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Abstract. Although there are many efficient algorithms for calculgtihe simu-
lation preorder on finite Kripke structures, only two haveteroposed of which
the space complexity is of the same order as the size of thmubaf the algo-
rithm. Of these, the one with the best time complexity expltie representation
of the simulation problem as a generalised coarsest par{itioblem. It is based
on a fixed-point operator for obtaining a generalised caaysartition as the limit
of a sequence of partition pairs. We show that this fixed4pibiaory is flawed,
and that the algorithm is incorrect. Although we do not ses tie fixed-point
operator can be repaired, we correct the algorithm withffetting its space and
time complexity.

1 Introduction

The simulation preordel{17] is a behavioural refinement relation on concurrent sys-
tems, represented as Kripke structures or labelled trangystems, that plays a crucial
réle in compositional verification and model checking. légerves the existential and
universal fragments of temporal and modal logics. For €d] this is shown in [5],
and for the modaf-calculus [14] it is shown in [16]. This makes it possible tmtbat
the state explosion problem in model checking by minimisiregstate space of a given
system modulo simulation equivalence before checking dtidity of relevant proper-
ties within those fragments. Given that the simulation piteois a precongruence for
parallel composition [11], components in parallel composs can even be minimised
individually.

Simulation equivalence is also used directly in equivatderttecking [15] of finite-
state processes. Often deciding the simulation preordesmies processes is the most
appropriate method of showing that two systems are relageghbther preorder, that
may be appropriate for the task at hand. In applications etieadlock behaviour plays
a crucial role, theeady simulation preordefl] is widely regarded to be an appropriate
behavioural refinement relation for matching an implemigmtawith a specification.
Via a straightforward reduction (the computation of thdiatipartition ER; in [2]),
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finding a ready simulation between two processes is as hdmddasg a plain simula-
tion. In applications where deadlock behaviour plays rle,rbace inclusionis often
proposed as an appropriate refinement relation. Howeveididg trace inclusion on
finite-state processes is PSPACE-hard [19], and as theaimmipreorder is the coars-
est preorder included in trace inclusion that is known to beidhble in polynomial
time [2, 3, 8,12, 18, 20], establishing a simulation betwsemprocesses is a favourite
way of showing that they are related by trace inclusion.

In many crucial applications, space rather than time besothe bottleneck as
the input graph grows [4, 7,8, 13]. Hence, simulation akions with minimal space
complexity are of particular interest. These are the oneBustan and Grumberg [3]
and by Gentilini, Piazza and Policriti [8]. For an input gnapith V statesT" transi-
tions andS simulation equivalence classes, the space complexity thf ddgorithms is
O(S? + Nlog S). This can be considered minimaD(S5?) space is needed for stor-
ing the simulation preorder as a partial order on simulagqguoivalence classes and
O(N log S) space is needed to store for every state, the equivalens® tdavhich it
belongs. Of these algorithms, the one by Gentiéihal. has a better time complexity:
O(S%T). A more time-efficient algorithm is the one by Ranzato andp&ap [18], but
it is less space efficient.

The approach of Gentilinet al. represents the simulation problem as a gener-
alised coarsest partition problem (GCPP). According t@titbors, this problem can be
solved by approximating the greatest fixed point of a deangasperator on partition
pairs that they define in their paper. They give a partitigrafgorithm to compute this
fixed point for any legal input. We recite this definition angart of the algorithm in
Sect. 3. In Sect. 4 we show that the operator is flawed bectiss®oit uniquely defined
for all partition pairs. We give an instance of the GCPP foickrepeated application
of the operator does not lead to a unique fixed point. We alew $hat on this exam-
ple the partitioning algorithm irrevocably allocates twmslation-equivalent states to
different simulation-equivalence classes, and subsetyudeadlocks.

In Sect. 5 we define a simple, yet inefficient fixed-point oparéor which we prove
correctness. This operator is not meant to be an improveoventhe original one, but
merely serves as an expedient for establishing correcfef®e algorithm that we
presentin Sect. 6. This algorithm is obtained from that afiitiai et al. by means of a
few simple corrections; consequently, it benefits from tbg ikleas behind the original
partitioning algorithm and has the same time and space @itipls. Yet its correctness
proof requires entirely new techniques and is surprisingly-trivial. We also show that
no fixed-point operator can be defined that captures the mmivanf this algorithm.

2 Preliminaries

Partitions and relations.For any setS, apartition overS is a sety’ C P(S) such that
UX=SandVae X .a#0AVB e X .a+#B=an=10.Foranys € Swe
denote by(s] s the blocka: € X such thats € «. Given two partitionsZ andII we say
IT is finer thanX iff for every « € IT there exists an’ € X' such thatx C . For any
setS, we denote byZ(S) theidentity relationover S, i.e. Z(S) = {(s, s) | s € S}. For
any relationP, we denote byPT thetransitive closuref P.
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Graphs. A (directed) graphis a tuple(N,—) where N is a finite set of nodes and
— C N x N is a set of directed transitions between those noddaballed graphis
atuple(N, —, X) where(N, —) is a graph and” is a partition overNV. For a graph
(N,—),a € Nandg C N, we writea — gif 3b € 5. a — b. Moreover, we define
the relations—3 and—y overP (V) as follows, for anyy, 3 C N:

a—30 & dJac€a.a— a—y b & VYaEea.a— S

Simulations.For any labelled grapfiV, —, ) a relationR C N x N is asimulation
iff forany a,b € N, (a,b) € R implies:

° [a]g:[b]g and
eVceN.a—c=3deN.b—dA(cd) €R.

We say that is simulated by, denoted: C b, iff there exists a simulatio® such that
(a,b) € R. Itis well known and easy to check th@t is a preorderi.e. a reflexive and
transitive relation, onV, and moreover the largest simulation. We say thahdb are
simulation equivalendenoted: = b, iff a € bandb C a.

The simulation problemGiven a labelled graptd = (N, —, %), thesimulation prob-
lemoverG consists in finding the simulation preorderonG.

A variant of the simulation problem asks, given a labelleapin( NV, —, X) and two
nodes:, b € N, whether C b. In general, no methods to solve this problem are known
that are more efficient than computing the entire relaio N x N and looking up
whether(a, b) € C. Another variant of the simulation problem merely asks td fime
simulation equivalence relation rather than the preordét. Again, no methods to
solve that problem are known that do not amount to findings well.

Typically, the simulation problem arises in the contexkoipke structuresor la-
belled transition systemét is trivial to encode a Kripke structure as a labelled grap
in such a way that the simulation preorder on the Kripke stmgcagrees with the one
on its labelled graph representation. Likewise, it is nadha reduce the simulation
problem for labelled transition systems to that for lalsbiigaphs. Alternatively one
can enrich the theory in a straightforward way to deal wiimition labels as well, so
that it is applicable to labelled transition systems disect

The generalised coarsest partition problei@iven a graphG = (N, —), a partition
pair overG is a pair( X, P) whereX'is a partition ovefN andP C X'x X'is a reflexive,
acyclic relation ovel. A partition pair(X’, P) is calledtransitiveif P is transitive, and
hence a partial order. Given a partitidh) a partition/! finer than’’, and a relatiorP
over X, we denote byP(I7) theinduced relatiorof P on II:

PII)={(a,8) e I x IT | 3/, ) eP.aCa' A3 C '}
We define gartial order < on partition pairs by writing, for any partition pai(&’, P)
and(I1, Q): (II,Q) < (X, P) iff II is finer thanX and@ C P(II). Given a graph
G = (N, —), we say a partition paifX’, P) over( is stable with respect te- [8] iff:

Va,B8,v€ X . ((a,8) e PANa—37) = € X . (7,0) e PAS —v 6.
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Given a grapity = (N, —) and a partition paifX, P) overG, thegeneralised coarsest
partition problem(GCPP) [8] consists in finding &-maximal partition paif=, <)
such that =, <) < (X, PT) and(Z, <) is stable with respect te-.

The simulation problem as a GCPRet G = (N, —, Y) be a labelled graph. Any
preorderC on N can be represented as a partition g C) := (I1, <), as follows:
IT is the set of equivalence classesMfw.r.t. the equivalence relatioa :== C N C !
induced by, and= is given by[a];; < [b]57 iff @ C b. Note that< is a partial order.
Moreover, ifC is a simulation thef?P(C) is stable w.r.t— andPP(C) < (X Z(X)).
Any partition pair(II, Q) over the grapi{ N, —) can be represented as a relation
Rim,qy € N x N asfollows:(a,b) € R, iff 3(a,) € Q. a € aAbe 3. Note
that if (I7, Q) is stable w.r.t— and(/1, Q) < (¥,Z(X)) thenR oy is a simulation.
Moreover(I1,Q) < (II', Q") iff R(;,qy € Rim,¢qy- Also note thatRpp ) = C.
HencePP (<) is the solution of the GCPP gV, —) and(X', Z(X")). In particular,
the GCPP, when applied to partition pairs of the foff, Z(X')) (plain partitions),
always has a unique solutid, <), in which moreover is always a partial ordeér.

3 The GCPP Solution of Gentilini, Piazza and Policriti

To solve the GCPP, Gentilini, Piazza and Policriti [8] irtuze the following operator:

Definition 4.11 in [8] (Operator o). Let G = (N, —) and (X, P) be a partition pair
overG. The partition paifII, Q) = o((¥, P)) is defined as follows:

(1o) II is the coarsest partition finer thansuch that
@ VaellVye X(a—3vy = 30 € X((y,0) € PANa —v0));
(20) @ is maximal such tha® C P(IT) and if («, 8) € @, then
(b) Vy € X(a—vy = I € X((,7) e PAB —37)) and
© Vyell(a—yy = I €((v,7)€QNB—37)).

They argue that applying iteratively on an initial partition paitX,, P,) yields a se-
quence of partition pairsY;, P;),., with (¥; 1, Piy1) = o((X;, P;)). By construc-
tion, this sequence is decreasing, in the sense(ffiat;, P 1) < (X, P;). Hence it
will reach a fixed poin{ X', P;) = o((Xk, Px)). This is the solution to the GCPP.
Applying this, they give a partitioning algorithm to solveet GCPP. We have in-
cluded it here as Algorithm 1 and call it RAp. It takes as input a grapliv, —) and a
transitive partition paif X, P) and repeatedly calls the following functions to compute
o until a fixed point is reached: B INEgpp Which computes the partitiolf of (10)
and UpDATEgpp Which computes the relatia of (20). The boolean variablehange
is settoT by REFINEgppiff its output partition differs from its input partition. @have

! The same reasoning extends to the GCPP applied to any ganigiirs, but this requires
considering simulations on structures of the fof, —, X, <) with (N, —, X') a labelled
graph, anck a partial order or™; the first clause in the definition of simulation then becomes
la]s = [b]=.
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Algorithm 1 The partitioning algorithm of [8]: PApp((N, —), (X, P))
1: change :=T,;4i:=0; Xy := X Py .= P;
2: while change do
3: change .= 1;
4: Yit+1 := REFINEgpp(X;, P, change);
5 Pi+1 = UF’DATEGPP(E'i7 PZ‘7 2i+1);
6: i:=1i41;
7: end while

Algorithm 2 The refine function of [8]: RFINEgpp(X;, P;, change)
D i = Xy

2: forall a € ;41 do Stable(a) := 0; end for

3: forall v € X; do Row () := {¥" | (v,7') € P;}; end for
4: LetSort be a reverse topological sorting &f w.r.t. P;;

5: while Sort # () do
6.
7
8

[EnY

v := dequeue(Sort);

A:=0;
forall @ € Xi11, a —3 7, Stable(a) N Row(y) = 0 do
9: a1 ::ozﬂ—fl(’y);
10: a2 = a\ aq;
11: if as # 0 then change := T; end if
12: 2i+1 = Ei+1 \ {Oé};
13: A= AU{a1,az};
14: Stable(cv1) = Stable(a) U {7},
15: Stable(az) = Stable(w);
16: end for

17: Yig1 =X U A;
18: Sort := Sort \ {v};
19: end while

20: return X;41;

included the RFINEgpp function as Algorithm 2. In line 4 of this algorithm, a “reser
topological sorting of2; w.r.t. P;” indicates an ordered listing of the elementsXgf
such that if(y, 0) € P; thend occurs prior toy.

4 Incorrectness of the Fixed-Point Operator

Following the definition ofs, the authors claim that for any partition p&ir, P), if
(IT,Q) = o({X, P)) thenQ is acyclic. We give an example that counters this claim.

Counterexample 1Consider the graph in Fig. 1(a) and the partition gait P) with
¥ = {a, 8,7, 0} as depicted anét = Z(2)U{(5.6), (5:7)}. Let(I, Q) = o({X, P)),
then

I = {041,042,6,"/,5} Q= I(H) U {(a1,a2)a (anal)v (675)5 (67 7)}

wherea; = {a1} andas = {a2}. Q is not acyclic, which counters the claim. O
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(b)

Fig. 1. Counterexamples for (a) acyclicity 6f and (b) well-definedness of.

This counterexample shows that applyintp a given partition pair does not necessarily
yield another partition pair. After all, for that the resndj relation has to be acyclic.

However, a more fundamental theorem that the authors ctalmave proven, turns
out not to hold. Theorem 4.13 states that for every partipiain (X', P) there exists a
unique<-maximal partition paiK I, Q) < (X, P) satisfying conditions (a), (b) and (c)
of Definition 4.11,i.e. the o operator is well-defined, and a function. This theorem is
countered by the following example.

Counterexample 2Consider the graph in Fig. 1(b) and the partition gait, P) with
¥ = {a, 3,70} as depicted anf? = T(X)U{(5,7). (v,0)}. Let (I1, Q) and(IT", Q')
be partition pairs such that:

II = {QOvalvﬁa775} Q :I(H) U {(Oéo,oq), (061,040), (677)? (775)}
= {O‘6’O‘/116a’776} Ql = I(H/) U {(aé)’a/l)v (allvaé))a (ﬁa7)7 (’716)}

whereay = {ag,a1}, a1 = {az2}, oy = {ao} anda) = {a1,a2}. Both (II,Q) and
(IT", Q") satisfy conditions (a), (b) and (c) of Definition 4.11, buither is the<-
largest. The only partition pair greater than boffi, Q) and (II’, Q') and at most as
large as(X, P), is (¥, P) itself, but (X', P) does not satisfy (a). Hence, this example
counters Theorem 4.13 of [8] and shows thas not well-defined. O

Following Theorem 4.13, the authors present their main fpeiit theorem which
states that the solution of the GCPP over a gr&pand partition paif X, P) can be
computed by applying to (¥, P) finitely many times until a fixed point is reached
(Theorem 4.14). In this theorem, the authors demandita transitive. One might be
inclined to think that Counterexample 2 does not affecttiéorem, as we used a non-
transitive P. We now show that this is not the case: the main theorem intbsed its
meaning due to our counterexample for Theorem 4.13. To deesfirst give an exam-
ple in which the application of to a transitive partition pair produces a non-transitive
partition pair.

Example 3.Consider the graph in Fig. 2(a) and the partition pgair, P) with X' =
{a, 8,7} as depicted and® = Z(X). Let (II,Q) = o({X, P)), then:

II = {1, a2, 03,6,7} Q =Z(II) U {(as,a1), (a1, 2)}

Wher8a1 = {ao,al}, Qo = {QQ} andOég = {ag}. O
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(b)

Fig. 2. (a) Example for whicly produces a non-transitive relatighand (b) counterexample for
correctness of.

Our final counterexample shows thats not suitable for computing the solution of the
GCPP, and is constructed by embedding Counterexample Zampbe 3, such that the
first application ofs produces a non-transitive partition pair on whighs not well-
defined.

Counterexample 4Consider the graph in Fig. 2(b) and the partition gait, P) with
Y ={a,3,v} as depicted an® = Z(X). Let (I1, Q) = o({X, P)), then:

II = {1, a2, 03,6,7} Q =Z(II) U {(asz,a1), (a1, 2)}

Wherea1 = {ao, al}, Qg = {ag} anda3 = {ag, aq, a5}. Now, in <H, Q> the b|0Ck043
has to be split, becausg —3 a3 but—36 € IT . ((a3,0) € Q A ag —v J)). There
are two candidate partition pairs fot(I1, Q))): as can be split into eithetis o = {a4}
andas; = {a3,as} Oraj o = {as,as} anday ; = {az}. However, neither of these is
greater than the other, so a unigaenaximal partition pair does not exist. a

When splittingas in Counterexample 4, theERINEgpp function of algorithm PApp
splits the block intaxs o andas ;1. Observe that this is wrongy andas should not
end up in different equivalence classes because= a;. This split also results in
UPDATEGppS returning a cyclic relation. In the subsequent iteratibPAgpp, the ex-
ecution of REFINEgpp then fails because there is no reverse topological sortitigeo
partition w.r.t. the cyclic relation (line 4).

5 An Auxiliary Fixed-Point Operator

In this section we introduce a fixed-point opergtaio solve the GCPP and prove its
correctness. The definition gfis straightforward: it is based directly on the stability
condition of Sect. 2.

We emphasise thatis not intended to be an improvement over theperator of
Sect. 3 in any way: it is a less advanced operator thaimed to be. The purpose of
was to compute the solution to the GCPP efficiently, whitgves rise to an algorithm
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that has an inferior time complexity @¥(S3T") whereS is the number of equivalence
classes of the GCPP solution afidhe number of transitions of the input graph.

Namely, the complexity analysis of [8] uses that, as longd$ded point is reached,
in each refinement-update step the refinement of the partitibbe non-trivial,i.e.the
number of blocks increases. As a consequence, there wilt b#at .S refinement-
update steps before the algorithm terminates. Such ansas&ynot appropriate fqr:
applyingp repeatedly could involve many steps in which the partitiorsinot change.
Consequently, the number of iterations of the algorithnoigrited merely by the size
of a relation on the eventual partitiarg. by S2.

The sole purpose af is to serve as an auxiliary operator for establishing the cor
rectness of the algorithm that we present in Sect. 6. Thatridign has the same time
complexity as PApp and does not correspond to any fixed-point operator, as we sho
in the same section.

Definition 1 (Operator p). Let (¥, P) be a transitive partition pair over a graph
(N, —). Thenp({(X, P)) is the<-largest partition pair(I, Q) < (X, P) satisfying

(1) Vo,Bell VyeX.(o,B)eQNa—3vy = F0€X . ((7,0) EPAS —v 0)).

Alternatively, p could be defined just liker of Definition 4.11, but insisting that its
input partition pair is transitive, and omitting clause. (tJs not hard to check that this
definition is equivalent to the one above. The correctnefefifiition 1 is ensured by
the following.

Proposition 1. Let (X, P) be a transitive partition pair over a graphV, —). Then
there exists a-largest partition pair(I7, Q) < (X, P) that satisfieg1). Moreover,
is transitive.

Proposition 2. The operatorp is monotone with respect to: if (X', P) and (X', P’)
are transitive partition pairs witH X, P) < (X', P’), thenp((X, P)) < p({X’, P')).

Sincep({X, P)) < (X, P) and< is a partial order on a finite set, we obtain:

Proposition 3. Let (¥, P) be a transitive partition pair over a graph. Then for some
n>0,p" (X, P))=p"((X, P)), i.e. repeated application ¢fleads to a fixed point.

The solution to the GCPP over an input gr&phand an initial partition paitX, P) over
G can be obtained by repeatedly applyjng (37, P*). The following lemmata say that
as soon as a fixed point is reached, the resulting partitiongstable. Moreover, each
of the intermediate partition pairs is larger than or eqadhe solution of the GCPP. It
then follows that the obtained fixed point is in fact the soluto the GCPP.

Lemma 1. Let (X, P) be a transitive partition pair over a graphV, —).
Thenp((X¥, P)) = (X, P) ifand only if (¥, P) is stable with respect te-.

Lemma 2. Let(X, P) and(I1, Q) be partition pairs over a graply, with @ transitive,
and let(=, <) be the solution of the GCPP ovét and (X, P). If (=,=<) < (I1,Q)
then(=, <) < p((I1, Q).

Theorem 1. Let (¥, P) be a partition pair over a graplt = (N, —) and (=, <) be
the solution of the GCPP ové? and (X, P). Letn > 0 be such thap™ ™1 ((X, PT)) =
p"((X, PT)). Thenp™ (X, PT)) = (Z, 2).
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6 A Correct and Efficient Algorithm

Algorithm 3 The repaired partitioning algorithm: RAV, —), (¥, P))
: X1 := REFINE(X, P);

Py := UPDATEgpp(X, P, X1);

. change .= T,;4:=1,

: while change do

change :== L1;

Yit1 := REFINE(XS, Py);

Piy1 := UPDATEgpp(Xs, P;, Xiy1);

=1+ 1

: end while

oCoNORr®ONE

Our repaired partitioning algorithm is called PA, see Algon 3. The variablehange
and the input graphV, —) have global scope: they can be accessed from any function.
Note however, that BDATEGpp does not acceshange

Our corrections of the algorithm are two. Firstly, it is ereslithat at least two
refinement-update steps are taken before the algorithmirtates (lines 1 and 2). The
necessity of this correction is explained in Sect. 6.1. 8dlypthe most important error
— the one resulting from the incorreetoperator — is repaired by the neweERNE
function, Algorithm 4. It contains a few minor improvemeniger REFINEgpp: USING
list notations for variablé&ortand preventing empty blocks from being addedfo
However, the actual correction is in line 21: if for somec Y anda € IT with
a —3 v we haveStable(a) N Row(y) # 0 then we addy to Stable(«).

We use thep operator of Sect. 5 to prove correctness of PA in Sect. GXgdace
and time complexities are the same as forgBA no additional space is needed and
the corrections do not increase the time complexity. Bnall Sect. 6.3 we show that
there is no fixed-point operator that captures the refineperibtrmed by our RFINE
function.

6.1 The Correction of Another Mistake

Apart from the error in PApp that results from the incorreet operator, we found
another mistake in the algorithm. We describe it in thisisecind propose a solution.
The mistake is shown by the following example.

Example 5.Consider the grapltr = (N, —) on the right and

the partition pair(X, P) with ¥ = {a,(} as depicted and

P =Z(¥) U{(a,B)}. Observe that the solution to the GCP o'
overG and (X, P) is (=, <) with = = {a, 1,3} and=< = -

Z(E) U {(a1,a0)} wherea; = {a;}. After the first iteration !

of PAgpp(G, (X, P)), we haveX; = Xy = Y andP, = 0
Z(X). The algorithm then terminates becausenge = L, and

(X4, Pp) is its answer to the GCPP ovér and (X, P). Obvi- B
ously (¥, P1) # (=, <), so this answer is wrong. O
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Algorithm 4 The repaired refine function:ERINE(Y, P)
110 :=2,

2: for all a € IT do Stable(a) := (; end for

3: forall v € X do Row () := {v' | (v,7") € P}; end for
4: LetSortbe a reverse topological sorting &fw.r.t. P;

5: while Sort # [] do

6: v := head(Sort);
7 =0
8 forall « € I, &« —3 vy do
9: if Stable(a) N Row(y) = B then
10: a1 ::ozﬂ—fl(’y);
11: a2 == a\ a;
12: I .= 1T\ {a};
13: A=AU{a};
14: Stable(av1) = Stable(a) U {7},
15: if as # 0 then
16: change == T;
17: A:=AU{az};
18: Stable(cz) := Stable(a);
19: end if
20: else
21: Stable(cv) := Stable(c) U {~};
22: end if
23: end for

24: II:=1I1UA,;

25: Sort := tail(Sort);
26: end while

27: return I1;

The correctness of Réep hinges on the theory that whenevesRNEgpp(17,Q, change)
returns its input partitiord/, and thus fails to split any block iff, then also the relation
@ will be unaffected by BDATEGpp, i.e. UPDATEGpp(I1, @, IT) returnsQ). This theory
is the upshot of Theorem 4.15 in [8] and is essential in thepterity analysis of the
algorithm. However, the above example shows that it doefaldtin general.

In the next section we show that this theory does hold underctndition that
Q itself is obtained as output of RbATEgpp (Proposition 5). Therefore, this error in
PAgpp can be fixed, without violating the complexity analysis, bgisting that at least
two refinement-update steps are performed prior to terioimat

6.2 Correctness of PA

From here on we will use the correctness of the functi@mhiregpp, as established by
Gentilini et al.[9]. This correctness can be summarised as follows:

Proposition 4. Let (¥, P) be a partition pair over a grapiN, —), and IT be a par-
tition over N that is finer thanX. Then there exists a unique relatigp C P(IT)
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satisfying condition(20) of Definition 4.11. Moreover, this relation is returned by
UPDATEgpp( X, P, IT).

Using this, we obtain the result promised in Sect. 6.1: tlleiang proposition implies
that if a call to REFINE in the while-loop of PA does not split any blocks, then the
subsequent call to RbATEGpp WiIll return its input relation. The requirement that this
relation has been computed by a previous call FDRTEGpp is guaranteed by line 2.

Proposition 5. Let (¥, P) and (I, Q) be partition pairs over a graph such thaf is
finer thanX' and UPDATEgpp(X, P, IT) returns Q. ThenUPDATEgpp(I1, Q, II) also
returnsq@.

Let (X, P;), -, be the sequence of partition pairs produced by PA. The fatigw
proposition says that evef; is acyclic and that the sequence is decreasing. The former
implies that PA will never deadlock due to the inability todia reverse topological
sorting (see line 4 of RFINE). The latter implies that the algorithm terminates.

Proposition 6. Let (¥, P) be a partition pair over a grapi{N, —), REFINE(Y, P)
return IT and UPDATEgpp( X, P, IT) return Q. Then({I1,Q) is a partition pair with
(I1,Q) < (X, P).

Corollary 1. For any graphG and any partition pair(X, P) over G, the algorithm
PA(G, (¥, P)) terminates. O

The following lemmata state thateRINE and UPDATEgpp CcOnverge towards a fixed
point at least as fast aswithout ever diverging from the path towards the GCPP solu-
tion. In combination with the monotony gf(Proposition 2) this implies the correctness
of our algorithm.

Lemma 3. Let (X, P) be a partition pair over a grapliN, —), REFINE(X, P) return
II, andUPDATEGpp( X, P, IT) return Q. Then(II,Q") < p({X, PT1)).

Lemma 4. Let (¥, P) and (II,Q) be partition pairs over a graptG = (N, —),
(2, <) be the solution of the GCPP ovéf and (X, P), and (=, %) < (I,Q). Let
REFINE(IT,Q) return IT" andUPDATEgpp(11,Q,II') return@’. Then(= <) < (II'Q’).

Theorem 2. Let (X, P) be a partition pair over a graplG = (N, —). Letk be the
value of variable upon termination oPA(G, (X, P™)). Then(Xy, P) is the solution
of the GCPP ovefy and (X, P).

6.3 No Fixed-Point Operator

We now show that there is no (functional) fixed-point opergt@t captures the par-
tition refinement performed by EFINE, i.e. a functionn such that for any partition
pairs (X, P) and (I, Q) with (II,Q) = =((¥, P)), REFINE(X, P) returnsII. More
specifically, we show that the partition returned byHAR\E is not uniquely defined, but
depends on the particular reverse topological sortingishatosen in line 4.
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Fig. 3. Example on which RFINE does not return a uniquely defined partition

Example 6.Consider the grapl = (IV, —) of Fig. 3 and the partition paif>, P)
with ¥ = {«,,v,0,e} as depicted and® = Z(X) U {(8,9), (6,7)}. ThenS =
[e,7,6,3,a] andS’ = [v, 4, 3, ¢, a] are reverse topological sortings Bfwith respect
to P. Let IT andII’ be the partitions returned byERINE(X, P) on sortingsS and.S’
respectively. Thedl = {{ao}, {a1},{az}} andll’ = {{ag, a1}, {a2}}. O

Similar to the construction of Counterexample 4, this exi@ngan be embedded in
Example 3 to obtain an example with a transitive relatiorvibich the partition after
the second refinement depends on the chosen reverse taablegiting.

7 Conclusions

The correspondence between the simulation problem foefilgibelled graphs and the
generalised coarsest partition problem (GCPP) for unlatbglraphs can be easily es-
tablished. We have shown that theperator defined by Gentilimt al. [8] to solve the
GCPP is flawed. In particular, when applied to a partitiom,ghe result is not neces-
sarily another partition pair or even well-defined. Morepwhen applied repeatedly to
a transitive partition pair, convergence towards a unigxeifpoint is not guaranteed.
Thereby we have shown thatis not suitable for solving the GCPP. On the counterex-
ample for the latter property, the algorithm of [8] that cartgso, produces a wrong
result in which two simulation-equivalent states are putifferent equivalence classes.

We have repaired this algorithm such that it correctly cotepthe solution of the
GCPP. Apart from correcting the error that results from the/dl in theo operator, we
also corrected a mistake that caused premature terminaititie algorithm on certain
input. Our algorithm benefits from the key ideas behind theial partitioning algo-
rithm and has the same space and time complexities. We haverpits correctness
using an auxiliary operatgr of which we have shown that it solves the GCPP, though
inefficiently. Finally, we have shown that no operator cardbéned that captures the
partition refinement performed in every iteration of ourcalthm.

Another way to repair the algorithm of [8] may be to use thatieh P+ instead
of P in REFINEgpp. The so obtained algorithm would converge to a fixed poighsly
slower than ours. More importantly, due to the cost of conmguthe transitive closure
in each iteration, the time complexity would not match thahe original algorithm.

AcknowledgementsWe would like to thank Raffaella Gentilini and Carla Piazpa f
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mentation of the algorithm.
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