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This paper poses that transition systems constitute a good model of distributed systems only in com-
bination with a criterion telling which paths model complete runs of the represented systems. Among
such criteria, progress is too weak to capture relevant liveness properties, and fairness is often too
strong; for typical applications we advocate the intermediate criterion of justness. Previously, we
proposed a definition of justness in terms of an asymmetric concurrency relation between transitions.
Here we define such a concurrency relation for the transition systems associated to the process alge-
bra CCS as well as its extensions with broadcast communication and signals, thereby making these
process algebras suitable for capturing liveness properties requiring justness.

1 Introduction

Transition systems are a common model for distributed systems. They consist of sets of states, also
called processes, and transitions—each transition going from a source state to a target state. A given
distributed system D corresponds to a state P in a transition system T—the initial state of D . The other
states of D are the processes in T that are reachable from P by following the transitions. A run of D
corresponds with a path in T: a finite or infinite alternating sequence of states and transitions, starting
with P, such that each transition goes from the state before to the state after it. Whereas each finite path
in T starting from P models a partial run of D , i.e., an initial segment of a (complete) run, typically not
each path models a run. Therefore a transition system constitutes a good model of distributed systems
only in combination with what we here call a completeness criterion: a selection of a subset of all paths
as complete paths, modelling runs of the represented system.

A liveness property says that “something [good] must happen” eventually [21]. Such a property
holds for a distributed system if the [good] thing happens in each of its possible runs. One of the ways
to formalise this in terms of transition systems is to postulate a set of good states G , and say that the
liveness property G holds for the process P if all complete paths starting in P pass through a state of G
[18]. Without a completeness criterion the concept of a liveness property appears to be meaningless.

Example 1 The transition system on the right models Cataline eating
1 2

t
a croissant in Paris. It abstracts from all activity in the world except
the eating of that croissant, and thus has two states only—the states of the world before and after this
event—and one transition t. We depict states by circles and transitions by arrows between them. An
initial state is indicated by a short arrow without a source state. A possible liveness property says that
the croissant will be eaten. It corresponds with the set of states G consisting of state 2 only. The states
of G are indicated by shading.

The depicted transition system has three paths starting with state 1: 1, 1 t and 1 t 2. The path 1 t 2
models the run in which Cataline finishes the croissant. The path 1 models a run in which Cataline
never starts eating the croissant, and the path 1 t models a run in which Cataline starts eating it, but never
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finishes. The liveness property G holds only when using a completeness criterion that rules out the paths
1 and 1 t as modelling actual runs of the system, leaving 1 t 2 as the sole complete path. ¶

The transitions of transition systems can be understood to model atomic actions that can be performed
by the represented systems. Although we allow these actions to be instantaneous or durational, in the
remainder of this paper we adopt the assumption that “atomic actions always terminate” [29]. This is a
partial completeness criterion. It rules out the path 1 t in Example 1. We build in this assumption in the
definition of a path by henceforth requiring that finite paths should end with a state.

Progress The most widely employed completeness criterion is progress.1 In the context of closed
systems, having no run-time interactions with the environment, it is the assumption that a run will never
get stuck in a state with outgoing transitions. This rules out the path 1 in Example 1, as t is outgoing.
When adopting progress as completeness criterion, the liveness property G holds for the system modelled
in Example 1.

Progress is assumed in almost all work on process algebra that deals with liveness properties, mostly
implicitly. Milner makes an explicit progress assumption for the process algebra CCS in [24]. A progress
assumption is built into the temporal logics LTL [30], CTL [8] and CTL* [9], namely by disallowing
states without outgoing transitions and evaluating temporal formulas by quantifying over infinite paths
only.2 In [20] the ‘multiprogramming axiom’ is a progress assumption, whereas in [1] progress is as-
sumed as a ‘fundamental liveness property’.

Definition 1 ([18]) Completeness criterion F is stronger than completeness criterion H iff F rules out (as
incomplete) at least all paths that are ruled out by H.

As we argued in [11, 17, 18], a progress assumption as above is too strong in the context of reactive
systems. There, a transition typically represents an interaction between the distributed system being
modelled and its environment. In many cases a transition can occur only if both the modelled system and
the environment are ready to engage in it. We therefore distinguish blocking and non-blocking transitions.
A transition is non-blocking if the environment cannot or will not block it, so that its execution is entirely
under the control of the system under consideration. A blocking transition on the other hand may fail to
occur because the environment is not ready for it. The same was done earlier in the setting of Petri nets
[32], where blocking and non-blocking transitions are called cold and hot, respectively.

In [11, 17, 18] we worked with transition systems that are equipped with a partitioning of the transi-
tions into blocking and non-blocking ones, and reformulated the progress assumption as follows:

a (transition) system in a state that admits a non-blocking transition will eventually progress,
i.e., perform a transition.

In other words, a run will never get stuck in a state with outgoing non-blocking transitions. In Example 1,
when adopting progress as our completeness criterion, we assume that Cataline actually wants to eat the
croissant, and does not willingly remain in State 1 forever. When that assumption is unwarranted, one
would model her behaviour by a transition system different from that of Example 1. However, she
may still be stuck in State 1 by lack of any croissant to eat. If we want to model the capability of the
environment to withhold a croissant, we classify t as a blocking transition, and the liveness property G

1Misra [25, 26] calls this the ‘minimal progress assumption’. In [26] he uses ‘progress’ as a synonym for ‘liveness’. In
session types, ‘progress’ and ‘global progress’ are used as names of particular liveness properties [4]; this use has no relation
with ours.

2Exceptionally, states without outgoing transitions are allowed, and then quantification is over all maximal paths, i.e. paths
that are infinite or end in a state without outgoing transitions [5].
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does not hold. If we abstract from a possible shortage of croissants, t is deemed a non-blocking transition,
and, when assuming progress, G holds.

As an alternative approach to a dogmatic division of transitions in a transition system, we could shift
the status of transitions to the progress property, and speak of B-progress when B is the set of blocking
transitions. In that approach, G holds for State 1 of Example 1 under the assumption of B-progress when
t /∈ B, but not when t ∈ B.

Justness Justness is a completeness criterion proposed in [11, 17, 18]. It strengthens progress. It can
be argued that once one adopts progress it makes sense to go a step further and adopt even justness.

Example 2 The transition system on the right models Alice making an unending
sequence of phone calls in London. There is no interaction of any kind between
Alice and Cataline. Yet, we may chose to abstracts from all activity in the world
except the eating of the croissant by Cataline, and the making of calls by Alice. t

This yields the combined transition system on the bottom right. Even when taking
the transition t to be non-blocking, progress is not a strong enough completeness
criterion to ensure that Cataline will ever eat the croissant. For the infinite path that loops in the first state
is complete. Nevertheless, as nothing stops Cataline from making progress, in reality t will occur. [18]

This example is not a contrived corner case, but a rather typical illustration of an issue that is central
to the study of distributed systems. Other illustrations of this phenomena occur in [11, Section 9.1],
[16, Section 10], [12, Section 1.4], [13] and [7, Section 4]. The criterion of justness aims to ensure the
liveness property occurring in these examples. In [18] it is formulated as follows:

Once a non-blocking transition is enabled that stems from a set of parallel components, one
(or more) of these components will eventually partake in a transition.

In Example 2, t is a non-blocking transition enabled in the initial state. It stems from the single paral-
lel component Cataline of the distributed system under consideration. Justness therefore requires that
Cataline must partake in a transition. This can only be t, as all other transitions involve component
Alice only. Hence justness says that t must occur. The infinite path starting in the initial state and not
containing t is ruled out as unjust, and thereby incomplete.

Unlike progress, the concept of justness as formulated above is in need of some formalisation, i.e.,
to formally define a component, to make precise for concrete transition systems what it means for a
transition to stem from a set of components, and to define when a component partakes in a transition.

A formalisation of justness for the transition system generated by the process algebra AWN, the
Algebra for Wireless Networks [10], was provided in [11]. In the same vain, [17] offered a formalisa-
tion for the transition systems generated by CCS, the Calculus of Communicating Systems [24], and its
extension ABC, the Algebra of Broadcast Communication [17], a variant of CBS, the Calculus of Broad-
casting Systems [31]. The same was done for CCS extended with signals in [7]. These formalisations
coinductively define B-justness, where B ranges over sets of transitions that are deemed to be blocking,
as a family of predicates on paths, and proceed by a case distinction on the operators in the language.
Although these definitions do capture the concept of justness formulated above, it is not easy to see why.

A more syntax-independent, and perhaps more convincing, formalisation of justness occurred in
[18]. There it is defined directly on transition systems that are equipped with a, possibly asymmetric,
concurrency relation between transitions. However, the concurrency relation itself is defined only for the
transition system generated by a fragment of CCS, and the generalisation to full CCS, and other process
algebras, is non-trivial.
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It is the purpose of this paper to make the definition of justness from [18] available to a large range
of process algebras by defining the concurrency relation for CCS, for ABC, and for the extension of
CCS with signals used in [7]. We do this in a precise as well as in an approximate way, and show that
both approaches lead to the same concept of justness. Moreover, in all cases we establish a closure
property on the concurrency relation ensuring that justness is a meaningful notion. We show that for
all these process algebras justness is feasible. Here feasibility is a requirement on completeness criteria
advocated in [1, 22, 18]. Finally, we establish agreement between the formalisation of justness from [18]
and the present paper, and the original coinductive ones from [17] and [7].

Fairness Fairness assumptions are special kinds of completeness criteria. They postulate that if certain
activities can happen often enough, they will in fact happen.

Example 3 Suppose Bart stands behind a bar and wants to order a beer. But by lack of any formal
queueing protocol many other customers get their beer before Bart does. This situation can be modelled
as a transition system where in each state in which Bart is not served yet there is an outgoing transition
modelling that Bart gets served, but there are also outgoing transitions modelling that someone else gets
served instead. The essence of fairness is the assumption that Bart will get his beer eventually. Fairness
rules out as unfair, and thereby incomplete, any path in which Bart could have gotten a beer any time,
but never will.

Fairness comes in two flavours: weak and strong fairness. Weak fairness merely rules out paths in which
some task is enabled in each state, yet never occurs. Strong fairness also rules out paths in which some
task is enabled infinitely often, yet never occurs. Here a task is an appropriate set of transitions, in
Example 3 all transitions giving Bart a beer. In Example 3 the liveness property that Bart will get a beer
holds under the assumption of weak fairness, and thus certainly when assuming strong fairness. It does
not hold when merely assuming justness, let alone when merely assuming progress.

Our survey paper [18] proposes a unifying definition of strong and weak fairness, parametrised by
the definition of a task. Many notions of fairness found in the literature are cast as instances of this
definition, differing only in how to define tasks. The same paper also offers a taxonomy of completeness
criteria, ordered by strength (cf. Definition 1). This taxonomy contains the criteria progress and justness,
as well as all these fairness criteria. Besides strong and weak fairness we also consider a form of fairness
even weaker than weak fairness, requiring a task to be be enabled in each state on a path, as well as
“during each transition”. We are not aware of any completeness criteria occurring in the literature that is
not progress, justness or one of these forms of fairness—or the weakest possible completeness criterion,
declaring all paths complete, thereby ensures almost no liveness properties.

In [18] we argue that fairness assumptions are by default unwarranted. In real-world situations akin
to Example 3 there is in fact no guarantee that Bart will ever get a beer. This is in contrast to justness,
which by default is warranted. One could argue that a formalisation of justness is not necessary to arrive
at a model of concurrency in which Cataline will eat her croissant, as fairness is an alternative to justness
that accomplishes the same goal. But here we reject that argument on grounds that fairness tends to rule
out as incomplete more paths than necessary. As argued in [13], this can lead to false guarantees about
the satisfaction of certain liveness properties, e.g. Bart getting a beer in Example 3.

Reading guide In Section 2, following [18], we present transition systems with a concurrency relation
satisfying some closure property, and define justness as a predicate on paths in any such transition system.
Again following [18], we also propose an optional characterisation of the concurrency relation in terms
of more primitive notions of the necessary and affected components of a transition.
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To properly capture reactive system, we work with labelled transition systems, where each transition
is labelled with the action that occurs when taking this transition. The labelling is typically used to
describe how the transition synchronises with, and thus is dependant on, the environment. Whether a
transition is blocking is then completely determined by its label. Hence we work with sets B of blocking
actions and regard a transition as blocking iff it is labelled by an action in B.

In Section 3 we show liberal conditions under which B-justness meets the requirement of feasibility.
In Section 4 we recall the unifying definition of fairness from [18], and show how progress can be

cast as particular fairness property. In spite of this we continue to see progress as a completeness criterion
essentially different from fairness. We cannot cast justness as a fairness property.

Section 5 recalls the syntax and semantics of CCS, and its extensions ABC and CCSS with broadcast
communication and signals, respectively. It also proposes a simplification of the operational semantics
of CCSS by encoding signals as transitions, and recalls an alternative presentation of ABC that avoids
negative premises in the operational semantics.

In Section 6 we associate transition systems with a concurrency relation to each of the five process
algebras from Section 5, and show that they satisfies the closure property of Section 2. The concurrency
relation is defined in terms of synchrons, novel particles out of which transitions are seen to be composed.
Sections 2 and 6 together constitute a definition of justness valid for the five process algebras of Section 5.
For CCS the concurrency relation is symmetric, but for the other four process algebras it is not. The
alternative presentations of CCSS and ABC feature signal transitions that do not model state changes of
the represented system; these need to be excepted from the justness requirement.

Section 7 revisits the component-based characterisation of the concurrency relation contemplated in
Section 2, and proposes two alternative concepts of system components associated to a transition, with
for each a classification of components as necessary and/or affected. The dynamic components give rise
to the exact same concurrency relation as defined in terms of synchrons in Section 6, whereas the static
components yield an underapproximation—a strictly smaller concurrency relation. However, only the
static components satisfy a closure property proposed in [18].

Section 8 provides two computational interpretations of CCS and its extensions, the default one
corresponding to the concurrency relation of Section 6, and thus the dynamic concurrency relation of
Section 7; the other corresponding to the static concurrency relation of Section 7. We also provide a
natural sublanguage on which the two concurrency relations coincide.

Section 9 shows that the dynamic and static concurrency relations give rise to the very same concept
of justness. Hence, for the study of justness we may use whichever of these concurrency relations is the
most convenient. Using this, in Section 10 we apply the results of Section 3 to show that B-justness is
feasible for full CCS [23] and its extensions with broadcast communication and/or signals.

Section 11 shows that the concurrency relation of Section 6 agrees with the one defined earlier in [17]
on pairs of transitions for which both are defined. Yet, the concurrency relation from [17] was defined
only for transitions with the same source, and hence is not suitable for the formalisation of justness

In Sections 12 and 13 we establish that the concept of justness based on a concurrency relation
between transitions, as proposed in [18] and applied to CCS and its extension in the present paper,
coincides with the original coinductively defined concepts of justness from [17] and [7].

Section 14 summarises, and reviews related and future work.

Acknowledgement I am grateful to Peter Höfner, Victor Dyseryn and Filippo de Bortoli for valuable
feedback.
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2 Labelled transition systems with concurrency

We start with the formal definitions of a labelled transition system, a path, and the completeness criterion
progress, which is parametrised by the choice of a collection B of blocking actions. Then we define the
completeness criterion justness on labelled transition system upgraded with a concurrency relation.

Definition 2 A labelled transition system (LTS) is a tuple (S,Tr,source, target, `) with S and Tr sets (of
states and transitions), source, target : Tr→ S and ` : Tr→L , for some set of transition labels L .

Here we work with LTSs labelled over a structured set of labels (L ,Act,Rec), where Rec⊆ Act ⊆L .
In [7] and in Sections 5.3–5.5 one encounters LTSsT enriched with signals. While these are naturally

modelled as unary predicates on the states of T, it is technically possible to model them as ordinary
transitions t, satisfying source(t)= target(t) [3]. This is formalised by declaring a set of actions Act ⊆L .
Transitions t model the occurrence of an action `(t) if `(t) ∈ Act, or the emission of the signal `(t)
otherwise. Signal transitions are largely ignored in the definitions below.

Rec⊆ Act is the set of receptive actions. Sets B⊆ Act of blocking actions must always contain Rec.
In CCS and most other process algebras Rec = /0 and Act = L . Let Tr• = {t ∈ Tr | `(t) ∈ Act \Rec} be
the set of transitions that are neither signals nor receptive.

Definition 3 A path in a transition system (S,Tr, source, target) is an alternating sequence s0 t1 s1 t2 s2 · · ·
of states and non-signal transitions, starting with a state and either being infinite or ending with a state,
such that source(ti) = si−1 and target(ti) = si for all relevant i.

A completeness criterion is a unary predicate on the paths in a transition system.

Definition 4 Let B⊆ Act be a set of actions with Rec⊆ B—the blocking ones. Then Tr•¬B := {t ∈ Tr• |
`(t) /∈ B} is the set of non-blocking transitions. A path in T is B-progressing if either it is infinite or its
last state is the source of no non-blocking transition t ∈ Tr•¬B.

B-progress is a completeness criterion for any choice of B⊆ Act with Rec⊆ B.

Definition 5 A labelled transition system with concurrency (LTSC) is a tuple (S,Tr,source, target, `, •̂)
consisting of a LTS (S,Tr,source, target, `) and a concurrency relation •̂⊆ Tr•×Tr, such that:

t 6̂ • t for all t ∈ Tr•, (1)

if t ∈ Tr• and π is a path from source(t) to s ∈ S such that t •̂ v for all transitions v
occurring in π , then there is a u ∈ Tr• such that source(u) = s, `(u) = `(t) and t 6̂ • u.

(2)

Informally, t •̂ v means that the transition v does not interfere with t, in the sense that it does not affect
any resources that are needed by t, so that in a state where t and v are both possible, after doing v one
can still do (a future variant u of) t. In many transition systems •̂ is a symmetric relation, denoted ^.

The transition relation in a labelled transition system is often defined as a relation Tr ⊆ S×L × S.
This approach is not suitable here, as we will encounter multiple transitions with the same source, target
and label that ought to be distinguished based on their concurrency relations with other transitions.

Definition 6 A path π in an LTSC is B-just, for Rec ⊆ B ⊆ Act, if for each transition t ∈ Tr•¬B with
s := source(t) ∈ π , a transition u occurs in π past the occurrence of s, such that t 6̂ • u.

Informally, justness requires that once a non-blocking non-signal transition t is enabled, sooner or later
a transition u will occur that interferes with it, possibly t itself.

Note that, for any Rec⊆ B⊆ Act, B-justness is a completeness criterion stronger than B-progress.
In reasonable extensions of •̂ to Tr× Tr, signal transitions t would satisfy t •̂ t, meaning that

execution of t in no way affects any resources needed to execute t again. It therefore makes no sense to
impose closure property (2), or the justness requirement, on signal transitions (see Example 9).
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Components Instead of introducing •̂ as a primitive, it is possible to obtain it as a notion derived
from two functions npc,afc : Tr→P(C ), for a given set of components C . These functions could then
be added as primitives to the definition of an LTS. They are based on the idea that a process represents a
system built from parallel components. Each transition is obtained as a synchronisation of activities from
some of these components. Now npc(t) describes the (nonempty) set of components that are necessary
participants in the execution of t, whereas afc(t) describes the components that are affected by the
execution of t. The concurrency relation is then defined by

t •̂ u ⇔ npc(t)∩afc(u) = /0

saying that u interferes with t if and only if a necessary participant in t is affected by u.
Most material in this section stems from [18]. However, there Tr• = Tr, so that •̂ is irreflexive, i.e.,

npc(t)∩afc(t) 6= /0 for all t ∈ Tr. Moreover, a fixed set B is postulated, so that the notions of progress and
justness are not explicitly parametrised with the choice of B. Furthermore, closure property (2) is new
here; it is the weakest closure property that supports Theorem 1 and Proposition 1 below. In [18] only
the model in which •̂ is derived from functions npc and afc comes with a closure property:

If t,v ∈ Tr• with source(t) = source(v) and npc(t)∩afc(v) = /0, then
there is a u ∈ Tr• with source(u) = target(v), `(u) = `(t) and npc(u) = npc(t).

(3)

Trivially (3) implies (2).

3 Feasibility

An important requirement on completeness criteria is that any finite path can be extended into a complete
path. This requirement was proposed by Apt, Francez & Katz in [1] and called feasibility. It also appears
in Lamport [22] under the name machine closure. The theorem below list conditions under which B-
justness is feasible. Its proof is a variant of a similar theorem from [18] showing conditions under which
notions of strong and weak fairness are feasible.

Theorem 1 If, in an LTSC with set of blocking actions B, only countably many transitions from Tr•¬B
are enabled in each state, then B-justness is feasible.

Proof: We present an algorithm for extending any given finite path π0 into a B-just path π . We build
anN×N-matrix with a column for the—to be constructed—prefixes πi of π , for i≥ 0. The columns πi

will list the transitions from Tr•¬B enabled in the last state of πi, leaving empty most slots if there are only
finitely many. An entry in the matrix is either (still) empty, filled in with a transition, or crossed out. Let
f :N→N×N be an enumeration of the entries in this matrix.

At the beginning only π0 is known, and all columns of the matrix are empty. At each step i ≥ 0 we
fill in column i, extend the path πi into πi+1 if possible by appending one transition (and its target state),
and cross out some transitions occurring in the matrix. As an invariant, we maintain that a transition t
occurring in the k-th column is already crossed out when reaching step i > k iff a transition u occurs in
the extension of πk into πi such that t 6̂ • u. At each step i≥ 0 we proceed as follows:

Since πi is known, we fill in column i by listing all transitions from Tr•¬B enabled in the last state of
πi. We take n to be the smallest value such that entry f (n)∈N×N is already filled in, say with t ∈ Tr•¬B,
but not yet crossed out. If such an n does not exist, the algorithm terminates, with output πi. Let k be the
column in which f (n) appears. By our invariant, all transitions v occurring in the extension of πk into πi

satisfy t •̂ v. By (2) there is a transition u ∈ Tr•¬B enabled in the last state of πi such that t 6̂ • u. We now
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extend πi into πi+1 by appending u to it, while crossing out all entries t ′ in the matrix for which t ′ 6̂ • u,
including entry f ( j). This maintains our invariant.

Obviously, πi is a prefix of πi+1, for i ≥ 0. The desired path π is the limit of all the πi. It is B-just,
using the invariant, because each transition t ∈ Tr•¬B that is enabled in a state of π will appear in the
matrix, which acts like a priority queue, and be eventually crossed out. 2

It is possible to strengthen Theorem 1 somewhat by calling two transitions t and t ′ equivalent if t •̂ u⇔
t ′ •̂ u for all u ∈ Tr•. An equivalence class of transitions is enabled iff one of its elements is.

Corollary 1 If, in an LTSC with set of blocking actions B, only countably many equivalence classes of
transitions from Tr•¬B are enabled in each state, then B-justness is feasible.

Proof: The proof is the same as the one above, except that the matrix now contains equivalence classes
of enabled transitions. 2

4 Fairness

Let Tr◦ = {t ∈ Tr | `(t) ∈ Act}. To formalise fairness we use LTSs (S,Tr,source, target, `,T ) that are
augmented with a set T ⊆P(Tr◦) of tasks T ⊆ Tr◦, each being a set of transitions. The concept of
J-fairness from [18] is defined only for LTSCs (S,Tr,source, target, •̂, `,T ) augmented with such a T .

Definition 7 ([18]) For an augmented LTST= (S,Tr,source, target, `, [ •̂, ]T ) and a set Rec⊆ B⊆ Act
of blocking actions, a task T ∈T is B-enabled in a state s ∈ S if there exists a non-blocking transition
t ∈ T with `(t) /∈ B and source(t) = s. [It is B-enabled during the execution of a transition u ∈ Tr if
there exists a t ∈ T with `(t) /∈ B, source(t) = source(u) and t •̂ u.] The task is said to be perpetually
B-enabled on a path π inT, if it is B-enabled in every state of π . [It is said to be continuously B-enabled
on π , if it is B-enabled in every state and during every transition of π .] It is relentlessly B-enabled on π ,
if each suffix of π contains a state in which it is B-enabled.3 It occurs in π if π contains a transition t∈T.

A path π in T is weakly B-fair if, for every suffix π ′ of π , each task that is perpetually B-enabled
on π ′, occurs in π ′. [A path π in T is J-B-fair if, for every suffix π ′ of π , each task that is continuously
B-enabled on π ′, occurs in π ′.] A path π inT is strongly B-fair if, for every suffix π ′ of π , each task that
is relentlessly enabled on π ′, occurs in π ′.

When the set B is defined once and for all or clear from context, we may omit the parameter B. This was
the situation in [18].

In [18] many notions of fairness occurring in the literature were casts as instances of this definition.
For each of them the set of tasks T was derived, in different ways, from some other structure present
in the model of distributed systems from the literature. In fact, [18] considers 7 ways to construct the
collection T , and speaks of fairness of actions, transitions, instructions, synchronisations, components,
groups of components and events. This yields 21 notions of fairness. To compare them, each is defined
formally on a fragment of CCS, and the 21 fairness notions (together with progress, justness, and a few
concepts of fairness found in the literature that are not instances of Definition 7) are ordered by strength
by placing them in a lattice.

Progress can be casts as a fairness notion in the sense of Definition 7 by taking T to be the collection
of only one task, namely Tr◦. Clearly weak, strong and J-fairness all coincide for this T . Likewise, the

3This is the case if the task is B-enabled in infinitely many states of π , in a state that occurs infinitely often in π , or in the
last state of a finite π .
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Table 1: Structural operational semantics of CCS

α.P α−→ P (ACT)
P α−→ P′

P+Q α−→ P′
(SUM-L)

Q α−→ Q′

P+Q α−→ Q′
(SUM-R)

P
η−→ P′

P|Q η−→ P′|Q
(PAR-L)

P c−→ P′, Q c̄−→ Q′

P|Q τ−→ P′|Q′
(COMM)

Q
η−→ Q′

P|Q η−→ P|Q′
(PAR-R)

P `−→ P′

P\L `−→ P′\L
(`, ¯̀ 6∈ L) (RES)

P `−→ P′

P[ f ]
f (`)−→ P′[ f ]

(REL)
P α−→ P′

A α−→ P′
(A

def
= P) (REC)

trivial completeness criterion, declaring all paths complete, coincides with weak, strong and J-fairness
when taking T = /0. Nevertheless, it would be confusing to address these completeness criteria as
fairness assumptions.

We do not see how justness can be cast a fairness notion in the sense of Definition 7. However, we
now show that there exists a form of fairness according to Definition 7 that is at least as strong as justness.
Namely take T := {Tt | t ∈ Tr•} where Tt := {u ∈ Tr◦ | t 6̂ • u}.

Proposition 1 Given this T and B⊆ Act, any path that is strongly or weakly B-fair is certainly B-just.

Proof: Any path that is strongly B-fair is certainly weakly B-fair. This follows trivially from the defini-
tions, for any choice of T . (Likewise, any path that is weakly B-fair is certainly J-B-fair.)

Suppose π is weakly B-fair. We show it is B-just. Suppose that t ∈ Tr•¬B is enabled in a state s of
π , i.e., source(t) = s ∈ π , but all transitions v in π past the occurrence of s satisfy t •̂ v. Let π ′ be the
suffix of π starting in s. Closure property (2) guarantees that for every state s′ of π ′ there is a u ∈ Tr•

such that source(u) = s′, `(u) = `(t) and t 6̂ • u. Hence task Tt is perpetually B-enabled on π ′. By weak
B-fairness Tt must occur in π ′, meaning that π ′ contains a transition u ∈ Tr◦ with t 6̂ • u. This contradicts
the assumptions. 2

5 CCS and its extensions with broadcast communication and signals

This section presents five process algebras: Milner’s Calculus of Communicating Systems (CCS) [24], its
extensions with broadcast communication ABC [17] and signals CCSS [7], an alternative presentation
of CCSS where signals are encoded as transitions, and an alternative presentation of ABC that avoids
negative premises in favour of discard transitions.

5.1 CCS

CCS [24] is parametrised with sets A of agent identifiers and Ch of (handshake communication) names;
each A ∈ A comes with a defining equation A

def
= P with P being a CCS expression as defined below.

C̄h := {c̄ | c ∈ Ch} is the set of (handshake communication) co-names. Complementation is extended
to C̄h by setting ¯̄c = c. Act := Ch

.
∪ C̄h

.
∪ {τ} is the set of actions, where τ is a special internal action.

Below, c ranges over Ch∪ C̄h, η , α , ` over Act, and A,B over A . A relabelling is a function f : Ch→Ch;
it extends to Act by f (c̄)= f (c) and f (τ) := τ . The set PCCS of CCS expressions or processes is the
smallest set including:
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0 inaction
α.P for α ∈Act and P∈PCCS action prefixing
P+Q for P,Q∈PCCS choice
P|Q for P,Q∈PCCS parallel composition
P\L for L⊆ Ch and P∈PCCS restriction
P[ f ] for f a relabelling and P∈PCCS relabelling
A for A ∈A agent identifier

One often abbreviates α.0 by α , and P\{c} by P\c. The traditional semantics of CCS is given by the
labelled transition relation → ⊆ PCCS×Act ×PCCS, where transitions P `−→ Q are derived from the
rules of Table 1. The process α.P performs the action α first and subsequently acts as P. The choice
operator P+Q may act as either P or Q, depending on which of the processes is able to act at all. The
parallel composition P|Q executes an action from P, an action from Q, or in the case where P and Q
can perform complementary actions c and c̄, the process can perform a synchronisation, resulting in
an internal action τ . The restriction operator P\L inhibits execution of the actions from L and their
complements. The relabelling P[ f ] acts like process P with all labels ` replaced by f (`). Finally, the rule
for agent identifiers says that an agent A has the same transitions as the body P of its defining equation.

5.2 ABC—The Algebra of Broadcast Communication

The Algebra of Broadcast Communication (ABC) [17] is parametrised with sets A of agent identifiers,
B of broadcast names and Ch of handshake communication names; each A ∈A comes with a defining
equation A

def
= P with P being a guarded ABC expression as defined below.

The collections B! and B? of broadcast and receive actions are given by B] := {b] | b∈B} for
] ∈ {!,?}. Act := B!

.
∪B?

.
∪ Ch

.
∪ C̄h

.
∪ {τ} is the set of actions. Below, A ranges over A , b over B, c

over Ch∪C̄h, η over Ch∪C̄h∪{τ} and α, ` over Act. A relabelling is a function f : (B→B)∪(Ch→Ch).
It extends to Act by f (c̄)= f (c), f (b])= f (b)] and f (τ) := τ . The set PABC of ABC expressions is
defined exactly as PCCS. An expression is guarded if each agent identifier occurs within the scope of
a prefixing operator. The structural operational semantics of ABC is the same as the one for CCS (see
Table 1) but augmented with the rules for broadcast communication in Table 2.

ABC is CCS augmented with a formalism for broadcast communication taken from the Calculus of
Broadcasting Systems (CBS) [31]. The syntax without the broadcast and receive actions and all rules
except (BRO-L), (BRO-C) and (BRO-R) are taken verbatim from CCS. However, the rules now cover the
different name spaces; (ACT) for example allows labels of broadcast and receive actions. The rule (BRO-

C)—without rules like (PAR-L) and (PAR-R) with label b!—implements a form of broadcast communication
where any broadcast b! performed by a component in a parallel composition is guaranteed to be received
by any other component that is ready to do so, i.e., in a state that admits a b?-transition. In order to ensure
associativity of the parallel composition, one also needs this rule for components receiving at the same
time (]1=]2=?). The rules (BRO-L) and (BRO-R) are added to make broadcast communication non-blocking:
without them a component could be delayed in performing a broadcast simply because one of the other
components is not ready to receive it.

Table 2: Structural operational semantics of ABC broadcast communication

P
b]1−→P′, Q b?−6→

P|Q b]1−→ P′|Q
(BRO-L)

P
b]1−→P′, Q

b]2−→ Q′

P|Q b]−→ P′|Q′
]1◦]2=]6= with

◦ ! ?

! !

? ! ?

(BRO-C)
P b?−6→, Q

b]2−→Q′

P|Q b]2−→ P|Q′
(BRO-R)
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Table 3: Structural operational semantics for signals of CCSS

(Pˆs)ys P α−→ P′

Pˆr α−→ P′
Pys

(P+Q)ys
Qys

(P+Q)ys

Pys

(P|Q)ys
Pys, Q s−→ Q′

P|Q τ−→ P|Q′
P s−→ P′, Qys

P|Q τ−→ P′|Q
Qys

(P|Q)ys

Pys

(Pˆr)ys
Pys

(P\L)ys (s 6∈ L)
Pys

P[ f ]y f (s)

Pys

Ays (A
def
= P)

5.3 CCS with signals

CCS with signals (CCSS) [7] is CCS extended with a signalling operator Pˆs. Informally, Pˆs emits the
signal s to be read by another process. Pˆs could for instance be a traffic light emitting the signal red.
The reading of the signal emitted by Pˆs does not interfere with any transition of P, such as jumping to
green. Formally, CCS is extended with a set S of signals, ranged over by s and r. In CCSS the set of
actions is defined as Act := S

.
∪ Ch∪ C̄h

.
∪ {τ}. A relabelling is a function f : (S →S )∪ (Ch→ Ch).

As before it extends to Act by f (c̄)= f (c) and f (τ) := τ . The set PCCSS of CCSS expressions is defined
just as PCCS, but now also P ŝ is a process for P ∈PCCSS and s ∈S , and restriction also covers signals.

The semantics of CCSS is given by the labelled transition relation→⊆PCCSS×Act×PCCSS and a
predicate y ⊆PCCSS×S that are derived from the rules of CCS (Table 1, where η ,α, ` range over Act
and L ⊆ Ch∪S ), and the rules of Table 3. The predicate Pys indicates that process P emits the signal
s, whereas a transition P s−→ P′ indicates that P reads the signal s and thereby turns into P′. The first
rule is the base case showing that a process Pˆs emits the signal s. The second rule of Table 3 models
the fact that signalling cannot prevent a process from making progress. After having taken an action, the
signalling process loses its ability to emit the signal. The two rules in the middle of Table 3 state that the
action of reading a signal by one component in (parallel) composition together with the emission of the
same signal by another component, results in an internal transition τ; similar to the case of handshake
communication. Note that the component emitting the signal does not change through this interaction.
All the other rules of Table 3 lift the emission of s by a subprocess P to the overall process.

5.4 Encoding signals as transitions

A more compact presentation of CCSS can be obtained by encoding a signal Pys as a transition P s̄−→ P;
this is done in [3]. The price to be paid for the resulting simplification of the operational semantics is that
the new transitions P s̄−→ P should not be counted in the definition of justness, since they do not model
changes in the state of the represented system.

In this presentation of CCSS the set of labels is defined as L := Act
.
∪ S̄ , where Act is as in the

previous section and S̄ := {s̄ | s ∈S }. Complementation is extended to C̄h∪ S̄ by setting ¯̄c = c, with
c ∈ Ch∪S . A relabelling is a function f : (S →S )∪ (Ch→ Ch); it extends to L by f (c̄)= f (c) for
c ∈ Ch∪S , and f (τ) := τ . The semantics is given by the labelled transition relation→⊆PCCSS×L ×
PCCSS derived from the rules of CCS (Table 1), where now η , ` range over L , α over Act, c over Ch∪S
and L⊆ Ch∪S , augmented with the rules of Table 4.
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Table 4: Structural operational semantics of CCSS when signals are encoded as transitions

Pˆs s̄−→ Pˆs
P s̄−→ P′

P+Q s̄−→ P′+Q

Q s̄−→ Q′

P+Q s̄−→ P+Q′

P α−→ P′

Pˆr α−→ P′
P s̄−→ P′

Pˆr s̄−→ P′ ˆr

P s̄−→ P′

A s̄−→ A
(A

def
= P)

5.5 Using signals to avoid negative premises in ABC

Finally, we present an alternative operational semantics ABCd of ABC that avoids negative premises.
The price to be paid is the introduction of signals that indicate when a state does not admit a receive
action.4 To this end, let B: := {b: | b ∈B} be the set of broadcast discards, and L := B:

.
∪ Act the set

of transition labels, with Act as in Section 5.2. The semantics is given by the labelled transition relation
→⊆PABC×L ×PABC derived from the rules of CCS (Table 1), where now c ranges over Ch∪ C̄h, η

over Ch∪ C̄h∪{τ}, α over Act and ` over L , augmented with the rules of Table 5.

Lemma 1 [31] P b:−→ Q iff Q = P∧P b?−6→ , for P,Q ∈PABC and b ∈B.

Proof: A straightforward induction on derivability of transitions. 2

Corollary 2 The structural operational semantics of ABC from Sections 5.2 and 5.5 yield the same
labelled transition relation −→ when transitions labelled b: are ignored. 2

This approach stems from the Calculus of Broadcasting Systems (CBS) [31].

6 An LTS with concurrency for CCS and its extensions

The forthcoming material applies to each of the process algebras from Section 5, or combinations thereof.
Let P be the set of processes or expressions in the appropriate language.

We allocate an LTS as in Definition 2 to these languages by taking S to be the setP of processes, and
Tr the set of derivations t of transitions P `−→ Q with P,Q ∈ P. Of course source(t)=P, target(t)=Q
and `(t)= `. Here a derivation of a formula ϕ (either a transition P `−→ Q or a predicate Pys) is a well-
founded tree with the nodes labelled by formulas, such that the root has label ϕ , and if µ is the label of a
node and K is the set of labels of the children of this node then K

µ
is an instance of a rule of Tables 1–5.

4A state P admits an action α ∈ Act if there exists a transition P α−→ Q.

Table 5: Structural operational semantics of ABC broadcast communication with discard transitions

0 b:−→ 0 α.P b:−→ α.P (α 6=b?)
P b:−→ P′, Q b:−→ Q′

P+Q b:−→ P′+Q′

P b]1−→ P′, Q b]2−→ Q′

P|Q b]−→ P′|Q′
]1◦]2=]6= with

◦ ! ? :
! ! !
? ! ? ?
: ! ? :

P b:−→ P′

A b:−→ A
(A

def
= P)
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We take Rec :=B? in ABC and ABCd: broadcast receipts can always be blocked by the environment,
namely by not broadcasting the requested message. For CCS and CCSS we take Rec := /0, thus allowing
environments that can always participate in certain handshakes, and/or always emit certain signals.

Following [17], we give a name to any derivation of a transition: The unique derivation of the tran-
sition α.P α−→ P using the rule (ACT) is called α→P. The derivation obtained by application of (COMM)

or (BRO-C) on the derivations t and u of the premises of that rule is called t|u. The derivation obtained
by application of (PAR-L) or (BRO-L) on the derivation t of the (positive) premise of that rule, and using
process Q at the right of |, is t|Q. In the same way, (PAR-R) and (BRO-R) yield P|u, whereas (SUM-L), (SUM-R),
(RES), (REL) and (REC) yield t+Q, P+t, t\L, t[ f ] and A:t. These names reflect the syntactic structure of
derivations: t|P 6= P|t and (t|u)|v 6= t|(u|v).

For CCSS as in Section 5.3 there are also derivations ξ /∈ Tr of signals. The unique derivation of the
signal (Pˆs)ys using the first rule of Table 3 is called P→s. The other rules of Table 3 yield derivations
t ˆr, ξ +Q, P+ ξ , ξ |Q, ξ |t, t|ξ , P|ξ , ξ ˆr, ξ\L, ξ [ f ] and A:ξ , where ξ is the derivation of the signal
premise, and t of the transition premise of the rule. The derivations of Section 5.4 are (named) the same
as in Section 5.3, but now they are all derivations of transitions t ∈ Tr; in particular P→s is now the unique
derivation of the transition Pˆs s̄−→ Pˆs using the first rule of Table 4.

The derivations obtained by application of the rules of Table 5 are called b:0, b:α.P, t + u, t|u and
A:t, where t and u are the derivations of the premises of these rules.

Synchrons Let Arg := {+L,+R, |L, |R,\L, [ f ],A:, ˆr | L ⊆ Ch ∧ f a relabelling∧ A ∈ A ∧ r ∈ S }. A
synchron is an expression σ(

α→P) or σ(P→s) or σ(b:) with σ ∈ Arg∗, α ∈ Act, s∈S , P∈P and b∈B.
An argument ι ∈ Arg is applied componentwise to a set Σ of synchrons: ι(Σ) := {ις | ς ∈ Σ}. The set of
synchrons ς(P) of a CCS, ABC or CCSS process P is inductively defined by

ς(0) = /0 ς(α.P) = {( α→P)}
ς(P+Q) = +Lς(P)∪+Rς(Q) ς(P|Q) = |Lς(P)∪|Rς(Q)
ς(P\L) = \Lς(P) ς(P[ f ]) = [ f ]ς(P)
ς(A) = A:ς(P) when A

def
= P. ς(Pˆs) = {(P→s)}∪ ˆsς(P)

Thus, a synchron of a process Q can be seen as a path in the parse tree of Q to an unguarded subexpression
α.P or Pˆs of Q—except that recursion A

def
= P gets unfolded in the construction of such a path. Here a

subexpression of Q occurs unguarded if it does not lay within a subexpression β .R of Q.
For ABCd we amend the clauses for inaction and prefixing:

ς(0) = {(b:) | b ∈ B} ς(α.P) = {(b:) | b ∈ B∧b? 6= α}∪{( α→P)}

The set of synchrons ς(t) of a derivation t of a transition P `−→ Q or signal Pys is defined by

ς(
α→P) = {( α→P)} ς(t +Q) = +Lς(t) ς(P+ t) = +Rς(t)

ς(t|Q) = |Lς(t) ς(t|u) = |Lς(t)∪|Rς(u) ς(P|u) = |Rς(u)
ς(t\L) = \Lς(t) ς(t[ f ]) = [ f ]ς(t) ς(A:t) = A:ς(t)
ς(P→s) = {(P→s)} ς(t ˆr) = ˆr ς(t)
ς(b:0) = {(b:)} ς(b:α.P) = {(b:)} ς(t + v) = +Lς(t)∪+Rς(v)

Thus, a synchron of t represents a path in the proof-tree t from its root to a leaf. Note that we use the
symbol ς as a variable ranging over synchrons, and as the name of two functions—context disambiguates.

Lemma 2 If t is a derivation of P `−→ Q or Pys then ς(t)⊆ ς(P).
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Proof: A trivial structural induction on t. 2

Each transition derivation can be seen as the synchronisation of one or more synchrons.

Example 4 The CCS process P=
((

c.Q+(d.R|e.S)
)
|c̄.T

)
\c has 3 outgoing transitions: P τ−→ (Q|T )\c,

P d−→ ((R|e.S)|c̄.T )\c and P e−→ ((d.R|S)|c̄.T )\c. Let tτ , td and te ∈ Tr be the unique derivations of
these transitions. Then tτ is a synchronisation of two synchrons, whereas td and te ∈ Tr have only one
each: ς(tτ) = {\c |L+L(

c→Q),\c |R(
c̄→T )}, ς(td) = {\c |L+R |L(

d→R)} and ς(te) = {\c |L+R |R(
e→S)}.

The derivations td and te ∈ Tr can be seen as concurrent, because their synchrons come from oppo-
site sides of the same parallel composition; one would expect that after one of them occurs, a variant
of the other is still possible. Indeed, there is a transition ((d.R|S)|c̄.T )\c d−→ ((R|S)|c̄.T )\c. Let t ′d be
its unique derivation. The derivation td and t ′d are surely different, for they have a different source state.
Even their synchrons are different: ς(t ′d) = {\c |L |L(

d→R)}. Nevertheless, t ′d can be recognised as a fu-
ture variant of td : its only synchron has merely lost an argument +R. This choice got resolved when
taking the transition te.

We proceed to formalise the concepts “future variant” and “concurrent” that occur above, by defining
two binary relations ;⊆ Tr•×Tr• and •̂⊆ Tr•×Tr such that the following properties hold:

The relation ; is reflexive and transitive. (4)
If t ; t ′ and t •̂ v, then t ′ •̂ v. (5)
If t •̂ v with source(t)= source(v) then ∃t ′∈Tr• with source(t ′)= target(v) and t ; t ′. (6)
If t ; t ′ then `(t ′) = `(t) and t 6̂ • t ′. (7)

With t •̂ v we mean that the possible occurrence of t is unaffected by the occurrence of v. Although for
CCS the relation •̂ is symmetric (and Tr• = Tr), for ABC and CCSS it is not:

Example 5 ([17]) Let P be the process b!|(b?+ c), and let t and v be the derivations of the b!- and c-
transitions of P. The broadcast b! is in our view completely under the control of the left component; it
will occur regardless of whether the right component listens to it or not. It so happens that if b! occurs
in state P, the right component will listen to it, thereby disabling the possible occurrence of c. For this
reason we have t •̂ v but v 6̂ • t.

Example 6 Let P be the process aˆs|s, and let t and v be the derivations of the a- and τ-transitions of P.
The occurrence of a disrupts the emission of the signal s, thereby disabling the τ-transition. However,
reading the signal does not affect the possible occurrence of a. For this reason we have t •̂ v but v 6̂ • t.

Proposition 2 Assume (4)–(6). If t ∈ Tr• and π is a path from source(t) to P ∈P such that t •̂ v for all
transitions v occurring in π , then there is a t ′ ∈ Tr• such that source(t ′) = P and t ; t ′.

Proof: By induction on the length of π .
The induction base is trivial, taking t ′ := t, and applying the reflexivity of ;.
So assume t ∈ Tr• and π is a path from source(t) with as last transition v′ with source(v′) = P and

target(v′) = Q, such that t •̂ v for all transitions v occurring in π . By induction, there is a t ′ ∈ Tr• such
that source(t ′) = P and t ; t ′. By (5) t ′ •̂ v′. By (6) there is a t ′′ ∈ Tr• such that source(t ′′) = Q and
t ′; t ′′. Now apply the transitivity of ;. 2

Corollary 3 Assume (4)–(7). If t ∈ Tr• and π is a path from source(t) to P ∈P such that t •̂ v for all
transitions v occurring in π , then there is a t ′ ∈ Tr• such that source(t ′) = P, `(t ′) = `(t) and t 6̂ • t ′.

Proof: Immediately from Proposition 2 and (7). 2
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It follows that the LTS (P,Tr,source, target, `), augmented with the concurrency relation •̂, is an LTSC
in the sense of Definition 5. By (4) and (7) •̂ is irreflexive on Tr•, so property (1) holds. That (2) holds
is stated by Corollary 3.

We now proceed to define the relations ; and •̂ on synchrons, and then lift them to derivations.
Subsequently, we establish (4)–(7).

The elements +L, +R, A: and ˆr of Arg are called dynamic [24]; the others are static. (Static op-
erators stay around when their arguments perform transitions.) For σ ∈ Arg∗ let static(σ) be the result
of removing all dynamic elements from σ . Moreover, for ς = συ with υ ∈ {( α→P),(P→s),(b:)} let
static(ς) := static(σ)υ .

Definition 8 A synchron ς ′ is a possible successor of a synchron ς , notation ς ; ς ′, if either ς ′ = ς , or
ς has the form σ1|Dς2 for some σ1 ∈ Arg∗, D ∈ {L,R} and ς2 a synchron, and ς ′ = static(σ1)|Dς2.

Definition 9 Two synchrons ς and υ are directly concurrent, notation ς ^d υ , if ς has the form σ1|Dς2
and υ = σ1|Eυ2 with {D,E} = {L,R}. Two synchrons ς ′ and υ ′ are concurrent, notation ς ′^ υ ′, if
∃ς ,υ .ς ′ ;ς ^d υ ; υ ′.

Lemma 3 If ς ,υ ∈ ς(P) for some P ∈P and ς ^ υ , then ς ^d υ .

Proof: By assumption, there are ς†,υ† with ς ;ς† ^d υ† ; υ . W.l.o.g. we choose ς† and υ† such that
either ς† = ς or υ† = υ . The synchrons ς and υ describe paths in the parse tree of P, so the first symbol
where they differ must be a right versus left argument of the same binary operator op. The possibility
that op =+ quickly leads to a contradiction, so ς ^d υ . 2

Necessary and active synchrons All synchrons of the form σ(
α→P) are active; their execution causes

a transition α.P α−→P in the relevant component of the represented system. Synchrons σ(P→s) and
σ(b:) are passive; they are not affecting any state change. Let aς(t) denote the set of active synchrons of
a derivation t. It follows that Tr◦ (see Section 4) is the set of transitions t ∈ Tr with aς(t) 6= /0.

Whether a synchron ς ∈ ς(t) is necessary for t to occur is defined only for t ∈ Tr•. If t is the
derivation of a broadcast transition, i.e., `(t) = b! for some b ∈B, then exactly one synchron υ ∈ ς(t)
is of the form σ(

b!→P), while all the other ς ∈ ς(t) are of the form σ ′(
b?→Q) (or possibly σ ′(b:) in

ABCd). Only the synchron υ is necessary for the broadcast to occur, as a broadcast is unaffected by
whether or not someone listens to it. Hence we define nς(t) := {υ}. For all t ∈ Tr• with `(t) /∈ B!
(i.e. `(t) ∈ S ∪Ch ∪ C̄h ∪{τ}) we set nς(t) := ς(t), thereby declaring all synchrons of the derivation
necessary.

Lemma 4 If t ∈ Tr• and ς ,υ ∈ nς(t)∪aς(t) with ς 6= υ , then ς ^d υ .

Proof: A trivial structural induction on t. 2

Lemma 5 If ς ; ς ′ and ς ; ς ′′ then ς ′ 6^ ς ′′. Also, if ς ; ς ′′ and ς ′; ς ′′ then ς 6^ ς ′.

Proof: Note that ς ; ς ′ implies static(ς) = static(ς ′), and ς ^d υ implies static(ς) ^d static(υ).
Hence ς ^ υ implies static(ς)^d static(υ). Moreover, ^d (and hence ^) is irreflexive: ς 6^d ς .

Suppose ς ; ς ′ and ς ; ς ′′. Then static(ς ′) = static(ς) = static(ς ′′). So static(ς ′) 6^d static(ς ′′),
and hence ς ′ 6^ ς ′′. The other statement follows in the same way. 2

Definition 10 A derivation t ′ ∈ Tr• is a possible successor of a derivation t ∈ Tr•, notation t ; t ′, if t
and t ′ have equally many necessary synchrons and each necessary synchron of t ′ is a possible successor
of one of t; i.e., if |nς(t)|= |nς(t ′)| and ∀ς ′∈nς(t ′).∃ς ∈nς(t).ς ; ς ′.
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By Lemmas 4 and 5 this implies that the relation ; between the necessary synchrons of t and t ′ is a
bijection.

Definition 11 Derivation t ∈ Tr• is unaffected by u, notation t •̂ u, if ∀ς ∈nς(t).∀υ ∈aς(u).ς ^ υ .

So t is unaffected by u if no active synchron of u interferes with a necessary synchron of t. Passive
synchrons do not interfere at all.

In Example 4 one has td ^ te, td ; t ′d and t ′d ^ te. Here t ^ u denotes t •̂ u∧u •̂ t.

Proposition 3 The relation ; on Tr• is reflexive, transitive, and disjoint with •̂.

Proof: The relation ; on synchrons is reflexive and transitive by definition. That it is disjoint with ^
follows as in the proof of Lemma 5. The lifting of these properties to derivations follows directly from
the definitions, using that nς(u)∩aς(u) 6= /0 for all u ∈ Tr•. 2

Proposition 4 If t ; t ′ and t •̂ v, then t ′ •̂ v.

Proof: Let ς ′ ∈ nς(t ′) and υ ∈ aς(v). We have to show that ς ′^ υ . By assumption ∃ς ∈nς(t).ς ; ς ′.
Furthermore, ς ^ υ , since t •̂ v. So ∃ς†,υ†.ς ;ς† ^d υ† ; υ . By the transitivity of ; this entails
ς ′ ;ς† ^d υ† ; υ , so ς ′^ υ . 2

Proposition 5 If t ; t ′ then `(t ′) = `(t).

Proof: If t ; t ′ then the derivation t ′ must be obtainable from t by reducing some subterms of the form
u+Q, P+ u, A:u or u ˆr to u, and/or to change some receptive or discarding partners in a broadcast
communication. Given rules (SUM-L), (SUM-R), (REC), etc., this does not alter the label of this derivation. 2

Propositions 3–5 establish the required properties (4,5,7). It remains to establish (6)—see Proposition 6.

Definition 12 A set Σ⊆ ς(P) of synchrons of P is P-consistent if there is a derivation t ∈ Tr• with
nς(t) = Σ and source(t) = P.

Lemma 6 Let P,Q ∈P be processes, Σ⊆ ς(P) and Σ′ ⊆ ς(Q) such that Σ is P-consistent, |Σ′|= |Σ| and
∀ς ∈Σ.∃ς ′∈Σ′.ς ; ς ′. Then Σ′ is Q-consistent.

Proof: Let t ∈ Tr be such that nς(t)=Σ and source(t) = P. So Σ 6= /0. Each synchron ς ∈ Σ represents
a path in the derivation t from its root to a leaf. If ς ; ς ′ than ς ′ represents a version if the same path,
but in which certain nodes of t, labelled +Q′, P′+, A: or ˆr, are marked as being deleted by ς ′. Since
Σ′ ⊆ ς(Q), this marking of deleted nodes is consistent, in the the sense that no node of t is deleted
according to one element of Σ′, but kept according to another. In fact, whether a node of t is marked
as deleted depends entirely on the syntactic shape of Q. In view of the rules (SUM-L), (SUM-R), (REC), etc.,
actually deleting the indicated nodes from the derivation t yields another derivation t ′, with nς(t ′) = Σ′

and source(t ′) = Q. Depending on the syntactic shapes of P and Q, some receptive or discarding partners
in broadcast communications may have been altered between t and t ′ as well. 2

Write ς •̂d u for ς a synchron and u ∈ Tr if ς ^d υ for all υ ∈ aς(u).

Definition 13 Let ς ,υ be synchrons with ς ^d υ , i.e., ς =σ |Dς ′ and υ =σ |Eυ ′ for some σ ∈ Arg∗,
synchrons ς ′,υ ′ and {D,E}= {L,R}. Define ς@υ , where @ is pronounced “after”, to be static(σ)|Dς ′.

For u ∈ Tr• with ς •̂d u let ς@u := ς@υ for the υ ∈ aς(u) that is “closest” to ς , in the sense that it
has the largest prefix in common with it. For u ∈ Tr\Tr• let ς@u := ς .

In Example 4 \c |L+R |L(
d→R)@te = \c |L |L(

d→R).
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Observation 1 Let u∈ Tr, P = source(u) and Q = target(u). If ς ∈ ς(P) with ς •̂d u then ς@u∈ ς(Q).

Proposition 6 If t ∈Tr•, v∈Tr and t •̂ v with source(t) = source(v) then there is a derivation t ′ ∈ Tr•

with source(t ′) = target(v) and t ; t ′.

Proof: Let P := source(v) and Q := target(v). Then Σ := nς(t) is P-consistent. By Lemma 3 ς •̂d v
for all ς ∈ Σ. Let Σ′ := {ς@v | ς ∈ Σ}. By Observation 1 Σ′ ⊆ ς(Q). By Definition 13 ς ; ς@v for all
ς ∈ Σ. By Lemma 5 |Σ′| = |Σ|. So by Lemma 6 Σ′ is Q-consistent, that is, there exists a t ′ ∈ Tr• with
nς(t ′) = Σ′ and source(t ′) = Q. By Definition 10 and Lemma 5 t ; t ′. 2

7 Components

This section proposes two concepts of system components associated to a transition, with for each a
classification of components as necessary and/or affected. We then apply a definition of a concurrency
relation in terms of these components closely mirroring Definition 11 in Section 6 of the concurrency
relation •̂ in terms of synchrons. The dynamic components give rise to the exact same concurrency
relation •̂ from Definition 11, whereas the static components yield a strictly smaller concurrency re-
lation •̂s. However, only the static components satisfy closure property (3). Finally, we present three
alternative versions of •̂s that all give rise to the same concept of justness.

7.1 Dynamic components

A (dynamic) component is either the empty string ε or any string σι with σ ∈ Arg∗ and ι ∈ Arg a static
argument. Each synchron ς can be uniquely written as γς ′ with γ a component and ς ′ a synchron with
only dynamic arguments. The dynamic component C(ς) of such a synchron ς is defined to be γ .

The set of dynamic components COMP(P) of a process P is defined as {C(ς) | ς ∈ ς(P)}.
The set of dynamic components COMP(t) of a derivation t is defined as {C(ς) | ς ∈ ς(t)}.
The set of necessary dynamic components NC(t) of a derivation t is defined as {C(ς) | ς ∈ nς(t)}.
The set of affected dynamic components AC(t) of a derivation t is defined as {C(ς) | ς ∈ aς(t)}.
A component γ ′ is a possible successor of a component γ , notation γ ; γ ′, if either γ ′ = γ or γ has

the form σ1|Dγ2, with σ1 ∈ Arg∗, D ∈ {L,R} and γ2 a component, and γ ′ = static(σ1)|Dγ2.
Two components γ and δ are directly concurrent, notation γ ^d δ , if γ = σ1|Dγ2 and δ = σ1|Eδ2 with

{D,E}= {L,R}. Two components γ ′ and δ ′ are concurrent, notation γ ′^ δ ′, if ∃γ,δ .γ ′ ;γ ^d δ ; δ ′.
These definitions imply that ς ; υ ⇒C(ς);C(υ) and ς ^ υ ⇔C(ς)^C(υ).
The next lemma, whose proof is trivial, say that the concurrency relation •̂ on derivations could

equally well have be defined in terms of dynamic components (rather than synchrons).

Lemma 7 Derivation t ∈ Tr• is unaffected by u, t •̂ u, iff ∀γ ∈NC(t).∀δ ∈AC(u).γ ^ δ . 2

The following shows that the functions NC and AC do not satisfy closure property (3) of Section 2.

Example 7 In Example 4 with S := 0, td , te ∈ Tr• with source(td) = source(te) and NC(td)∩AC(te) = /0.
Yet, there is no u ∈ Tr• with source(u) = target(te), `(u) = `(td) = d and NC(u) = NC(td). In fact, the
unique u ∈ Tr• with source(u) = target(te) and `(u) = d is t ′d . However, NC(td) = {\c |L+R |L}, whereas
NC(t ′d) = {\c |L |L}.
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7.2 Static components

A static component is a string σ ∈ Arg∗ of static arguments. Let C be the set of static components. The
static component c(ς) of a synchron ς is defined to be the largest prefix γ of ς that is a static component.

The set of static components comp(P) of a process P is defined as {c(ς) | ς ∈ ς(P)}.
The set of static components comp(t) of a derivation t is defined as {c(ς) | ς ∈ ς(t)}.
The set of necessary static components npc(t) of a derivation t is defined as {c(ς) | ς ∈ nς(t)}.
The set of affected static components afc(t) of a derivation t is defined as {c(ς) | ς ∈ aς(t)}.
Since nς(t)⊆ ς(t) and aς(t)⊆ ς(t), we have npc(t)⊆ comp(t) and afc(t)⊆ comp(t). Moreover, by

Lemma 2, comp(t)⊆ comp(source(t)).
The following lemma shows how the relations ; and ^ simplify when applied to static components.

Lemma 8 If γ ∈ C and γ ; γ ′ then γ ′ = γ . Moreover, for γ,δ ∈ C , γ ^ δ iff γ ^d δ .

Proof: The first statement and direction “if” of the second are trivial. So let γ ′,δ ′ ∈ C with γ ′ ^ δ ′.
Then γ ′ ;γ ^d δ ; δ ′ for some components γ and δ . Thus, using insights from the proof of Lemma 5,
γ ′ = static(γ ′) = static(γ)^d static(δ ) = static(δ ′) = δ ′. 2

The next result says that any two different static components of the same process are concurrent.
Lemma 9 Let γ,δ ∈ comp(P) for some P ∈P. Then γ ^ δ iff γ 6= δ .

Proof: “Only if” is trivial. “If” follows by a straightforward structural induction on P. 2

We now define a static concurrency relation •̂s between derivations in terms of their static components
in the same way that the (dynamic) concurrency relation •̂ is characterised (by Lemma 7) in terms of
their dynamic components:

Definition 14 Derivation t ∈ Tr• is statically unaffected by u, t •̂s u, iff ∀γ ∈npc(t).∀δ ∈afc(u).γ ^ δ .

The following shows that •̂s is strictly contained in •̂.

Proposition 7 If t •̂s u then t •̂ u.

Proof: Suppose t •̂s u. Let ς ∈nς(t) and υ∈aς(u). Then c(ς)∈npc(t), c(υ)∈afc(u), so c(ς)^ c(υ).
Hence c(ς)^d c(υ) by Lemma 8, and thus ς ^d υ . 2

In Example 4 we have td ^ te but td 6̂ s te, for npc(te) = comp(te) = comp(td) = afc(td) = {\c |L}. Here
t ^s u denotes t •̂s u∧u •̂s t. Hence the implication of Proposition 7 is strict.

Lemma 10 Let source(t) = source(v). Then t •̂s v iff npc(t)∩afc(v) = /0.

Proof: Immediately from Lemma 9. 2

Write ς •̂s v for ς a synchron and v ∈ Tr if c(ς)^ γ for all γ ∈ afc(v).

Observation 2 If ς •̂s v then ς@v = ς .

Henceforth we write t ≡ u, for t,u ∈ Tr•, when nς(t) = nς(u). In that case npc(t) = npc(u) and t ; u,
and thus, by (7), `(t) = `(u).

Proposition 8 If t ∈Tr•, v ∈ Tr and t •̂s v with source(t) = source(v) then there is a derivation u ∈ Tr•

with source(u) = target(v) and t ≡ u.

Proof: By Proposition 7 t •̂ v. Hence the proof of Proposition 6 finds a u ∈ Tr• with source(u) =
target(v) and t ; u, such that nς(u) = {ς@v | ς ∈ nς(t)}. Since t •̂s v, ς •̂s v for all ς ∈ nς(t), so by
Observation 2 nς(u) = nς(t), i.e., t ≡ u. 2

In view of Lemma 10, Proposition 8 says that the functions npc and afc : Tr→P(C ) satisfy closure
property (3) of Section 2.
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7.3 Two compatible definitions of the static concurrency relation

The concurrency relation •̂c between transitions defined in terms of static components according to the
template in [18], recalled in Section 2, is not identical to the concurrency relation •̂s of Definition 14.

Definition 15 Let t,u be derivations. Write t •̂c u iff npc(t)∩afc(u) = /0.

The following shows that •̂s is strictly included in •̂c.

Proposition 9 If t •̂s u then t •̂c u.

Proof: This follows immediately from the irreflexivity of ^⊆ C ×C (Lemma 9). 2

Example 8 Let t1 and t2 be the unique derivations of the transitions c[ f ] c−→ 0[ f ] and c\L c−→ 0\L,
where f (c) = c and c /∈ L. Then (n)ς(t1) = {[ f ](

c→0)} and (a)ς(t2) = {\L(
c→0)}, so npc(t1) = {[ f ]}

and afc(t2) = {\L}. Since [ f ] 6̂ \L and [ f ] 6= \L, one has t1 6̂ •s t2 (and t1 6̂ • t2) but t1 •̂c t2.

Since in Example 4 we have td ^ te but (td 6̂ s te and) td 6̂ c te, since npc(td) = afc(te) = {\c |L}, it
follows also that •̂c is incomparable with •̂.

Nevertheless, we show that for the study of justness it makes no difference whether justness is defined
using the concurrency relation •̂s or •̂c.

Lemma 11 If t ∈Tr• and π is a path from source(t) to a state P′ such that t •̂s v for all transitions v on
π , then there is a derivation t ′ ∈ Tr• with source(t ′) = P′ and t ≡ t ′.

Proof: This is a corollary of Proposition 8, obtained by a simple induction on the length of π , using the
reflexivity and transitivity of ≡, and that t •̂s v and t ≡ t ′ implies t ′ •̂s v. 2

Definition 16 Let T = (S,Tr,source, target, `) be an LTS, and •̂x ⊆ Tr× Tr a concurrency relation
between the transitions, satisfying (1) and (2). Call a path π in T •̂x-B-just, for B ⊆ Act, if according
to Definition 6 it is B-just in the LTSC (S,Tr,source, target, `, •̂x).

Proposition 10 A path is •̂c-B-just iff it is •̂s-B-just.

Proof: “Only if” is immediate from Definition 6 and Proposition 9.
“If”: Let π be •̂s-B-just, and let t ∈ Tr•¬B with P := source(t) ∈ π . By Definition 6 a transition u

occurs in π past the occurrence of P, such that t 6̂ •s u. W.l.o.g. we take u to be the first such transition
in π past P. If suffices to show that t 6̂ •c u. For all transitions v in π between P and source(u) we have
t •̂s v. Hence, by Lemma 11, there is a t ′ ∈ Tr• with source(t ′) = source(u) and t ≡ t ′. Moreover, t 6̂ •s u
implies t ′ 6̂ •s u, which implies t ′ 6̂ •c u by Lemma 10, which implies t 6̂ •c u. 2

The above proof shows that for the study of justness, we need to know whether two transitions t ∈ Tr•

and u ∈ Tr are related by the static concurrency relation or not, only when ∃t ′ ∈ Tr• with t ≡ t ′ and
source(t ′) = source(u). And restricted to such pairs (t,u) the relations •̂s and •̂c coincide.

7.4 A more abstract definition of static components

The arguments of unary operators occurring in the definition of a static components are essentially re-
dundant. Consider the following alternative definitions:

An abstract static component is a string σ ∈ {|L, |R}∗. The abstract static component c′(ς) of a
synchron ς is defined to be the result of leaving out all argument \L and [ f ] from c(ς). For a derivation
t let comp′(t) := {c′(ς) | ς ∈ ς(t)}, npc′(t) := {c′(ς) | ς ∈ nς(t)} and afc′(t) := {c′(ς) | ς ∈ aς(t)}.

Analogously to Definitions 14 and 15, write t •̂′
s u iff ∀γ ∈ npc′(t).∀δ ∈ afc′(u).γ ^ δ , and write

t •̂′
c u iff npc′(t)∩ afc′(u) = /0. Note that c(ς) ^ c(υ) implies c′(ς) ^ c′(υ) for all synchrons ς and

υ . Likewise, c′(ς) 6= c′(υ) implies c(ς) 6= c(υ). Hence •̂s ⊆ •̂′
s ⊆ •̂′

c ⊆ •̂c. Thus, Proposition 10
implies that a path is •̂s-B-just iff it is •̂′

s-B-just iff it is •̂′
c-B-just iff it is •̂c-B-just.
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8 Computational interpretations

The classical computational interpretation of CCS and related languages aligns with the (dynamic) con-
currency relation •̂ of Sections 6 and 7.1, rather than the static concurrency relation •̂s of Section 7.2.
This is illustrated by the transitions td and te of Example 4, which are generally regarded as concurrent.
This computational interpretation also aligns with the semantics of CCS in terms of event structures and
Petri nets, where concurrency is made more explicit [35, 19].

Below, we first define a sublanguage of CCS with broadcast communication and/or signals on which
the static and dynamic concurrency relations coincide—so it does not include the process P of Example 4.
Using this, we propose an alternative computational interpretation of CCS and its extensions that aligns
with the static concurrency relation.

The underlying intuition is that a choice necessary needs to be made locally, so that one can not
have two truly parallel actions d and e for which the execution of either one constitutes the same choice.
In Example 4, the transitions tτ and td are mutually exclusive—one rules out the other—and therefore
should be co-located. The same holds for tτ and td , and consequently td should be co-located with te
and not concurrent. This intuition stems from [14, 15]. Similarly, a signal can be emitted only locally,
and for convenience we treat recursion in the same vain, so that all dynamic operators can be applied to
sequential processes only.

Definition 17 The dynamically sequential fragment of CCS with broadcast communication and/or sig-
nals is given by the context-free grammar

S ::= 0 | α.P | S+S | Sˆs | A | S\L | S[ f ]
P ::= S | P|Q | P\L | P[ f ]

where S is the sort of sequential processes, and P the sort of parallel processes. Defining equations for
agent identifiers should have the form A

def
= S.

This language is crafted in such a way that in all synchrons a dynamic argument will never precede
a parallel composition argument |L or |R. As a consequence, we obtain, for synchrons ς and υ , that
ς ; υ ⇔ ς = υ and that

ς ^ υ ⇔ ς ^d υ ⇔C(ς)^d C(υ)⇔ c(ς)^ c(υ) .

Hence, on this fragment, the concurrency relations •̂ and •̂s coincide.
Next, we introduce a new unary operator sq, that turns a parallel process into a sequential one. Thus

“| sq(P)” can be added to the line for S ::= in the context-free grammar above. Its operational rules are

P α−→ P′

sq(P) α−→ P′
P κ−→ P′

sq(P) κ−→ sq(P′)

where κ ranges over b: ∈B: and s̄ ∈ S̄ , so that it changes its argument as little as possible. However,
the argument sq is now added to synchrons, counting as dynamic, and Definition 9 of ^d is upgraded by
the requirement that the argument sq does not occur in σ1, with ^ redefined to equal ^d . Consequently,
the only effect of sq is that any concurrency between outgoing transitions of its arguments is removed.
The process sq(d.R|e.S), for instance, behaves exactly like d(R|e.S)+ e(d.R|S).

On this extension of the dynamically sequential fragment of CCS with broadcast communication
and/or signals we still have that ς ^ υ ⇔ ς ^d υ ⇔C(ς)^d C(υ)⇔ c(ς)^ c(υ), and consequently
•̂ and •̂s coincide.
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Finally, we propose a language that has the same syntax as CCS, possibly extended with broadcast
communication and/or signals, but is technically a sublanguage of language proposed above, because
whenever the operators + or ˆs are applied to parallel arguments, P+Q is taken to be an abbreviation of
sq(P)+ sq(Q), and Pˆs of sq(P)ˆs. Likewise, A

def
= P can be seen as an abbreviation of A

def
= sq(P). This

language can be seen as an alternative computational interpretation of CCS (plus extensions) that aligns
with the static concurrency relation •̂s.

Interestingly, the operational Petri net semantics of [6] follows the static computational interpretation
above, whereas its modification in [27, 28] follows the classical (dynamic) interpretation of concurrency.

9 The dynamic and static accounts of justness agree

We now show that the concurrency relations •̂ and •̂s (and thus also the variants •̂′
s, •̂c and •̂′

c of
•̂s studied in Sections 7.3 and 7.4) give rise to the same concept of justness.

Each derivation t ∈ Tr has only finitely many synchrons, and each synchron contains finitely many
dynamic arguments. Let d(t) be the sum, over ς ∈ nς(t), of the number of dynamic arguments in ς .

Theorem 2 A path is •̂-B-just iff it is •̂s-B-just.

Proof: “Only if” is immediate from Definition 6 and Proposition 7.
“If”: Let π be •̂s-B-just, and let t ∈ Tr•¬B with source(t) ∈ π . By induction on d(t) we find a

transition u occurring in π past the occurrence of source(t), such that t 6̂ • u.
By Definition 6 a transition u′ occurs in π past the occurrence of source(t), such that t 6̂ •s u′. W.l.o.g.

we take u′ ∈ Tr• to be the first such transition in π past source(t). By Lemma 11 there is a derivation
t ′ ∈ Tr• with source(t ′) = source(u′) and t ≡ t ′. So t ′ 6̂ •s u′. Hence there are ς ∈ nς(t ′) and υ ∈ aς(u′)
with c(ς) = c(υ) by Lemma 10. In case t ′ 6̂ • u′ then t •̂ u and we are done. So suppose t ′ •̂ u′. Then
ς ^υ , so ς ^d υ by Lemmas 2 and 3. Thus ς has the form σ1|Dς2 and υ =σ1|Eυ2 with {D,E}= {L,R}.
Since c(ς) = c(υ), a dynamic operator must occur in σ1. So by Definition 13 ς@υ contains fewer
dynamic arguments than ς , and hence ς@u′ contains fewer dynamic arguments than ς . Moreover, for
ς ′ 6= ς , ς ′@u′ contains at most as many dynamic arguments as ς ′.

The proof of Proposition 6 finds a t ′′ ∈ Tr• with source(t ′′) = target(u) and t ′; t ′′, such that nς(t ′′) =
{ς@u′ | ς ∈ nς(t ′)}. It follows that d(t ′′)< d(t ′). By Proposition 5, `(t ′′) = `(t ′) = `(t), and so t ′′ ∈ Tr•¬B.
By the induction hypothesis we find a transition u occurring in π past the occurrence of source(t ′′), such
that t ′′ 6̂ • u. So u also occurs past the occurrence of source(t) and t 6̂ • u, using Proposition 4. 2

10 Justness is feasible even with infinitary choice

A straightforward induction of the length of derivations shows that for each process P ∈P in any of the
languages of Section 5 there are only countably many derivations t ∈ Tr• with source(t) = P. Conse-
quently, Theorem 1 says that, for any set B ⊆ Act with Rec ⊆ B, B-justness is feasible. However, the
standard version of CCS [23] features the infinitary choice operator ∑i∈I Pi for any index set I, which was
omitted in Section 5 (and many of the references). Its operational rule is

Pj
α−→ P′j

∑i∈I Pi
α−→ P′j

( j ∈ I).

The work reported here can be straightforwardly extended with this infinitary choice operator. Instead of
+L and +R it gives rise to dynamic arguments ∑

j appearing in synchrons. But then we have processes
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P with uncountably many outgoing transitions, so that Theorem 1 no longer applies. Nevertheless, B-
justness is feasible, as follows from Corollary 1, in conjunction with Theorem 2. For if t ≡ t ′ (defined in
Section 7.2), then t •̂s u⇔ t ′ •̂s u for all u ∈ Tr•. As an ≡-equivalence class is completely determined
by a finite set of static components, and the set C of static components is countable, so is the collection
of ≡-equivalence classes of transitions, and thus the set of equivalence classes used in Corollary 1.

11 An inductive characterisation of the concurrency relations •̂d and •̂s

As a variant of Definition 11 in Section 6, write t •̂d u if ∀ς ∈nς(t).∀υ ∈aς(u).ς ^d υ . By Lemmas 2
and 3, when source(t) = source(u) then t •̂ u⇔ t •̂d u.

The idea of an asymmetric concurrency relation •̂ is not new here. A similar relation, here called
•̂15, appeared in [17]. That relation was defined only between derivations t and u with source(t) =

source(u). Here we show that •̂15 agrees with our •̂, in the sense that

t •̂15 u iff t •̂ u ∧ source(t) = source(u)

for all t ∈ Tr• and u ∈ Tr. In order to prove this, we give an inductive characterisation of •̂d . This effort
also yields an inductive characterisation of •̂s, which will be used in Section 12 to provide a coinductive
characterisation of justness, in the spirit of the definitions of justness from [11, 17, 7, 3].

Proposition 11 The relation •̂d is the smallest relation •̂x ⊆ Tr•×Tr such that

• t|P •̂x Q|u and P|t •̂x u|Q,
• t|v •̂x Q|u and v|t •̂x u|Q if `(t) ∈B!,
• t •̂x u implies t+P •̂x u+R, P+t •̂x R+u, t|P •̂x u|Q and P|t •̂x Q|u,
• t •̂x u implies t|P •̂x u|w, t|v •̂x u|Q, P|t •̂x w|u and v|t •̂x Q|u,
• t •̂x u implies t|v •̂x u|w and v|t •̂x w|u if `(t) ∈B!,
• t •̂x u∧ v •̂x w implies t|v •̂x u|w, and
• t •̂x u implies t\L •̂x u\L, t[ f ] •̂x u[ f ], A:t •̂x A:u and t ˆr •̂x uˆr

for any L⊆ Ch, relabelling f , A∈A and r ∈S ,
• t •̂x ξ for any derivation ξ of a signal transition,

for arbitrary t, u, v, w, P, Q and R, where t, v and derivations of signals or transitions, u and w are deriva-
tions of non-signal transitions, P,R∈P are expressions, and Q is either an expression or the derivation
of a signal or signal transition—provided that the composed derivations exist and are of the right type.

Proof: It is straightforward to check that •̂d satisfies all the properties listed in Proposition 11, so the
smallest relation •̂x is contained in •̂d . For the other direction we prove by structural induction on t
that if t ′ •̂d u′ then t ′ •̂x u′ can be derived by the rules of Proposition 11.

• If u′ is the derivation of a signal transition then aς(u′)= /0, so t ′ •̂d u′. Correspondingly, t ′ •̂x u′,
by the last requirement of Proposition 11. So below u′ is the derivation of a non-signal transition.
• If t ′ has the form α→P then t ′ •̂d u′ for no u′, so there is nothing to show.
• Let t ′ = t[ f ]. Then all synchrons of t ′ start with [ f ], so for t ′ •̂d u′ to hold, all active synchrons of

u′ must start with [ f ] as well. In fact u′ must have the form u[ f ] such that t •̂d u. By induction
t •̂x u and hence t ′ •̂x u′ by the seventh requirement of Proposition 11.
• The cases t ′= t\L, t ′=A :t, t ′= t ˆr, t ′= t+P and t ′=P+t proceed in the same way.
• Let t ′ = t|P. We make a further case distinction on u′.

– Let u′ = Q|u. Then always t ′ •̂d u′, and indeed t ′ •̂x u′ by the first requirement on •̂x.
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– Let u′= u|Q. Then all synchrons of t ′ and all active synchrons of u′ start with |L, and stripping
those off shows that t •̂d u. By induction t •̂x u and hence t ′ •̂x u′ by the third requirement.

– Let u′ = u|w. Then all synchrons of t ′ and some of u′ start with |L, and stripping those off
shows that t •̂d u. By induction t •̂x u and hence t ′ •̂x u′ by the fourth requirement on •̂x.

– If u has any other shape, then t ′ 6̂ •d u′, so there is nothing to show.
• The case t ′ = P|t proceeds symmetrically.
• Let t ′ = t|v. We make a further case distinction on u′.

– Let u′ = Q|u. First consider the case that `(t) ∈B!. Then `(v) ∈B?∪B: and all necessary
synchrons of t ′ start with |L. Since all active synchrons of u′ start with |R, we have t ′ •̂d u′.
Accordingly, t ′ •̂x u′ by the second requirement on •̂x.
In case `(t) /∈B!, some necessary synchrons of t ′ and all active synchrons of u start with |R,
and stripping those off shows that v •̂d u. By induction v •̂x u and hence t ′ •̂x u′ by the
fourth requirement of Proposition 11 (reversing the roles of t and v).

– The case u′ = u|Q proceeds symmetrically.
– Let u′ = u|w. First consider the case that `(t) ∈B!. Then `(v) ∈B?∪B:, and all necessary

synchrons of t ′ start with |L. Stripping those off shows that t •̂d u. By induction t •̂x u and
hence t ′ •̂x u′ by the fifth requirement on •̂x.
The case that `(v) ∈B! proceeds symmetrically.
Otherwise, we obtain t •̂d u and v •̂d w. By induction t •̂x u and v •̂x w and hence t ′ •̂x u′

by the sixth requirement of Proposition 11
– If u has any other shape, then t ′ 6̂ •d u′, so there is nothing to show. 2

The relation •̂15 was defined in [17] for ABC. Its definition is almost the same as the one of •̂x in
Proposition 11, but simplified because there are no signals or signal transitions, and adding the require-
ment that source(t) = source(u).

Corollary 4 Let t ∈ Tr• and u ∈ Tr. Then t •̂15 u iff t •̂ u∧ source(t) = source(u).

Proof: A trivial structural induction on t. 2

In spite of this agreement between •̂15 and •̂, the former is not suitable as an alternative for the latter
for the purposes of this paper, because the formalisation of justness depends on judgements t 6̂ • u for
transitions t and u with source(t) 6= source(u).

Proposition 12 The relation •̂s from Section 7.2 is the smallest relation •̂x ⊆ Tr•×Tr such that

• t|P •̂x Q|u and P|t •̂x u|Q,
• t|v •̂x Q|u and v|t •̂x u|Q if `(t) ∈B!,
• t •̂x u implies t|P •̂x u|Q and P|t •̂x Q|u,
• t •̂x u implies t|P •̂x u|w, t|v •̂x u|Q, P|t •̂x w|u and v|t •̂x Q|u,
• t •̂x u implies t|v •̂x u|w and v|t •̂x w|u if `(t) ∈B!,
• t •̂x u∧ v •̂x w implies t|v •̂x u|w, and
• t •̂x u implies p t\L •̂x u\L and t[ f ] •̂x u[ f ] for any L⊆ Ch and relabelling f ,
• t •̂x ξ for any derivation of a signal transition ξ ,

for arbitrary t, u, v, w, P, Q and R, where t, v and derivations of signals or transitions, u and w are deriva-
tions of non-signal transitions, P,R∈P are expressions, and Q is either an expression or the derivation
of a signal or signal transition—provided that the composed derivations exist are of the right type.

Proof: A trivial adaptation of the proof of the previous proposition. 2
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12 A coinductive characterisation of justness

In this section we show that the •̂-based concept of justness defined in this paper coincides with a
coinductively defined concept of justness, for CCS and ABC originating from [17].

To obtain agreement between our •̂-based and coinductive definitions for CCSS, we first extend the
•̂-based concept of B-justness to the case where also CCSS-signals from S̄ may appear in B. Since this

extension is unsuitable as a completeness criterion, and hence should not be confused with the proper
concept of justness, we have not treated this extension from the start of the paper, and give it another
name: B-sigjustness. This extension is needed because in the coinductive definition, some cases of proper
B-justness depend on cases of C-sigjustness, where C involves signals.

12.1 An extension of the notion of justness dealing with signals

Let Trs• := {t ∈ Tr | `(t) ∈L \ (B?∪B:)}. Then Tr• ⊆ Trs•, and Trs• \Tr• = {t ∈ Tr | `(t) ∈ S̄ }. So
the difference between Trs• and Tr• shows up only for CCSS with signals modelled as transitions, and
consists of the signal transitions. We extend the definition of the necessary synchrons of a transition t to
t ∈ Trs• by declaring nς(t) := ς(t) when `(t) ∈ S̄ . Using Trs• instead of Tr• extends Definition 10 of ;
and Definition 11 of •̂ to relations ;⊆ Trs•×Trs• and •̂⊆ Trs•×Tr. Likewise, the relations •̂s, •̂c,
•̂′
s, •̂′

c of Section 7 extend to Trs•×Tr. Now all results of Section 6 continue to hold when substituting
Trs• for Tr•, except for the disjointness claim of Proposition 3, and consequently (a) the part of (7) saying
that t ; t ′ implies t •̂ t ′, (b) Corollary 3, and (c) the statement that the LTS (P,Tr,source, target, `, •̂),
augmented with the concurrency relation •̂, is an LTSC in the sense of Definition 5.

Definition 18 A path π in an LTSC is B-sigjust, for B? ⊆ B ⊆ Act ∪ S̄ , if for each transition t ∈ Trs•
¬B

with s := source(t) ∈ π , a transition u occurs in π past the occurrence of s, such that t 6̂ • u.

B-sigjust corresponds with what is called B̄∩S -signalling and B\ S̄ -just in [7]. Here we save double
work by collapsing the similar concepts signalling and just from [7]. Note that a path is B-just in the
sense of Definition 6, where B?⊆ B⊆ Act, iff it is B∪ S̄ -sigjust according to Definition 18.

Substituting Trs• for Tr• and “sigjust” for “just”, also all results of Sections 7, 9 and 11 continue to
hold. However, sigjustness is unsuitable as a completeness criterion, because it fails the requirement of
feasibility.

Example 9 The process 0ˆs has only one path π , and π has no transitions. This path is not /0-sigjust,
since a transition 0→s is enabled in its only state. So π can not be extended into an /0-sigjust path.

Changing the definition of a path to allow signal transitions does not help; this allows an infinite path
π ′ containing the transition 0→s infinitely often. But since 0→s •̂ 0→s, also π ′ fails to be /0-sigjust.

12.2 A coinductive definition of justness

To state our coinductive definition of justness, we need to define the notion of the decomposition of a
path starting from a process with a leading static operator.

Any derivation t ∈ Tr of a transition with source(t) = P|Q has the shape

• u|Q, with target(t) = target(u)|Q,
• u|v, with target(t) = target(u)|target(v),
• or P|v, with target(t) = P|target(v).
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Let a path of a process P be a path as in Definition 3 starting with P. Now the decomposition of a path
π of P|Q into paths π1 and π2 of P and Q, respectively, is obtained by concatenating all left-projections
of the states and transitions of π into a path of P and all right-projections into a path of Q—notation
π V π1|π2. Here it could be that π is infinite, yet either π1 or π2 (but not both) are finite.

Likewise, t ∈ Tr with source(t) = P[ f ] has the shape u[ f ] with target(t) = target(u)[ f ]. The decom-
position π ′ of a path π of P[ f ] is the path obtained by leaving out the outermost [ f ] of all states and
transitions in π , notation π V π ′[ f ]. In the same way one defines the decomposition of a path of P\c.

The following co-inductive definition of the family B-justness of predicates on paths, with one family
member of each choice of a set B of blocking actions, stems from [17, Appendix E].5 To interpret the
word “largest”, one can see justness equivalently as single predicate on P(Act)×Π, where Π denotes
the set of all paths. To see that there actually exists a largest such predicate, check that the class of all
such predicates is closed under arbitrary unions.

Definition 19 B-justness, for B? ⊆ B ⊆ Act, is the largest family of predicates on the paths in the LTS
of ABC such that
• a finite B-just path ends in a state that admits actions from B only (cf. Footnote 4 on 12);
• a B-just path of a process P|Q can be decomposed into a C-just path of P and a D-just path of Q,

for some C,D⊆ B such that τ ∈ B∨C∩D̄ = /0—here D̄ := {c̄ | c∈D};
• a B-just path of P\L can be decomposed into a B∪L∪ L̄-just path of P;
• a B-just path of P[ f ] can be decomposed into an f−1(B)-just path of P;
• and each suffix of a B-just path is B-just.

To make this definition apply to CCSS (but with the semantics of Section 5.4 only), as well as CCS, ABC
and ABCd, read “sigjust” for “just” throughout, and allow B?⊆ B⊆ Act ∪ S̄ .

Intuitively, justness is a completeness criterion, telling which paths can actually occur as runs of the
represented system. A path is B-just if it can occur in an environment that may block the actions in B.
In this light, the first, third, fourth and fifth requirements above are intuitively plausible. The second
requirement first of all says that if π V π1|π2 and π can occur in the environment that may block the
actions in B, then π1 and π2 must be able to occur in such an environment as well, or in environments
blocking less. The last clause in this requirement prevents a C-just path of P and a D-just path of Q
to compose into a B-just path of P|Q when C contains an action c and D the complementary action c̄
(except when τ ∈ B). The reason is that no environment (except one that can block τ-actions) can block
both actions for their respective components, as nothing can prevent them from synchronising with each
other.

The fifth requirement helps characterising processes of the form b+(A|b) and a.(A|b), with A
def
= a.A.

Here, the first transition ‘gets rid of’ the choice and of the leading action a, respectively, and this require-
ment reduces the justness of paths of such processes to their suffixes.

Example 10 To illustrate Definition 19 consider the unique infinite path of the process Alice|Cataline
of Example 2 in which the transition t does not occur. Taking the empty set of blocking actions, we ask
whether this path is /0-just. If it were, then by the second requirement of Definition 19 the projection
of this path on the process Cataline would need to be /0-just as well. This is the path 1 (without any
transitions) in Example 1. It is not /0-just by the first requirement of Definition 19, because its last state
1 admits a transition.

5To be precise, the notion of Y -justness from [17] translates to Y ∪B?-justness as occurs here. Furthermore, [17] restricts
to the case that Y ⊆ Ch∪ C̄h. This makes sense, as in the default computational interpretation broadcast actions b! and internal
actions τ can not be blocked by the environment. The increased generality occurring in this paper is merely because it comes
with no extra costs, and in fact saves us here and there from listing restrictions.
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12.3 Agreement between the concurrency-based and coinductive definitions of justness

We now establish that the concept of justness from Definition 19 agrees with the concept of justness
defined earlier in this paper. The below applies to CCSS by reading Trs• for Tr• and “sigjust” for “just”.

Theorem 3 A path is •̂s-B-just iff it is B-just in the sense of Definition 19.

Proof: “Only if”: It suffices to show that •̂s-B-justness satisfies the five requirements of Definition 19.

• Let π be a •̂s-B-just path. It follows immediately from Definition 6 that its last state admits no
transitions t ∈ Tr•¬B.
• Let π be a •̂s-B-just path of a process P|Q. There is a unique decomposition π = π1|π2 of π into

a path π1 of P and a path π2 of Q. Let C′ be the set of actions α such that there is a t ∈ Tr• with
s :=source(t)∈π1 and `(t)=α , but no transition u with t 6̂ •s u occurs in π1 past the occurrence of s.
Take C :=C′∪B?. Then π1 is •̂s-C-just. In fact, C is the smallest set B?⊆ X ⊆ Act such that π1
is X-just. Likewise, let D be the smallest set such that B?⊆ D⊆ Act and π2 is D-just. It remains
to be shown that C,D⊆ B and τ ∈ B∨C∩D̄ = /0.
Let α ∈C′. Then there is a state P′|Q′ in π and a t ∈ Tr• with P′ = source(t)∈π1 and `(t)=α , but
no transition u with t 6̂ •s u occurs in π1 past the occurrence of P′. We claim that α ∈ B.

– Let α ∈S ∪S̄ ∪Ch∪C̄h∪{τ}. Then t|Q′∈Tr• with P′|Q′=source(t|Q′)∈π and `(t|Q′)=α .
Suppose, towards a contradiction, that α /∈ B. Then, using the •̂s-B-justness of π , a tran-
sition t† must occur in π past the occurrence of P′|Q′, such that t|Q′ 6̂ •s t†. Since t† occurs
in π , source(t†) has the form P′′|Q′′. By Proposition 12, t† must have the form u|v or u|Q′′,
with t 6̂ •s u. Hence a transition u with t 6̂ •s u occurs in π past the occurrence of P′—a
contradiction. So α ∈ B.

– Let α = b! with b ∈B!. Then either t|Q′ ∈ Tr• with `(t|Q′)=α , or t|v ∈ Tr• with `(v) = b?
or `(v) = b: and `(t|v)=b! = α . In both cases the argument proceeds as above.

It follows that C ⊆ B. By symmetry also D⊆ B.
Let c ∈C and c̄ ∈ D. Then there are states P1|Q1 and P2|Q2 in π and t1, t2 ∈ Tr• with

– P1 = source(t1)∈π1 and `(t1)= c, but no u with t1 6̂ •s u occurs in π1 past P1, and
– Q2 = source(t2)∈π2 and `(t2)= c̄, but no w with t2 6̂ •s w occurs in π2 past Q2.

Assume that either P1|Q1 = P2|Q2 or the state P2|Q2 occurs in π past the state P1|Q1—the other
case will follow by symmetry. By Lemma 11 there is a t ′1 ∈ Tr• with source(t ′1) = P2 and t1 ≡ t ′1.
So `(t ′) = c. Now t ′1|t2 ∈ Tr• and source(t ′1|t2) = P2|Q2. Moreover, `(t ′1|t) = τ . Assume that τ /∈ B.
Then, using the •̂s-B-justness of π , a transition t† must occur in π past the occurrence of P2|Q2,
such that t ′1|t2 6̂ •s t†. By Proposition 12 t† must have the form P′|v or u|v or u|Q′ with t ′1 6̂ •s u or
t2 6̂ •s v. Again we obtain a contradiction.
• Let π be a •̂s-B-just path of a process P\L. Let π ′ be the decomposition of π . We have to show

that π ′ is •̂s-(B∪{c, c̄ ∈ Act | c ∈ L})-just. So assume t ∈ Tr• with `(t) /∈ B∪{c, c̄ ∈ Act | c ∈ L},
and P′ := source(t) ∈ π ′. Then P′\L = source(t\L) ∈ π and `(t\L) /∈ B. By the •̂s-B-justness of
π , a transition t† must occur in π past the occurrence of P′\L, such that t\L 6̂ •s t†. Now t† must
have the form u\L, and by Proposition 12 t 6̂ •s u. So a transition u occurs in π ′ past the occurrence
of P′, such that t 6̂ •s u.
• The case that π is a •̂s-B-just path of a process P[ f ] goes likewise.
• Finally, it follows directly from Definition 6 that each suffix of a •̂s-B-just path is •̂s-B-just.

“If”: Let t ∈ Tr•¬B with s := source(t)∈ π for a path π that is B-just in the sense of Definition 19. We have
to show that a transition t† with t 6̂ •s t† occurs in π past the occurrence of s. Using the last requirement
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of Definition 19 we may assume, without loss of generality, that s is the first state of π . We proceed by
structural induction on t.

• Let t have the form α→P or P→r or P+u or u+Q or A:u or t r̂. Then npc(t) = {ε}. Using the first
requirement of Definition 19, s cannot be the last state of π , for it admits a transition t with `(t) /∈B.
Since s has the form α.P or P+Q or A or P r̂, the first transition v of π satisfies afc(v) = {ε}, and
thus t 6̂ •s v.
• Let t have the form u|v. Then s has the form P|Q, with P := source(u) and Q := source(v). By the

second requirement of Definition 19, π V π1|π2, with π1 a C-just path of P and π2 a D-just path
of Q, for some C,D⊆ B such that τ ∈ B∨C∩D̄ = /0.

– Let `(u) = c ∈S ∪ S̄ ∪Ch ∪ C̄h. Then `(v) = c̄. Since t ∈ Tr•¬B, τ = `(t) /∈ B. So either
c /∈C or c̄ /∈ D—by symmetry assume the former.

– Let `(u) = `(t) = b! with b∈B. (The case `(v) = b! follows by symmetry.) Then b! /∈B⊇C.
So in all relevant cases u ∈ Tr•¬C. By induction, a transition u† with u 6̂ •s u† occurs in π1. Conse-
quently, a transition t† of the form u†|Q′ or u†|v† occurs in π . By Proposition 12 t 6̂ • t†.
• Let t have the form u|Q. Then s has the form P|Q, with P := source(u). By the second requirement

of Definition 19, π V π1|π2, with π1 a C-just path of P and π2 a D-just path of Q, for some C,D⊆B.
Since `(u) = `(t) /∈ B⊇C, u ∈ Tr•¬C. The argument proceeds as above.
• The case that t has the form P|v follows by symmetry.
• Let t have the form u\L. Then s has the form P\L, with P := source(u). Moreover `(u) = `(t) /∈

B∪ {c, c̄ ∈ Act | c ∈ L}. By the third requirement of Definition 19, the decomposition π ′ of π

is (B∪ {c, c̄ ∈ Act | c ∈ L})-just. So by induction, a transition u† with u 6̂ •s u† occurs in π ′.
Consequently, a transition t† = u†\L occurs in π . By Proposition 12 t 6̂ • t†.
• Let t have the form u[ f ]. Then s has the form P[ f ], with P := source(u). Moreover `(u) /∈ f−1(B).

By the fourth requirement of Definition 19, the decomposition π ′ of π is f−1(B)-just. So by
induction, a transition u† with u 6̂ •s u† occurs in π ′. Consequently, a transition t† = u†[ f ] occurs
in π . By Proposition 12 t 6̂ • t†. 2

13 Justness on abstract paths

By Definition 3, a path is an alternating sequence of states and non-signal transitions. These non-signal
transitions are, in the LTS for CCS and its extensions constructed in Section 6, actually derivations of
transitions P α−→ Q according to the structural operational semantics of these languages. Now define an
abstract path to be an alternating sequence of states and actual transitions P α−→ Q.

Definition 20 Let ·̂ be the function that takes a derivation t ∈ Tr◦ into the transition P α−→Q derived by
t. Given a path π = s0 t1 s1 t2 s2 · · ·, let π̂ := s0 t̂1 s1 t̂2 s2 · · ·. An abstract path is such an object π̂ .

The concept of justness naturally lifts from path to abstract paths:

Definition 21 An abstract path ρ is B-just iff there exists a B-just (concrete) path π such that ρ = π̂ .

This definition fits with the intuition that a path is just iff it models a run that can actually occur.
The following variant of Definition 6 defines 6̂ •s-B-justness directly on abstract paths.

Definition 22 A abstract path ρ is 6̂ •s-B-just, for B? ⊆ B ⊆ Act, if for each derivation t ∈ Tr•¬B with
P := source(t) ∈ ρ , there is a u ∈ Tr with t 6̂ •s u such that û occurs in ρ past the occurrence of P.

We proceed to show that Definitions 21 and 22 agree.
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Proposition 13 An abstract path is 6̂ •s-B-just in the sense of Definition 22 iff it is B-just in the sense of
Definition 21, i.e. iff it has the form π̂ for a concrete path π that is 6̂ •s-B-just in the sense of Definition 16.

Proof: “If”: Let π be a concrete path that is 6̂ •s-B-just. Then by Definition 22 π̂ is 6̂ •s-B-just.
“Only if”: Let ρ be an abstract path that is 6̂ •s-B-just in the sense of Definition 22. We present an

algorithm for constructing a concrete path π that is 6̂ •s-B-just in the sense of Definition 16, such that
ρ = π̂ . Following the idea behind the proof of Theorem 1, we build an N×N-matrix with a column
for each of the states P0,P1,P2, . . . of ρ . The column Pi lists the transitions from Tr•¬B enabled in state
Pi, leaving empty most slots if there are only finitely many.6 Incrementally, we construct prefixes πi of
π . As an invariant, we maintain that π̂i is the prefix of ρ with i transitions. So πi ends in state Pi. An
entry in the matrix is either empty, filled in with a transition, or crossed out. Let f :N→N×N be an
enumeration of the entries in this matrix.

At the beginning, take π0 to be the path consisting of the first state P0 of ρ only. At each step i ≥ 0
we extend the path πi into π j for some j > i, if possible, and cross out some transitions occurring in the
matrix. As an invariant, we maintain that a transition t occurring in the k-th column is already crossed
out when reaching step i > k iff a transition u occurs in the extension of πk into πi such that t 6̂ •s u.
Furthermore, when reaching step i, no entry in a column `≥ i is already crossed out. At each step i≥ 0
we proceed as follows:

We take n ∈ N to be the smallest value such that entry f (n) = (k,m) ∈ N×N—with k a column
number—satisfies k ≤ i and is filled in, say with t ∈ Tr•¬B, but not yet crossed out. If such an n does not
exist, just extend πi with an arbitrary transition u such that û is the next transition of ρ; if ρ ends in Pi,
the algorithm terminates, with output πi. By our invariant, all transitions v occurring in the extension of
πk into πi satisfy t •̂s v. By Lemma 11 there is a t ′ ∈ Tr•¬B with source(t ′) = P′ and t ≡ t ′. Since ρ is
6̂ •s-B-just, there is a u ∈ Tr with t ′ 6̂ •s u such that û occurs in ρ past the occurrence of P. So also t 6̂ •s u.
Now extend πi into π j, for j > i, such that π j ends with the transition u. Cross out all entries in the matrix
up to row j necessary to maintain the invariant above. This includes entry f (n).

The desired path π is the limit of all the πi. It is 6̂ •s-B-just, using the invariant, because each
transition t ∈ Tr•¬B that is enabled in a state of π appears in the matrix, which acts like a priority queue,
and is eventually crossed out. 2

Corollary 5 Let ρ be an abstract path. If ρ is B-just then it is C-just for any C ⊇ B.
If ρ is C-just as well as D-just, then it is C∩D-just.

In fact the collection of sets B such that a given abstract path ρ is B-just is closed under arbitrary inter-
section, and thus there is a least set Bρ such that ρ is B-just. Actions α ∈Bρ are called ρ-enabled [16].
An action α is ρ-enabled iff there is a derivation t ∈ Tr•¬B with P := source(t) ∈ ρ , such that t •̂s v for
all v ∈ Tr such that v̂ occurs in ρ past the occurrence of P. As a consequence of Definition 6, the same
closure properties apply to justness on concrete paths, but for abstract paths these results are much less
trivial.

We now show that the concepts of justness on abstract paths from Definitions 21 and 22 both agree
with the original definition of justness from [17]. This requires lifting the definition of decomposition
from concrete to abstract paths.

Definition 23 An abstract path ρ of a process P|Q can be decomposed into abstract paths ρ1 of P and
ρ2 of Q, notation ρ ∈ ρ1|ρ2, if there exist paths π , π1 and π2 such that π V π1|π2, ρ = π̂ and ρi = π̂i.

Likewise, an abstract path ρ of P[ f ] can be decomposed into an abstract path ρ ′ if there are π and π ′

with π V π ′[ f ], ρ = π̂ and ρ ′ = π̂ ′. The decomposition of an abstract path ρ of P\L is defined likewise.

6In case we have an infinite choice operator in the language, the set of transitions t with source(t) = Pi is not necessarily
countable. Then we work with ≡-classes of transitions, just as in Section 10.
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In [17, Section 4.3] the decomposition of an abstract path was defined in a different style, but using [17,
Observation E.3] the resulting notion of decomposition is the same.

In [17, Definition 4.1] B-justness was defined directly on abstract paths. The definition is the same
as the one for concrete paths—see Definition 19—but reading “abstract path” for “path”. The following
theorem says that that definition agrees with Definition 21 above.

Theorem 4 An abstract path is B-just in the sense of Definition 19 iff it is B-just in the sense of Defini-
tion 21, i.e. iff it has the form π̂ for a concrete path π that is B-just in the sense of Definition 19.

Proof: “If”: It suffices to show that the family of predicates B-justness on abstract paths according
to Definition 21 satisfies the five requirements of Definition 19. This is straightforward to check, and
spelled out in [17, Proof of Proposition E.4].

“Only if”: Let ρ be an abstract path that is B-just in the sense of Definition 19. By Proposition 13
and Theorem 3, it suffices to show that ρ is 6̂ •s-B-just in the sense of Definition 22. This proceeds just
as in the “If”-part of the proof of Theorem 3. 2

All definitions and results in this section apply equally well to “sigjustness” in the role of “justness”,
allowing B? ⊆ B ⊆ Act ∪ S̄ . In this form B-sigjustness is the same as B-justness as defined in [3].7

Finally, we compare our definitions of justness to the one in [7].

Proposition 14 An abstract path is Y -signalling as defined in [7] iff it is Ȳ ∪Act-sigjust by Definition 19.

Proof: “If”: Ȳ ∪Act-sigjustness trivially satisfies the five conditions for Y -signalling of [7, Definition 2].
The second condition (for paths starting in P|Q) uses the first statement of Corollary 5.

“Only if”: Call an abstract path ρ B-sigjust† iff B = Ȳ ∪Act for an Y ⊆ S̄ such that ρ is Y -signalling
as defined in [7]. Then trivially B-sigjustness† satisfies the five conditions of Definition 19. 2

Proposition 15 An abstract path is Y -just as defined in [7] iff it is B-sigjust according to Definition 19
for some B with Y = B∩Act, which is the case iff it is Y ∪ S̄ -sigjust according to Definition 19.

Proof: “If”: Call an abstract path Y -just† iff it is B-sigjust by Definition 19 for some B with Y = B∩Act.
Then trivially B-justness† satisfies the five conditions of [7, Definition 3]. The second condition (for
paths starting in P|Q) uses Proposition 14 in conjunction with the first statement of Corollary 5.

“Only if”: It suffices to show that each abstract path ρ that is Y -just as defined in [7] is also 6̂ •s-
Y ∪ S̄ -sigjust according to Definition 22. So for each t ∈ Tr• with `(t) ∈ Act \Y and s := source(t) ∈ ρ

for such a path ρ , we have to find a transition t† with t 6̂ •s t† such that t̂† occurs in ρ past the occurrence
of s. The proof of this statement is similar to direction “If” of the proof of Theorem 3. Using the last
requirement of [7, Definition 3] we may assume, without loss of generality, that s is the first state of ρ .
We proceed by structural induction on t. The only case that deviates from the proof of Theorem 3 is
where t has the form u|v. In this case s has the form P|Q, with P := source(u) and Q := source(v). By
the second requirement of [7, Definition 3], ρ V ρ1|ρ2, with ρ1 an X-just and X ′-signalling abstract path
of P and ρ2 a Z-just and Z′-signalling abstract path of Q, for some X ,Z ⊆ Y and X ′,Z′ ⊆S , such that
(when τ /∈ Y ) X∩Z̄ = /0, X ∩Z′ = /0 and X ′∩Z = /0.

• Let `(u) = c ∈ Ch∪ C̄h. Then `(v) = c̄ and τ = `(t) /∈ Y . So either c /∈ X or c̄ /∈ Z—by symmetry
assume the former.
• Let `(u) = s ∈S . Then `(v) = s̄ ∈ S̄ and τ = `(t) /∈ Y . So either s /∈ X or s /∈ Z′.
• The case `(v) = c ∈S will follow by symmetry.
• Let `(u) = `(t) = b! with b ∈B. (The case `(v) = b! follows by symmetry.) Then b! /∈ Y ⊇ X .

7Following [17, 16], [3] restricts to the case that B⊆ Ch∪ C̄h∪S ∪ S̄ —cf. Footnote 5. Also, in [16, 3] one has B? = /0.
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So in all but one of the relevant cases u ∈ Tr• with `(u) ∈ Act \X . By induction, there is a transition u†

with u 6̂ •s u† such that û† occurs in ρ1. Consequently, there is a transition t† of the form u†|Q′ or u†|v†

such that t̂† occurs in ρ . By Proposition 12 t 6̂ • t†.
In the remaining case `(v) = s̄ ∈ S̄ and ρ2 is Z′-signalling with s /∈ Z′. Using Proposition 14,

Theorems 4 and 3 and Proposition 13, ρ2 is 6̂ •s-Z̄′∪Act-sigjust in the sense of Definition 22, so there is
a v† ∈ Tr with v 6̂ •s v such that v̂† occurs in ρ2. Consequently, there is a transition t† of the form P′|v† or
u†|v† such that t̂† occurs in ρ . By Proposition 12 t 6̂ • t†. 2

Corollary 6 An abstract path is B-just as defined in [7] iff it is B-just according to Definition 6.

Corollary 7 An abstract path is B-sigjust according to Definition 19 iff it is B̄∩S -signalling as well as
B∩Act-just as defined in [7].

Proof: “Only if”: Let ρ be B-sigjust according to Definition 19. By Corollary 5 it is also B∪Act-sigjust,
so by Proposition 14 it is B̄∩S -signalling. By Proposition 15 ρ is B∩Act-just.

“If”: Let ρ be B̄∩S -signalling as well as B∩Act-just as defined in [7]. By Proposition 14 it is
B∪Act-sigjust. By Proposition 15 it is B∪ S̄ -sigjust. So by Corollary 5 it is B-sigjust. 2

In [17, 7, 3] a(n abstract) path is called just (without a predicate B) iff it is B-just for some
B?⊆ B⊆B?

.
∪ Ch

.
∪ C̄h

.
∪S , which is the case iff it is B?

.
∪ Ch

.
∪ C̄h

.
∪S -just. This amounts to mak-

ing a default choice for the set B of blocking actions, in which CCS handshake synchronisations c and c̄
as well as broadcast receive and signal read actions can always be blocked by the environment (namely
by withholding a synchronisation partner, no failing to broadcast or to signal). Using this definition it
follows that an abstract path is just as defined in [18] and the current paper (using Definition 6 with any
of the five concurrency relations •̂, •̂s, •̂′

s, •̂c or •̂′
c) iff it is just as defined in [17], [7] or [3].

14 Conclusion

We advocate justness as a reasonable completeness criterion for formalising liveness properties when
modelling distributed systems by means of transition systems. In [18] we proposed a definition of just-
ness in terms of a, possibly asymmetric, concurrency relation between transitions. The current paper
defined such a concurrency relation for the transition systems associated to CCS, as well as its exten-
sions with broadcast communication and signals, thereby making the definition of justness from [18]
available to these languages. In fact, we provided five versions of the concurrency relation, and showed
that they all give rise to the same concept of justness. We expect that this style of definition will carry over
to many other process algebras. We showed that justness satisfies the criterion of feasibility, and proved
that our formalisation agrees with previous coinductive formalisations of justness for these languages.

Concurrency relations between transitions in transition systems have been studied in [34]. Our con-
currency relation •̂ follows the same computational intuition. However, in [34] transitions are classified
as concurrent or not only when they have the same source, whereas as a basis for the definition of justness
here we need to compare transitions with different sources. Apart from that, our concurrency relation is
more general in that it satisfies fewer closure properties, and moreover is allowed to be asymmetric.

Concurrency is represented explicitly in models like Petri nets [32], event structures [35], or asyn-
chronous transition systems [33, 2, 36]. We believe that the semantics of CCS in terms of such models
agrees with its semantics in terms of labelled transition systems with a concurrency relation as given
here. However, formalising such a claim requires a choice of an adequate justness-preserving semantic
equivalence defined on the compared models. Development of such semantic equivalences is a topic for
future research.
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