incarnations of that property obtained simply by
varying the underlying fairness assumption.

Not all liveness properties obtained by varying fairness
assumptions are semantically distinct. We identify two key
reasons why liveness properties coincide: the (fixed) choice of
process model and the choice of liveness property.

In this paper, we fix the process model to be a core
synchronous session calculus featuring an internal and external
choice [3], [4], which is frequently studied in the context of
session types. We also fix the liveness properties to follow a
scheme for lock-freedom [5], [6], which has emerged as one of
the most important liveness properties for multiparty session
calculi and related calculi, such as the linear π-calculus. Lock-
freedom is essentially the absence of starvation, as described
above. Clearly, the choice of the fairness assumption will
influence whether a system is lock-free.

The restriction to session calculi, for which session type
systems exist, allows us to answer the following question:

For a given fairness assumption, does there exist a
session type system that is sound and/or complete,
in the sense that a network is lock-free if and/or only
if it is well-typed?To appear in the Proceedings of LICS 2021.

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3) M ‖ N ≡ N ‖M M ‖ 0 ≡M

N ≡ N′ N′ α−→M′ M′ ≡M

N α−→M

k ∈ I

p[[⊕i∈I pi!λi;Ti]] ‖ N τ−→ p[[ppi!λi;Tk]] ‖ N

p[[µX.T]] ‖ N τ−→ p[[T
{
µX.T/X

}]] ‖ N k ∈ I

pk[[pq!λk;U]] ‖ q[[∑i∈I pi?λi;Ti]] ‖ N pk→ q :λk−−−−−−→ pk[[U]] ‖ q[[Tk]] ‖ N

Fig. 1. The default semantics for networks that we fix for this study.

Our systematic study yields the following main contributions.

1) We classify the notions of lock-freedom that arise by
taking every notion of fairness in the survey [2] and using
them to instantiate a parameter in a general scheme for
lock-freedom. The resulting classification includes classic
notions of lock-freedom of session calculi found in the
literature. Hence it relates these notions as well. However,
we discover that the notion of lock-freedom which arises
from justness is new to the literature.

2) We introduce a generalisation of the projection mecha-
nism of global types onto threads, which uses the most
general possible merge operator. This solves the problem
that session type systems employing global types without
an explicit parallel composition operator are incomplete,
in the sense that there are lock-free networks that cannot
be typed. This leads to the following main result.

3) We prove that our session type system is complete for
lock-freedom, when assuming justness. To the best of our
knowledge, this is the first completeness result of this
kind. We delineate the scope of our completeness result
by showing that completeness does not hold for weaker
notions of lock-freedom.

4) We prove that more notions of lock-freedom coincide
when restricting to race-free networks. Furthermore, race-
free networks are sound for all notions of lock-freedom,
whenever we assume at least justness.

Following [7], [8], we employ session types that abstract from
the concrete types (e.g. Bool or Nat) of messages, using
labels λ instead. As a result, systems and types have a fairly
similar syntax. It is fairly trivial to move from our session type
system with labels to one with data and data types.

Structure of the paper: Section II introduces our ses-
sion calculus and a spectrum of fairness assumptions, and
then systematically classifies the resulting spectrum of lock-
freedom properties. Section III presents our session type
system featuring a general merge operator and guarded types,
which we prove to be complete with respect to L(J) – the
notion of lock-freedom arising from the assumption of justness
– for all networks. Section IV considers race-free networks in
order to explore the scope of soundness results. Section V
situates our results with respect to notions of lock-freedom
from the literature.

II. THE SCOPE: A SESSION CALCULUS, ITS KEY FAIRNESS
NOTIONS AND LIVENESS PROPERTIES

In this section, we define the session calculus and a scheme
for lock freedom. We also explain various fairness assumptions
and illustrate their differences through separating examples.

A. Syntax and semantics for threads and networks

Our session calculus features finitely many recursive threads
that send and receive messages. Threads, uniquely identified
by location names, feature an internal choice

⊕
pi!λi between

messages labelled λi sent to locations pi (a choice made at
run-time entirely by the sending thread), and an external choice∑
pi?λi amongst messages received (meaning that the thread

is ready to receive different messages λi from pi, but cannot
influence which of them will eventually come through).

T := OK
|
⊕

i∈I pi!λi;Ti
|
∑
i∈I pi?λi;Ti

| X
| µX.T

N := p[[T]]
| 0
| N ‖ N

The index sets I are finite, and in the case of
⊕

i∈I also non-
empty. We enforce guarded recursion by excluding threads of
the form µX.X or µX.µY.T. If p[[T]] is a sub-expression of
a network N, then p is called a location of N. In a network N,
all locations are required to be distinct and all threads closed,
meaning that each occurrence of a variable X is in the scope
of a recursion µX.T. Moreover, in each sub-expression pk!λk
or pk?λk, the pk must be a location of N. We may elide OK;
we write p1!λ1;T1⊕· · ·⊕pn!λn;Tn for

⊕
i∈{1,...,n} pi!λi;Ti,

and p1?λ1;T1 + · · ·+ pn?λn;Tn for
∑
i∈{1,...,n} pi!λi;Ti. In

particular, we write p?λ;T in case I is a singleton set. We
follow a recent trend allowing inputs in an external choice to
listen to different locations [7], [9], which allows us to broaden
the scope of our investigation.

A reduction semantics for our session calculus: The rules
for our session calculus, presented in Figure 1, are fairly
standard. In this semantics, an output that a thread has com-
mitted to can interact synchronously with some input in an
external choice. Also, recursion is unfolded by a τ -transition
and the standard associativity and commutativity of parallel
composition can be applied to enable any transition.

A design decision, we will demonstrate to be significant, is
that there is a τ -transition for resolving all internal choices.

2

To ensure that singleton internal choices perform only one τ -
transition (and not a diverging sequence of τ–transitions), the
transition ends in a network state that is not a syntactically
valid network. Network states are comprised of located thread
states, which due to the annotation p, are not necessarily
threads themselves.

B. Fairness notions for session calculi

We now discuss three fairness assumptions for our session
calculus. A fairness assumption restricts the set of complete
execution paths, here simply referred to as paths.

Definition 1: A path consists of a network state N0 and a
maximal list of transitions Ni αi−→ Ni+1, permitted by Figure 1.

Maximality ensures that either the list is infinite or the final
network state has no outgoing transition, that is, we restrict
ourselves to complete execution paths.

A fairness notion F characterises a subset of all paths as the
fair ones, modelling executions that we assume can actually
occur; we refer to such paths as F-fair paths. It is required to
satisfy the condition of feasibility [10], saying that each finite
prefix of a path is also a prefix of a fair path. One notion of
fairness G is stronger than another one F – in symbols F � G
– if it rules out more paths as unfair.

A network N successfully terminates under a fairness notion
F iff all fair paths successfully terminate, i.e., all components
of N eventually take the form p[[OK]].

A liveness property, or more generally a linear-time prop-
erty, is formalised as a property ϕ of paths. It holds for
network state N0 under a certain fairness assumption iff all
fair paths starting in N0 satisfy ϕ.

B.1 Strong and weak fairness: In [2], the concepts of strong
and weak fairness are parametrised by the notion of a task.
What a task is may differ from one notion of fairness to
another, but for each task it should be clear when it is enabled
in a network state, and when a path engages in a task. A task
T is said to be relentlessly enabled on a path π if each suffix
of π contains a network state in which T is enabled; it is
perpetually enabled if it is enabled in all network states of
π. A path π is strongly fair if, for each suffix π′ of π, each
task that is relentlessly enabled on π′ is engaged in by π′.
It is weakly fair if, for each suffix π′ of π, each task that is
perpetually enabled on π′ is engaged in by π′.

Given a notion of a task t, the concept of strong fairness St
is always stronger than its weak counterpart Wt, i.e., Wt � St.

In [2], several notions of fairness found in the literature
are characterised through formalising what constitutes a task.
Fairness of transitions is obtained by taking the tasks to be
the transitions. Such a task is enabled in a network state N if
N is the source state of that transition. A path π engages in a
transition if that transition occurs in π.

Fact 1: Strong fairness of transitions (ST) characterises
exactly those paths π with the property that whenever a
transition is relentlessly enabled on π then the transition must
be taken infinitely often on π; it rules out all other paths.

In [2], it is shown that for finite-state systems strong fairness
of transitions (ST) is the strongest feasible notion of fairness.

Example 1: Consider the following network where a buyer
chooses to talk to or to buy a product from a seller, after which
the order is shipped.

buyer[[µX.(seller!talk;X ⊕ seller!buy)]]
‖ seller[[µY.(buyer?talk;Y

+ buyer?buy; shipper!order)]]
‖ shipper[[seller?order]]

The network successfully terminates when assuming ST, for
in the only infinite execution the τ -transition belonging to
instruction seller!buy is relentlessly enabled but never taken.

A notion of task that figures prominently in the literature is
that of a component. A component is one of the prime elements
in a parallel composition – in a network expression it is
completely determined by its location. Each transition involves
either one or two components. A component is enabled in
a network state iff a transition involving that component is
enabled; a path engages in a component iff it contains a
transition that involves that component.

We define a function comp which returns for a transition
the set of components participating in the transition. Each
transition labelled τ involves exactly one component (loca-
tion) evident from the rule; each transition labelled p→ q :λ
involves exactly two components, p and q. This defines strong
and weak fairness of components.

Fact 2: Strong fairness of components (SC) characterises the
paths π such that, for any location p, if there are transitions
involving p relentlessly enabled on π, then a transition that
involves p must be taken infinitely often on π.

Fact 3: A path π satisfies weak fairness of components (WC)
whenever, for every location p, if some transition involving
p is, from some state onwards, perpetually enabled, then a
transition that involves p occurs infinitely often in π.

Under the fairness assumption SC, Example 1 does not
successfully terminate, for there is an infinite path where,
alternately, the buyer performs a τ -transition to select the left
branch of its choice and then the buyer and seller talk to each
other. Along this path there is never a transition enabled that
involves the shipper; hence that branch need never be taken.
This illustrates that SC allows strictly more paths than ST, i.e.,
SC � ST.

Example 2: To see that SC excludes some paths, consider
the following network.

seller[[µX.(buyer1?order1;X + buyer2?order2)]]
‖ buyer1[[µY.seller!order1;Y]]
‖ buyer2[[seller!order2]]

The above network terminates under SC (albeit in a state where
buyer1 has not successfully terminated), for, in any infinite
execution, a transition from buyer2 is relentlessly enabled
but never taken. It does not need to terminate under weak

3

fairness of components, for no transition is enabled perpetually
due to the τ -transitions that unfold the recursion after each
communication.

Guaranteeing termination in this example seems wrong as
the fairness assumption constrains the ‘free will’ of the seller
in the sense that they have to sell items to buyer2. Therefore
we will introduce a weaker fairness assumption.

B.2 Justness: We consider a minimal notion of fairness
that guarantees only that concurrent transitions cannot prevent
each other from happening. Informally, two transitions are
concurrent if no component is involved in both transitions.

Definition 2: Two transitions t and u are concurrent, nota-
tion t ^ u, if comp(t) ∩ comp(u) = ∅.
Justness guarantees that once a transition is enabled that stems
from a set of parallel components, one (or more) of these
components will eventually partake in a transition.

Definition 3: A path π is just whenever, for every suffix of
π beginning with state s and for every transition t enabled in
state s, some transition u occurs in that suffix such that t 6^ u.
Equivalently, one might say that no enabled transition is denied
forever only by concurrent transitions. The corresponding
fairness assumption, which only allows just paths, is called
justness (J).

Example 2 illustrates that J is strictly weaker than SC, i.e., J
rules out fewer paths. While this system terminates under SC,
it does not necessarily terminate under J, for it allows infinite
communication between the seller and buyer1. Although the
transition involving buyer2 is relentlessly enabled, it is not
ruled out by justness since the seller is involved in both
communications.

Justness is however enough to assume that in our leading
example at the top of the introduction, the two concurrent
interactions cannot prevent each other from occurring.

Example 3: More formally, we can model the scenario
described at the top of the introduction as follows.

seller1[[µX.buyer1?order;X]]
‖ buyer1[[µY.seller1!order;Y]]
‖ seller2[[µZ.buyer2?order;Z]]
‖ buyer2[[µW.seller2!order;W]]

There is no just path where seller2 and buyer2 never act.
Indeed, for any just path all components act infinitely often.

In general, J � WC holds [2]. In addition, for our session
calculus, justness coincides with weak fairness of components.

Proposition 1: WC coincides with J.

Proof: Let π be an infinite path in our network that is not
WC-fair. So, on a suffix of π, a component p is perpetually
enabled, but never taken. In case p is stuck in a state where
its next transition is a τ , then π is not just.

In case p is stuck in a state pq!λ;T, then, for component
p to be perpetually enabled, q must always be in a state∑
i∈I pi?λi;Ti with p = pk and λ = λk for some k ∈ I .

P = WT

J = WC

SC

ST

L(P)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(ST)

deadlock-freedom

Fig. 2. A classification for our session calculus of fairness assumptions and
liveness properties.

Location q must get stuck in such a state, for if q keeps
moving, it will at some point reach a state µX.U, which is
not of the above form. Consequently, π is not just.

The remaining case is that p is stuck in a state of the form∑
i∈I pi?λi;Ti. For component p to be enabled, a component

pk with k ∈ I must be in a state p!λk;T. Again it follows that
π is not just. �

As we will observe later, under a different choice of semantics
of our session calculus, J and WC do not coincide.

B.3 Further notions of fairness: If we define weak fairness
of transitions (WT), where, as for ST, the tasks are the
individual transitions, then WT imposes no restrictions on the
completed traces for our languages. To see why, observe that
in any infinite path, no transition is enabled perpetually due
to the τ -transitions for unfolding recursion. This most liberal
fairness assumption, which we denote P,1 only guarantees
that the system as a whole will progress if some transition
is enabled.

The survey [2] classifies 21 different notions of fairness,
covering all common notions found in the literature. In our
session calculus, many of these notions coincide, so that only
7 different notions of fairness remain; see Appendix A.

Here we have presented those that we found to be the most
important notions for session calculi – summarised in Figure 2.
Notably, there are strong fairness assumptions strictly between
SC and ST. However, every fairness assumption from [2] leads
to a notion of lock-freedom that coincides with one based on a
fairness assumption defined in this section (see Appendix B).

C. A scheme for lock-freedom

As discussed, a fairness assumption rules out certain paths
for given systems. As lock-freedom considers only the paths
of a system that can actually be taken, it depends on the

1On terminology. In related work [2], P stands for “progress”, the as-
sumption that a system cannot spontaneously halt as long as it is neither
deadlocked nor successfully terminated. However, the word “progress” is
heavily overloaded, meaning anything from deadlock-freedom [11], [12] and
lock-freedom [5], [13], [14] to other liveness properties [15], such as weak
and strong normalisation. That means, it refers to some desired property rather
than an assumption on paths. Furthermore, there are related liveness properties
such as global progress that concerns delegation [16].

4

underlying fairness assumption. Hence, a scheme for lock-
freedom reads as follows:

Along any F-fair path, if a component has not success-
fully terminated, then it must eventually do something. (1)

We can now formally define our scheme for lock-freedom
with respect to a fairness assumption F .

Definition 4: Let F be a fairness assumption. A network N
satisfies liveness property L(F) (for short N |= L(F)) if, for
each F-fair path π starting in N and each location p of N,
• either p successfully terminates on π, or
• π contains infinitely many transitions involving p.

Remember that a location p successfully terminates when it
is of the form p[[OK]]. The letter L indicates “liveness” or
“lock-freedom”.

We say L(F) is stronger than L(G), denoted by L(F) ⇒
L(G), if N |= L(F) ⇒ N |= L(G), for all N. It is strictly
stronger if moreover L(G) 6⇒ L(F). In case a fairness
assumption G is stronger than F , then L(G) is a weaker
property than L(F).

Proposition 2: F � G implies L(F) ⇒ L(G), for fairness
assumptions F and G.

Intuitively, any path of N that is lock-free under F will also
be lock-free under G. Since G rules out more paths than F
and since L is defined over paths, the proof is obvious.

A network has a deadlock (state) if there exists a reachable
network state without outgoing transitions that is not success-
fully terminated; a network is deadlock-free if it does not have
a deadlock.

Clearly, L(ST) implies deadlock-freedom, since every fi-
nite execution can be extended to some ST-fair path, using
feasibility. In networks consisting of one or two parties only,
deadlock-freedom coincides with all notions of lock-freedom.
Deadlock-freedom, however, is considered to be insufficient
for networks with three or more locations, as those networks
may experience starvation: starvation occurs when there is an
execution path along which some component wants to perform
a task but no task involving that component occurs.

Using the relationship between L(ST) and deadlock-free-
dom, as well as Proposition 2, yields the classification of
liveness properties on the right-hand side of Figure 2. Since
F � G does not imply that L(F) is strictly stronger than L(G),
we provide separating examples to prove that the presented
notions of lock-freedom are different.

C.1 L(ST) is strictly stronger than deadlock-freedom:

Example 4: Consider the following network, where a buyer
purchases goods repeatedly from a seller, while a shipper is
awaiting an order that is never placed.

buyer[[µX.seller!buy;X]]
‖ seller[[µY.buyer?buy;Y]]
‖ shipper[[seller?order]]

This network is deadlock-free, for the buyer and seller can
always interact; it does not satisfy L(ST) as shipper is not in
state OK and is never involved in a transition.

C.2 L(SC) is strictly stronger than L(ST): Consider Ex-
ample 1. We have seen that all ST-fair paths successfully
terminate. In particular, along all fair paths the shipper per-
forms a transition. In contrast, there is an infinite SC-fair path
where the shipper neither makes a transition nor successfully
terminates.

The following example separates ST from SC without
considering termination.

Example 5: Consider the following network, where a buyer
talks alternatingly to two sellers, but talks to each seller for
as long as they desire.

buyer[[µX.(seller1?talk;X
+ seller1?wait;
µZ.(seller2?talk;Z

+ seller2?wait;X))]]
‖ seller1[[µV.(buyer!talk;V ⊕ buyer!wait;V)]]
‖ seller2[[µW.(buyer!talk;W ⊕ buyer!wait;W)]]

The above network satisfies L(ST) but not L(SC), since no
location terminates and there are SC-fair paths on which one
of seller1 or seller2 ceases to act, violating the condition that
there must be infinitely many transitions stemming from them.

C.3 L(J) is strictly stronger than L(SC): We consider a
variant of Example 2.

Example 6:
seller[[µX.(buyer1?order1;X + buyer2?order2;X)]]

‖ buyer1[[µY.seller!order1;Y]]
‖ buyer2[[µZ.seller!order2;Z]]
The above network satisfies L(SC), since each location p
has a relentlessly enabled communication transition. Hence,
p will engage in a communication transition infinitely often.
However, the system does not satisfy L(J), since there is a J-
path where buyer1 never acts. Namely, every communication
of buyer1 may be preempted by a communication of buyer2,
as both buyers communicate with the same seller.

Although Example 2 separates J from SC, we cannot use
it as separating example for L(J) and L(SC). It does not
even satisfy L(ST), since if buyer2 ever acts, then buyer1
never successfully terminates nor engages in infinitely many
transitions.

C.4 L(P) is strictly stronger than L(J): The network of
Example 3 – the example from the introduction – satisfies
L(J), since on a just path there are infinitely many transitions
stemming from each location. However, it does not satisfy
L(P), since there exists a path where two components talk for-
ever, to the exclusion of the other two. This example indicates
(again) that J is the minimal realistic fairness assumption.

In Appendix B, we analyse further notions of lock-freedom,
based on other fairness assumptions.

D. Lock-freedom in the literature

There are two prevalent notions of lock-freedom in the lit-
erature, which we call Kobayashi lock-freedom and Padovani

5

N ≡ N′ N′ α−�M′ M′ ≡M

N α−�M

p[[T
{
µX.T/X

}]] ‖ N α−� p[[U]] ‖ N
p[[µX.T]] ‖ N α−� p[[U]] ‖ N

j ∈ H k ∈ I λk = λj

pk[[
⊕

h∈H qh!λh;Uh]] ‖ qj[[
∑
i∈I pi?λi;Ti]] ‖ N pk→ qj :λk−−−−−−−� pk[[Uj]] ‖ qj[[Tk]] ‖ N

Fig. 3. A reactive semantics without τ -transitions for internal choice or recursion. The definition of ≡ is unchanged.

lock-freedom, acknowledging the authors of key papers where
these properties are investigated. We prove that these two
notions relate to L(SC) and L(ST), respectively. We believe,
however, that L(J) is a novel notion of lock-freedom. In
Section V we discuss further notions.

D.1 Kobayashi lock-freedom: Our scheme (1) for lock-
freedom is inspired by a scheme proposed by Kobayashi [6]
in the setting of the linear π-calculus, which does not feature
operators for choice. Our scheme is more general, making it
applicable to several calculi.

Although Kobayashi argues that lock-freedom is para-
metrised by a fairness assumption, he settles for exactly one,
called strong fairness and attributed to [17], [18], with the
stated intention that: “every process that is able to participate
in a communication infinitely often can eventually participate
in a communication.” The intended fairness assumption in [6]
coincides with SC. Almost the same can be said for the for-
malisation of strong fairness in [6], although literally speaking
the latter is slightly weaker.2

D.2 Padovani lock-freedom coincides with L(ST): Padovani
[5] presents a notion of lock-freedom that does not refer
explicitly to a fairness assumption. Below we use the abbrevi-
ation PROC(p,N) that denotes the unique thread state T such
that N ≡ p[[T]] ‖ N′, if p is a location of a network state N.

Definition 5: N is Padovani lock-free if for each reachable
state M of N, and for each location p of M such that
PROC(p,M) 6= OK, network M has an execution path that
contains a transition involving p.

Theorem 1: A network is Padovani lock-free iff it satisfies
L(ST). [See Appendix C for the proof.]

E. Lock-freedom for a reactive semantics

This section demonstrates that differences between session
calculi, which may appear to be merely stylistic, in fact impact
the resulting notions of liveness. An alternative semantics,
(e.g. [7], [8]), which we call reactive semantics, is given
in Figure 3. Here, neither unfolding recursion nor making a
choice between various send actions induces a τ -transition.

2The reason is that Kobayashi’s intended requirement that a component
must act is formalised by describing the states right before and right after
that component acts, and stipulating that one must go from the former to the
latter. However, in [6] there is no way to unambiguously project global states
on individual components, and one can make the prescribed transition without
actually involving that component.

In Definition 4, we formally introduced liveness properties
for a network, parametrised by a fairness assumption. In fact,
the definition also depends on the given semantics. In the
remainder, we denote by L(F) a liveness property with regard
to the semantics of Figure 1, and by R(F) a liveness property
with regard to the reactive semantics.

Example 7: The following network has a deadlock by the
default semantics of Figure 1. Consequently, it satisfies none
of the properties L(F). Yet, it satisfies R(F), for each F .

buyer[[seller!buy⊕ seller!order]]
‖ seller[[buyer?buy]]

A similar result to Proposition 2 shows that the strength of
a fairness assumption partially determines the strength of the
corresponding liveness property.

Proposition 3: F � G implies R(F)⇒ R(G), for fairness
assumptions F and G.

Consequently, a classification of the liveness properties
R(F), for F any of the fairness assumptions from [2], can
be obtained from the classification of these fairness properties
(Figure 6 in Appendix A) by collapsing certain entries, just
as for the classification of liveness properties L(F) from
Figure 2. Since the separating examples given for L(F) apply
also to R(F), we end up with at least four different notions
R(F). However, we expect a lattice that is quite a bit larger,
with fewer notions coinciding.

As an instance of this,R(J) is strictly stronger thanR(WC).
Strictness is shown by the following example.

Example 8: The following network presents a buyer who
negotiates with seller1 up to a point and then decides to order
a product with seller2 and inform seller1 about their decision.

buyer[[µX.(seller1!negotiate;X
⊕ seller2!order; seller1!done)]]

‖ seller1[[µY.(buyer?negotiate;Y + buyer?done)]]
‖ seller2[[buyer?order]]

The network successfully terminates under R(WC), for a tran-
sition involving seller2 is perpetually enabled, when appealing
to Figure 3. It does not need to terminate under justness as
the buyer is involved in all transitions.

Similar to Example 2, guaranteeing termination in this
example seems wrong as the fairness assumption constrains
the buyer’s ‘free will’. Therefore, the presented results suggest
that J is a more realistic notion than WC.

6

III. SESSION TYPES AND COMPLETENESS

We now focus on session type systems. A suitably crafted
session type system guarantees liveness properties for a net-
work, if the network is well-typed. We devise a session type
system that is complete for L(J), meaning that all lock-free
networks can be typed.

A. Global session types, projections and type judgements

We build on a widely-adopted approach for multiparty
session types. It first defines a global type, describing the
interacting behaviour of all parties involved. In our syntax for
global types, communications of the form p→ q :λ describe
the sending of a message labelled λ from location p to q, and
� indicates a choice over a finite, non-empty index set I .

G := OK (successful termination)
| �i∈I p→ qi :λi ;Gi (choice of communication)
| X (recursion variable)
| µX.G (recursion)

As for our session type calculus we exclude types of the form
µX.X or µX.µY.G to enforce guarded recursion. Moreover,
for �i∈I p→ qi :λi ;Gi, we assume p 6= qi for all i∈ I . That
means locations cannot send messages to themselves. A global
type is closed whenever it contains no free recursion variables.
The fact that p is the same in every branch of a choice means
there is a distinguished choice leader p, who makes that choice,
but there may be different recipients, as in related work on
flexible choices [7].

A global session type can be projected to a local view for
each location. We call local types stemming from projections
projection types. They are defined almost in the same way as
threads of Section II: instead of the construct

∑
i∈I pi?λi;Ti

they feature merely its unary case p?λ;T, as well as the merge
operators ui∈I Ti .

We define the set of participants of a global type G
recursively:

parties(OK) = parties(X) = ∅
parties(µX.G) = parties(G)

parties
(
�i∈I p→ qi :λi ;Gi

)
=
⋃
i∈I {p, qi} ∪ parties(Gi)

Given a global session type G and location p, we define the
projection G�p of G on p as follows.

OK�p = OK X�p = X

(µX.G)�p =

OK if p /∈ parties(G)
and µX.G is closed

µX.(G�p) otherwise

(�i∈I p→ qi :λi ;Gi)�r =
{⊕

i∈I (p→ qi :λi ;Gi)�r p= r

ui∈I (p→ qi :λi ;Gi)�r p 6= r

(p→ q :λ ;G)�r =

q!λ; (G�r) p= r
p?λ; (G�r) q= r
G�r r 6∈ {p, q}

The merge operator is interpreted directly through the judge-
ment relation ` between threads and projection types, coin-
ductively defined in Figure 4. See [19] for a formal definition

T
{
µX.T/X

}
` U

µX.T ` U

T ` U
{
µX.U/X

}
T ` µX.U

OK ` OK

i ∈ I Ti ` Ui∑
i∈I pi?λi;Ti ` pi?λi;Ui

I ⊆ J ∀i ∈ I Ti ` Ui⊕
i∈I pi!λi;Ti `

⊕
i∈J pi!λi;Ui

∀i ∈ I T ` Ui

T ` ui∈I Ui

Fig. 4. Typing judgements relating threads to projection types.

of what it means to interpret such rules coinductively. Usually,
the merge is defined independently from the type judgements;
it is simply an operation that builds a single type from
several types, without using an explicit merge primitive. In the
standard approach [20], the work of our judgement relation
` is split between (a) the aforementioned merge operation,
(b) a subtyping relation ≤ between types [20, Definition 6],
and (c) a relation ` between threads and local session types
[20, Figure 5]. Our use of merge as a primitive construct
for generating projection types, interpreted through `, makes
merging as general as possible.

B. Well-typed networks

The following definition plays the role of a type rule
assigning a global type to a network in related systems,
e.g., [7], [8], [20], [21].

Definition 6: A network N= p1[[T1]] ‖ p2[[T2]] ‖. . .‖ pn[[Tn]]
is well-typed with respect to a global type G, denoted N ` G,
if G is closed, parties(G)⊆{p1, p2, . . . , pn}, and Ti ` G�pi
for all i.

A network N is well-typed if N`G for some global type G.
Example 9: A global type for the network of Example 1 is

G = µX.(buyer→ seller:talk ;X
� buyer→ seller:buy ;

seller→ shipper:order ; OK).

We have

G�buyer = µX.(seller!talk;X ⊕ seller!buy; OK)

G�seller = µX.(buyer?talk;X
u buyer?buy; shipper!order; OK)

G�shipper = µX.(X u seller?order; OK).

With the help of the rules of Figure 4, we can derive the
following facts, using proofs that are not well-founded.

µX.(seller!talk;X ⊕ seller!buy; OK) ` G�buyer

µY.(buyer?talk;Y
+ buyer?buy; shipper!order; OK) ` G�seller

seller?order; OK ` G�shipper

This network is well-typed. However, in the literature, it is
commonly regarded as not well-typed, which may be due to
the unguarded recursion in G�shipper

7

Example 10: This network is a restriction of the previous
example, where no message is sent to the shipper on any path.

buyer[[µX.(seller!talk;X)]]
‖ seller[[µY.(buyer?talk;Y

+ buyer?buy; shipper!order; OK)]]
‖ shipper[[seller?order; OK]]

By using the same global type G, we can type the network.
The following judgement makes use of the rule for internal
choice in Figure 4, which permits deleting branches, as for
most session subtype relations in the literature [22], [23].

µX.seller!talk;X ` G�buyer

The projections to the other locations are the same as in
Example 9.

This network is well-typed and deadlock-free, but is not
lock-free under any fairness assumption. That is, this type
system is unsound for any notion of lock-freedom we have
discussed.

Any type system targeting some notion of lock-freedom
presented must reject Example 10. In this paper, our design
decision to ensure soundness is to require that recursion
has to be guarded for projections.3 We thereby disallow the
projection G�shipper in the above examples, thereby rejecting
the networks in Examples 9 and 10. Since Example 9 satisfies
L(ST), we have to aim for a stronger notion of lock-freedom.
It will be lock-freedom under justness and we will prove that
our session type system is complete for that type of lock-
freedom.

C. Guarded type judgements

We define a variant of well-typedness (Definition 6) that
enforces each projection type to be guarded. A projection type
T is guarded iff each occurrence of a variable X within a
subexpression µX.U of T occurs within a subexpression p!λ;T
or p?λ;T.

Definition 7: A network N is guardedly well-typed with
respect to a global type G, denoted N `g G, if N ` G and
all projections G�p are guarded.

Note that G is guarded by definition, but this is not sufficient
to ensure that G�p is guarded. Examples 9 and 10 are well-
typed, but not guardedly well-typed.

Example 11: Example 6, which features a competition
between two buyers, is guardedly well-typed with respect to
the following global type.

G = µX.(buyer1→ seller:order1 ;
buyer2→ seller:order2 ;X)

All projections are guarded. Indeed, any global type without
a choice will lead to guarded projections. The interesting

3An alternative design decision for strengthening the type system, that we
do not pursue here, could be to restrict the type rule for internal choice
(Figure 4) to prevent branches from being deleted (c.f. [7]), which, combined
with our general merge, would allow Example 9 to stay in the fold for L(ST).

projection relates the thread for the seller to the projection
of the seller.

G�seller = µX.(buyer1?order1; buyer2?order2;X)

µX.(buyer1?order1;X+buyer2?order2;X) ` G�seller

The above judgement holds by unfolding the recursions so as
to appeal twice to the rule for

∑
in Figure 4.

The following example illustrates that our type system
cannot be complete for L(SC).

Example 12: The next network satisfies L(SC), but not L(J).

p[[µX.(q!a;X ⊕ q!b;X)]]
‖ q[[µY.(p?a;Y + r?c; (r?d;Y + p?b; r?d;Y)

)]]
‖ r[[µZ.q!c; q!d;Z]]

The network does not satisfies L(J) for there is an infinite
just path in which locations p and q constantly communicate
via p→ q :a and r never engages in a communication. That
just path is not a SC-fair, since the communication r→ q :c
involving location r is relentlessly enabled yet never taken.

The network is not well-typed, let alone guardedly well-
typed, for each global type must have a subexpression
p→ q :a ;G1� p→ q :b ;G2 , and hence must have a reachable
state M in which both transitions M p→ q :a−−−−� and M p→ q :b−−−−−�
are enabled. Yet there is no such reachable state.

Example 12 shows that the strongest completeness result
possible is completeness with respect to L(J). Before turning
to our completeness proof in the next section, we demonstrate
the power of our general merge operator.

Example 13: This network consists of two independent pairs
of threads, both of which make a choice repeatedly.

buyer1[[µX.(seller1!wait;X ⊕ seller1!order)]]
‖ seller1[[µY.(buyer1?wait;Y + buyer1?order)]]
‖ buyer2[[µX.(seller2!wait;X ⊕ seller2!order)]]
‖ seller2[[µY.(buyer2?wait;Y + buyer2?order)]]

The following is a global type for this example.

G = µX.
((

buyer1→ seller1:wait ;
(buyer2→ seller2:wait ;X
� buyer2→ seller2:order ;GY)

)
� buyer1→ seller1:order ;GZ

)
with GY = µY.

(
buyer1→ seller1:wait ;Y
� buyer1→ seller1:order ; OK

)
GZ = µZ.

(
buyer2→ seller2:wait ;Z
� buyer2→ seller2:order ; OK

)
.

We can show that N `g G. For example, we have

G�buyer1 = µX.
(

seller1!wait;(
X u µY.(seller1!wait;Y

⊕ seller1!order; OK)
)

⊕ seller1!order; OK
)

and
µX.(seller1!wait;X ⊕ seller1!order) ` G�buyer1

where the projection G�buyer1 on buyer1 is guarded.

8

GT(h,M) =

GT(h,M′) if M τ−→M′ for a network M′,
OK if PROC(p,M) = OK for each location p of M,
DEADLOCK if no location is ready in M,
XM if M occurs in h and h �M is complete for M,
�i∈I p→ qi :λi ; GT(hi,Mp

i) if M occurs in h, p= CH(h,M) and PROC(p,M) =
⊕

i∈I qi!λi;Ti,
µXM.�i∈I p→ qi :λi ; GT(hi,Mp

i) if p= CH(ε,M) and PROC(p,M) =
⊕

i∈I qi!λi;Ti.

where hi := h(M, p, qi), i.e., the sequence obtained from h by appending the triple (M, p, qi).

Fig. 5. Algorithm for synthesising a global type for a network.

The above example is out of scope of most systems for
global session types that do not feature an explicit parallel
composition operator. These systems are incomplete, in the
sense that there are lock-free networks that cannot be typed.
Our session type system overcomes the incompleteness, due
our general treatment of merge. A similar example, which also
can be typed by our methodology, is given in [24]. It is used
there to demonstrate that there are networks that cannot be
typed using established notions of global type without parallel
composition [25]. An alternative approach using coinductive
projections has been proposed in [26].

D. Completeness for lock-freedom under justness

We now show one of our main results, namely that, for
our session type calculus, all lock-free networks can be typed,
when assuming justness. To the best of our knowledge, this is
the first completeness result of this kind.

Theorem 2: If N |= L(J), then N is guardedly well-typed.

The proof (Appendix D) makes use of an algorithm for
synthesising a global type from a network, along with a proof
that the algorithm terminates with the correct guarded type.

To express the algorithm we require the following concepts.
A reachable network, from a given network N, is a reachable
network state M that happens to be a network, in the sense
that PROC(p,N) 6= pT for all locations p of N. A network
M is unfolded if there is no network M′ with M τ−→ M′
(although there may be network states M′ with M τ−→ M′).
The unfolding of a network M is the unique network M′
such that M (

τ−→)∗ M′ and M′ is unfolded. A location p is
ready in a network N if PROC(p,N) =

⊕
i∈I qi!λi;Ti, and for

each i∈ I there exists a transition N p→ qi :λi−−−−−−� Ni, using the
transition relation of Figure 3. Define a history as a sequence
of triples (N, p, q) with N a network and p, q locations of N.
A history h is complete for a network M if each location that
is ready in M occurs in h. If h is a history and M a network
expression that occurs in h, then h � M denotes the suffix of
h that starts with the first occurrence of M in h. Moreover,
h � M denotes the prefix of h prior to the first occurrence of
M in h, so that h = (h �M)(h �M). Call a location p eligible
in a network state M w.r.t. a history h if (a) p is ready in M,
and (b) either M does not occur in h, or p does not occur in
h � M. Finally, DEADLOCK is a constant, temporarily added
to the syntax of session types.

Our algorithm requires several choices. First, we select
a fresh variable XM for each unfolded network M that is
reachable from N. We then pick a total order on the finite set
of locations of N, referred to as age, so that each nonempty set
of locations has an oldest element. Finally, for each reachable
network M and each location p that is ready in M, say with
PROC(p,M) =

⊕
i∈I qi!λi;Ti, and for each i ∈ I , pick a net-

work Mp
i such that M p→ qi :λi−−−−−−�Mp

i and PROC(p,Mp
i) = Ti.

Our algorithm employs the routine GT(h,M), parametrised
by the choice of a network M and a history h, as defined in
Figure 5. Here, CH(h,M) is a partial function that selects, for
a given history h and reachable network M, the oldest location
that is eligible in M w.r.t. h. It is defined only when such a
location exists. The case distinction in the figure is meant to
be prioritised, in the sense that a later-listed option is taken
only if none of the higher-listed options apply. Our algorithm
is then defined to yield the global type GT(ε,N), with N the
given network and ε the empty history (sequence).

The intuition for our algorithm, which attempts to construct
a global session type G out of a given network N, is as
follows. Since it is essential that G induces ongoing progress
of all unterminated locations in the network, we keep track
of the history h of communications incorporated in G until
the “construction front” at network state M. Here the routine
GT(h,M) specifies the next communication-choice that will be
incorporated in G. The first clause in Figure 5, where the τ -
transition must unfold recursion, says that all recursions should
be unfolded before attempting the remaining case distinctions.
The second clause says that we can safely terminate upon
reaching a state in which the threads of all locations have
terminated. The last two clauses specify a choice leader p
and extend G with the send actions of p in state M. Here p
must be a location that is ready in M; if such a p does not
exist the failed attempt is reported by including the constant
DEADLOCK in the attempted session type G (Clause 3). Since
the syntactic expression G must be finite, each branch that does
not reach OK needs to loop back to a previous stage in the
construction of G, at some point. To facilitate looping back, we
attach a recursion variable XM to each stage we might want
to loop back to, namely to each first occurrence of a network
state M in our history. This explains the difference between
Clauses 5 and 6. Clause 4 says that we can safely loop back
to a previous stage if it involves the same current network
state M, and between that previous stage and the present all

9

locations that are ready in M already had a turn. If Clause 4
does not apply, then M must have eligible locations w.r.t. h,
and Clause 5 or 6 picks the oldest such location, to make sure
that in the end all eligible locations get a turn.

Example 14: Applying this algorithm to the network of
Example 1 yields the type of Example 9, but with a spurious
recursive anchor µZ right before seller→ shipper:order .
Applied to Example 2 it fails with possible output

µX.buyer1→ seller:order1 ;
buyer2→ seller:order2 ; DEADLOCK.

For Example 3 it yields the following correct type.

µX.(buyer1→ seller1:order ; buyer2→ seller2:order ;X)

For Example 4 it yields the type µX.buyer→ seller:buy ;X;
this type is incorrect for that network N. This does not
contradict the proof of Theorem 2, since N 6|= L(J).

For Example 6 the algorithm yields the type of Example 11.
For Example 7 it fails with output DEADLOCK.
For Example 8 it yields the following correct type.

µX.(buyer→ seller1:negotiate ;X
� buyer→ seller2:order ;µZ.buyer→ seller1:done ; OK)

For Example 13 it yields the type of Example 13.

Observation 1: An immediate consequence of Proposition 1
and Theorem 2, is that guardedly well-typed networks are
complete for L(WC), suggesting that a carefully selected
notion of weak fairness is suitable for some session calculi.

Corollary 1: If N |= L(WC) then N is guardedly well-typed.

In contrast, recall that Example 7 satisfies R(P); yet it
is not (guardedly) well-typed. This shows that there is no
corresponding completeness result for any notion of lock-
freedom R(F), where F is some notion of fairness. This is
an argument for why we emphasise the semantics in Figure 1
rather than the one in Figure 3.

IV. RACE-FREEDOM AND SOUNDNESS

We have established that completeness holds, with respect
to L(J). Hence, if we can model-check L(J), we know we can
always synthesise a global type for a network. In this section,
we consider soundness, meaning that a network is lock-free if
it is (guardedly) well-typed. To complement our completeness
result, we target L(J) and prove soundness for guardedly well-
typed networks that are additionally race-free. The insight of
this section is that soundness can be achieved when making
the minimal fairness assumption justness.

Definition 8: A network state N has a race whenever
N p→ r :λ−−−−−→ N′ and N q→ r :µ−−−−−→ N′′ with either p 6= q or
N′ 6=N′′. A network is race-free if it has no reachable network
state with a race.

Figure 2 implies that L(J) is the strongest lock-freedom
property we can get, with the exception of L(P). Our guarded
type system cannot be sound for the latter notion of lock-
freedom, for Example 3 is guardedly well-typed and race-free,
but does not satisfy L(P).

Our example to distinguish J and SC features races. Indeed,
there is no race-free network separating J from SC, as con-
firmed by the following proposition.

Proposition 4: On race-free networks, J coincides with SC,
for our session calculus in Figure 1.

Proof: Let π be an infinite path in a network that is not SC-
fair. So, on π, a component p is infinitely often enabled, but
never taken.

In case p is stuck in a state where its next transition is a τ ,
then π is not just.

In case p is stuck in a state pq!λ;P , then, in the first state on
π on which p is enabled, q must be in a state

∑
i∈I pi?λi;Ti

with p = pk and λ = λk for some k ∈ I . If q remains in this
state throughout π, then π is not just. If q leaves this state via
a transition of π that does not involve p, then the state where
this happens must be a race, and the network is not race-free.

In the remaining case, p is stuck in a state
∑
i∈I pi?λi;Ti.

For p to be enabled, a component pk with k ∈ I must be in a
state p!λk;P , which reduces this case to the previous one. �

Observation 2: In contrast to Proposition 4, for the session
calculus in Figure 3, J and SC do not coincide, even for race-
free networks (race-freedom also needs to be reformulated for
that semantics). Example 8 illustrates this fact.

Since Examples 1, 3 and 4 are race-free, the remaining
four notions L(P), L(SC), L(ST) and deadlock-freedom from
Figure 2 are all different for race-free networks. Consequently,
for race-free networks, the only collapse of Figure 2 is
L(J)⇔ L(SC).

Example 15: The following network is race-free, guardedly
well-typed and satisfies L(J). It is a variant of Example 8,
which is also race-free, but does not satisfy L(J).

buyer[[µX.((seller1!order1; seller2!wait;X)

⊕ (seller2!order2; seller1!done)
)]]

‖ seller1[[µY.(buyer?order1;Y + buyer?done)]]
‖ seller2[[µZ.(buyer?wait;Z + buyer?order2)]]

This network is well-typed, for we can use the following global
type.

G = µX.
(
(buyer→ seller1:order1 ;
buyer→ seller2:wait ;X)
� (buyer→ seller2:order2 ;

buyer→ seller1:done)
)

This example illustrates that it is possible to send messages
to several locations via an internal choice in a race-free way.
A simple way to prevent races, adopted by many session type
systems, e.g. [20], [21], [27], is to ensure that each location
listens to only one other location at any time. To achieve this
we can impose the following syntactic restriction.

Definition 9: A network N is syntactically race-free, if, for
every sub-expression of the form

∑
i∈I pi?λi;Ti, we have

pi= pj for all i, j ∈ I , and λi 6= λj for all i, j ∈ I with i 6= j.

Restricting external choices this way was never intended to
be a complete criteria for race-freedom. However, it is a cheap

10

linear syntactic property to check, whereas checking for race-
freedom is as complex as checking for deadlock-freedom.

Example 16: The following example is race-free, but not
syntactically race-free.

buyer[[µX.(seller1!order1;X ⊕ seller2!order2)]]
‖ seller1[[µY.(buyer?order1; seller2!wait;Y

+ seller2?done)]]
‖ seller2[[µZ.(seller1?wait;Z

+ buyer?order2; seller1!done)]]
It is also guardedly well-typed and satisfies L(J). Soundness
results are stronger if race-free networks are considered, rather
than syntactically race-free networks.

The reverse of Theorem 2 does not hold. Hence we cannot
expect a soundness result for all networks. It is not even the
case that guardedly well-typed networks are deadlock-free.

Example 17: The following network is guardedly well-
typed, but neither race-free nor deadlock-free, and hence
certainly not L(J).

buyer1[[seller!buy1; OK]]
‖ buyer2[[seller!buy2; OK]]
‖ seller[[(buyer1?buy1; buyer2?buy2; OK)

+ (buyer2?buy2; buyer1?buy1;
buyer1!order; OK)]]

The global type for this example is the following.

G = buyer1→ seller:buy1 ; buyer2→ seller:buy2 ; OK

In particular, G�seller = buyer1?buy1; buyer2?buy2 and

buyer1?buy1; buyer2?buy2
+ buyer2?buy2; buyer1?buy1; buyer1!order `g G�seller

which holds due to the rule for
∑

in Figure 4, permitting
branches of an external choice to be removed.

This example may suggest that the culprit preventing sound-
ness is the flexible external choice, i.e., the subtype relation
`g . However, even if `g would be almost the identity relation,
with each merge on types corresponding to an external choice
of the corresponding threads, there would be guardedly well-
typed networks that are not deadlock-free.

Example 18: Consider the following network.

p[[(s!a; t!a; r!d)⊕ (s!b; t!b)]]
‖ r[[(s?c; t?e; p?d) + (t?e; s?c)]]
‖ s[[p?a; r!c+ p?b; r!c]]
‖ t[[p?a; r!e+ p?b; r!e]]

Using the global type

G = (p→ s:a ; p→ t:a ; s→ r :c ; t→ r :e ; p→ r :d ; OK)
� p→ s:b ; p→ t:b ; t→ r :e ; s→ r :c ; OK

yields projections that are identical to the network threads, e.g.

G�p = (s!a; t!a; r!d)⊕ s!b; t!b.

So, N `g G follows by using the identity as subtyping relation.
Yet, this network is not deadlock-free, for the execution
p→ s:b ; s→ r :c ; p→ t:b ; t→ r :e reaches a deadlock with
hanging input p?d in location r.4

Examples 17 and 18 are both excluded by race-freedom. We
now prove another main result, namely that the converse of
Theorem 2 holds for race-free networks.

Theorem 3: If N is guardedly well-typed and race-free, then
N |= L(J).

The proof [see Appendix E] hinges on the following session
fidelity result, for which we appeal to race-freedom:

For race-free network states N, if N p→ q :λ−−−−−→M and N `g G
then there exists G′ such that G p→ q :λ−−−−−� G′ and M `g G′.
Here, α−� is a transition relation on global types, defined for
this purpose. Session fidelity strengthens subject reduction, by
insisting that the form of G′ reflects the transition.

From this statement we conclude that each reachable net-
work state N′ along any just path π is guardedly well-typed.
For every location p, either there are infinitely many transitions
along π involving p, or there exists a suffix π′ of π stemming
from network state N′, such that location p has no further
transition involving p. Using justness and the fact that N′ is
guardedly well-typed one can show that in the latter case p
has successfully terminated.

Using Theorems 2 and 3, and Proposition 4 leads to a
soundness and a completeness result for our type system.

Corollary 2: For race-free network N, N is guardedly well-
typed iff N satisfies L(SC).

Observation 3: Projections are defined such that recursion
maps to OK whenever p 6∈ parties(G) and µX.G is closed
(see Page 7). The latter condition plays an essential role for
soundness. To see why, consider the following global type.

µX.p→ q :a ;µY.r→ q :b ;X

The anchor with variable Y should, intuitively, be useless.
However, if we were to exclude condition “µX.G is closed”,
the above global type would type the following network.

p[[µX.q!a; OK]]
‖ q[[µX.p?a;µY.r?b;X]]
‖ r[[µX.µY.q!b;X]]

This race-free network reaches a deadlock right after commu-
nications p→ q :a ; r→ q :b . The above closedness-condition
resolves this issue, and can be used to correct papers on global
types featuring recursion binders.

V. RELATED AND FUTURE WORK ON LOCK-FREEDOM

While our completeness result is the first of its kind, there
are several soundness results for type systems with respect to
some notion of lock-freedom, e.g., [5], [8], [13], [29], [30],
the most closely related of which we draw attention to in this

4 This is a counterexample to subject reduction in previous work that allows
multiple recipients in an external choice [7], [28]. Those soundness results
can be restored by restricting to race-free networks.

11

section. We also situate related work on lock-freedom with
regard to our classification and point to future challenges.

a) Strong lock-freedom: Severi and Dezani-Ciancaglini
propose a notion of strong lock-freedom [8] that coincides
with R(J) for race-free networks. They employ a reactive
semantics. The authors impose a restriction on paths, ensur-
ing that all concurrent transitions proceed in lockstep. Their
assumption is not a fairness assumption, as defined here, as it
does not satisfy feasibility. However, it does have the effect of
assuming justness, up to permutations of transitions, for race-
free networks. By Observation 1, a completeness result along
the lines of Theorem 2 cannot hold for strong lock-freedom.
Strong lock-freedom cannot be lifted directly to networks
with races. A minimal change to their definitions requiring
a maximal number of enabled locations to act in every step
would extend their definition to networks with races; we did
not analyse this extension. Their use of coinductive syntax,
rather than binders, is an alternative for avoiding the soundness
problem in Observation 3 that is common in the literature.

b) Further lock-freedom schemes: Carbone, Dardha and
Montesi translate Kobayashi’s scheme for lock-freedom to
a session calculus where both internal and external choices
are with a single location [30]. Their scheme is instanti-
ated with SC 5 and coincides with L(SC), restricted to their
calculus. Their scheme inherits the ambiguity discussed in
Section II-D1. It assumes a semantics intermediate to those we
study in this work, where internal choice is like in Figure 1,
but recursion and singleton internal choice are reactive as in
Figure 3. This makes their approach weaker than ours, if lifted
directly to our calculus with flexible choices: Example 6 is
lock-free under their scheme instantiated with assumption J
(or even P), but does not satisfy L(J) (or even R(J)) in our
scheme. Note that their work concerns binary session types
with delegation, which we do not consider.

Scalas and Yoshida propose the notions of LIVE, LIVE+,
and LIVE++ [24]. The first, LIVE, follows the scheme of
Padovani, hence coincides with L(ST). The second, LIVE+, is
essentially another formulation of L(SC). The third, LIVE++,
coincides with L(P), hence is unsound for session calculi since
it rejects key examples such as Example 3. The definitions of
[24] are arguably less portable than Definition 5, since their
definitions refer to specific language features.

c) Asynchronous session calculi: An evaluation of lock-
freedom for asynchronous calculi, where queues are inserted
between communicating threads, requires separate attention.
The asynchronous analogue to our session calculus is an
infinite-state system. Therefore, ST is no longer the strongest
fairness assumption; this is now full fairness (Fu) [2]. At
the other end of the spectrum, there are also complications
when defining concurrency of transitions (Definition 2). It
is a design decision whether a thread is treated as a single
component along with its queues, and whether enqueue and

5The authors do not provide a definition of fairness, but cite Kobayashi [6]
instead. Kobayashi’s definition does not lift immediately to the calculus
of [30]. However, the authors appear to intend SC.

dequeue events for the same queue are dependent or concur-
rent. Consequently, synchrony/asynchrony and the spectrum of
fairness assumptions are not entirely perpendicular dimensions
when defining notions of lock-freedom. Fairness plays an
essential role in related work on preciseness of subtyping
for asynchronous calculi [31], which is further evidence that
fairness assumptions require scrutiny here.

d) Synthesis and multiparty compatibility: The body
of literature on synthesising global types from multiparty
compatible local types [25], [32], [33] plays a complementary
role to our synthesis results, used to establish completeness.
Usually, it is immediate that networks inhabiting a global type
are multiparty compatible. Hence, we expect that a corollary
of Theorem 2 is that L(J) implies multiparty compatibility,
for some notion of multiparty compatibility. If we further
assume a synthesis result showing that multiparty compatible
networks are guardedly well-typed – under conditions such as
race-freedom – then that notion of multiparty compatibility
coincides with L(J). Such a result for our global type system,
does not quite follow immediately from synthesis results in the
literature, since Example 13 would require parallel composi-
tion in related work. The formal development of multiparty
compatibility is left as future work.

e) Fair subtyping and weak normalisation: A fair sub-
typing relation has been defined for session types as the largest
relation over threads that preserves weak normalisation [34].
Weak normalisation is the property that, at any point during
an execution, it is not inevitable that a network will not
successfully terminate. Weak normalisation is strictly stronger
than Padovani’s notion of lock-freedom (Definition 5) – since
the possibility of all components to successfully terminate
entails the possibility of all components performing some
enabled action – but is incomparable to liveness properties
stronger than L(SC), including L(J) – Example 1 is weakly
normalising, but does not satisfy L(SC). Consequently, the
proposed notion of fair subtyping does not quite fit lock-
freedom. Investigating a notion of fair subtyping that is
adequate for L(ST) rather than weak normalisation, and also
identifying a session type system complete for L(ST), as
hinted at in the discussion surrounding Example 10, is future
work. In particular, we do not claim that L(J) is the only notion
of lock-freedom that can be characterised by some session type
system.

VI. CONCLUSION

In this paper, we have systematically classified the notions
of lock-freedom that arise by taking every fairness assumption
listed in a recent survey [2]. Based on our comprehensive
analysis, we are compelled to put forward a notion of fairness
suitable for session calculi: justness (Definition 3), and its
resulting notion of lock-freedom L(J), which we propose
to call “just lock-freedom”. Through a generalisation of the
classical merge operation on local session types, we have
devised a session type system that is complete for just lock-
freedom. Moreover, race-free networks are sound for just lock-

12

freedom. Justness is always reasonable to assume, since it does
not constrain the ‘free will’ of participants (c.f. Examples 2
and 8), while ensuring that concurrent transitions do not
constrain each other (c.f. Examples 3 and 13).

A strength of our results is that completeness (Theorem 2)
holds for networks with flexible choice, in which branches
of the same choice operator may involve different locations.
Completeness suggests a methodology for session calculi that
allows us to pass straight from any network satisfying our
realistic notion of lock-freedom L(J) to a global session type.
The methodology would be to directly model check that a
network satisfies L(J), and then use the algorithm in Figure 5
to synthesise a global type for that network. This methodology
works even for networks featuring races.

Interestingly, there are no previous results synthesising
global types directly from lock-freedom. Indeed, Example 13,
which satisfies almost all notions of lock-freedom in the
literature, is known to be out of scope of related session
type systems based on global types without explicit parallel
composition. While this incompleteness issue in related work
is partly due to the less general merge operator employed
in those systems, another reason that enables us to obtain
the completeness result in Theorem 2 is our scrutiny of the
role of fairness assumptions. In fact, Example 12 shows that
completeness of our session type system cannot be attained
when assuming strong fairness of components. Furthermore,
even small variations in the choice of semantics for the
transition system can affect fairness assumptions significantly,
weakening corresponding notions of lock-freedom (see Obser-
vation 1). Indeed, amongst all notions of lock-freedom consid-
ered in this paper, only L(J) yields both completeness for all
networks and soundness for race-free networks (Theorem 3).

Acknowledgement: The key question addressed in this
paper arose in conversation with Ilaria Castellani, Mariangiola
Dezani-Ciancaglini, and Paola Giannini, to whom we are
grateful for their generous feedback on this work.

REFERENCES

[1] S. S. Owicki and L. Lamport, “Proving liveness properties of
concurrent programs,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3,
pp. 455–495, 1982. Available: https://doi.org/10.1145/357172.357178

[2] R. J. van Glabbeek and P. Höfner, “Progress, justness, and
fairness,” ACM Computing Surveys, vol. 52, no. 4, 2019. Available:
https://doi.org/10.1145/3329125

[3] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, “A theory of
communicating sequential processes,” Journal of the ACM, vol. 31,
no. 3, pp. 560–599, 1984. Available: https://doi.org/10.1145/828.833

[4] R. De Nicola and M. Hennessy, “CCS without τ ’s,” in TAPSOFT ’87,
H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, Eds. Springer, 1987,
pp. 138–152. Available: https://doi.org/10.1007/3-540-17660-8 53

[5] L. Padovani, “Deadlock and lock freedom in the linear π-calculus,”
in CSL-LICS ’14, T. A. Henzinger and D. Miller, Eds. ACM, 2014.
Available: https://doi.org/10.1145/2603088.2603116

[6] N. Kobayashi, “A type system for lock-free processes,” Inf.
Comput., vol. 177, no. 2, pp. 122–159, 2002. Available: https:
//doi.org/10.1006/inco.2002.3171

[7] I. Castellani, M. Dezani-Ciancaglini, and P. Giannini, “Reversible
sessions with flexible choices,” Acta Informatica, vol. 56, no. 7-8, pp.
553–583, 2019. Available: https://doi.org/10.1007/s00236-019-00332-y

[8] P. Severi and M. Dezani-Ciancaglini, “Observational equivalence for
multiparty sessions,” Fundam. Inform., vol. 170, no. 1-3, pp. 267–305,
2019. Available: https://doi.org/10.3233/FI-2019-1863

[9] S. Jongmans and N. Yoshida, “Exploring type-level bisimilarity
towards more expressive multiparty session types,” in ESOP ’20,
P. Müller, Ed. Springer, 2020, pp. 251–279. Available: https:
//doi.org/10.1007/978-3-030-44914-8 10

[10] K. R. Apt, N. Francez, and S. Katz, “Appraising fairness in languages
for distributed programming,” Distributed Computing, vol. 2, pp.
226–241, 1988. Available: https://doi.org/10.1007/BF01872848

[11] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous
session types,” Journal of the ACM, vol. 63, no. 1, pp. 9:1–9:67, 2016.
Available: https://doi.org/10.1145/2827695

[12] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou,
“Session types for object-oriented languages,” in ECOOP ’06,
D. Thomas, Ed. Springer, 2006, pp. 328–352. Available: https:
//doi.org/10.1007/11785477 20

[13] M. Dezani-Ciancaglini, N. Yoshida, A. J. Ahern, and S. Drossopoulou,
“A distributed object-oriented language with session types,” in
Trustworthy Global Computing, International Symposium, TGC ’05,
Revised Selected Papers, R. De Nicola and D. Sangiorgi, Eds. Springer,
2005, pp. 299–318. Available: https://doi.org/10.1007/11580850 16

[14] E. Najm, A. Nimour, and J. Stefani, “Guaranteeing liveness in an
object calculus through behavioural typing,” in FORTE XII / PSTV
XIX, J. Wu, S. T. Chanson, and Q. Gao, Eds. Kluwer, 1999, pp.
203–221. Available: https://doi.org/10.1007/978-0-387-35578-8 12

[15] J. Misra, A Discipline of Multiprogramming: Programming Theory for
Distributed Applications. Springer, 2001, ch. Progress Properties, pp.
155–213. Available: https://doi.org/10.1007/978-1-4419-8528-6 6

[16] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani,
“Global progress for dynamically interleaved multiparty sessions,”
Mathematical Structures in Computer Science, vol. 26, no. 2, pp.
238–302, 2016. Available: https://doi.org/10.1017/S0960129514000188

[17] G. Costa and C. Stirling, “Weak and strong fairness in CCS,”
Information and Computation, vol. 73, no. 3, pp. 207–244, 1987.
Available: https://doi.org/10.1016/0890-5401(87)90013-7

[18] E. A. Emerson, “Temporal and modal logic,” in Handbook of
Theoretical Computer Science (vol. B): Formal Models and Semantics.
MIT press, 1990, pp. 995–1072. Available: https://dl.acm.org/doi/10.
5555/114891.114907

[19] R. J. van Glabbeek, “Coinductive validity.” Available: http://arxiv.org/
abs/2104.13021

[20] N. Yoshida and L. Gheri, “A very gentle introduction to multiparty
session types,” in Distributed Computing and Internet Technology, D. V.
Hung and M. D´Souza, Eds. Springer, 2020, pp. 73–93. Available:
https://doi.org/10.1007/978-3-030-36987-3 5

[21] P.-M. Denielou, N. Yoshida, A. Bejleri, and R. Hu, “Parameterised
Multiparty Session Types,” Log. Meth. Comp. Sci., vol. Volume 8,
Issue 4, 2012. Available: https://doi.org/10.2168/LMCS-8(4:6)2012

[22] S. J. Gay and M. Hole, “Subtyping for session types in the pi calculus,”
Acta Informatica, vol. 42, no. 2, pp. 191–225, 2005. Available:
https://doi.org/10.1007/s00236-005-0177-z

[23] R. Demangeon and K. Honda, “Full abstraction in a subtyped
pi-calculus with linear types,” in CONCUR ’11, J.-P. Katoen
and B. König, Eds. Springer, 2011, pp. 280–296. Available:
https://doi.org/10.1007/978-3-642-23217-6 19

[24] A. Scalas and N. Yoshida, “Less is more: multiparty session types
revisited,” PACMPL, vol. 3, no. POPL, pp. 30:1–30:29, 2019. Available:
https://doi.org/10.1145/3290343

[25] J. Lange, E. Tuosto, and N. Yoshida, “From communicating machines
to graphical choreographies,” in POPL ’15. ACM, 2015, pp. 221–232.
Available: https://doi.org/10.1145/2676726.2676964

[26] F. Barbanera, M. Dezani-Ciancaglini, I. Lanese, and E. Tuosto,
“Composition and decomposition of multiparty sessions,” Journal of
Logical and Algebraic Methods in Programming, vol. 119. 100620,
2021. Available: https://doi.org/10.1016/j.jlamp.2020.100620

[27] S. Ghilezan, S. Jakšić, J. Pantović, A. Scalas, and N. Yoshida, “Precise
subtyping for synchronous multiparty sessions,” Journal of Logical
and Algebraic Methods in Programming, vol. 104, pp. 127–173, 2019.
Available: https://doi.org/10.1016/j.jlamp.2018.12.002

[28] I. Castellani, M. Dezani-Ciancaglini, P. Giannini, and R. Horne, “Global
types with internal delegation,” Theoretical Computer Science, vol. 807,
pp. 128–153, 2020. Available: https://doi.org/10.1016/j.tcs.2019.09.027

[29] L. Padovani, V. T. Vasconcelos, and H. T. Vieira, “Typing liveness
in multiparty communicating systems,” in Coordination Models and
Languages, E. Kühn and R. Pugliese, Eds. Springer, 2014, pp.
147–162. Available: https://doi.org/10.1007/978-3-662-43376-8 10

13

https://doi.org/10.1145/357172.357178
https://doi.org/10.1145/3329125
https://doi.org/10.1145/828.833
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1007/s00236-019-00332-y
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1007/BF01872848
https://doi.org/10.1145/2827695
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11580850_16
https://doi.org/10.1007/978-0-387-35578-8_12
https://doi.org/10.1007/978-1-4419-8528-6_6
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1016/0890-5401(87)90013-7
https://dl.acm.org/doi/10.5555/114891.114907
https://dl.acm.org/doi/10.5555/114891.114907
http://arxiv.org/abs/2104.13021
http://arxiv.org/abs/2104.13021
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1145/3290343
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1016/j.jlamp.2020.100620
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1007/978-3-662-43376-8_10

[30] M. Carbone, O. Dardha, and F. Montesi, “Progress as compositional
lock-freedom,” in Coordination Models and Languages, E. Kühn
and R. Pugliese, Eds. Springer, 2014, pp. 49–64. Available:
https://doi.org/10.1007/978-3-662-43376-8 4

[31] S. Ghilezan, J. Pantović, I. Prokić, A. Scalas, and N. Yoshida, “Precise
subtyping for asynchronous multiparty sessions,” Proc. ACM Program.
Lang., vol. 5, 2021. Available: https://doi.org/10.1145/3434297

[32] J. Lange and E. Tuosto, “Synthesising choreographies from local
session types,” in CONCUR 2012 – Concurrency Theory, M. Koutny

and I. Ulidowski, Eds. Springer, 2012, pp. 225–239. Available:
https://doi.org/10.1007/978-3-642-32940-1 17

[33] P.-M. Deniélou and N. Yoshida, “Multiparty compatibility in
communicating automata: Characterisation and synthesis of global
session types,” in ICALP ’13, F. V. Fomin, R. Freivalds,
M. Kwiatkowska, and D. Peleg, Eds. Springer, 2013, pp. 174–
186. Available: https://doi.org/10.1007/978-3-642-39212-2 18

[34] L. Padovani, “Fair subtyping for multi-party session types,”
Mathematical Structures in Computer Science, vol. 26, no. 3, pp.
424–464, 2016. Available: https://doi.org/10.1017/S096012951400022X

14

https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.1145/3434297
https://doi.org/10.1007/978-3-642-32940-1_17
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1017/S096012951400022X

APPENDIX

A. Classifying Fairness Notions for our Session Calculus

In Section II-B, we have presented strong and weak fairness
of transitions, and of components. We have also introduced the
concepts of progress and justness. In this appendix, we discuss
further fairness assumptions and relate them to each other. The
notions and our classifications are based on the survey [2].

The classification from [2] defines 3 × 6 = 18 fairness
assumptions xy with x∈{S,W, J} and y ∈{C,G, I,Z,A,T}.
This is a shorthand for “x fairness of y”, with x∈{strong,
weak, J-} and y ∈{components, groups of components, in-
structions, synchronisations, actions, transitions}.

Strong and weak fairness were defined in Section II-B;
these notions are parametrised by the concept of a task. The
parameter y above governs the choice of tasks. Fairness of
transitions, in which each transition constitutes a task, was
already defined in Section II-B.

Remember that a component of a network expression is one
of its locations, and that comp is a function that associates
with each transition the set of one or two components that
are involved in that transition. Two transitions t and u are
concurrent, notation t ^ u, iff comp(t) ∩ comp(u) = ∅.

In fairness of components, the components constitute the
tasks. Component p is enabled in a network state iff a
transition t with p ∈ comp(t) is enabled; a path engages in a
component p iff it contains a transition t with p ∈ comp(t).

In fairness of groups of components, the tasks are the sets
(or groups) of components. A group G is enabled in a network
state iff a transition t with G = comp(t) is enabled; a path
engages in G iff it contains a transition t with G = comp(t).

Next to transitions and components, there is the concept
of instructions. Let I be the set of all occurrences of subex-
pressions λk!pk, λk?pk or µX in a network expression N.
These subexpressions are called instructions. Each transition
labelled τ stems from exactly one instruction, and each tran-
sition labelled p→ q :λ stems from exactly two instructions.
This yields the function instr, which associates with each
transition the set of one or two instructions that gave rise to it.

In fairness of instructions, the instructions constitute the
tasks. Instruction I is enabled in a network state iff a transition
t with I ∈ instr(t) is enabled; a path engages in an instruction
I iff it contains a transition t with I ∈ instr(t).

In fairness of synchronisations, the tasks are the sets of
instructions, called synchronisations. A synchronisation Z is
enabled in a network state iff a transition t with Z = instr(t) is
enabled; a path engages in a synchronisation Z iff it contains
a transition t with Z = instr(t).

In fairness of actions, the tasks are the actions, or transition
labels. An action a is enabled in a network state iff a transition
labelled a is enabled; a path engages in an action a iff it
contains a transition t labelled a.

For each of these notions of a task, [2] also defines J-
fairness. A task T is said to be enabled during a transition
u from network state N to N′ if T is enabled in N through a
transition t that is concurrent with u (i.e., t ^ u). Task T is

said to be continuously enabled if it is enabled in all network
states of π and during all transitions of π. Now a path π is
J-fair if, for each suffix π′ of π, each task that is continuously
enabled on π′ is engaged in by π′.

Besides the 18 fairness assumptions defined above, the
authors of [2] also consider progress (P) and justness (J),
already defined in Section II-B, as well as full fairness (Fu),
extreme fairness (Ext), probabilistic fairness (Pr), and strong
weak fairness of instructions (SWI). For finite-state systems
(which include the networks in our session calculus) Fu, Ext
and Pr coincide with ST [2]. For this reason, there is no need
to define these concepts here. Regarding SWI, say that an
instruction I is requested in a network state N if it is enabled
in one of the treads in N, even if it not enabled by N itself, due
to lack of a synchronisation partner. Now a path π is SWI-fair
if, for each suffix π′ of π, each instruction that is perpetually
requested and relentlessly enabled on π′ is engaged in by π′.

The following properties from [2] trivially hold (for a given
network N).

(1) For each synchronisation Z ⊆ I, and for each network
state N, there is at most one transition t with instr(t)=Z
that is enabled in N.

(2) I is finite.
(3) There is a function cp : I → C, where C is the set

of components or locations in the network, such that
comp(t) = {cp(I) | I ∈ instr(t)} for all transitions t.

(4) If an instruction I is enabled in a state N, it is also
requested.

(5) If instruction I is requested in network state N and u is a
transition from N to N′ such that cp(I) /∈ comp(u), then
I is still requested in N′.

(6) If t ^ u with source(t) = source(u), then ∃v ∈ Tr with
source(v) = target(u) and instr(v) = instr(t).

Given this, the classification of fairness assumptions from [2]
applies to the current setting as well, although some of these
assumptions could coincide. The resulting lattice is shown
in Figure 6. Here the numbers on the edges refer to the
above conditions, when these are needed for the indicated
comparison in strength.

When using labelling in the style of CCS, all our transitions
would be labelled τ , and as a consequence, JA, WA and SA
would collapse with P. But here the labelling is quite different.

A.1 SC, SA, WZ and SWI are not as strong as SI:
The following network terminates when assuming SI, for
in the only infinite execution the τ -transition belonging to
instruction seller!buy is infinitely often enabled but never
taken. Termination is not guaranteed when assuming SC, SG,
WZ, SWI or SA.

buyer[[µX.(seller!wait;X ⊕ seller!buy)]]
‖ seller[[µY.(buyer?wait;Y

+ buyer?buy; shipper!order)]]
‖ shipper[[seller?order]]

15

J = JZ=JG

JT

P

SA

WA

JA

WT

SI

SWI

WI

JI
(3),(6)

SZ(2)

(2),(3)

WZ

(3),(6)

(1)

SC

(2),(3)

(2),(3)

(2),(3),
(4),(5)

WC

JC
(3)

SG

WG

(3),(6)

ST = Fu

Fig. 6. A classification of progress, justness and fairness assumptions for
finite-state systems [2]

A.2 WC, WG, WI, WZ and SA are not as strong as SC:
The following network terminates when assuming SC, for in
any infinite execution a transition from buyer2 is infinitely
often enabled but never taken. It does not surely terminate
when assuming WC, for this transition is not perpetually en-
abled, due to the τ -transitions of seller. Neither is termination
guaranteed when assuming WG, WI or WZ. Furthermore, it
does not surely terminate when assuming SA, because buyer2
may be stuck before doing its initial τ -transition.

seller[[µX.(buyer1?order1;X + buyer2?order2)]]
‖ buyer1[[µY.seller!order1;Y]]
‖ buyer2[[seller!order2]]

(2)

A.3 Collapsing Fairness Assumptions:

Proposition 5: SG and SC coincide. WG is weaker than WC.

Proof: Let π be an infinite path in our network that is not
SG-fair. One case is that an interaction between p and q is
infinitely often enabled, but never taken. By taking a suffix,
we may assume this interaction is enabled in the first state of
π. W.l.o.g., let p be the sending party. Then process p must
be in a state of the form q!λ;P , and it remains in that state
for the rest of π. It follows that also component p is infinitely
often enabled, but never taken. Hence π is not SC-fair.

The other case is that a single-component task (thus con-
sisting of τ -transitions) is infinitely often enabled, but never
taken. Also in this case it follows that π is not SC-fair.

The other statement is obtained in the same way. �

Proposition 6: SZ and SI coincide. WZ is weaker than WI.

Proof: Let π be an infinite path in our network that is not
SZ-fair. One case is that a synchronisation between p and q
is infinitely often enabled, but never taken. By taking a suffix,
we may assume this interaction is enabled in the first state of
π. W.l.o.g., let p be the sending party. Then process p must
be in a state of the form q!λ;P , and it remains in that state
for the rest of π. It follows that also this specific instruction
of p is infinitely often enabled, but never taken. Hence π is
not SI-fair.

The other case is that a single-instruction task (thus con-
sisting of τ -transitions) is infinitely often enabled, but never
taken. Also in this case it follows that π is not SI-fair.

The other statement is obtained in the same way. �

Proposition 7: SA is weaker than SC. WA is weaker than
WC.

Proof: Let π be an infinite path in our network that is not SA-
fair. So on π a transition label α is infinitely often enabled, but
never taken. Then α 6= τ , because it is easy to show that each
infinite path contains infinitely many τ -transitions; in fact, on
any path from a network state τ -transitions make for at least
half of all transitions. So α has the form p→ q :λ . In the first
state of π on which α is enabled, the process p must be in a
state of the form q!λ;P , and it remains in that state for the
rest of π. For simplicity, we may assume that α is enabled in
the first state of π; otherwise we simply take a suffix. Hence
the instruction q!λ is perpetually requested, yet never taken.
Moreover, since α is infinitely often enabled, so is component
p. Yet no action from this component occurs on π. Hence π
is not SC-fair.

The other statement is obtained in the same way. �

Proposition 8: WC coincides with J (and thus also with JC
and JI).

Proof: Let π be an infinite path in our network that is not WC-
fair. So on π a component p is perpetually enabled, but never
taken. In case p is stuck in a state where its next transition is
a τ , then π is not just.

In case p is stuck in a state q!λ;T, then, for component
p to be perpetually enabled, q must always be in a state∑
i∈I pi?λi;Ti with p = pk and λ = λk for some k ∈ I .

Also process q must get stuck in such a state, for if q keeps
moving, it will at some point reach a state µX.U, which is
not of the above form. Consequently, π is not just.

The remaining case is that p is stuck in a state of the form∑
i∈I pi?λi;Ti. For component p to be enabled, a component

pk with k ∈ I must be in a state p!λk;T. Again it follows that
π is not just. �

Proposition 9: WI coincides with J.

16

Proof: Let π be an infinite path in our network that is not WI-
fair. So on π an instruction λ!q, λ?q or µX from a process p is
perpetually enabled, but never taken. In case of an instruction
µX , π is not just.

In case of an instruction λ!q, where the τ -transition belong-
ing to this transition is never taken, p must be stuck in a state⊕

i∈I pi!λi;Ti with q = pk and λ = λk for some k ∈ I; for if
p performed one of the other branches, the instruction would
(temporarily) cease to be enabled. Again π is not just.

In case p is stuck in a state q!λ;P , then, for that instruction
λ!q to be perpetually enabled, q must always be in a state∑
i∈I pi?λi;Ti with p = pk and λ = λk for some k ∈ I .

Also process q must get stuck in such a state, for if q keeps
moving, it will at some point reach a state µX.U, which is
not of the above form. Consequently, π is not just.

The remaining case is that p is stuck in a state of the form∑
i∈I pi?λi;Ti. For component p to be enabled, a component

pk with k ∈ I must be in a state p!λk;T. Again it follows that
π is not just. �

Proposition 10: WA coincides with JA.

Proof: Let π be an infinite path in our network that is not
WA-fair. So on π (possibly after taking a suffix) a transition
label α is perpetually enabled, but never taken. Then α 6= τ ,
as in the proof of Proposition 7. So α has the form p→ q :λ .
In the first state of π, the process p must be in a state of
the form q!λ;P , and it remains in that state for the rest of π.
Since α is perpetually enabled, q must always be in a state∑
i∈I pi?λi;Ti with p = pk and λ = λk for some k ∈ I .

Also process q must get stuck in such a state, for if q keeps
moving, it will at some point reach a state µX.U, which is not
of the above form. Consequently, the action α is continuously
enabled on π, and π is not JA-fair. �

Proposition 11: WT coincides with P.

Proof: Since our syntax does not allow self-loops (consider-
ing that unfolding recursion takes a τ -transition) on no infinite
path a transition can be perpetually enabled. �

Proposition 12: SWI coincides with SC.

Proof: Let π be an infinite path in our network that is not
SWI-fair. So on π an instruction λ!q, λ?q or µX from a
process p is perpetually requested and infinitely often enabled,
but never taken. In case of an instruction µX , π is not just,
and thus certainly not SC-fair.

In case of an instruction λ!q, where the τ -transition belong-
ing to this transition is never taken, p must be stuck in a state⊕

i∈I pi!λi;Ti with q = pk and λ = λk for some k ∈ I; for if
p performed one of the other branches, the instruction would
(temporarily) cease to be enabled. Again π is not just.

If p is stuck in a state q!λ;P , then component p is infinitely
often enabled, but never taken. Hence π is not SC-fair.

In case of an instruction λ?q, p must be stuck in a state∑
i∈I pi?λi;Ti with q = pk and λ = λk for some k ∈ I; if it

leaves this state, it reaches a state in which that very instruction

J = JZ = JG = JI = JC
= WZ = WG = WI = WC

P = WT = JT

SA

WA = JA

SI = SZ

SC = SG = SWI

ST = Fu

Fig. 7. A classification of fairness assumptions for our session calculus

λ?q is no longer requested. Again component p is infinitely
often enabled, but never taken. Hence π is not SC-fair. �

A.4 P, WT and SA are not as strong as J: In the following
network the accountant terminates when assuming J, but when
merely assuming P or WT this is not guaranteed, since there is
no single accountant-transition that is perpetually enabled. It
does not surely terminate when assuming SA either, because
accountant may be stuck before doing its initial τ -transition.

trader1[[µX.trader2!order; trader2?order;X]]
‖ trader2[[µY.trader1?order; trader1!order;Y]]
‖ accountant[[auditor!report]]
‖ auditor[[accountant?report]]

The following network shows exactly the same, due to the
initial τ -transition of buyer.

seller[[µX.buyer?order;X]]
‖ buyer[[µY.seller!order;Y]]
‖ accountant[[auditor!report]]
‖ auditor[[accountant?report]]

(3)

A.5 P is not as strong as JA: In Network (3), the path in
which the τ -action of accountant occurs, but the report-
action does not, is progressing, but not JA-fair.

A.6 J and WA are not as strong as SA: In Network (2), the
path in which the τ -action of buyer2 occurs, but the order2-
action does not, is just, as well as WA-fair, but not SA-fair.

A.7 SZ is not as strong as ST: The network in Example 3
from the introduction has 4 states and 8 transitions. ST
insists that in a fair run each of these transitions occurs,
whereas SZ allows a run that alternates regularly between a
buyer1/seller1- and an buyer2/seller2-interaction.

It follows that our classification collapses as indicated in
Figure 7.

17

L(P) = L(SA) = L(WA)

L(J)

⇑

⇑

⇑

⇑

L(SC)

L(SI) = L(ST)

deadlock-freedom

Fig. 8. A classification of liveness properties

B. Collapsing notions of lock-freedom

Proposition 13: L(SA) coincides with L(P).

Proof: Using the results depicted in Figure 7 and Proposi-
tion 2, L(P)⇒ L(SA).

Hence it suffices to show that if a network has a progressing
path π that lacks the property of Definition 4, then it has an
SA-fair path ρ that lacks this property. In case π is finite, we
choose ρ as π.

In case π is infinite, we define the SA-unfairness of π as
the number of different labels α such that label α is infinitely
often enabled on π, but from some point onwards never taken.
This must be a finite number, and if it is 0 then π is SA-fair. It
now suffices to show that if the SA-unfairness of π is positive,
then we can modify π into a path π′ whose SA-unfairness is
strictly smaller, and that still lacks the property of Definition 4.

Let α be infinitely often enabled on π, but from some
point onwards never taken. As pointed out in the proof of
Proposition 7, α 6= τ . So α has the form p→ q :λ . In the
first state of π on which α is enabled, but not taken past that
state, the process p must be in a state of the form q!λ;P ,
and it remains in that state for the rest of π. Now π can be
modified into π′ by skipping the last τ -transition belonging
to the instruction q!λ;P of p. This strictly decreases its SA-
unfairness.

Since π fails the property of Definition 4, there must be a
location p such that p does not terminate on π, and π contains
only finitely many transitions that stem from component p.
Now p does not terminate on π′ either, and also π′ contains
only finitely many transitions that stem from component p. �

Proposition 14: L(ST) coincides with L(SI).

Proof sketch: Proposition 2 implies L(SI)⇒ L(ST).
For the other direction it suffices to show that any SI-fair

path π that lacks the property of Definition 4 can be converted
into an ST-fair path ρ that lacks this property. This can be
achieved by swapping concurrent transitions.

Consequently, the 7 different fairness assumptions collapse
to 4 different liveness properties, displayed in Figure 8.

C. Padovani’s lock-freedom coincides with L(ST)
This appendix contains a proof of Theorem 1: a network is

Padovani lock-free iff it satisfies L(ST).

Proof: Suppose N |= L(ST). We show it is lock-free. Let
M be a reachable state of N. Take a path from N to M, and
extend it to an ST-fair path π. This is possible by Theorem
6.1 of [2], saying that ST-fairness is feasible. The suffix π′ of
π starting at M satisfies the property required by Padovani’s
lock-freedom (Definition 5), that is, for a given location p
of M such that PROC(p,M) 6= OK, π′ contains a transition
involving p. Interestingly, the choice of the path required by
Definition 5 turns out to be independent of p.

Now suppose N is lock-free, and let π be an ST-fair path.
Let p be a location of N such that π does not contain a state
of the form N′ ‖ p[[OK]]. We need to show that π contains
infinitely many transitions that stems from component p.

For each state M on π, let d(M) > 0 be the length
of the shortest path from M that contains a transition from
component p; such a shortest path exists since N is lock-
free. Since N is a finite-state system, there is a state M that
occurs infinitely often on π. In case d(M) > 1 there must be
a transition M π−→ M′ such that d(M′) < d(M). Since this
transition is enabled on π infinitely often, and π is ST-fair,
this transition must be taken infinitely often, and hence also
M′ occurs infinitely often in π′. So by a trivial induction there
is a state M′′ with d(M′′) = 1 that occurs infinitely often
in π. This state has an outgoing transition that stems from
component p. Since this transition is enabled on π infinitely
often, and π is ST-fair, it must be taken infinitely often. �

D. Proof of completeness
This appendix contains a proof of Theorem 2: if N |= L(J),

then N is guardedly well-typed.

Proof: The proof is staged as a series of claims.

Claim 1: Let M be unfolded.6 If N p→ q :λ−−−−−� M then
PROC(q,N) =

∑
i∈I pi?λi;Ui with p = pj , PROC(q,M) = Uj

and λ = λj for some j ∈ I . Moreover, if r /∈ {p, q} then
PROC(r,N) = PROC(r,M).

Proof: Directly from the definition of the reactive semantics
(Figure 3).

Claim 2: The algorithm GT (Figure 5) always terminates.

Proof: In a run on which GT does not terminate, along at least
one branch an unbounded history h is created. Since there are
only finitely many reachable states, some state M must occur
unboundedly in h. Each time this state is encountered, except
for the first time, the fifth clause of GT applies. However, each
time a different location p that did not already occur in h �M
is added to h. Since there are only finitely many locations,
this cannot go on forever.

An expression GT(h,N) may have free occurrences of
variables XM. It is easy to check that if XM has a free
occurrence in GT(h,N), then M occurs in h. We define a

6See Page 9 for a definition.

18

closed version GT∗(h,N) of GT(h,N), obtained from GT(h,N)
by unfolding recursion. The definition proceeds by induction
on the length of h. Here, fv(G) denotes the set of free recursion
variables in a global type expression G.

GT∗(h,N) := GT(h,N)
{

GT∗(h�M,M)/XM

∣∣∣XM ∈ fv(GT(h,N))
}

Note that GT(ε,N) = GT∗(ε,N). By induction, GT∗(h,N) is
a closed session type expression.

GT(h,N), and hence also GT∗(h,N), always yields a valid
global session type expression, except that it may contain the
constant DEADLOCK.

Claim 3: If GT(h,N) contains the constant DEADLOCK, then
N is not deadlock-free.

Proof: If GT(h,N) contains the constant DEADLOCK, then
for some unfolded network M reachable from N and for
some extension h′ of h we have GT(h′,M) = DEADLOCK.
It suffices to show that M has a deadlock. Since no location
is ready in M, for each location p of M with PROC(p,M) =⊕

i∈I qi!λi;Ti – let us call such a location active in M – there
exists an i ∈ I such that there is no transition M p→ qi :λi−−−−−−�Mi.
Let ip be this i. Now M admits a sequence of τ -transitions
to a state M′ in which PROC(p,M′) = pqip !λip ;Tip for each
p active in M, and no further τ -transitions are possible from
M′. The only transitions that M′ could possibly do must have
a label p→ qip :λip for some p active in M, yet none of these
transitions are actually possible. Hence M′ is a deadlock.

Call a history h reachable from N iff all networks M that
occur in h are reachable from N.

Claim 4: If N is deadlock-free, and h and M are reachable
from N, then GT∗(h,M) does not contain DEADLOCK.

Proof: If GT∗(h,M) contains the constant DEADLOCK, then
either GT(h,M) contains DEADLOCK, or GT∗(h′,M′) does,
for a proper prefix h′ of h and a network M′ that occurs in h.
The previous claim and a simple induction on the length of h
finish the proof.

Claim 5: Let N |= L(J), let r be a location of N, and h and
M be reachable from N, with M unfolded.
If r /∈ parties(GT∗(h,M)), then PROC(r,M) = OK.

Proof: For each pair (`,L) of a history ` and a network state
L, both reachable from N, such that PROC(r,L) 6= OK, we
select a unique successor pair (`′,L′) as follows, inspired by
the definition of GT(`,L). In case L is not unfolded, we pick
a network L′ with L τ−→ L′ and take `′ := `. Otherwise, in
case L does not occur in ` or ` � L is incomplete for L, let
p := CH(`,L) and PROC(p,L) =

⊕
i∈I qi!λi;Ti. Now pick a

k ∈ I and take `′ := `k and L′ := Lpk (as in the definition of
GT(`,L)). Finally, if L is unfolded, L occurs in `, and `�L is
complete for L, we take the unique successor pair of (`�L,L).

If (`′,L′) is the successor of (`,L) then surely there is a
transition L τ−→ L′ or L p→ qk :λk−−−−−−−� L′ with p = CH(`,L) or
p = CH(` � L,L) and k as chosen above.7 Combining those

7Each transition p→ q :λ−−−−−−� can be split into two transitions τ−→ p→ q :λ−−−−−−→.

transitions yields for each pair (`,L) a unique path π(`,L)
starting from L, which is either infinite or ends in a state
L′ with PROC(r,L′) = OK. Here we use Claim 4. Moreover,
in case π(`,L) is infinite, by (the proof of) Claim 2 it must
have a suffix π(`′,L′) such that L′ is an unfolded network
expression, L′ occurs in `′, and `′ � L′ is complete for L′.
Hence that suffix is a simple loop. By construction, the pair
(`′,L′) must be unique; call π(`′,L′) the loop suffix of π(`,L).

First assume that π(h,M) does contain a transition that
involves component r. Considering that M is unfolded, we
have PROC(r,M) 6= µX.T. Hence, this transition must have
the label p→ q :λ with p = r or q = r. A simple induction
shows that r ∈ parties(GT∗(h,M)).

Henceforth, we assume that π(h,M) contains no transition
involving component r. First assume that π(h,M) ends in a
state M′ with PROC(r,M′) = OK. Since π(h,M) contains no
transition involving r, PROC(r,M) = OK. Finally, assume that
π(h,M) is infinite. It suffices to derive a contradiction.

Let π(`,L) be the loop suffix of π(h,M). Now π(`,L) is
infinite and contains no transition that involves component r.
Moreover, L is reachable from N.

Suppose that there is a location p with PROC(p,L) =⊕
i∈I qi!λi;Ti, no transition in π(`,L) involves component p

from one of the components qi for i ∈ I , and L p→ qi :λi−−−−−−� for
all i ∈ I . In that case p is ready in L, and ` � L is incomplete
for L. This contradicts the definition of the loop suffix.

It follows that for each location p with PROC(p,L) =⊕
i∈I qi!λi;Ti, and such that no transition in π(`,L) involves

component p, there exists an k ∈ I such that either in-
finitely many transitions in π(`,L) involve component qk,
or L 6p→ qk :λk−−−−−−−�. Let π′ be the infinite path obtained from
π(`,L) by transforming all states L′ in this path in the
same way, namely by replacing, for all locations p as above,
PROC(p,L) =

⊕
i∈I qi!λi;Ti by the appropriate pqk!λk;Tk.

By construction this path is just.
The path π′ is the suffix of a path π′′ that starts in N.

This path contains only finitely many transitions that involve
component r, and no state N′ ‖ r[[OK]]. Consequently, N does
not satisfies L(J).

Now assume that N satisfies L(J). Then N is deadlock-free,
and hence GT(ε,N) yields a valid global session type, by
Claim 3. To prove that N is well-typed w.r.t. GT(ε,N), it
suffices to show that N ` GT(ε,N). In fact, we prove a stronger
claim, namely that for all histories h and networks M that are
both reachable from N we have M ` GT∗(h,M).

By construction, parties(GT(h,M)) contains only loca-
tions of M, and hence of N. Therefore, the same holds
for parties(GT∗(h,M)). Thus, it remains to establish that
PROC(r,M) ` GT∗(h,M)�r for all h and M reachable from
N, and all locations r of N. We do this by coinduction [19].
We make a case distinction on the shape of GT(h,M), and
apply induction on h, and a nested induction on the number
of recursion-unfolding τ−→-transitions possible from M. Pick
h, M and r in the following.

19

• Suppose that M τ−→ M′ for a network M ′, that is,
PROC(p,M) = µX.T and PROC(p,M′) = T

{
µX.T/X

}
for some location p of N.
In case r= p, using the first rule for `, we derive
PROC(r,M) = µX.T ` GT∗(h,M)�r from P

{
µX.T/X

}
=

PROC(r,M′)`GT∗(h,M′)�r=GT∗(h,M)�r, and the latter
is a coinduction hypothesis.
In case r 6= p, then PROC(r,M) = PROC(r,M′) and
GT∗(h,M)�r = GT∗(h,M′)�r. Since M′ admits fewer
recursion-unfolding τ−→-transitions than M, by induction,
PROC(r,M′) ` GT∗(h,M′)�r.

In the remainder, we assume that M is already unfolded.

• Let GT(h,M) = OK. Then GT∗(h,M) = PROC(r,M) =
OK. Now the third rule for ` yields PROC(r,M) `
GT∗(h,M)�r.

• Let GT(h,M) = XM. Then M occurs in h and we have
GT∗(h,M) = GT∗(h �M,M). By induction, since h �M
is strictly shorter than h, PROC(r,M) ` GT∗(h,M)�r.

• Let GT(h,M)=�i∈I p→ qi :λi ; GT(hi,Mp
i), so

GT∗(h,M)=�i∈I p→ qi :λi ; GT∗(hi,Mp
i).

If p=r, then GT∗(h,M)�r=
⊕

i∈I qi!λi; (GT∗(hi,Mp
i)�r).

By the coinduction hypothesis, for each i ∈ I we
may assume PROC(p,Mp

i) ` GT∗(hi,Mp
i)�p. Moreover,

PROC(p,M) =
⊕

i∈I qi!λi;Ti with Ti = PROC(p,Mp
i).

Now apply the fifth proof rule for `.
If p 6=r, GT∗(h,M)�r=ui∈I (p→ qi :λi ; GT(hi,Mp

i))�r.
Pick k ∈ I . Applying the last rule for `, we need to show
that PROC(r,M) ` (p→ qk :λk ; GT(hk,Mp

k))�r.
If r 6= qk, (p→ qk :λk ; GT(hk,Mp

k))�r = GT(hk,Mp
k)�r,

and PROC(r,M) = PROC(r,Mp
k) by Claim 1. Moreover,

PROC(r,Mp
k) ` GT(hi,Mp

i)�r can be used as coinduction
hypothesis.
If r = qk then

(p→ qk :λk ; GT(hk,Mp
k))�r = p?λk; GT(hk,Mp

k)�r.

Moreover, by Claim 1, PROC(r,M) =
∑
h∈H ph?λh;Uh

with p = pj , PROC(r,Mp
k) = Uh and λk = λj for some

j ∈ H . Using PROC(r,Mp
k) ` GT(hk,Mp

k) as coinduction
hypothesis, PROC(r,M) ` p?λk; GT(hk,Mp

k)�r follows
by application of the fourth rule for `.

• Let GT(h,M) = µXM.�i∈I p→ qi :λi ; GT(hi,Mp
i). Let

GT∗(h,N, XM) be defined as GT∗(h,N), except that
the free variable XM does not get unfolded. Then
GT∗(h,N) = GT∗(h,N, XM)

{GT∗(h�M,M)/XM

}
. Hence

GT∗(h,M) = µX.�i∈I p→ qi :λi ; GT∗(hi,Mp
i , XM).

First let r /∈ parties(GT∗(h,M)). Then GT∗(h,M)�r =
OK. By Claim 5, PROC(r,M) = OK. Consequently,
PROC(r,M) ` GT∗(h,M)�r via the third rule for `.
Now if r ∈ parties(GT∗(h,M)) then GT∗(h,M)�r =
µX.

(
(�i∈I p→ qi :λi ; GT∗(hi,Mp

i , XM))�r
)
. Since M

does not occur in h we have hi �M = h. Hence

GT∗(hi,Mp
i)�r =

(
GT∗(hi,Mp

i , XM)
{GT∗(hi�M,M)/XM

})
�r

=
(

GT∗(hi,Mp
i , XM)

{GT∗(h,M)/XM

})
�r

= GT∗(hi,Mp
i , XM)�r

{GT∗(h,M)�r/XM

}
.

In order to obtain PROC(r,M) ` GT∗(h,M)�r, by the
second rule for ` it suffices to establish PROC(r,M) `

(�i∈I p→ qi :λi ; GT∗(hi,Mp
i , XM))�r

{GT∗(h,M)�r/XM

}
= (�i∈I p→ qi :λi ; GT∗(hi,Mp

i))�r.

This proceeds exactly as in the previous case.
This shows that N is well-typed w.r.t. GT(ε,N). It remains to
show that all projections GT(ε,N)�p are guarded.

Claim 6: Let N |= L(J) and let r be a location of N. Then
GT(ε,N)�r is guarded, i.e., it does not have a subexpression
of the form µX.U such that X occurs in U outside the scope
of any subexpression p!λ;T or p?λ;T.

Proof: Suppose, towards a contradiction, that GT(ε,N)�r does
have a subexpression of the form µX.U such that X occurs in
U outside the scope of any subexpression p!λ;T or p?λ;T. By
the definition of projection, this subexpression must have the
form G�r, with G = µX.G′ a subexpression of GT(ε,N). Given
the algorithm of Figure 5, G must have the form GT(h,M)
for a history h and network M reachable from N. Moreover,
X = XM.

There must be a path in the parse tree of U towards
the unguarded occurrence of X . Since the occurrence is
unguarded, this path passes only through operators µY and
ui∈I . Backtracking this path through the projection from
GT(h,M) yields a path ρ in the parse tree of GT(h,M) to
a subexpression GT(`,M) = XM, with ` an extension of h.
This path ρ passes merely through operators �i∈I p→ qi :λi
with r not being among p and the qi.

The syntactic path ρ induces a path π′ in the transition
system from M to M.

Suppose that there is a location p with PROC(p,M) =⊕
i∈I qi!λi;Ti, no transition in π′ involves component p or

from one of the components qi for i ∈ I , and M p→ qi :λi−−−−−−�
for all i ∈ I . In that case p is ready in M, and ` � M is
incomplete for M. This contradicts the definition of GT(`,M).

It follows that for each location p with PROC(p,M) =⊕
i∈I qi!λi;Ti, and such that no transition in π′ involves

component p, there exists a k ∈ I such that either some
transitions in π′ stem from component qk, or M 6p→ qk :λk−−−−−−−�.
Let π′′ be the infinite path obtained from π′ by transforming
all states L in this path in the same way, namely by replacing,
for all locations p as above, PROC(p,L) =

⊕
i∈I qi!λi;Ti by

the appropriate pqk!λk;Tk.
Let π be the path from N to M, followed by infinitely

many repetitions of the loop π′′. By construction this path
is just. Past M, π contains no transitions involving location r.
Thus, invoking the assumption that N |= L(J), it follows that r
successfully terminates on π, that is, PROC(r,M) = OK. The
algorithm of Figure 5 implies that r /∈ parties(GT(h,M)).
Now GT(h,M) = G = µX.G′ is not closed, for it it were,
that would imply that G�r= OK, contradicting the assumption
that G�r=µX.U. So, GT(h,M) occurs within a subexpression
GT(h′,L) = µY.H of GT(ε,N), with h′ a strict prefix of h,
and such that Y occurs freely in GT(h,M). Here Y must have
the form GT(h′′,L), with h′′ an extension of h. Thus L is

20

reachable from M and hence PROC(r,L) = OK. Again, it
follows that r /∈ parties(GT(h′,L)) and also GT(h′,L) is not
closed. Going on this way, we eventually find a subexpression
µZ.H′ of GT(ε,N) that is is not closed, but also not inside
another expression µW.H′′. This contradicts with GT(ε,N)
being closed. �

E. Proof of Soundness

This appendix contains the proof of soundness for guardedly
well-typed and race-free networks (Theorem 3).

Definition 10: To type network states we extend our type
system with the following rule.

k ∈ I Tk ` Uk
pqk!λk;Tk `

⊕
i∈I qi!λi;Ui

Session fidelity for recursion and internal choice can be
proven independently. These lemmas show that τ–transitions
preserve the type of a network.

Lemma 1: If N τ−→ M with PROC(p,N) = µX.T and
PROC(p,M) = T

{
µX.T/X

}
, and N `g G then M `g G.

Proof: If N `g G then µX.T ` G�p and G�p is guarded.
By the type rules, this can hold only if T

{
µX.T/X

}
` G�p.

Therefore, using that PROC(q,N) = PROC(q,M) for all
locations q 6= p, M `g G. �

Let loc(N) denote the set of locations of a network state N.

Lemma 2: If N τ−→ M with PROC(p,N) =
⊕

i∈I qi!λi;T,
and PROC(p,M) = pqi!λi;Ti for some i ∈ I and N `g G then
M `g G.

Proof: Assume N `g G. So, G is closed, parties(G) ⊆ loc(G),
and, for all p ∈ loc(N), PROC(p,N) ` G�p and G�p is guarded.
The rules of Figure 4 imply that when

⊕
i∈I qi!λi;T ` H,

and i ∈ I , certainly also pqi!λi;Ti ` H. As PROC(q,N) =
PROC(q,M) for all locations q 6= p, this implies M `g G. �

For transitions of the form N p→ q :λ−−−−−→M we target a session
fidelity result, which is stronger than subject reduction, since
it constructs a type for M from the type of N that reflects the
network transition. For this, we need a few auxiliary concepts.

Definition 11: The maximum depth ‖G‖p in the abstract
syntax tree of G of a communication involving location p is
defined as follows:

‖OK‖p = 0
‖X‖p =∞

‖µX.G‖p =

0 if p /∈ parties(G)
and µX.G is closed

1 + ‖G‖p otherwise

‖�i∈I r→ qi :λi ;Gi‖p = max
{
‖r→ qi :λi ;Gi‖p : i ∈ I

}
‖r→ q :λ ;G‖p =

{
1 if p= r ∨ p= q
1+ ‖G‖p if p 6= r ∧ p 6= q

Call a projection type T fully guarded, if it is guarded, and
each occurrence of a variable X within T occurs within a
subexpression p!λ;U or p?λ;U of T.

Lemma 3: If G�p is fully guarded then ‖G‖p is finite.

Proof: A straightforward structural induction on G, using that
• (µX.G)�p is fully guarded iff G�p is fully guarded;
• if p 6= r, q then (r→ q :λ ;G)�p = G�p. �

Corollary 3: If N `g G and p ∈ loc(N) then ‖G‖p is finite.

Proof: Let N `g G and p ∈ loc(N). By Definition 7, G�p is
guarded. By Definition 6, G, and hence also G�p, is closed.
Since a closed projection type is fully guarded iff it is guarded,
the result follows from Lemma 3. �

Lemma 4: If H is closed then (G
{H/X})�p = G�p{H�p/X}.

Proof: A trivial structural induction on G. �

Lemma 5: N `g µX.G iff N `g G
{
µX.G/X

}
.

Proof: µX.G is closed iff G
{
µX.G/X

}
is closed. Moreover,

parties(µX.G) = parties(G) = parties
(
G
{
µX.G/X

})
. Pick

p ∈ loc(N). it remains to show that (µX.G)�p is guarded
iff G

{
µX.G/X

}
�p is guarded, and PROC(p,N) ` (µX.G)�p iff

PROC(p,N) ` G
{
µX.G/X

}
�p.

If p /∈ parties(G) then (µX.G)�p = OK and (G
{
µX.G/X

}
)�p

must be OK in the scope of some merge operators only. Both
are guarded. Moreover, PROC(p,N) ` OK iff PROC(p,N) `
(G
{
µX.G/X

}
)�p.

If p ∈ parties(G) then we have (µX.G)�p = µX.(G�p)
and (G

{
µX.G/X

}
)�p = G�p

{
µX.(G�p)/X

}
by Lemma 4. Now

G�p
{
µX.(G�p)/X

}
is guarded iff µX.(G�p) is guarded. More-

over, by the second rule for `, PROC(p,N) ` µX.(G�p) iff
PROC(p,N) ` G�p

{
µX.(G�p)/X

}
. �

Lemma 6: If G is closed then ‖µX.G‖p >
∥∥G{µX.G/X}∥∥p

for all locations p ∈ parties(G).

Proof: For any G and closedH we have ‖G‖p ≥
∥∥G{H/X}∥∥p,

by a trivial induction on the structure of G. Hence
‖µX.G‖p=1+ ‖G‖p≥ 1+

∥∥G{µX.G/X}∥∥p>∥∥G{µX.G/X}∥∥p.
�

Lemma 7: If PROC(p,N) ` G�p with p ∈ loc(N)\parties(G)
and G is closed, then PROC(p,N) ` OK.

Proof: A trivial structural induction on G. �

Let −� be the transition relation between global session
types defined in Figure 9. In combination with Lemmas 1
and 2, the following session fidelity result shows how race-
free networks evolve according to the global type.

Lemma 8: For race-free network states N, if N p→ q :λ−−−−−→M
and N `g G then there exists G′ such that G p→ q :λ−−−−−� G′ and
M `g G′.

Proof: By Corollary 3, ‖G‖p is finite. The proof proceeds by
induction on ‖G‖p. Note that PROC(p,N) has the form pq!λ;T.
Since pq!λ;T 0 OK, we can rule out that G = OK.

Let G = µX.H. Since N `g G, one has PROC(p,N) ` G�p
and G is closed. By Lemma 7, since pq!λ;T 0 OK, we have p ∈
parties(G). By Lemma 5, N `g H

{
µX.H/X

}
. By Lemma 6,

21

k ∈ I

�
i∈I

p→ qi :λi ;Gi p→ qk :λk−−−−−−� Gk

Gi p→ q :λ−−−−−� Hi for i ∈ I ⊆ J, p, q /∈ {r, si | i ∈ I}

�
i∈J

r→ si :λi ;Gi p→ q :λ−−−−−��
i∈I

r→ si :λi ;Hi
H
{
µX.H/X

} α−� G

µX.H α−� G

Fig. 9. A transition relation between global types

induction may be applied, so H
{
µX.H/X

} p→ q :λ−−−−−� G′ and
M `g G′. By the third rule of Figure 9, G p→ q :λ−−−−−� G′.

The remaining case is that G = �i∈I r→ si :λi ;Gi. By
unfolding the rules for transitions, we have
• PROC(p,N) = pq!λ;T.
• PROC(q,N) =

∑
j∈J pj?λj ;Uj , where p = ph and λ=λh

for some h ∈ J .
Furthermore, PROC(p,M) = T, PROC(q,M) = Uh and
PROC(u,M) = PROC(u,N) otherwise.

First assume that p = r. Then G�p =
⊕

i∈I si!λi; (Gi�p).
Hence, by the type rule for

⊕
, since pq!λ;T ` G�p, there is

a k ∈ I with sk = q, λk = λ and T ` Gk�p. We have that
G p→ q :λ−−−−−� Gk. It remains to show that M `g Gk.

Since G is closed, so is Gk. Moreover, parties(Gk) ⊆
parties(G) ⊆ loc(N) = loc(M). Thus it remains to show that
for each u ∈ loc(M) one has PROC(u,M) ` Gk�u and Gk�u
is guarded. When u = p, we have PROC(p,M) = T ` Gk�p.

When u 6= p, q, we have G�u = ui∈I (p→ si :λi ;Gi)�u.
Since PROC(u,M) = PROC(u,N) ` G�u, by the rule for the
merge in Figure 4, PROC(u,M) ` (p→ q :λ ;Gk)�u = Gk�u.

Similarly, when u = q, PROC(q,N) ` (p→ q :λ ;Gk)�q =
p?λ;Gk�q . As PROC(q,N) =

∑
j∈J pj?λj ;Uj , there must be

an l∈J with pl=p, λl=λ and Ul ` Gk�q . Now N p→ q :λ−−−−−→M′,
where PROC(q,M′) = Ul. Since N is race-free, M′ = M and
thus Ul = Uh = PROC(q,M). Hence PROC(q,M) ` Gk�q .

In all these cases Gk�u is a simple subterm of G�u, not
within a recursion construct, so Gk�u is guarded because G�u
is guarded.

Next assume that p 6= r. Observe that, for all i ∈ I , we
have si 6= p; otherwise the first actions in PROC(p,N) would
be an external choice of receive actions, which is impossible.

The thread PROC(r,N), possibly after unfolding recursion,
must have the form

⊕
i∈I0 si!λi;Ti with Ti ` Gi�r; here I0⊆I .

For each i∈I0 we define a network state Ni such that Ni `g Gi.
Take PROC(r,Ni) := Ti. The thread PROC(si,N), possibly
after unfolding recursion, must be of the form r?λi; Vi +Ui,
where Vi ` Gi�si ; we take PROC(si,Ni) := Vi. For u 6= r, si
take PROC(u,Ni) := PROC(u,N). Since G�u=ui∈I Gi�u and
PROC(u,Ni) ` G�u, we have PROC(u,Ni) ` Gi�u. Note that
Gi is closed since G is closed, and parties(Gi) ⊆ parties(G) ⊆
loc(N) =: loc(Ni). Moreover, for u ∈ loc(N), Gi�u is guarded
since G�u is guarded. It follows that indeed Ni `g Gi.

For each i ∈ I0 we have N τ−→∗ r→ si :λi−−−−−−→ Ni. Hence Ni
is race-free. As p, q /∈ {r, si | i ∈ I0}, by race-freedom of
N, it follows that Ni p→ q :λ−−−−−→ Mi, where PROC(p,Mi) = T,
PROC(q,Mi) = Uh, PROC(r,Mi) = Ti, PROC(si,Mi) = Vi,
and PROC(u,Mi) = PROC(u,N) for all u /∈ {p, q, r, si}.
Furthermore ‖Gi‖p < ‖G‖p.

By the induction hypothesis there are G′i, for i ∈ I0,
with Gi p→ q :λ−−−−−� G′i and Mi `g G′i. Thus, by the second
rule of Figure 9, G p→ q :λ−−−−−� G′ := �i∈I0 r→ si :λi ;G′i.
Trivially, G′ is closed and parties(G′) ⊆ loc(M). Moreover,
G′�u is guarded for all u ∈ loc(N). It remains to show that
PROC(u,M) ` G′�u for all u ∈ loc(M).

We have G′�p = ui∈I0 G
′
i�p. Since Mi `g G′i, we have

PROC(p,Mi) = T ` G′i�p for all i ∈ I0. Thus, by the typing
rule for merge, PROC(p,M) = T ` G′�p.

Likewise, G′�q = ui∈I0 G
′
i�q , PROC(q,Mi) = Uh ` G′i�q

for all i ∈ I0, and PROC(q,M) = Uh ` G′�q .
We have G′�r =

⊕
i∈I0 si!λi; (G

′
i�r). Since Mi `g G′i, we

have PROC(r,Mi) = Ti ` G′i�r for all i ∈ I0. Thus, by the
typing rule for internal choice,

⊕
i∈I0 si!λi;Ti ` G′�r. Thus

PROC(r,M) = PROC(r,N) ` G′�r.
For u 6= p, q, r we have G′�u = ui∈I0 (r→ si :λi ;G′i)�u.

Hence we need to show that PROC(u,M) ` (r→ si :λi ;G′i)�u
for all i ∈ I0. So, pick i ∈ I0 ⊆ I .

First suppose u 6= si. Since PROC(u,M) = PROC(u,N) =
PROC(u,Mi) and Mi `g G′i, we have PROC(u,M) ` G′i�u =
(r→ si :λi ;G′i)�u.

Finally, suppose u = si. As Mi `g G′i, we have
PROC(si,Mi) = Vi ` G′i�si . By the typing rule for external
choice, r?λi; Vi + Ui ` r?λi; (G′i�si) = (r→ si :λi ;G′i)�si .
Hence PROC(si,M) = PROC(si,N) ` (r→ si :λi ;G′i)�si . �

Observation 4: The second rule in Figure 9 allows the index
set to be narrowed. To understand why, consider the following
global type.

G , (r→ t:a ; p→ q :a ; q→ r :a ; r→ s:a ; s→ q :a)
� r→ s:a ; s→ q :a ; p→ q :a ; q→ r :a ; r→ t:a

Global type G guardedly types the following network N.

p[[q!a]]
‖ q[[(p?a; r!a; s?a) + (s?a; p?a; r!a)]]
‖ r[[t!a; q?a; s!a]]
‖ s[[r?a; q!a]]
‖ t[[r?a]]

Network N is race-free and N p→ q :a−−−−−→M. If we insisted that
I = J in Fig. 9, then there would be no G′ such that G p→ q :a−−−−�
G′ and G′ `g M, as required for session fidelity. Narrowing of
the global type by hiding branches of a choice, as permitted
by I ⊆ J , is required when we have a race-free network, but
the global type is not race-free, as in the above example.

Using the above, we can prove our soundness result. This
is where we appeal to justness.

22

Theorem 3: If N is guardedly well-typed and race-free,
then N |= L(J).

Proof: Let N = N0 be race-free and assume that N0 `g G0.
Let π = N0

τ−→∗ p0→ q0 :λ0−−−−−−−→ N1
τ−→∗ p1→ q1 :λ1−−−−−−−→ . . . be a

path on which some location p ∈ loc(N) = loc(Ni) does not
successfully terminate, and that contains only finitely many
transitions involving p. We aim to show that π is not just.

Let `(π) ∈ IN be the index n of the last state Nn in this
path, or `(π) =∞ if π is infinite. By Lemmas 1, 2 and 8 there
is a sequence G0 p0→ q0 :λ0−−−−−−−� G1 p1→ q1 :λ1−−−−−−−� . . . of length `(π)
such that Ni `g Gi for all i.

First consider the special case that for some Gk in this
sequence we have p /∈ parties(Gk). Since Gk is closed and
PROC(p,Nk) ` Gk�p, Lemma 7 yields that PROC(p,Nk) ` OK.
This implies that PROC(p,Nk) must have the form OK or
µX.OK As we assumed that p does not successfully termi-
nate on π, it must stay a τ -transition away from successful
termination. As this τ -transition is local to p, it follows that
π is not just.

Thus we may assume that p ∈ parties(Gk) for all Gk in the
above sequence. By Corollary 3, ‖Gi‖p is finite for all i.

Claim: When N `g G, G t→ q :λ−−−−� H, p ∈ parties(G) and
p 6= t, q then ‖H‖p ≤ ‖G‖p. Moreover, if the transition
G t→ q :λ−−−−� H is derived without using the second rule in
Figure 9, then ‖H‖p < ‖G‖p.

Proof: A trivial induction on the derivation of G t→ q :λ−−−−� H.
Note that the conclusion ‖H‖p < ‖G‖p is not warranted when

the second rule is used, due to the possibility that p = r or
p = si, where r and si are location variables of that rule.

Application of the claim: Since we assumed that π contains
only finitely many transitions involving p, by restricting at-
tention to a suffix of π we may just as well assume that no
transition in π involves p, i.e., all pi and qi differ from p.

As ‖Gi‖p ≥ 0 for all i, there must be a Gk in the above
sequence such that ‖Gl‖p = ‖Gk‖p for all k ≤ l ≤ `(π),
with l ∈ IN. So, past Gk, all transitions Gl pl→ ql :λl−−−−−−� Gl+1

are derived by means of the second rule of Figure 9. Note
that Gk 6= OK since p ∈ parties(G), and Gk 6= X since Gk
is closed. Thus, possibly after unfolding recursion, Gk must
have the form �j∈J r→ sj :µj ;Hj . Since Nk `g Gk, we
have PROC(r,Nk) `

⊕
j∈J sj !µj ; (Hj�r) and PROC(sj ,N) `

r?µj ; (Hj�sj) for each j ∈ J . In case PROC(r,Nk) never
performs the τ -transitions needed to reach a thread state
psj !µj ;Tj with j ∈ J , the path π is not just, and we are done.
Likewise sj will reach a state where it is ready to receive µj
from r. So, for some k ≤ l ≤ `(π), with l ∈ IN and j ∈ J ,
we have Nl r→ sj :µj−−−−−−→ .

A straightforward induction on l ≤ m < `(π) shows that
Gm has the form �j∈Jm r→ sj :µj ;Hmj with j ∈ Jm ⊆ J ,
so that pm 6= r and qm 6= sj . Here j ∈ Jm follows since
Nm `g Gm and thus psj !µj ;Tj ` Gm�r, and pm, qm 6= r, sj
follows from the side condition in the second rule of Figure 9.
It follows that in the path π, past Nl neither location r nor sj
makes progress, and the transition r→ sj :µj remains enabled.
Hence π is not just. �

23

	Introduction
	The scope: A session calculus, its key fairness notions and liveness properties
	Syntax and semantics for threads and networks
	Fairness notions for session calculi
	Strong and weak fairness
	Justness
	Further notions of fairness

	A scheme for lock-freedom
	L(ST) is strictly stronger than deadlock-freedom
	L(SC) is strictly stronger than L(ST)
	L(J) is strictly stronger than L(SC)
	L(P) is strictly stronger than L(J)

	Lock-freedom in the literature
	Kobayashi lock-freedom
	Padovani lock-freedom coincides with L(ST)

	Lock-freedom for a reactive semantics

	Session types and completeness
	Global session types, projections and type judgements
	Well-typed networks
	Guarded type judgements
	Completeness for lock-freedom under justness

	Race-freedom and soundness
	Related and future work on lock-freedom
	Conclusion
	References
	Appendix
	Classifying Fairness Notions for our Session Calculus
	SC, SA, WZ and SWI are not as strong as SI
	WC, WG, WI, WZ and SA are not as strong as SC
	Collapsing Fairness Assumptions
	P, WT and SA are not as strong as J
	P is not as strong as JA
	J and WA are not as strong as SA
	SZ is not as strong as ST

	Collapsing notions of lock-freedom
	Padovani's lock-freedom coincides with L(ST)
	Proof of completeness
	Proof of Soundness

