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Abstract

Although there are many efficient algorithms for calculating the simulation pre-
order on finite Kripke structures, only two have been proposed of which the space
complexity is of the same order as the size of the output of thealgorithm. Of these,
the one with the best time complexity exploits the representation of the simulation
problem as a generalised coarsest partition problem. It is based on a fixed-point
operator for obtaining a generalised coarsest partition asthe limit of a sequence
of partition pairs. We show that this fixed-point theory is flawed, and that the al-
gorithm is incorrect. Although we do not see how the fixed-point operator can be
repaired, we correct the algorithm without affecting its space and time complexity.

1 Introduction

The simulation preorder[16] is a behavioural refinement relation on concurrent sys-
tems, represented as Kripke structures or labelled transition systems, that plays a cru-
cial rôle in compositional verification and model checking. As shown in [5] and [15],
respectively, the simulation preorder preserves the existential and universal fragments
of CTL∗ [6], as well as the modalµ-calculus [13]. This makes it possible to combat
the state explosion problem in model checking by minimisingthe state space of a given
system modulo simulation equivalence before checking the validity of relevant prop-
erties within that fragment. Given that the simulation preorder is a precongruence for
parallel composition [10], components in parallel compositions can even be minimised
individually.

Simulation equivalence is also used directly in equivalence checking [14] of finite-
state processes. Often deciding the simulation preorder between processes is the most
appropriate method of showing that two systems are related by another preorder, that
may be appropriate for the task at hand. In applications where deadlock behaviour
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plays a crucial rôle, theready simulation preorder[1] is widely regarded to be an ap-
propriate behavioural refinement relation for matching an implementation with a spec-
ification. Via a straightforward reduction (the computation of the initial partitionER1

in [2]), finding a ready simulation between two processes is as hard as finding a plain
simulation. In applications where deadlock behaviour plays no rôle,trace inclusionis
often proposed as an appropriate refinement relation. However, deciding trace inclu-
sion on finite-state processes is PSPACE-hard [18], and as the simulation preorder is
the coarsest preorder included in trace inclusion that is known to be decidable in poly-
nomial time [2, 3, 8, 11, 17, 19], establishing a simulation between two processes is a
favourite way of showing that they are related by trace inclusion.

In many crucial applications, space rather than time becomes the bottleneck as the
input graph grows [4, 7, 8, 12]. Hence, simulation algorithms with minimal space
complexity are of particular interest. These are the ones byBustan and Grumberg [3]
and by Gentilini, Piazza and Policriti [8]. For an input graph with N states,T transi-
tions andS simulation equivalence classes, the space complexity of both algorithms is
O(S2 + N log S). This can be considered minimal:O(S2) space is needed for stor-
ing the simulation preorder as a partial order on simulationequivalence classes and
O(N log S) space is needed to store for every state, the equivalence class to which it
belongs. Of these algorithms, the one by Gentiliniet al.has a better time complexity:
O(S2T ). A more time-efficient algorithm is the one by Ranzato and Tapparo [17], but
it is less space efficient.

The approach of Gentiliniet al. represents the simulation problem as a generalised
coarsest partition problem (GCPP). According to the authors, this problem can be
solved by approximating the greatest fixed point of a decreasing operator on partition
pairs that they define in their paper. They give a partitioning algorithm to compute this
fixed point for any legal input. We recite this definition and apart of the algorithm in
Section 3. In Section 4 we show that the operator is flawed because it is not uniquely
defined for all partition pairs. We give an instance of the GCPP for which repeated
application of the operator does not lead to a unique fixed point. We also show that on
this example the partitioning algorithm irrevocably allocates two simulation-equivalent
states to different simulation-equivalence classes, and subsequently deadlocks.

In Section 5 we define a simple, yet inefficient fixed-point operator for which we
prove correctness. This operator is not meant to be an improvement over the original
one, but merely serves as an expedient for establishing correctness of the algorithm
that we present in Section 6. This algorithm is obtained fromthat of Gentiliniet al.
by means of a few simple corrections; consequently, it has the same time and space
complexities as the original partitioning algorithm. Yet its correctness proof requires
entirely new techniques and is surprisingly non-trivial. We also show that no fixed-
point operator can be defined that captures the behaviour of this algorithm.

2 Preliminaries

Partitions and relations. For any setS, a partition overS is a setΣ ⊆ P(S) such
that

⋃
Σ = S and∀α ∈ Σ . α 6= ∅ ∧ ∀β ∈ Σ . α 6= β ⇒ α∩ β = ∅. For anys ∈ S we

denote by[s]Σ the blockα ∈ Σ such thats ∈ α. Given two partitionsΣ andΠ we say
Π is finer thanΣ iff for every α ∈ Π there exists anα′ ∈ Σ such thatα ⊆ α′. For any
setS, we denote byI(S) the identity relationoverS, i.e. I(S) = {(s, s) | s ∈ S}.
For any relationP , we denote byP+ thetransitive closureof P .
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Graphs. A (directed) graphis a tuple(N,→) whereN is a finite set of nodes and
→ ⊆ N × N is a set of directed transitions between those nodes. Alabelled graphis
a tuple(N,→, Σ) where(N,→) is a graph andΣ is a partition overN . For a graph
(N,→), a ∈ N andβ ⊆ N , we writea → β if ∃b ∈ β . a → b. Moreover, we define
the relations→∃ and→∀ overP(N) as follows, for anyα, β ⊆ N :

α →∃ β ⇔ ∃a ∈ α . a → β α →∀ β ⇔ ∀a ∈ α . a → β.

Simulations. For any labelled graph(N,→, Σ) a relationR ⊆ N×N is asimulation
iff for any a, b ∈ N , (a, b) ∈ R implies:

• [a]Σ = [b]Σ and

• ∀c ∈ N . a → c ⇒ ∃d ∈ N . b → d ∧ (c, d) ∈ R.

We say thata is simulated byb, denoteda ⊂
→ b, iff there exists a simulationR such that

(a, b) ∈ R. It is well known and easy to check that⊂
→ is a preorder,i.e.a reflexive and

transitive relation, onN , and moreover the largest simulation. We say thata andb are
simulation equivalent, denoteda →← b, iff a ⊂

→ b andb ⊂
→ a.

The simulation problem. Given a labelled graphG = (N,→, Σ), the simulation
problemoverG consists in finding the simulation preorder⊂

→ onG.
A variant of the simulation problem asks, given a labelled graph(N,→, Σ) and

two nodesa, b ∈ N , whethera ⊂
→ b. In general, no methods to solve this problem

are known that are more efficient than computing the entire relation⊂
→ ⊆ N × N and

looking up whether(a, b) ∈ ⊂
→. Another variant of the simulation problem merely

asks to find the simulation equivalence relation→← rather than the preorder⊂→. Again,
no methods to solve that problem are known that do not amount to finding⊂→ as well.

Typically, the simulation problem arises in the context ofKripke structuresor la-
belled transition systems. It is trivial to encode a Kripke structure as a labelled graph
in such a way that the simulation preorder on the Kripke structure agrees with the one
on its labelled graph representation. Likewise, it is not hard to reduce the simulation
problem for labelled transition systems to that for labelled graphs. Alternatively one
can enrich the theory in a straightforward way to deal with transition labels as well, so
that it is applicable to labelled transition systems directly.

The generalised coarsest partition problem. Given a graphG = (N,→), a par-
tition pair overG is a pair〈Σ, P 〉 whereΣ is a partition overN andP ⊆ Σ × Σ is
a reflexive, acyclic relation overΣ. A partition pair〈Σ, P 〉 is calledtransitiveif P is
transitive, and hence a partial order. Given a partitionΣ, a partitionΠ finer thanΣ, and
a relationP overΣ, we denote byP (Π) the induced relationof P onΠ:

P (Π) = {(α, β) ∈ Π × Π | ∃(α′, β′) ∈ P . α ⊆ α′ ∧ β ⊆ β′}.

We define apartial order≤ on partition pairs by writing, for any partition pairs〈Σ, P 〉
and〈Π, Q〉: 〈Π, Q〉 ≤ 〈Σ, P 〉 iff Π is finer thanΣ andQ ⊆ P (Π). Given a graph
G = (N,→), we say a partition pair〈Σ, P 〉 overG is stable with respect to→ [8] iff:

∀α, β, γ ∈ Σ . ((α, β) ∈ P ∧ α →∃ γ) ⇒ ∃δ ∈ Σ . (γ, δ) ∈ P ∧ β →∀ δ.

Given a graphG = (N,→) and a partition pair〈Σ, P 〉 overG, thegeneralised coarsest
partition problem(GCPP) [8] consists in finding a≤-maximal partition pair〈Ξ,�〉
such that〈Ξ,�〉 ≤ 〈Σ, P+〉 and〈Ξ,�〉 is stable with respect to→.
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The simulation problem as a GCPP. Let G = (N,→, Σ) be a labelled graph. Any
preorder⊑ on N can be represented as a partition pairPP(⊑) := 〈Π,�〉, as follows:
Π is the set of equivalence classes ofN w.r.t. the equivalence relation≡ := ⊑ ∩ ⊑−1

induced by⊑, and� is given by[a]Π � [b]Π iff a ⊑ b. Note that� is a partial order.
Moreover, if⊑ is a simulation thenPP(⊑) is stable w.r.t.→ andPP(⊑) ≤ 〈Σ, I(Σ)〉.1

Any partition pair〈Π, Q〉 over the graph(N,→) can be represented as a relation
R〈Π,Q〉 ⊆ N × N as follows:(a, b) ∈ R〈Π,Q〉 iff ∃(α, β) ∈ Q . a ∈ α ∧ b ∈ β. Note
that if 〈Π, Q〉 is stable w.r.t.→ and〈Π, Q〉 ≤ 〈Σ, I(Σ)〉 thenR〈Π,Q〉 is a simulation.
Moreover,〈Π, Q〉 ≤ 〈Π′, Q′〉 iff R〈Π,Q〉 ⊆ R〈Π′,Q′〉. Also note thatRPP(⊑) = ⊑.

HencePP(⊂→) is the solution of the GCPP on(N,→) and〈Σ, I(Σ)〉. In particular,
the GCPP, when applied to partition pairs of the form〈Σ, I(Σ)〉 (plain partitions),
always has a unique solution〈Ξ,�〉, in which moreover� is always a partial order.2

3 The GCPP Solution of Gentilini, Piazza and Policriti

To solve the GCPP, Gentilini, Piazza and Policriti [8] introduce the following operator:

Definition 4.11 in [8] (Operator σ). Let G = (N,→) and〈Σ, P 〉 be a partition pair
overG. The partition pair〈Π, Q〉 = σ(〈Σ, P 〉) is defined as follows:

(1σ) Π is the coarsest partition finer thanΣ such that

(a) ∀α ∈ Π ∀γ ∈ Σ(α →∃ γ ⇒ ∃δ ∈ Σ((γ, δ) ∈ P ∧ α →∀ δ));

(2σ) Q is maximal such thatQ ⊆ P (Π) and if (α, β) ∈ Q, then

(b) ∀γ ∈ Σ(α →∀ γ ⇒ ∃γ′ ∈ Σ((γ, γ′) ∈ P ∧ β →∃ γ′)) and

(c) ∀γ ∈ Π(α →∀ γ ⇒ ∃γ′ ∈ Π((γ, γ′) ∈ Q ∧ β →∃ γ′)).

They argue that applyingσ iteratively on an initial partition pair〈Σ0, P0〉 yields a
sequence of partition pairs〈Σi, Pi〉i≥0 with 〈Σi+1, Pi+1〉 = σ(〈Σi, Pi〉). By construc-
tion, this sequence is decreasing, in the sense that〈Σi+1, Pi+1〉 ≤ 〈Σi, Pi〉. Hence it
will reach a fixed point〈Σk, Pk〉 = σ(〈Σk, Pk〉). This is the solution to the GCPP.

Algorithm 1 The partitioning algorithm of [8]: PAGPP((N,→), 〈Σ, P 〉)

1: change := ⊤; i := 0; Σ0 := Σ; P0 := P ;
2: while change do
3: change := ⊥;
4: Σi+1 := REFINEGPP(Σi, Pi, change);
5: Pi+1 := UPDATEGPP(Σi, Pi, Σi+1);
6: i := i + 1;
7: end while

Applying this, they give a partitioning algorithm to solve the GCPP. We have
included it here as Algorithm 1 and call it PAGPP. It takes as input a graph(N,→)
and a transitive partition pair〈Σ, P 〉 and repeatedly calls the following functions to
computeσ until a fixed point is reached: REFINEGPP which computes the partitionΠ

1The proof of the stability claim proceeds similarly to footnote 3 in the proof of Proposition 6.
2The same reasoning extends to the GCPP applied to any partition pairs, but this requires considering

simulations on structures of the form(N,→,Σ,�) with (N,→,Σ) a labelled graph, and� a partial order
onΣ; the first clause in the definition of simulation then becomes[a]Σ � [b]Σ.
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Algorithm 2 The refine function of [8]: REFINEGPP(Σi, Pi, change)

1: Σi+1 := Σi;
2: for all α ∈ Σi+1 do Stable(α) := ∅; end for
3: for all γ ∈ Σi do Row(γ) := {γ′ | (γ, γ′) ∈ Pi}; end for
4: Let Sort be a reverse topological sorting ofΣi w.r.t.Pi;
5: while Sort 6= ∅ do
6: γ := dequeue(Sort);
7: A := ∅;
8: for all α ∈ Σi+1, α →∃ γ, Stable(α) ∩ Row(γ) = ∅ do
9: α1 := α ∩→−1(γ);

10: α2 := α \ α1;
11: if α2 6= ∅ then change := ⊤; end if
12: Σi+1 := Σi+1 \ {α};
13: A := A ∪ {α1, α2};
14: Stable(α1) := Stable(α) ∪ {γ};
15: Stable(α2) := Stable(α);
16: end for
17: Σi+1 := Σi+1 ∪ A;
18: Sort := Sort \ {γ};
19: end while
20: return Σi+1;

of (1σ) and UPDATEGPP which computes the relationQ of (2σ). The boolean variable
change is set to⊤ by REFINEGPP iff its output partition differs from its input partition.
We have included the REFINEGPP function as Algorithm 2. In line 4 of this algorithm, a
“reverse topological sorting ofΣi w.r.t.Pi” indicates an ordered listing of the elements
of Σi such that if(γ, δ) ∈ Pi thenδ occurs prior toγ.

4 Incorrectness of the Fixed-Point Operator

Following the definition ofσ, the authors claim that for any partition pair〈Σ, P 〉, if
〈Π, Q〉 = σ(〈Σ, P 〉) thenQ is acyclic. We give an example that counters this claim.

Counterexample 1. Consider the graph in Figure 1(a) and the partition pair〈Σ, P 〉
with Σ = {α, β, γ, δ} as depicted andP = I(Σ) ∪ {(β, δ), (δ, γ)}. Let 〈Π, Q〉 =

α a1 a2

γ

c

β

b

δ

d

(a)

αa1a0 a2

γ

c

β

b

δ

d

(b)

Figure 1: Counterexamples for (a) acyclicity ofQ and (b) well-definedness ofσ.
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σ(〈Σ, P 〉), then

Π = {α1, α2, β, γ, δ} Q = I(Π) ∪ {(α1, α2), (α2, α1), (β, δ), (δ, γ)}

whereα1 = {a1} andα2 = {a2}. Q is not acyclic, which counters the claim.

This counterexample shows that applyingσ to a given partition pair does not neces-
sarily yield another partition pair. After all, for that theresulting relation has to be
acyclic.

However, a more fundamental theorem that the authors claim to have proven, turns
out not to hold. Theorem 4.13 states that for every partitionpair 〈Σ, P 〉 there exists a
unique≤-maximal partition pair〈Π, Q〉 ≤ 〈Σ, P 〉 satisfying conditions (a), (b) and (c)
of Definition 4.11,i.e. theσ operator is well-defined, and a function. This theorem is
countered by the following example.

Counterexample 2. Consider the graph in Figure 1(b) and the partition pair〈Σ, P 〉
with Σ = {α, β, γ, δ} as depicted andP = I(Σ) ∪ {(β, γ), (γ, δ)}. Let 〈Π, Q〉 and
〈Π′, Q′〉 be partition pairs such that:

Π = {α0, α1, β, γ, δ} Q = I(Π) ∪ {(α0, α1), (α1, α0), (β, γ), (γ, δ)}

Π′ = {α′0, α
′
1, β, γ, δ} Q′ = I(Π′) ∪ {(α′0, α

′
1), (α

′
1, α
′
0), (β, γ), (γ, δ)}

whereα0 = {a0, a1}, α1 = {a2}, α′0 = {a0} and α′1 = {a1, a2}. Both 〈Π, Q〉
and 〈Π′, Q′〉 satisfy conditions(a), (b) and (c) of Definition 4.11, but neither is the
≤-largest. The only partition pair greater than both〈Π, Q〉 and〈Π′, Q′〉 and at most
as large as〈Σ, P 〉, is 〈Σ, P 〉 itself, but〈Σ, P 〉 does not satisfy(a). Hence, this example
counters Theorem 4.13 of [8] and shows thatσ is not well-defined.

Following Theorem 4.13, the authors present their main fixed-point theorem which
states that the solution of the GCPP over a graphG and partition pair〈Σ, P 〉 can be
computed by applyingσ to 〈Σ, P 〉 finitely many times until a fixed point is reached
(Theorem 4.14). In this theorem, the authors demand thatP be transitive. One might
be inclined to think that Counterexample 2 does not affect this theorem, as we used
a non-transitiveP . We now show that this is not the case: the main theorem indeed
loses its meaning due to our counterexample for Theorem 4.13. To do so, we first
give an example in which the application ofσ to a transitive partition pair produces a
non-transitive partition pair.

Example 3. Consider the graph in Figure 2(a) and the partition pair〈Σ, P 〉 with
Σ = {α, β, γ} as depicted andP = I(Σ). Let〈Π, Q〉 = σ(〈Σ, P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}

whereα1 = {a0, a1}, α2 = {a2} andα3 = {a3}.

Our final counterexample shows thatσ is not suitable for computing the solution of
the GCPP, and is constructed by embedding Counterexample 2 in Example 3, such
that the first application ofσ produces a non-transitive partition pair on whichσ is not
well-defined.

Counterexample 4. Consider the graph in Figure 2(b) and the partition pair〈Σ, P 〉
with Σ = {α, β, γ} as depicted andP = I(Σ). Let〈Π, Q〉 = σ(〈Σ, P 〉), then:

Π = {α1, α2, α3, β, γ} Q = I(Π) ∪ {(α3, α1), (α1, α2)}
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α a1a0 a2 a3

β

b

γ

c

(a)

α

a4 a5

a1a0 a2 a3

β

b

γ

c

(b)

Figure 2: (a) Example for whichσ produces a non-transitive relationQ and (b) coun-
terexample for correctness ofσ.

whereα1 = {a0, a1}, α2 = {a2} andα3 = {a3, a4, a5}. Now, in〈Π, Q〉 the blockα3

has to be split, becauseα3 →∃ α3 but¬∃δ ∈ Π . ((α3, δ) ∈ Q∧α3 →∀ δ)). There are
two candidate partition pairs forσ(〈Π, Q〉): α3 can be split into eitherα3,0 = {a4}
andα3,1 = {a3, a5} or α′3,0 = {a4, a5} andα′3,1 = {a3}. However, neither of these
is greater than the other, so a unique≤-maximal partition pair does not exist.

When splittingα3 in Counterexample 4, the REFINEGPP function of algorithm PAGPP

splits the block intoα3,0 andα3,1. Observe that this is wrong:a4 anda5 should not
end up in different equivalence classes becausea4

→← a5. This split also results in
UPDATEGPP’s returning a cyclic relation. In the subsequent iterationof PAGPP, the
execution of REFINEGPP then fails because there is no reverse topological sorting of
the partition w.r.t. the cyclic relation (line 4).

5 An Auxiliary Fixed-Point Operator

In this section we introduce a fixed-point operatorρ to solve the GCPP and prove its
correctness. The definition ofρ is straightforward: it is based directly on the stability
condition of Section 2.

We emphasise thatρ is not intended to be an improvement over theσ operator of
Section 3 in any way: it is a less advanced operator thanσ aimed to be. The purpose
of σ was to compute the solution to the GCPP efficiently, whileρ gives rise to an
algorithm that has an inferior time complexity ofO(S3T ) whereS is the number of
equivalence classes of the GCPP solution andT the number of transitions of the input
graph.

Namely, the complexity analysis of [8] uses that, as long as no fixed point is
reached, in each refinement-update step the refinement of thepartition will be non-
trivial, i.e. the number of blocks increases. As a consequence, there willbe at mostS
refinement-update steps before the algorithm terminates. Such an analysis is not ap-
propriate forρ: applyingρ repeatedly could involve many steps in which the partition
does not change. Consequently, the number of iterations of the algorithm is bounded
merely by the size of a relation on the eventual partition,i.e.by S2.

The sole purpose ofρ is to serve as an auxiliary operator for establishing the cor-
rectness of the algorithm that we present in Section 6. That algorithm has the same
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time complexity as PAGPP and does not correspond to any fixed-point operator, as we
show in the same section.

Definition 5 (Operatorρ). Let 〈Σ, P 〉 be a transitive partition pair over a graph(N,→).
Thenρ(〈Σ, P 〉) is the≤-largest partition pair〈Π, Q〉 ≤ 〈Σ, P 〉 that satisfies

(1) ∀α, β ∈Π . ∀γ ∈Σ . ((α, β)∈Q∧α →∃ γ ⇒ ∃δ ∈Σ . ((γ, δ)∈P ∧β →∀ δ)).

Alternatively,ρ could be defined just likeσ of Definition 4.11, but insisting that its
input partition pair is transitive, and omitting clause (c). It is not hard to check that this
definition is equivalent to the one above. The correctness ofDefinition 5 is ensured by
the following.

Proposition 6. Let 〈Σ, P 〉 be a transitive partition pair over a graph(N,→). Then
there exists a≤-largest partition pair〈Π, Q〉 ≤ 〈Σ, P 〉 that satisfies(1). Moreover,Q
is transitive.

Proof. Define the relation⊑ ⊆ N × N by a ⊑ b iff

∃(α, β) ∈ P . a ∈ α ∧ b ∈ β ∧ ∀γ ∈ Σ . (a → γ ⇒ ∃δ ∈ Σ . ((γ, δ) ∈ P ∧ b → δ)).

Using the reflexivity and transitivity ofP , this relation is a preorder. Take〈Π, Q〉 :=
PP(⊑), as defined in Section 2. SoQ is transitive. By construction,〈Π, Q〉 ≤ 〈Σ, P 〉.
It is not hard to check thatΠ satisfies (1).3

Now let 〈Π′, Q′〉 be another partition pair with〈Π′, Q′〉 ≤ 〈Σ, P 〉 that satisfies (1).
Suppose(α, β) ∈ Q′, a ∈ α andb ∈ β. Using (1) we finda ⊑ b. Applying this
insight to the caseα = β we find thatΠ′ is finer thanΠ. Applying it in general yields
Q′ ⊆ Q(Π′). Hence〈Π′, Q′〉 ≤ 〈Π, Q〉.

Proposition 7. The operatorρ is monotone with respect to≤: if 〈Σ, P 〉 and〈Σ′, P ′〉
are transitive partition pairs with〈Σ, P 〉 ≤ 〈Σ′, P ′〉, thenρ(〈Σ, P 〉) ≤ ρ(〈Σ′, P ′〉).

Proof. As ρ(〈Σ, P 〉) satisfies (1) w.r.t.〈Σ, P 〉, it certainly satisfies (1) w.r.t.〈Σ′, P ′〉.
As ρ(〈Σ, P 〉) ≤ 〈Σ, P 〉 ≤ 〈Σ′, P ′〉 andρ(〈Σ′, P ′〉) is the≤-largest partition pair with
ρ(〈Σ′, P ′〉) ≤ 〈Σ′, P ′〉 that satisfies (1), it follows thatρ(〈Σ, P 〉) ≤ ρ(〈Σ′, P ′〉).

Sinceρ(〈Σ, P 〉) ≤ 〈Σ, P 〉 and≤ is a partial order on a finite set, we obtain:

Proposition 8. Let 〈Σ, P 〉 be a transitive partition pair over a graph. Then for some
n ≥ 0, ρn+1(〈Σ, P 〉) = ρn(〈Σ, P 〉), i.e. repeated application ofρ leads to a fixed
point.

The solution to the GCPP over an input graphG and an initial partition pair〈Σ, P 〉 over
G can be obtained by repeatedly applyingρ to 〈Σ, P+〉. The following lemmata say
that as soon as a fixed point is reached, the resulting partition pair is stable. Moreover,
each of the intermediate partition pairs is larger than or equal to the solution of the
GCPP. It then follows that the obtained fixed point is in fact the solution to the GCPP.

3 Suppose(α, β) ∈ Q andα →∃ γ for γ ∈ Σ. Then∃a ∈ α . a → γ. Take thata, and ab′ ∈ β.
As a ⊑ b′, we have∃δ′ ∈ Σ . ((γ, δ′) ∈ P ∧ b′ → δ′)). Henceβ →∃ δ′. As P is a partial order
on a finite set, letδ be aP -maximal element ofΣ larger thanδ′ such thatβ →∃ δ, i.e. (δ′, δ) ∈ P and
∀ε ∈ Σ . (δ, ε) ∈ P ∧ β →∃ ε ⇒ ε = δ. Note that(γ, δ) ∈ P . As β →∃ δ, ∃b0 ∈ β . b0 → δ. For any
b ∈ β we haveb0 ⊑ b, so∃εb ∈ Σ . ((δ, εb) ∈ P ∧ b → εb)). It must be thatεb = δ. Henceβ →∀ δ.
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Lemma 9. Let 〈Σ, P 〉 be a transitive partition pair over a graph(N,→). Then
ρ(〈Σ, P 〉) = 〈Σ, P 〉 if and only if〈Σ, P 〉 is stable with respect to→.

Proof. Becauseρ(〈Σ, P 〉) is the≤-largest partition pair satisfying (1), we have that
ρ(〈Σ, P 〉) = 〈Σ, P 〉 if and only if 〈Σ, P 〉 satisfies (1) w.r.t. itself, which is equivalent
to stability w.r.t.→.

Lemma 10. Let 〈Σ, P 〉 and〈Π, Q〉 be partition pairs over a graphG, with Q transi-
tive, and let〈Ξ,�〉 be the solution of the GCPP overG and〈Σ, P 〉. If 〈Ξ,�〉 ≤ 〈Π, Q〉
then〈Ξ,�〉 ≤ ρ(〈Π, Q〉).

Proof. By Lemma 9ρ(〈Ξ,�〉) = 〈Ξ,�〉. Assuming that〈Ξ,�〉 ≤ 〈Π, Q〉, the state-
ment now follows from Proposition 7.

Theorem 11. Let 〈Σ, P 〉 be a partition pair over a graphG = (N,→) and〈Ξ,�〉 be
the solution of the GCPP overG and〈Σ, P 〉. Letn ≥ 0 be such thatρn+1(〈Σ, P+〉) =
ρn(〈Σ, P+〉). Thenρn(〈Σ, P+〉) = 〈Ξ,�〉.

Proof. Note thatn exists by Proposition 8. We prove that〈Ξ,�〉 ≤ ρn(〈Σ, P+〉) and
ρn(〈Σ, P+〉) ≤ 〈Ξ,�〉.

• 〈Ξ,�〉 ≤ ρn(〈Σ, P+〉): By definition〈Ξ,�〉 ≤ 〈Σ, P+〉. Applying Lemma 10n
times gives us〈Ξ,�〉 ≤ ρn(〈Σ, P+〉).

• ρn(〈Σ, P+〉) ≤ 〈Ξ,�〉: Obviouslyρn(〈Σ, P+〉) ≤ 〈Σ, P+〉 and by Lemma 9
ρn(〈Σ, P+〉) is stable w.r.t.→. By definition〈Ξ,�〉 is the≤-largest partition pair
that has these properties. Henceρn(〈Σ, P+〉) ≤ 〈Ξ,�〉.

6 A Correct and Efficient Algorithm

Algorithm 3 The repaired partitioning algorithm: PA((N,→), 〈Σ, P 〉)

1: Σ1 := REFINE(Σ, P );
2: P1 := UPDATEGPP(Σ, P, Σ1);
3: change := ⊤; i := 1;
4: while change do
5: change := ⊥;
6: Σi+1 := REFINE(Σi, Pi);
7: Pi+1 := UPDATEGPP(Σi, Pi, Σi+1);
8: i := i + 1;
9: end while

Our repaired partitioning algorithm is called PA, see Algorithm 3. The variablechange
and the input graph(N,→) have global scope: they can be accessed from any function.
Note however, that UPDATEGPP does not accesschange.

Our corrections of the algorithm are two. Firstly, it is ensured that at least two
refinement-update steps are taken before the algorithm terminates (lines 1 and 2). The
necessity of this (minor) correction is explained in Section 6.1. Secondly, the most
important error — the one resulting from the incorrectσ operator — is repaired by
the new REFINE function, Algorithm 4. It contains a few minor improvementsover
REFINEGPP: using list notations for variableSort and preventing empty blocks from
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Algorithm 4 The repaired refine function: REFINE(Σ, P )

1: Π := Σ;
2: for all α ∈ Π do Stable(α) := ∅; end for
3: for all γ ∈ Σ do Row(γ) := {γ′ | (γ, γ′) ∈ P}; end for
4: Let Sortbe a reverse topological sorting ofΣ w.r.t. P ;
5: while Sort 6= [] do
6: γ := head(Sort);
7: A := ∅;
8: for all α ∈ Π, α →∃ γ do
9: if Stable(α) ∩Row(γ) = ∅ then

10: α1 := α ∩→−1(γ);
11: α2 := α \ α1;
12: Π := Π \ {α};
13: A := A ∪ {α1};
14: Stable(α1) := Stable(α) ∪ {γ};
15: if α2 6= ∅ then
16: change := ⊤;
17: A := A ∪ {α2};
18: Stable(α2) := Stable(α);
19: end if
20: else
21: Stable(α) := Stable(α) ∪ {γ};
22: end if
23: end for
24: Π := Π ∪ A;
25: Sort := tail(Sort);
26: end while
27: return Π;

being added toΠ. However, the actual correction is in line 21: if for someγ ∈ Σ and
α ∈ Π with α →∃ γ we haveStable(α) ∩ Row(γ) 6= ∅ then we addγ to Stable(α).

We use theρ operator of Section 5 to prove correctness of PA in Section 6.2. Its
space and time complexities are the same as for PAGPP: no additional space is needed
and the corrections do not increase the time complexity. Finally, in Section 6.3 we
show that there is no fixed-point operator that captures the refinement performed by
our REFINE function.

6.1 The Correction of a Minor Mistake

Apart from the error in PAGPP that results from the incorrectσ operator, we found
another, minor mistake in the algorithm. We describe it in this section and propose a
solution. The mistake is shown by the following example.

Example 12. Consider the graphG = (N,→) in Figure 3 and the partition pair
〈Σ, P 〉 with Σ = {α, β} as depicted andP = I(Σ) ∪ {(α, β)}. Observe that the
solution to the GCPP overG and 〈Σ, P 〉 is 〈Ξ,�〉 with Ξ = {α0, α1, β} and� =
I(Ξ) ∪ {(α1, α0)} whereαi = {ai}. After the first iteration ofPAGPP(G, 〈Σ, P 〉),
we haveΣ1 = Σ0 = Σ and P1 = I(Σ). The algorithm then terminates because
change = ⊥, and〈Σ1, P1〉 is its answer to the GCPP overG and〈Σ, P 〉. Obviously
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β

b

Figure 3: Example for which the algorithm PAGPP terminates prematurely.

〈Σ1, P1〉 6= 〈Ξ,�〉, so this answer is wrong.

The correctness of PAGPPhinges on the theory that whenever REFINEGPP(Π,Q,change)
returns its input partitionΠ, and thus fails to split any block inΠ, then also the relation
Q will be unaffected by UPDATEGPP, i.e.UPDATEGPP(Π, Q, Π) returnsQ. This theory
is the upshot of Theorem 4.15 in [8] and is essential in the complexity analysis of the
algorithm. However, the above example shows that it does nothold in general.

In the next section we show that this theory does hold under the condition thatQ
itself is obtained as output of UPDATEGPP (Proposition 14). Therefore, this error in
PAGPP can be fixed, without violating the complexity analysis, by insisting that at least
two refinement-update steps are performed prior to termination.

6.2 Correctness of PA

From here on we will use the correctness of the function UPDATEGPP, as established
by Gentiliniet al. [9]. This correctness can be summarised as follows:

Proposition 13. Let 〈Σ, P 〉 be a partition pair over a graph(N,→), and Π be a
partition overN that is finer thanΣ. Then there exists a unique relationQ ⊆ P (Π)
satisfying condition(2σ) of Definition 4.11. Moreover, this relation is returned by
UPDATEGPP(Σ, P, Π).

Proof. The union of all relationsQ⊆P (Π) such that (b) and (c) hold for all(α, β)∈Q

is itself a relation with these properties. The last claim has been established in [9].

Using this, we obtain the result promised in Section 6.1: thefollowing proposition
implies that if a call to REFINE in the while-loop of PA does not split any blocks, then
the subsequent call to UPDATEGPP will return its input relation. The requirement that
this relation has been computed by a previous call to UPDATEGPP is guaranteed by
line 2.

Proposition 14. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graph such thatΠ
is finer thanΣ andUPDATEGPP(Σ, P, Π) returnsQ. ThenUPDATEGPP(Π, Q, Π) also
returnsQ.

Proof. By Proposition 13, UPDATEGPP(Π, Q, Π) returns the largest relationQ′ ⊆
Q(Π) satisfying conditions (b) and (c) of Definition 4.11 w.r.t.Π, Q andΠ (i.e.substi-
tuting Q′, Π, Q andΠ for Q, Σ, P andΠ in these conditions, respectively). We have
to prove thatQ′ = Q. As Q = Q(Π) it suffices to show thatQ satisfies (b) and (c)
with Π substituted forΣ andQ for P . Under these substitutions (b) becomes equal to
(c). By Proposition 13 applied to UPDATEGPP(Σ, P, Π), Q satisfies this condition.
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Let 〈Σi, Pi〉1≤i≤k be the sequence of partition pairs produced by PA. The following
proposition says that everyPi is acyclic and that the sequence is decreasing. The former
implies that PA will never deadlock due to the inability to find a reverse topological
sorting (see line 4 of REFINE). The latter implies that the algorithm terminates.

Proposition 15. Let 〈Σ, P 〉 be a partition pair over a graph(N,→), REFINE(Σ, P )
return Π and UPDATEGPP(Σ, P, Π) return Q. Then〈Π, Q〉 is a partition pair with
〈Π, Q〉 ≤ 〈Σ, P 〉.

Proof. From Algorithm 4 and the fact thatΣ is a partition, it is not hard to see that
Π is a partition that is, moreover, finer thanΣ. Also, by Proposition 13 we have that
Q ⊆ P (Π). Hence〈Π, Q〉 ≤ 〈Σ, P 〉. To prove that the pair〈Π, Q〉 is a partition pair,
we need to prove reflexivity and acyclicity ofQ. Using reflexivity ofP andP (Π), the
identity relationI(Π) trivially satisfies conditions (b) and (c) of Definition 4.11. Hence
Proposition 13 implies thatI(Π) ⊆ Q, i.e.Q is reflexive.

SupposeQ contains a cycle: there are mutually distinctα0, . . . , αn−1 ∈ Π for
n > 1 such that(αi, αi+1 mod n) ∈ Q for 0 ≤ i < n. By acyclicity ofP , it must be
that theseαi are all subsets of the same blockα ∈ Σ. Letγ ∈ Σ andα′ ⊆ α be the first
blocks considered in an iteration of REFINE’s main for-loop (line 8) such thatγ splits
α′ into anα′1 and anα′2 such thatαi ⊆ α′1 andαj ⊆ α′2 for some0 ≤ i, j < n. Then
Stable(α′) ∩ Row(γ) = ∅. For any0 ≤ k < n we have eitherαk →∀ γ or αk 6→∃ γ,
and both possibilities occur. Take0 ≤ i < n such thatαi−1 mod n →∀ γ andαi 6→∃ γ.
By Proposition 13,Q satisfies (b) of Definition 4.11. Hence∃γ′ ∈ Σ . ((γ, γ′) ∈ P ∧
αi →∃ γ′)). As (γ, γ′) ∈ P , in REFINE’s while-loop γ′ is considered prior toγ.
Consider the unique iteration of REFINE’s main for-loop (line 8) involvingγ′ and an
α′′ with α′ ⊆ α′′ ⊆ α — observe thatα′′ →∃ γ′. At the end of that iteration we have
obtained a blockα′′′ with α′ ⊆ α′′′ ⊆ α′′ andγ′ ∈ Stable(α′′′). It follows that at
the later iteration involvingγ andα′ we haveγ′ ∈ Stable(α′) ∩ Row(γ), which is a
contradiction.

Corollary 16. For any graphG and any partition pair〈Σ, P 〉 overG, the algorithm
PA(G, 〈Σ, P 〉) terminates.

Lemma 17. The following predicate is an invariant for the while-loop of Algorithm 4:

∀β ∈ Π ∪ A . ∀ε ∈ Stable(β) . ∃δ ∈ Σ . ((ε, δ) ∈ P+ ∧ β →∀ δ) .

Proof. The predicate holds trivially after the initialisation of theStable-sets in line 2.
The only points where it could be violated are at lines 14, 18 and 21. Forε 6= γ lines 14
and 18 are harmless because ifαi ⊆ α andα →∀ δ then certainlyαi →∀ δ. Forε = γ

andβ = α1, at line 14 the predicate holds by construction ofα1, takingδ := γ. Finally,
line 21 is only executed when there is anε ∈ Stable(α) ∩Row(γ). As (γ, ε) ∈ P , the
predicate holds forγ andα because it held already forε andα.

Lemma 18. Let 〈Σ, P 〉 be a partition pair over a graph(N,→) and REFINE(Σ, P )
returnΠ. Then:

∀α ∈ Π . ∀γ ∈ Σ . (α →∃ γ ⇒ ∃δ ∈ Σ . ((γ, δ) ∈ P+ ∧ α →∀ δ)) .

Proof. Let α ∈ Π andγ ∈ Σ such thatα →∃ γ. In the computation ofΠ, take the
unique iteration of REFINE’s main for-loop (line 8) in whichγ and anα′ are considered
with α ⊆ α′. Thenα′ →∃ γ and there are two cases:
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• Stable(α′)∩Row(γ) = ∅: Thenα′ is split intoα1 andα2 such thatα1 →∀ γ and
α2 6→∃ γ. It must be thatα ⊆ α1. Thenα →∀ γ and(γ, γ) ∈ P+.

• Stable(α′) ∩ Row(γ) 6= ∅: Thenγ is added toStable(α′). Lemma 17 gives us
∃δ ∈ Σ . ((γ, δ) ∈ P+ ∧ α′ →∀ δ). As α ⊆ α′ we haveα →∀ δ.

Lemma 19. Let 〈Σ, P 〉 and〈Π, Q〉 be partition pairs over a graph(N,→) such that
〈Π, Q〉 ≤ 〈Σ, P 〉 and letP be transitive. If〈Π, Q〉 satisfies(1) of Definition 5 w.r.t.
〈Σ, P 〉 then so does〈Π, Q+〉.

Proof. Suppose〈Π, Q〉 satisfies (1) w.r.t.〈Σ, P 〉 and take(α, β) ∈ Q+ andγ ∈ Σ
such thatα →∃ γ. There areα0, . . . , αn ∈ Π for n ≥ 0 such thatα = α0, β = αn and
(αi, αi+1) ∈ Q for 0 ≤ i < n. Applying (1)n times we obtainδ1, . . . , δn ∈ Σ such
thatαi →∀ δi (and thusαi →∃ δi) for 1 ≤ i ≤ n, (γ, δ1) ∈ P and(δi, δi+1) ∈ P for
1 ≤ i < n. Henceβ →∀ δn and(γ, δn) ∈ P by transitivity ofP .

The following lemmata state that REFINE and UPDATEGPP converge towards a fixed
point at least as fast asρ without ever diverging from the path towards the GCPP solu-
tion. In combination with the monotony ofρ (Proposition 7) this implies the correctness
of our algorithm.

Lemma 20. Let〈Σ, P 〉 be a partition pair over a graph(N,→), REFINE(Σ, P ) return
Π, andUPDATEGPP(Σ, P, Π) returnQ. Then〈Π, Q+〉 ≤ ρ(〈Σ, P+〉).

Proof. By Proposition 15,〈Π, Q〉 is a partition pair with〈Π, Q〉 ≤ 〈Σ, P 〉 ≤ 〈Σ, P+〉.
By Definition 5,ρ(〈Σ, P+〉) is the≤-largest partition pair smaller than〈Σ, P+〉 that
satisfies (1) w.r.t.〈Σ, P+〉. So the statement follows if we prove that〈Π, Q+〉 satisfies
(1) w.r.t. 〈Σ, P+〉. By Lemma 19 it suffices to show that〈Π, Q〉 satisfies (1) w.r.t.
〈Σ, P+〉. Let (α, β) ∈ Q andα →∃ γ for γ ∈ Σ. Using Lemma 18, takeδ ∈ Σ such
that (γ, δ) ∈ P+ andα →∀ δ. By Proposition 13,∃δ′ ∈ Σ . (δ, δ′) ∈ P ∧ β →∃ δ′.
For thatδ′, by Lemma 18,∃γ′ ∈ Σ . (δ′, γ′) ∈ P+ ∧ β →∀ γ′. For thisγ′ it holds that
(γ, γ′) ∈ P+. Hence〈Π, Q〉 satisfies (1) w.r.t.〈Σ, P+〉.

Lemma 21. Let 〈Σ, P 〉 and 〈Π, Q〉 be partition pairs over a graphG = (N,→),
〈Ξ,�〉 be the solution of the GCPP overG and 〈Σ, P 〉, and 〈Ξ,�〉 ≤ 〈Π, Q〉. Let
REFINE(Π,Q) returnΠ′ andUPDATEGPP(Π,Q,Π′) returnQ′. Then〈Ξ,�〉 ≤ 〈Π′,Q′〉.

Proof. We have to prove that (A)Ξ is finer thanΠ′ and (B)� ⊆ Q′(Ξ).

Ad (A). Let α ∈ Ξ andαΠ ∈ Π such thatα ⊆ αΠ. By contradiction, suppose there is
no α′ ∈ Π′ such thatα ⊆ α′. Hence, there area1, a2 ∈ α such that REFINE at some
point separatesa1 ∈ αΠ from a2 ∈ αΠ. Let α′Π ⊆ αΠ be such thata1, a2 ∈ α′Π and
a1 anda2 got separated whenα′Π was split by a blockγΠ ∈ Π. HenceStable(α′Π) ∩
Row(γΠ) = ∅.

Consider the case wherea1 → γΠ anda2 6→ γΠ. The case witha1 6→ γΠ and
a2 → γΠ is fully symmetrical. Letγ ∈ Ξ be such thatγ ⊆ γΠ anda1 → γ. As
α →∃ γ and〈Ξ,�〉 is stable w.r.t.→, there must be aδ ∈ Ξ with γ � δ andα →∀ δ.
Let δΠ ∈ Π be such thatδ ⊆ δΠ. Then(γΠ, δΠ) ∈ Q, using that〈Ξ,�〉 ≤ 〈Π, Q〉.
SoδΠ ∈ Row(γΠ) andδΠ is beforeγΠ in the reverse topological sorting ofΠ w.r.t.Q.
As a2 6→ γΠ we haveα 6→∀ γΠ, yetα →∀ δΠ, henceγΠ 6= δΠ. Let α′′Π ⊆ αΠ be the
block containinga1 anda2 when blocks were split w.r.t.δΠ by REFINE. Observe that
α′′Π →∃ δΠ, so there were two cases:
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• Stable(α′′Π) ∩ Row(δΠ) = ∅: Then α′′Π may have been split, but this did not
separatea1 anda2. Thenα′Π ⊆ (α′′Π ∩→−1(δΠ)) and henceδΠ ∈ Stable(α′Π).

• Stable(α′′Π) ∩ Row(δΠ) 6= ∅: ThenδΠ was added toStable(α′′Π) (line 21) and
becauseα′Π ⊆ α′′Π we haveδΠ ∈ Stable(α′Π).

In both cases we have thatδΠ ∈ Stable(α′Π) ∩ Row(γΠ), which contradicts the fact
thatStable(α′Π) ∩ Row(γΠ) = ∅.

Ad (B). Let Q′� := {(α, β) ∈ Π′×Π′ | ∃(αΞ, βΞ) ∈ � . αΞ ⊆ α∧βΞ ⊆ β}. We will
show thatQ′� ⊆ Q′, which immediately yields� ⊆ Q′�(Ξ) ⊆ Q′(Ξ).

To this end, using Proposition 13, we establish thatQ′� ⊆ Q(Π′) and any pair
(α, β) ∈ Q′� satisfies conditions (b) and (c) of Definition 4.11, readingΠ, Q, Π′ and
Q′� for Σ, P , Π andQ, respectively.

• Q′� ⊆ Q(Π′): Let (α, β) ∈ Q′�. TakeαΠ, βΠ ∈ Π such thatα ⊆ αΠ and
β ⊆ βΠ. Because� ⊆ Q(Ξ) we have(αΠ, βΠ) ∈ Q, and hence(α, β) ∈ Q(Π′).

• Condition(b): Let (α, β) ∈ Q′� andγ ∈ Π such thatα →∀ γ. TakeαΞ, βΞ ∈ Ξ
such thatαΞ ⊆ α, βΞ ⊆ β andαΞ � βΞ. Also takeγΞ ∈ Ξ such thatγΞ ⊆ γ

andαΞ →∃ γΞ. Because〈Ξ,�〉 is stable w.r.t.→ we obtain aδΞ ∈ Ξ such that
γΞ � δΞ andβΞ →∀ δΞ. Takeδ ∈ Π such thatδΞ ⊆ δ. As � ⊆ Q(Ξ) we have
(γ, δ) ∈ Q. We also obtainβ →∃ δ.

• Condition(c): Let(α, β) ∈ Q′� andγ ∈Π′ such thatα →∀ γ. TakeαΞ, βΞ, γΞ ∈
Ξ and obtainδΞ ∈ Ξ exactly as above. Takeδ ∈ Π′ such thatδΞ ⊆ δ. We have
(γ, δ) ∈ Q′� by construction. Again we obtainβ →∃ δ.

Theorem 22. Let 〈Σ, P 〉 be a partition pair over a graphG = (N,→). Letk be the
value of variablei upon termination ofPA(G, 〈Σ, P+〉). Then〈Σk, Pk〉 is the solution
of the GCPP overG and〈Σ, P 〉.

Proof. Let the sequence of partition pairs〈Σi, Pi〉1≤i≤k be obtained by running
PA(G, 〈Σ, P+〉) until it terminates, implying thatk ≥ 2 andΣk = Σk−1. Propo-
sition 14 yieldsPk = Pk−1. Extend this sequence by defining〈Σ0, P0〉 := 〈Σ, P+〉
and〈Σi, Pi〉 := 〈Σk, Pk〉 for i > k. Now for all i ≥ 0 we have that REFINE(Σi, Pi)
returnsΣi+1 and UPDATEGPP(Σi, Pi, Σi+1) returnsPi+1. Let 〈Ξ,�〉 be the solution
of the GCPP overG and〈Σ, P 〉. We need to show that〈Σk, Pk〉 = 〈Ξ,�〉, for which
we require the following properties:

〈Ξ,�〉 ≤ 〈Σi, Pi〉 for all i ≥ 0(P1)

〈Σi, P
+
i 〉 ≤ ρi(〈Σ, P+〉) for all i ≥ 0.(P2)

Proof of (P1): By definition〈Ξ,�〉 ≤ 〈Σ, P+〉 = 〈Σ0, P0〉, and Lemma 21 yields
〈Ξ,�〉 ≤ 〈Σi, Pi〉 for all i > 0, by induction oni.

Proof of (P2): By induction oni. If i = 0 then〈Σ0, P
+
0 〉 = 〈Σ, P+〉 = ρ0(〈Σ, P+〉).

For the inductive step, suppose〈Σi, P
+
i 〉 ≤ ρi(〈Σ, P+〉). Then:

〈Σi+1, P
+
i+1〉

Lemma 20
≤ ρ(〈Σi, P

+
i 〉)

Proposition 7
≤ ρi+1(〈Σ, P+〉) .

Applying(P1)and (P2): By Proposition 8 and Theorem 11 there is ann > 0 such that
ρn(〈Σ, P+〉) = 〈Ξ,�〉, so

〈Ξ,�〉
(P1)
≤ 〈Σn+1, Pn+1〉

Prop. 15
≤ 〈Σn, Pn〉 ≤ 〈Σn, P+

n 〉
(P2)
≤ ρn(〈Σ, P+〉) = 〈Ξ,�〉 .

Thus〈Σn+1, Pn+1〉 = 〈Σn, Pn〉, sok ≤ n+1, and〈Σk, Pk〉=〈Σn, Pn〉=〈Ξ,�〉.
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Figure 4: Example on which REFINE does not return a uniquely defined partition

6.3 No Fixed-Point Operator

We now show that there is no fixed-point operator that captures the partition refinement
performed by REFINE, i.e. a functionπ such that for any partition pairs〈Σ, P 〉 and
〈Π, Q〉 with 〈Π, Q〉 = π(〈Σ, P 〉), REFINE(Σ, P ) returnsΠ. More specifically, we
show that the partition returned by REFINE is not uniquely defined, but depends on the
particular reverse topological sorting that is chosen in line 4.

Example 23. Consider the graphG = (N,→) of Figure 4 and the partition pair
〈Σ, P 〉 with Σ = {α, β, γ, δ, ε} as depicted andP = I(Σ) ∪ {(β, δ), (δ, γ)}. Then
S = [ε, γ, δ, β, α] andS′ = [γ, δ, β, ε, α] are reverse topological sortings ofΣ with
respect toP . LetΠ andΠ′ be the partitions returned byREFINE(Σ, P ) on sortingsS
andS′ respectively. ThenΠ = {{a0}, {a1}, {a2}} andΠ′ = {{a0, a1}, {a2}}.

Similar to the construction of Counterexample 4, this example can be embedded in
Example 3 to obtain an example with a transitive relation forwhich the partition after
the second refinement depends on the chosen reverse topological sorting.

7 Conclusions

The correspondence between the simulation problem for finite, labelled graphs and the
generalised coarsest partition problem (GCPP) for unlabelled graphs can be easily es-
tablished. We have shown that theσ operator defined by Gentiliniet al. [8] to solve
the GCPP is flawed. In particular, when applied to a partitionpair, the result is not
necessarily another partition pair or even well-defined. Moreover, when applied re-
peatedly to a transitive partition pair, convergence towards a unique fixed point is not
guaranteed. Thereby we have shown thatσ is not suitable for solving the GCPP. On the
counterexample for the latter property, the algorithm of [8] that computesσ, produces a
wrong result in which two simulation-equivalent states areput in different equivalence
classes.

We have repaired this algorithm such that it correctly computes the solution of the
GCPP. Apart from correcting the error that results from the flaws in theσ operator, we
also corrected a minor mistake that caused premature termination of the algorithm on
certain input. Our algorithm has the same space and time complexities as the original
partitioning algorithm. We have proven its correctness using an auxiliary operatorρ of
which we have shown that it solves the GCPP, though inefficiently. Finally, we have
shown that no operator can be defined that captures the partition refinement performed
in every iteration of our algorithm.

Another way to repair the algorithm of [8] may be to use the relationP+ instead
of P in REFINEGPP. The thusly obtained algorithm would converge to a fixed point
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slightly slower than ours. More importantly, due to the costof computing the transitive
closure in each iteration, the time complexity would not match that of the original
algorithm.
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