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Abstract

Although there are many efficient algorithms for calculgtthe simulation pre-
order on finite Kripke structures, only two have been prodasfevhich the space
complexity is of the same order as the size of the output odliparithm. Of these,
the one with the best time complexity exploits the represtént of the simulation
problem as a generalised coarsest partition problem. kased on a fixed-point
operator for obtaining a generalised coarsest partitiothadimit of a sequence
of partition pairs. We show that this fixed-point theory isméal, and that the al-
gorithm is incorrect. Although we do not see how the fixedapoperator can be
repaired, we correct the algorithm without affecting itagpand time complexity.

1 Introduction

The simulation preordef16] is a behavioural refinement relation on concurrent sys-
tems, represented as Kripke structures or labelled tiansystems, that plays a cru-
cial réle in compositional verification and model checkidg shown in [5] and [15],
respectively, the simulation preorder preserves theextisl and universal fragments
of CTL* [6], as well as the modal-calculus [13]. This makes it possible to combat
the state explosion problem in model checking by minimigirggstate space of a given
system modulo simulation equivalence before checking &lielity of relevant prop-
erties within that fragment. Given that the simulation pdew is a precongruence for
parallel composition [10], components in parallel compioss can even be minimised
individually.

Simulation equivalence is also used directly in equivadetioecking [14] of finite-
state processes. Often deciding the simulation preordeseles processes is the most
appropriate method of showing that two systems are relagehbther preorder, that
may be appropriate for the task at hand. In applications s/kdeadlock behaviour

*This author is partially supported by the Netherlands Osgdion for Scientific Research (NWO) under
VOLTS grant number 612.065.410.



2 Rob van Glabbeek & Bas Ploeger

plays a crucial rble, theeady simulation preordefl] is widely regarded to be an ap-
propriate behavioural refinement relation for matchingraplementation with a spec-
ification. Via a straightforward reduction (the computataf the initial partitionER

in [2]), finding a ready simulation between two processesibad as finding a plain
simulation. In applications where deadlock behaviour plag role trace inclusionis
often proposed as an appropriate refinement relation. Henvdeciding trace inclu-
sion on finite-state processes is PSPACE-hard [18], andeasiittiulation preorder is
the coarsest preorder included in trace inclusion that @wmnto be decidable in poly-
nomial time [2, 3, 8, 11, 17, 19], establishing a simulatie@teen two processes is a
favourite way of showing that they are related by trace isicln.

In many crucial applications, space rather than time besdahebottleneck as the
input graph grows [4, 7, 8, 12]. Hence, simulation algorighwith minimal space
complexity are of particular interest. These are the oneBustan and Grumberg [3]
and by Gentilini, Piazza and Policriti [8]. For an input ghapith N states;I" transi-
tions andS simulation equivalence classes, the space complexitytbfddgorithms is
O(S? + Nlog S). This can be considered minimal(5?) space is needed for stor-
ing the simulation preorder as a partial order on simuladquivalence classes and
O(N log S) space is needed to store for every state, the equivalensetclavhich it
belongs. Of these algorithms, the one by Gentiinal. has a better time complexity:
O(S?T). A more time-efficient algorithm is the one by Ranzato andogap [17], but
it is less space efficient.

The approach of Gentiliret al. represents the simulation problem as a generalised
coarsest partition problem (GCPP). According to the awhthis problem can be
solved by approximating the greatest fixed point of a de@mgasgperator on partition
pairs that they define in their paper. They give a partitigralgorithm to compute this
fixed point for any legal input. We recite this definition angaxt of the algorithm in
Section 3. In Section 4 we show that the operator is flaweduseci is not uniquely
defined for all partition pairs. We give an instance of the ®G6r which repeated
application of the operator does not lead to a unique fixedtp@Ve also show that on
this example the partitioning algorithm irrevocably altes two simulation-equivalent
states to different simulation-equivalence classes, ahdesjuently deadlocks.

In Section 5 we define a simple, yet inefficient fixed-pointraper for which we
prove correctness. This operator is not meant to be an ireprent over the original
one, but merely serves as an expedient for establishingatogss of the algorithm
that we present in Section 6. This algorithm is obtained ftbat of Gentiliniet al.
by means of a few simple corrections; consequently, it hastme time and space
complexities as the original partitioning algorithm. Y&t correctness proof requires
entirely new techniques and is surprisingly non-triviale \Also show that no fixed-
point operator can be defined that captures the behaviobisadligorithm.

2 Preliminaries

Partitions and relations. For any setS, apartition overS is a set> C P(S) such
that X =SandvVa e X . a# DAV EX . a# F=anp=. Foranys € Swe
denote by[s]s, the blocka € ¥ such thats € «. Given two partitions andII we say
IT is finer thanX iff for every « € II there exists an’ € X such thaty C «'. For any
setS, we denote byZ(S) theidentity relationover S, i.e. Z(S) = {(s,s) | s € S}.
For any relationP, we denote byP* thetransitive closureof P.
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Graphs. A (directed) graphs a tuple(N, —) where N is a finite set of nodes and
— C N x N is a set of directed transitions between those noddabAlled graphs

a tuple(N, —, X)) where(N, —) is a graph and is a partition overN. For a graph

(N,—),a € Nandg C N, we writea — §if 3b € 8. a — b. Moreover, we define
the relations—3 and—y overP (V) as follows, for anyy, 3 C N:

a—30 <& Jaca.a—0 a—vy (s Yaea.a— f.

Simulations. For any labelled grapfV, —, ) arelationR C N x N is asimulation
iff forany a,b € N, (a,b) € R implies:

e [a]y = [b]x and
eVce N.a—c= 3deN.b—dA(cd) €R.

We say that: is simulated by, denoted: C b, iff there exists a simulatio® such that
(a,b) € R. Itis well known and easy to check th@t is a preordeii.e. a reflexive and
transitive relation, orlv, and moreover the largest simulation. We say thahdb are
simulation equivalendenoted: = b, iff « € bandb C a.

The simulation problem. Given a labelled grapiy = (N, —, ¥), the simulation
problemoverG consists in finding the simulation preorderon G.

A variant of the simulation problem asks, given a labelledpgr(V, —, %) and
two nodesa,b € N, whethera € b. In general, no methods to solve this problem
are known that are more efficient than computing the entisgion C C N x N and
looking up whether(a,b) € €. Another variant of the simulation problem merely
asks to find the simulation equivalence relatomather than the preordé€r. Again,
no methods to solve that problem are known that do not amouirtding € as well.

Typically, the simulation problem arises in the contexoipke structuresor la-
belled transition systemst is trivial to encode a Kripke structure as a labelled grap
in such a way that the simulation preorder on the Kripke stimecagrees with the one
on its labelled graph representation. Likewise, it is natha reduce the simulation
problem for labelled transition systems to that for laleldgaphs. Alternatively one
can enrich the theory in a straightforward way to deal wigimsition labels as well, so
that it is applicable to labelled transition systems disect

The generalised coarsest partition problem. Given a graphG = (N, —), apar-
tition pair overG is a pair(X, P) whereX. is a partition ovetNV andP C ¥ x X is
a reflexive, acyclic relation ovet. A partition pair(X, P) is calledtransitiveif P is
transitive, and hence a partial order. Given a partitipa partitionlI finer than>, and
a relationP overX, we denote byP(IT) theinduced relatiorof P on1I:

PI) ={(a,B) el x| I, F)eP.aCa A3C G}

We define gartial order < on partition pairs by writing, for any partition paitx, P)
and(IL, Q): (I, Q) < (X, P) iff L is finer thanX and@ C P(II). Given a graph
G = (N, —), we say a partition paif:, P) overG is stable with respect te- [8] iff:

Va,B,v€ X . (o, ) e PANa—37y) = € X .(v,0) € PAS —v 0.

Given a grapltz = (N, —) and a partition paifXZ, P) overG, thegeneralised coarsest
partition problem(GCPP) [8] consists in finding &-maximal partition pair=, <)
such that=, <) < (33, P*) and(E, <) is stable with respect te-.
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The simulation problem as a GCPP. LetG = (N, —,X) be a labelled graph. Any
preordeiC on N can be represented as a partition g#(C) := (II, <), as follows:
II is the set of equivalence classesMofw.r.t. the equivalence relatioa := C N C !
induced byC, and= is given by[a]r =< [b]i1 iff @ C b. Note that=< is a partial order.
Moreover, ifC is a simulation the®P (L) is stable w.r.t— andPP(C) < (X, Z(%)).
Any partition pair(IT, Q) over the grapH N, —) can be represented as a relation
Ri1,g) € N x N as follows:(a,b) € R q) iff 3(a,8) € Q.a € aAbc 3. Note
that if (I, Q) is stable w.r.t— and(II, Q) < (X,Z(X)) thenRy o) is a simulation.
MoreoverIlL, Q) < (I', Q') iff Ri,qy € Ryv,qy- Also note thatRpp -y = C.
HencePP(C) is the solution of the GCPP div, —) and(X, Z(X)). In particular,
the GCPP, when applied to partition pairs of the foffh Z(X)) (plain partitions),
always has a unique solutid&, <), in which moreover is always a partial ordér.

3 The GCPP Solution of Gentilini, Piazza and Policriti

To solve the GCPP, Gentilini, Piazza and Policriti [8] ituee the following operator:
Definition 4.11 in [8] (Operator o). Let G = (N, —) and(X%, P) be a partition pair
overG. The partition pairIl, Q) = o((X, P)) is defined as follows:
(1o) IIis the coarsest partition finer thahsuch that
@ VaellVye X(a—3y = 36 € X((y,0) € PAa —v d));
(20) @ is maximal such thaf) C P(II) and if (o, 3) € @, then
(b) Vy e Z(a—=vy = Ty €X((v,7Y) e PAB —34')) and
©) Vyellla—vy = H €Il((1,7) € QAB —37)).

They argue that applying iteratively on an initial partition paikX,, P) yields a
sequence of partition paif&;, P;),~, with (X1, Pit1) = o((X;, P;)). By construc-
tion, this sequence is decreasing, in the sense(that, P;1) < (X;, P;). Hence it
will reach a fixed poin{Xy, P.) = o((XZg, Px)). This is the solution to the GCPP.

Algorithm 1 The partitioning algorithm of [8]: PApp((IV, —), (X, P))
1. change :=T;i:=0; Xy :=%; Py := P;
2: while change do
3: change := 1,
4 Yi+1 = REFINEgpp(X;, P;, change);
5: Pit1 := UPDATEGpp(X:, Py Xit1);
6
7.

=1+ 1;
end while

Applying this, they give a partitioning algorithm to solvieet GCPP. We have
included it here as Algorithm 1 and call it Rpp. It takes as input a graphV, —)
and a transitive partition pai, P) and repeatedly calls the following functions to
computeos until a fixed point is reached: EINEgpp Which computes the partitioll

1The proof of the stability claim proceeds similarly to foote 3 in the proof of Proposition 6.

2The same reasoning extends to the GCPP applied to any gragiirs, but this requires considering
simulations on structures of the forfV, —, 3, <) with (N, —, ) a labelled graph, and a partial order
on X; the first clause in the definition of simulation then becoregs =< [b]s.
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Algorithm 2 The refine function of [8]: RFINEgpp(X;, P;, change)
1: Ei+1 =2
2: forall a € ;4 do Stable(a) := 0; end for
3: forall v € 3; do Row(y) := {+' | (v,%') € P;}; end for
4: Let Sort be a reverse topological sorting Bf w.r.t. P;;
5: while Sort # () do

6: v := dequeue(Sort);

7: A=

8: forall o € ¥;41, @ —3 v, Stable(o) N Row(~y) = () do
9 ap=anN—"1(y);

10: ag = a\ ai;

11 if ag # 0 then change := T; end if

12: EiJrl = EiJrl \ {a},

13: A::AU{al,ag};

14: Stable(ay) := Stable(a) U {~};

15: Stable(as) := Stable(a);

16: end for

17: EiJrl = EiJrl U A;
18: Sort := Sort \ {v};
19: end while

20: return X,41;

of (10) and UPDATEGpp Which computes the relatiof of (20). The boolean variable
change is settoT by REFINEgppiff its output partition differs from its input partition.
We have included the BFINEgpp function as Algorithm 2. In line 4 of this algorithm, a
“reverse topological sorting af; w.r.t. P;” indicates an ordered listing of the elements
of ; such that if(y, §) € P, thend occurs prior toy.

4 Incorrectness of the Fixed-Point Operator

Following the definition ofs, the authors claim that for any partition p&k, P), if
(I, Q) = o ((X, P)) thenQ is acyclic. We give an example that counters this claim.

Counterexample 1. Consider the graph in Figure 1(a) and the partition p&i, P)
with ¥ = {a, 3,7, 6} as depicted and® = Z(X) U {(8,9), (6,v)}. Let(I[,Q) =

3 gt 5

Figure 1: Counterexamples for (a) acyclicity@fand (b) well-definedness of.
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o((%, P)), then
= {alanaﬁa'Yv(S} Q= I(H) U {(a17a2)7 (anal)v (675)5 (67 7)}

wherea; = {a;} andas = {a2}. Q is not acyclic, which counters the claim. O

This counterexample shows that applyimdgo a given partition pair does not neces-
sarily yield another partition pair. After all, for that thiesulting relation has to be
acyclic.

However, a more fundamental theorem that the authors ctalmte proven, turns
out not to hold. Theorem 4.13 states that for every partitiain (X, P) there exists a
unique<-maximal partition paifII, Q) < (3, P) satisfying conditions (a), (b) and (c)
of Definition 4.11,i.e. the o operator is well-defined, and a function. This theorem is
countered by the following example.

Counterexample 2. Consider the graph in Figure 1(b) and the partition pdk, P)
with ¥ = {a, 3,7, ¢} as depicted and®® = Z(X) U {(5,7), (7,0)}. Let(Il,Q) and
(IT', Q') be partition pairs such that:

= {0407 a, 5,7, 5} Q= I(H) U {(a()v al)v (Oél, OéO)v (677)? (’77 5)}
' = {046, alla B,7s 5} QI = I(H/) U {(aé)’ 0/1)7 (a/17 aé))’ (ﬁa7)7 (7, 6)}

whereay = {ag,a1}, an = {az}, af = {ao} and o) = {a1,a2}. Both (II,Q)
and (IT', Q') satisfy conditionga), (b) and (c) of Definition 4.11, but neither is the
<-largest. The only partition pair greater than bothl, Q) and (IT', Q) and at most
as large ag%, P), is (X, P) itself, but(3, P) does not satisffa). Hence, this example
counters Theorem 4.13 of [8] and shows thds not well-defined. O

Following Theorem 4.13, the authors present their main fpeitit theorem which
states that the solution of the GCPP over a gr&pand partition paifX, P) can be
computed by applying to (X, P) finitely many times until a fixed point is reached
(Theorem 4.14). In this theorem, the authors demandAhia¢ transitive. One might

be inclined to think that Counterexample 2 does not affeist ttieorem, as we used

a non-transitive?. We now show that this is not the case: the main theorem indeed
loses its meaning due to our counterexample for Theorem 4Td3do so, we first
give an example in which the application @fto a transitive partition pair produces a
non-transitive partition pair.

Example 3. Consider the graph in Figure 2(a) and the partition pdiz, P) with
¥ ={a, 3,7} as depicted an®® = Z(X). Let(Il, Q) = o((%, P)), then:

I = {a1,a2,0a3, 8,7} Q =Z(I1) U{(as, 1), (a1, a2)}
WhereOél = {ao,al}, Qo = {QQ} andag = {ag}. O

Our final counterexample shows thatis not suitable for computing the solution of
the GCPP, and is constructed by embedding CounterexampleEXample 3, such
that the first application of produces a non-transitive partition pair on whicks not
well-defined.

Counterexample 4. Consider the graph in Figure 2(b) and the partition p&i, P)
with ¥ = {«, 5,~} as depicted an® = Z(X). Let(II, Q) = o({X, P)), then:

II={o,a2,0a3,8,v} Q =Z(I) U {(as,a1), (a1,a2)}
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(@) (b)

Figure 2: (a) Example for which produces a non-transitive relatiGhand (b) coun-
terexample for correctness of

Wherea1 = {ao, al}, Qg = {ag} andag = {a3, aq, a5}. Now, in<H, Q> the b|0Cka3
has to be split, because, —3 a3 but—36 € I1.. ((a3,9) € Q Az —v 6)). There are
two candidate partition pairs fos ((IL, Q) ): «s can be split into eithervs o = {a4}
andas = {as,as} or ag g = {as, a5} andajy ; = {az}. However, neither of these
is greater than the other, so a uniggemaximal partition pair does not exist. [

When splittingas in Counterexample 4, theERINEgpp function of algorithm PAspp
splits the block intaxs; o andas ;. Observe that this is wrongi, andas should not
end up in different equivalence classes because= as. This split also results in
UPDATEgpp'S returning a cyclic relation. In the subsequent iteratibrPAcpp, the
execution of RFINEgpp then fails because there is no reverse topological sorting o
the partition w.r.t. the cyclic relation (line 4).

5 An Auxiliary Fixed-Point Operator

In this section we introduce a fixed-point operatao solve the GCPP and prove its
correctness. The definition gfis straightforward: it is based directly on the stability
condition of Section 2.

We emphasise thatis not intended to be an improvement over theperator of
Section 3 in any way: it is a less advanced operator thaimed to be. The purpose
of o was to compute the solution to the GCPP efficiently, whilgives rise to an
algorithm that has an inferior time complexity 6X(ST") wheresS is the number of
equivalence classes of the GCPP solution’&rile number of transitions of the input
graph.

Namely, the complexity analysis of [8] uses that, as long adixed point is
reached, in each refinement-update step the refinement qfatticion will be non-
trivial, i.e.the number of blocks increases. As a consequence, therbendit mostS
refinement-update steps before the algorithm terminatash &n analysis is not ap-
propriate forp: applyingp repeatedly could involve many steps in which the partition
does not change. Consequently, the number of iteratiortsecdigorithm is bounded
merely by the size of a relation on the eventual partitianpy S2.

The sole purpose of is to serve as an auxiliary operator for establishing the cor
rectness of the algorithm that we present in Section 6. Tigatithm has the same
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time complexity as PApp and does not correspond to any fixed-point operator, as we
show in the same section.

Definition 5 (Operatop). Let (X, P) be a transitive partition pair over a grafif, —).
Thenp((%, P)) is the<-largest partition paifIl, Q) < (3, P) that satisfies

(1) Vo, el . VyeX. ((a, f)€QNa—3y = F6€X . ((7,0) € PAS —v 9)).

Alternatively, p could be defined just liker of Definition 4.11, but insisting that its
input partition pair is transitive, and omitting clause. (itJs not hard to check that this
definition is equivalent to the one above. The correctne®edihition 5 is ensured by
the following.

Proposition 6. Let (3, P) be a transitive partition pair over a grapfv, —). Then
there exists a-largest partition pair(Il, Q) < (X, P) that satisfieg1). Moreover,Q
is transitive.

Proof. Define the relatiolc C N x N bya C b iff
a,B) eP.acarnbeBAVyeX . (a—y=30€X.((y,0) € PAb—0)).

Using the reflexivity and transitivity oP, this relation is a preorder. Takgl, Q) :=
PP(C), as defined in Section 2. Kpis transitive. By construction]l, Q) < (2, P).
It is not hard to check thall satisfies (1}

Now let (I, Q') be another partition pair witlll’, Q') < (3, P) that satisfies (1).
Supposga, 8) € @, a € « andb € (3. Using (1) we finda T b. Applying this
insight to the case = 3 we find thatlI’ is finer thanll. Applying it in general yields

Q" € Q(IT'). Hence(Il', Q') < (II, Q). 0
Proposition 7. The operator is monotone with respect to: if (X, P) and (X', P/)
are transitive partition pairs withZ, P) < (3, P’), thenp((XZ, P)) < p({3', P')).

Proof. As p((3, P)) satisfies (1) w.r.t{3, P), it certainly satisfies (1) w.r.{>’, P’).
As p((X, P)) < (X, P) < (3, P')y andp((¥', P")) is the<-largest partition pair with
p({X', P")) < (X', P’} that satisfies (1), it follows that((3Z, P)) < p((X', P")). O

Sincep((X, P)) < (X, P) and< is a partial order on a finite set, we obtain:

Proposition 8. Let (X, P) be a transitive partition pair over a graph. Then for some
n >0, p" (X, P)) = p"((X, P)), i.e. repeated application of leads to a fixed
point. O

The solution to the GCPP over an input gr&phnd an initial partition pai, P) over

G can be obtained by repeatedly applyjntp (3, PT). The following lemmata say
that as soon as a fixed point is reached, the resulting parfithir is stable. Moreover,
each of the intermediate partition pairs is larger than araétp the solution of the
GCPP. It then follows that the obtained fixed point is in féet $olution to the GCPP.

3 Suppose(a, 3) € Q anda —3 v fory € ¥. Thenda € o . a — ~. Take thata, and ab’ € 3.
Asa C V', we havedd’ € X . ((v,6’) € PAY — ¢&')). Hence —3 4&’. As P is a partial order
on a finite set, le6 be aP-maximal element ok larger thand’ such that3 —3 4, i.e. (¢',d) € P and
Ve € ¥.(6,e) € PAB —3¢e=¢=24. Notethat(y,d) € P. Asg —3 §,3bg € 3. by — 6. For any
b € Bwe haveby C b, sode, € . ((6,e5) € P Ab — €p)). It must be that, = §. Hence —v 6.
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Lemma 9. Let (X, P) be a transitive partition pair over a grapfiN, —). Then
p({Z, P)) = (%, P) ifand only if (33, P) is stable with respect te-.

Proof. Becausep((X, P)) is the <-largest partition pair satisfying (1), we have that
p((3, P)) = (X, P) if and only if (¥, P) satisfies (1) w.r.t. itself, which is equivalent
to stability w.r.t.—. O

Lemma 10. Let (X, P) and(II, Q) be partition pairs over a grapld:, with @ transi-
tive, and let(=, <) be the solution of the GCPP ovéfand (X, P). If (Z, <) < (I1, Q)

then(E, =) < p({IL, Q).

Proof. By Lemma 9p((Z, X)) = (E, <). Assuming that=,<) < (II, Q), the state-
ment now follows from Proposition 7. O

Theorem 11. Let (X, P) be a partition pair over a grapli = (N, —) and (=, <) be
the solution of the GCPP ovéf and (%, P). Letn > 0 be such thap™ ™ ((3, PT)) =
({2, PF)). Theng™((S, P)) = (2, ).
Proof. Note thatn exists by Proposition 8. We prove th@, <) < p"((X, P™)) and
P (5, PT)) < (E ).
o (5,=) < p"((X%, PT)): By definition (=, <) < (X, PT). Applying Lemma 10
times gives ug=, <) < p"((X, PT)).

e p"((%,PT)) < (E,=): Obviouslyp™((X, P*)) < (X, P*) and by Lemma 9
p™ ({3, PT)) is stable w.r.t—. By definition(Z, <) is the<-largest partition pair
that has these properties. Henéd (3, PT)) < (=, X). O

6 A Correct and Efficient Algorithm

Algorithm 3 The repaired partitioning algorithm: RAN, —), (X, P))
1: ¥ := REFINE(X, P);
2: P := UPDATEGpp(Z, P, %1);
3: change :=T,;1:= 1,
4: while change do
5 change := 1,
6: Yi+1 := REFINE(X;, P));
7 Pit1 := UPDATEGpp(X:, P, Xit1);
8
9

: =1+ 1;
- end while

Our repaired partitioning algorithm is called PA, see Algon 3. The variablehange
and the input graphlV, —) have global scope: they can be accessed from any function.
Note however, that BDATEgpp does not accesshange

Our corrections of the algorithm are two. Firstly, it is ereslithat at least two
refinement-update steps are taken before the algorithnirtates (lines 1 and 2). The
necessity of this (minor) correction is explained in Settil. Secondly, the most
important error — the one resulting from the incorrecbperator — is repaired by
the new REFINE function, Algorithm 4. It contains a few minor improvemeotger
REFINEgpp: Using list notations for variabl€ortand preventing empty blocks from
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Algorithm 4 The repaired refine function: ERINE(X, P)
1: I := 3
2: for all « € II do Stable(cr) := 0; end for
3: forall v € ¥ do Row(v) :={v' | (v,7') € P}; end for
4: Let Sortbe a reverse topological sorting Bfw.r.t. P;
5: while Sort # [] do

6: v := head(Sort);

7: A =0

8: forall a € II, a —3 vy do

9: if Stable(a) N Row(v) = () then
10: ap=anN—"1(y);

11: ag =\ ag;

12: IM:=1I\ {a};

13: A:=AU{a};

14: Stable(aq) := Stable(a) U {~};
15; if ap # () then

16: change := T,

17: A:=AU{az};

18: Stable(as) := Stable(a);
19: end if

20: else

21: Stable(a) := Stable(a) U {~v};
22: end if

23: end for

24: II:=11U A;

25; Sort := tail(Sort);
26: end while

27: return 1I;

being added tdl. However, the actual correction is in line 21: if for some ¥ and
a € I with @ —3 v we haveStable(«) N Row(y) # 0 then we addy to Stable(c).

We use thep operator of Section 5 to prove correctness of PA in Secti@n Bs
space and time complexities are the same as feipBAn0 additional space is needed
and the corrections do not increase the time complexityallinin Section 6.3 we
show that there is no fixed-point operator that capturesdfisament performed by
our REFINE function.

6.1 The Correction of a Minor Mistake

Apart from the error in PApp that results from the incorreet operator, we found
another, minor mistake in the algorithm. We describe it is #ection and propose a
solution. The mistake is shown by the following example.

Example 12. Consider the graptG = (N, —) in Figure 3 and the partition pair
(3, P) with ¥ = {«, 8} as depicted and® = Z(X) U {(«, 3)}. Observe that the
solution to the GCPP ovef and (X, P) is (=, <) with & = {ag, 1,5} and < =
Z(E) U {(a1,a0)} wherea; = {a;}. After the first iteration oPAgpp(G, (X, P)),

we haveX; = ¥y = ¥ and P, = Z(X). The algorithm then terminates because
change = L, and(X;, P,) is its answer to the GCPP ové* and (X, P). Obviously
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Figure 3: Example for which the algorithm RAp terminates prematurely.

(31, P1) # (2, <), so this answer is wrong. O

The correctness of R&phinges on the theory that whenevee®RNEgpp(I1,Q, change)
returns its input partitiohl, and thus fails to split any block ifi, then also the relation
Q will be unaffected by BDATEGpp, i.e. UPDATEGpR(IT, @, IT) returns@. This theory
is the upshot of Theorem 4.15 in [8] and is essential in theperity analysis of the
algorithm. However, the above example shows that it doeswoldtin general.

In the next section we show that this theory does hold undecdmdition that)
itself is obtained as output of RbATEgpp (Proposition 14). Therefore, this error in
PAgpp can be fixed, without violating the complexity analysis, bgisting that at least
two refinement-update steps are performed prior to termoimat

6.2 Correctness of PA

From here on we will use the correctness of the functisitDArEgpp, as established
by Gentiliniet al.[9]. This correctness can be summarised as follows:

Proposition 13. Let (X, P) be a partition pair over a grapi{ N, —), andII be a
partition over N that is finer thanX. Then there exists a unique relatich C P(II)
satisfying condition(20) of Definition 4.11. Moreover, this relation is returned by
UPDATEGpp(X, P, I1).

Proof. The union of all relationg§) C P(1T) such that (b) and (c) hold for &k, 3) € Q
is itself a relation with these properties. The last claira been established in [9].C0

Using this, we obtain the result promised in Section 6.1: fillewing proposition
implies that if a call to RFINE in the while-loop of PA does not split any blocks, then
the subsequent call toRDATEgpp Will return its input relation. The requirement that
this relation has been computed by a previous call fDAYEgpp iS guaranteed by
line 2.

Proposition 14. Let (X, P) and (II, Q) be partition pairs over a graph such that
is finer thanX and UPDATEgpp(X, P, II) returns@. ThenUPDATEgpp(IT, @, IT) also
returnsq@.

Proof. By Proposition 13, WDATEgpp(II, @, II) returns the largest relatio@’ C
Q(II) satisfying conditions (b) and (c) of Definition 4.11 w.fk, @ andII (i.e. substi-
tuting Q’, I1, @Q andII for ), 3, P andII in these conditions, respectively). We have
to prove that)’ = Q. As Q@ = Q(II) it suffices to show thaf) satisfies (b) and (c)
with IT substituted fod> and@ for P. Under these substitutions (b) becomes equal to
(c). By Proposition 13 applied tokbATEGpp(X, P, IT), @) satisfies this condition.
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Let (X;, P;),<;<, be the sequence of partition pairs produced by PA. The fafigw
proposition says that evefy; is acyclic and that the sequence is decreasing. The former
implies that PA will never deadlock due to the inability todia reverse topological
sorting (see line 4 of RFINE). The latter implies that the algorithm terminates.

Proposition 15. Let (X, P) be a partition pair over a grapiN, —), REFINE(X, P)
return IT and UPDATEGpp(X, P, II) return Q. Then(II, Q)) is a partition pair with
(ILQ) < (X, P).

Proof. From Algorithm 4 and the fact that is a partition, it is not hard to see that
1T is a partition that is, moreover, finer thah Also, by Proposition 13 we have that
@ C P(II). Hence(Il, Q) < (X, P). To prove that the paifIl, Q) is a partition pair,
we need to prove reflexivity and acyclicity ¢f. Using reflexivity of P and P(II), the
identity relationZ (I1) trivially satisfies conditions (b) and (c) of Definition 4.1dence
Proposition 13 implies tha(11) C @, i.e.Q is reflexive.

Suppose) contains a cycle: there are mutually distirgf, ..., a,—1 € II for
n > 1 such that«;, ;41 moa n) € @ for 0 < i < n. By acyclicity of P, it must be
that thesey; are all subsets of the same blagke ¥. Lety € ¥ anda’ C « be the first
blocks considered in an iteration oERINE’s main for-loop (line 8) such that splits
o/ into anaj and ana, such thaty; C o) anda; C of for some0 < i,j < n. Then
Stable(a’) N Row(y) = (). For any0 < k < n we have eithety, —v v or ay, 43 7,
and both possibilities occur. Take< i < n such thaty; 1 04 » —v ¥ @nda; A3 7.
By Proposition 13() satisfies (b) of Definition 4.11. Henég/ € X . ((v,7') € P A
a; —3 7). As (y,7") € P, in REFINE'S while-loop+’ is considered prior toy.
Consider the unique iteration ofERINE's main for-loop (line 8) involvingy’ and an
o' with o/ C o' C o — observe that'” —3 +'. At the end of that iteration we have
obtained a blocky”” with o/ C o/ C o” andy’ € Stable(a’”). It follows that at
the later iteration involving anda’ we havey’ € Stable(a’) N Row(7y), which is a
contradiction. O

Corollary 16. For any graphG and any partition pair(X, P) overG, the algorithm
PA(G, (3, P)) terminates. O

Lemma 17. The following predicate is an invariant for the while-loopAdgorithm 4:
VB eTIU A . Ve € Stable(B) . 6 € X . ((,0) € PTAB —v ).

Proof. The predicate holds trivially after the initialisation dfetStablesets in line 2.
The only points where it could be violated are at lines 14,i@82l. For= # v lines 14
and 18 are harmless becausefC « anda —v ¢ then certainlyy; —v 6. Fore =
andgs = a1, atline 14 the predicate holds by constructioa@ftakingd := ~. Finally,
line 21 is only executed when there isag Stable(«) N Row(7y). As (v,¢) € P, the
predicate holds foty anda because it held already feranda. O

Lemma 18. Let (X, P) be a partition pair over a grapli N, —) and REFINE(X, P)
returnIl. Then:

Vaell.VyeX.(a =3y = €. ((7,6) € PT Aa—vyd)).

Proof. Let o € I andy € ¥ such thatn —3 ~. In the computation ofI, take the
unique iteration of RFINE's main for-loop (line 8) in whichy and an’ are considered
with o C o’. Thena’ —3 v and there are two cases:
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o Stable(a’) N Row(vy) = 0: Thene! is splitintoa; andas such thaty; —v v and
ag /3 7. It must be thaty C a;. Thena —v v and(v,~) € PT.

e Stable(a’) N Row(y) # 0: Then~ is added taStable(a’). Lemma 17 gives us
€. ((v,0) € PP Aa —vy d). Asa C o we haver —v 6. O

Lemma 19. Let (X, P) and(II, Q) be partition pairs over a grapliN, —) such that
(I, Q) < (X, P) and let P be transitive. If{(II, Q) satisfies(1) of Definition 5 w.r.t.
(3, P) then so doegll, Q).

Proof. Suppos€Il, Q) satisfies (1) w.r.t{>, P) and take(o, 3) € Q* andy € ©
such thaty —3 ~. There areyy, ..., «,, € I1forn > 0 such thaty = «p, 5 = o, and
(i, i41) € Qfor 0 < i < n. Applying (1)n times we obtairdy, ..., d, € X such
thata; —v §; (and thusy; —3 6;) for1 < i < n, (v,61) € P and(é;,6;41) € P for
1 <4 < n. Hencel —v §, and(y, d,,) € P by transitivity of P. O

The following lemmata state thatBRINE and UPDATEgpp CcOnverge towards a fixed
point at least as fast aswithout ever diverging from the path towards the GCPP solu-
tion. In combination with the monotony pf(Proposition 7) this implies the correctness
of our algorithm.

Lemma 20. Let (3, P) be a partition pair over a grapliV, —), REFINE(X, P) return
I1, andUPDATEGpp(2, P, I1) return Q. Then(IT, Q*) < p((X, PT)).

Proof. By Proposition 15(I1, Q) is a partition pair with(IT, Q) < (3, P) < (X, PT).
By Definition 5, p((%, PT)) is the <-largest partition pair smaller thaix, P*) that
satisfies (1) w.r.t{>, PT). So the statement follows if we prove that, Q) satisfies
(1) w.rt. (3, PT). By Lemma 19 it suffices to show thall, Q) satisfies (1) w.r.t.
(X, PT). Let(a, ) € Q anda —3 ~ for y € . Using Lemma 18, také € ¥ such
that(v,d) € PT anda —v 4. By Proposition 1336’ € X . (§,8’) e PA 3 —3 §'.
For thatd’, by Lemma 183y’ € ¥ . (§',+') € PT A 3 —v ~'. For thisy’ it holds that
(7,7") € PT. Hence(Il, Q) satisfies (1) w.r.t{(x, PT). O

Lemma 21. Let (¥, P) and (II, Q) be partition pairs over a graplG = (N, —),
(2, <) be the solution of the GCPP ovér and (¥, P), and (=, <) < (II, Q). Let
ReEFINE(IL,Q) returnIT" and UPDATEgpp(I1,Q,IT') return Q’. Then(Z,<) < (IT",Q’).

Proof. We have to prove that (A} is finer thanll’ and (B)< C Q'(Z).

Ad (A). Let o € Z andagy € 1T such thaty C «agp. By contradiction, suppose there is
noco’ € II' such thair C o'. Hence, there are;, as € o such that RFINE at some
point separates; € ar fromas € an. Letay C an be such that, as € af; and
a1 anday got separated whesy; was split by a blocky; € II. HenceStable(ay) N
Row(ym) = 0.

Consider the case whetg — ~p andas 4 . The case withu; 4 ~ and
as — ~ is fully symmetrical. Lety € = be such thaty C 4y anda; — 7. As
a —3 v and(Z, X) is stable w.r.t—, there must be & € = with v < § anda —v 4.
Let 6ir € II be such that C 6. Then (v, o) € @, using that(Z, <) < (IL, Q).
Sodn € Row(vyn) anddyy is beforeyr in the reverse topological sorting &fw.r.t. Q.
AS ay /4 vy we havex /v v, Yeta —v dm, henceyn # dn. Letof] C an be the
block containingz; andas when blocks were split w.r.t; by REFINE. Observe that
afy —3 om, so there were two cases:



14 Rob van Glabbeek & Bas Ploeger

o Stable(af)) N Row(én) = 0: Thenaj; may have been split, but this did not
separate; andas. Thenaj; C (o4 N —~1(dnr)) and hencdy € Stable(s;).

e Stable(af)) N Row(or) # 0: Thendn was added tdtable(;) (line 21) and
becausey; C of} we havedr; € Stable(ay;).

In both cases we have th& € Stable(co;) N Row(vym), which contradicts the fact
that Stable(af;) N Row(vym) = 0.

Ad (B). LetQ", :={(o,p) e I' xIT' | F(ag, f=) € =.az C aApf= C [} We will
show that)’, C @', which immediately yield< C Q% (Z) C Q'(Z).

To this end, using Proposition 13, we establish #at C Q(IT') and any pair
(a, B) € Q' satisfies conditions (b) and (c) of Definition 4.11, readifg?, II’ and
Q' for ¥, P, I andQ, respectively.

e QL C QUII'): Let(o,p) € QL. Takear, S € II such thate C o and
B C Br. Because< C Q(Z) we have(ar, Bi) € @, and hencéa, 3) € Q(IT').

e Condition(b): Let(a,B) € Q' and~y € II such thatx —v v. Takeas, = € =
such thatvs C o, 8= C S andasz =< fB=. Also takey= € = such thatyz C v
andag —3 v=. Becaus€Z, <) is stable w.r.t— we obtain &z € = such that
vz = 6= andfBz —v 6=. Taked € I such thatz C §. As < C Q(Z) we have
(7,9) € Q. We also obtairt —3 4.

e Condition(c): Let(a, 3) € Q% andy €Il such thaty —v ~. Takeaz, f=, 7= €
= and obtaind=z € = exactly as above. Takk e II’ such that'= C §. We have
(7,6) € Q% by construction. Again we obtaijt —3 4. O

Theorem 22. Let (X, P) be a partition pair over a graplt = (N, —). Letk be the
value of variable upon termination oPA(G, (X, P*)). Then(Xy, Py) is the solution
of the GCPP ovei and (X%, P).

Proof. Let the sequence of partition paif&;, P;),.,, be obtained by running
PA(G, (2, PT)) until it terminates, implying that > 2 andX;, = ¥,_;. Propo-
sition 14 yieldsP, = P_;. Extend this sequence by definiigg, Py) := (X, PT)
and(%;, P;) := (X, Py) for i > k. Now for all« > 0 we have that RFINE(X;, P;)
returnsX; ;1 and UPDATEgpp(X;, P;, ¥i41) returnsP; ;. Let (=, <) be the solution
of the GCPP ove& and(X, P). We need to show thgk,, P,) = (Z, <), for which
we require the following properties:

(P1) (2,=) < (%, P) foralli >0
(P2) (X, PPy < p'((%, PT)) foralli > 0.

Proof of (P1): By definition(Z, <) < (3, PT) = (30, ), and Lemma 21 yields
(2, =) < (%;, P,) forall i > 0, by induction on.

Proof of (P2): By induction oni. If i = 0 then(2o, P;7) = (X, P*) = p°((Z, PT)).
For the inductive step, suppo&g;, P;") < p((Z, P*)). Then:
Lemma 20 Proposition 7 .

(Zip1, Py < p((B,P) < pTH((E, PT)).
Applying(P1)and(P2): By Proposition 8 and Theorem 11 there isian 0 such that
p"((Z,PT)) = (E,%),s0

_ (P1) Prop. 15 i (P2) " _
(B,2) < Cnt1, Poyr) £ (B, Po) < (X0, BY) < p"((5,P7)) = (E,2).

Thus(X, 11, Pot1) = (B, Pn), S0k < n+1,and(Xy, P)=(Z,, P,)=(Z,=%). O
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Figure 4: Example on which BINE does not return a uniquely defined partition

6.3 No Fixed-Point Operator

We now show that there is no fixed-point operator that captilme partition refinement
performed by RFINE, i.e. a functionw such that for any partition pair&, P) and
(I, Q) with (II, Q) = = ((X, P)), REFINE(X, P) returnsIl. More specifically, we
show that the partition returned byeRINE is not uniquely defined, but depends on the
particular reverse topological sorting that is chosenrie 4.

Example 23. Consider the grapiG = (N, —) of Figure 4 and the partition pair
(2, P) with ¥ = {«a, 8,7, 9,¢} as depicted and® = Z(X) U {(5,9), (4,7)}. Then
S = le,v,6,0,a] and S’ = [v,4, 8, ¢, a] are reverse topological sortings &f with
respect toP. LetII andIl’ be the partitions returned bREFINE(X, P) on sortingsS
and S’ respectively. Thefl = {{ao}, {a1}, {a2}} andTl’ = {{ao, a1}, {az2}}. O

Similar to the construction of Counterexample 4, this exi@ngan be embedded in
Example 3 to obtain an example with a transitive relatiorvibich the partition after
the second refinement depends on the chosen reverse tablewgiting.

7 Conclusions

The correspondence between the simulation problem foefilaibelled graphs and the
generalised coarsest partition problem (GCPP) for unledgiraphs can be easily es-
tablished. We have shown that theoperator defined by Gentilirgt al. [8] to solve
the GCPP is flawed. In particular, when applied to a partipair, the result is not
necessarily another partition pair or even well-defined.réddoer, when applied re-
peatedly to a transitive partition pair, convergence talsar unique fixed point is not
guaranteed. Thereby we have shown thi not suitable for solving the GCPP. On the
counterexample for the latter property, the algorithm $flidt computes, produces a
wrong result in which two simulation-equivalent statesgwein different equivalence
classes.

We have repaired this algorithm such that it correctly cotapthe solution of the
GCPP. Apart from correcting the error that results from the§l in thes operator, we
also corrected a minor mistake that caused premature tetioinof the algorithm on
certain input. Our algorithm has the same space and time lesitips as the original
partitioning algorithm. We have proven its correctnesagsin auxiliary operatags of
which we have shown that it solves the GCPP, though ineffigieRinally, we have
shown that no operator can be defined that captures theigargfinement performed
in every iteration of our algorithm.

Another way to repair the algorithm of [8] may be to use thatieh P* instead
of P in REFINEgpp. The thusly obtained algorithm would converge to a fixed poin
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slightly slower than ours. More importantly, due to the aifstomputing the transitive
closure in each iteration, the time complexity would not chathat of the original
algorithm.
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