A Theory of Encodings and Expressiveness

Rob van Glabbeek
Data61, CSIRO, Sydney, Australia
School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
rvg@cs.stanford.edu

This paper proposes a definition of what it means for one system description language to encode another one, thereby enabling an ordering of system description languages with respect to expressive power. I compare the proposed definition with other definitions of encoding and expressiveness found in the literature, and illustrate it on a well-known case study: the encoding of the synchronous in the asynchronous π-calculus.

1 Introduction

This paper, like [27, 24], aims at answering the question what it means for one language to encode another one, and making the resulting definition applicable to order system description languages like CCS, CSP and the π-calculus with respect to their expressive power.

To this end it proposes a unifying concept of valid translation between two languages up to a semantic equivalence or preorder. It applies to languages whose semantics interprets the operators and recursion constructs as operations on a set of values, called a domain. Languages can be partially ordered by their expressiveness up to the chosen equivalence or preorder according to the existence of valid translations between them.

The concept of a [valid] translation between system description languages (or process calculi) was first formally defined by Boudol [7]. There, and in most other related work in this area, the domain in which a system description language is interpreted consists of the closed expressions from the language itself. In [22] I have reformulated Boudol’s definition, while dropping the requirement that the domain of interpretation is the set of closed terms. This allows (but does not enforce) a clear separation of syntax and semantics, in the tradition of universal algebra. Nevertheless, the definition employed in [22] only deals with the case that all (relevant) elements in the domain are denotable as the interpretations of closed terms. In [24] situations are described where such a restriction is undesirable. In addition, both [7] and [22] require the semantic equivalence \sim under which two languages are compared to be a congruence for both of them. This is too severe a restriction to capture many recent encodings [6, 42, 44, 12, 3, 4, 46, 53].

In [24] I alleviated these two restrictions by proposing two notions of encoding: correct and valid translations up to \sim. Each of them generalises the proposals of [7] and [22]. The former drops the restriction on denotability as well as \sim being a congruence for the whole target language, but it requires \sim to be a congruence for the source language, as well as for the source’s image within the target. The latter drops both congruence requirements (and allows \sim to be a preorder rather than an equivalence), but at the expense of requiring denotability by closed terms. In situations where \sim is a congruence for the source language’s image within the target language and all semantic values are denotable, the two notions agree.

The current paper further generalises the work of [24] by proposing a new notion of a valid translation that incorporates the correct and valid translations of [24] as special cases. It drops the congruence requirements as well as the restriction on denotability.
As in [24], my aim is to generalise the concept of a valid translation as much as possible, so that it is uniformly applicable in many situations, and not just in the world of process calculi. Also, it needs to be equally applicable to encodability and separation results, the latter saying that an encoding of one language in another does not exists. At the same time, I try to derive this concept from a unifying principle, rather than collecting a set of criteria that justify a number of known encodability and separation results that are intuitively justified.

Overview of the paper Section 2 defines my new concept of a valid translation up to a semantic equivalence or preorder \sim. Roughly, a valid translation up to \sim of one language into another is a mapping from the expressions in the first language to those in the second that preserves their meaning, i.e. such that the meaning of the translation of an expression is semantically equivalent to the meaning of the expression being translated.

Section 3 shows that this concept generalises the notion of a correct translation from [24]: a translation is correct up to a semantic equivalence \sim iff it is valid up to \sim and \sim is a congruence for the source language as well as for the image of the source language within the target language.

Likewise, Section 14 shows that my new concept of validity generalises the one of [24], and Section 15 establishes the coincidence of my new validity-based notion of expressiveness with the one from [24] when applying both to languages for which all semantic values are denotable by closed terms.

One language is said to be at least as expressive as another up to \sim iff there exists a valid translation up to \sim of the latter language into the former. Section 4 shows that the relation “being at least as expressive as” is a preorder on languages. This expressiveness preorder depends on the choice of \sim, and a coarser choice (making less semantic distinctions) yields a richer preorder of expressiveness inclusions.

Section 5 presents the widely used class of closed-term languages, in which the distinction between syntax and semantic is effectively dropped by taking the domain of values where the language is interpreted to consist of the closed terms of the language. Section 6 illustrates my approach on a well-known case study: the encoding of the synchronous in the asynchronous π-calculus.

Section 7 discusses the congruence closure of a semantic equivalence for a given language, and remarks that in the presence of operators with infinite arity it is not always a congruence. Section 8 states a useful congruence closure property for valid translations: if a translation between two languages exists that is valid up a semantic equivalence \sim, then it is even valid up to an equivalence that

- on the source language coincides with the congruence closure of \sim
- on the image of the source within the target language also coincides with the congruence closure of \sim
- melts each equivalence class of the source with exactly one of the target, and vice versa.

Section 9 concludes that the framework established thus far is very suitable for comparing the expressiveness of languages, but falls short for the purpose of combining language features. This requires a congruence reflection theorem, provided in Section 13 for closed-term languages and preorders \sim that satisfy some mild sanity requirements: the postulates formulated in Sections 10 and 11.

Section 12 defines when a translation is compositional, and shows that any valid translation up to \sim can be modified into a compositional translation valid up to \sim, provided the languages and preorders \sim satisfy the sanity requirements of Sections 10 and 11. Hence, for the purpose of comparing the expressive power of languages, valid translations between them may be presumed compositional.

Section 16 contemplates a more general, and arguably also simpler, concept of a valid translation, than the one of Section 2. However, it lacks appealing properties of the latter.

Sections 17–18 compare my approach with full abstraction, and with the approach of Gorla [27].
2 Languages, correct and valid translations, and expressiveness

A language consists of syntax and semantics. The syntax determines the valid expressions in the language. The semantics is given by a mapping $[\]$ that associates with each valid expression its meaning, which can for instance be an object, concept or statement.

Following [24], I represent a language \mathcal{L} as a pair $(\mathcal{T}, [\]_{\mathcal{L}})$ of a set \mathcal{T} of valid expressions in \mathcal{L} and a mapping $[\]_{\mathcal{L}} : \mathcal{T} \to \mathcal{R}$ from \mathcal{T} in some set of meanings \mathcal{R}.

Definition 1 ([24]) A translation from a language \mathcal{L} into a language \mathcal{L}' is a mapping $\mathcal{T} : \mathcal{T}_{\mathcal{L}} \to \mathcal{T}_{\mathcal{L}'}$.

In this paper, I consider single-sorted languages \mathcal{L} in which expressions or terms are built from variables (taken from a set \mathcal{X}) by means of operators (including constants) and possibly recursion constructs. For such languages the meaning $[E]_{\mathcal{L}}$ of an \mathcal{L}-expression E is a function of type $(\mathcal{X} \to \mathcal{V}) \to \mathcal{V}$ for a given set of values \mathcal{V}. It associates a value $[E]_{\mathcal{L}}(\rho) \in \mathcal{V}$ to E that depends on the choice of a valuation $\rho : \mathcal{X} \to \mathcal{V}$. The valuation associates a value from \mathcal{V} with each variable.

Since normally the names of variables are irrelevant and the cardinality of the set of variables satisfies only the requirement that it is “sufficiently large”, no generality is lost by insisting that two (system description) languages whose expressiveness is being compared employ the same set of (process) variables.

On the other hand, two languages \mathcal{L} and \mathcal{L}' may be interpreted in different domains of values \mathcal{V} and \mathcal{V}'.

Let \mathcal{L} and \mathcal{L}' be two languages of the type considered above, with semantic mappings

$$[\]_{\mathcal{L}} : \mathcal{T}_{\mathcal{L}} \to ((\mathcal{X} \to \mathcal{V}) \to \mathcal{V}) \quad \text{and} \quad [\]_{\mathcal{L}'} : \mathcal{T}_{\mathcal{L}'} \to ((\mathcal{X} \to \mathcal{V}') \to \mathcal{V}').$$

In order to compare these languages w.r.t. their expressive power I need a semantic equivalence or preorder \sim that is defined on a unifying domain of interpretation \mathcal{Z}, with $\mathcal{V}, \mathcal{V}' \subseteq \mathcal{Z}$.[1] Intuitively, $v' \sim v$ with $v \in \mathcal{V}$ and $v' \in \mathcal{V}'$ means that values v and v' are sufficiently alike for our purposes, so that one can accept a translation of an expression with meaning v into an expression with meaning v'.

Correct and a valid translations up to a semantic equivalence or preorder \sim were introduced in [24]. Here I redefine these concepts in terms of a new concept of correctness w.r.t. a semantic translation.

Definition 2 Let \mathcal{V} and \mathcal{V}' be domains of values in which two languages \mathcal{L} and \mathcal{L}' are interpreted. A **semantic translation** from \mathcal{V} into \mathcal{V}' is a relation $\mathcal{R} \subseteq \mathcal{V} \times \mathcal{V}$ such that $\forall v \in \mathcal{V}, \exists v' \in \mathcal{V}', v' \mathcal{R} v$.

Thus every semantic value in \mathcal{V} needs to have a counterpart in \mathcal{V}'—possibly multiple ones. For valuations $\eta : \mathcal{X} \to \mathcal{V}'$, $\rho : \mathcal{X} \to \mathcal{V}$ I write $\eta \mathcal{R} \rho$ iff $\eta(X) \mathcal{R} \rho(X)$ for each $X \in \mathcal{X}$.

Definition 3 A translation $\mathcal{T} : \mathcal{T}_{\mathcal{L}} \to \mathcal{T}_{\mathcal{L}'}$ is **correct** w.r.t. a semantic translation \mathcal{R} if $[\mathcal{T}(E)]_{\mathcal{L}'}(\eta) \mathcal{R} [E]_{\mathcal{L}}(\rho)$ for all expressions $E \in \mathcal{T}_{\mathcal{L}}$ and all valuations $\eta : \mathcal{X} \to \mathcal{V}'$ and $\rho : \mathcal{X} \to \mathcal{V}$ with $\eta \mathcal{R} \rho$.

Thus \mathcal{T} is correct iff the meaning of the translation of an expression E is a counterpart of the meaning of E, no matter what values are filled in for the variables, provided that the value filled in for a given variable X occurring in the translation $\mathcal{T}(E)$ is a counterpart of the value filled in for X in E.

Definition 4 A translation $\mathcal{T} : \mathcal{T}_{\mathcal{L}} \to \mathcal{T}_{\mathcal{L}'}$ is **correct up to \sim** iff \sim is an equivalence, the restriction \mathcal{R} of \sim to $\mathcal{V}' \times \mathcal{V}$ is a semantic translation, and \mathcal{T} is correct w.r.t. \mathcal{R}.

Definition 5 A translation \mathcal{T} is **valid** up to \sim iff it is correct w.r.t. some semantic translation $\mathcal{R} \subseteq \sim$. Language \mathcal{L}' is at least as expressive as \mathcal{L} up to \sim if a valid translation from \mathcal{L} into \mathcal{L}' exists.

[1] I will be chiefly interested in the case that \sim is an equivalence—hence the choice of a symbol that looks like \sim. However, to establish Observation 2 and Theorem 2 below, it suffices to know that \sim is reflexive and transitive. My convention is that the dotted end of \sim points to a translation and the other end to an original—without offering an intuition for the possible asymmetry.
3 Correct = valid + congruence

In [24] the concept of a correct translation up to ~ was defined, for ~ a semantic equivalence on \mathbb{Z}. Here two valuations $\eta, \rho : \mathcal{X} \to \mathbb{Z}$ are called ~-equivalent, $\eta \sim \rho$, if $\eta(X) \sim \rho(X)$ for each $X \in \mathcal{X}$. In case there exists a $v \in \mathbb{V}$ for which there is no ~-equivalent $v' \in \mathbb{V}'$, there is no correct translation from \mathcal{L} into \mathcal{L}' up to ~. Namely, the semantics of \mathcal{L} describes, among others, how any \mathcal{L}-operator evaluates the argument value v, and this aspect of the language has no counterpart in \mathcal{L}'. Therefore, [24] requires

$$\forall v \in \mathbb{V}. \exists v' \in \mathbb{V}'. v \sim v'. \tag{1}$$

This implies that for any valuation $\rho : \mathcal{X} \to \mathbb{V}$ there is a valuation $\eta : \mathcal{X} \to \mathbb{V}$ with $\eta \sim \rho$.

Definition 6 ([24]) A translation \mathcal{T} from \mathcal{L} into \mathcal{L}' is correct up to ~ iff \(^{(1)}\) holds and $[\mathcal{T}(E)]_{\mathcal{L}'}(\eta) \sim [E]_{\mathcal{L}'}(\rho)$ for all $E \in \mathbb{T}_{\mathcal{L}}$ and all valuations $\eta : \mathcal{X} \to \mathbb{V}'$ and $\rho : \mathcal{X} \to \mathbb{V}$ with $\eta \sim \rho$.

Note that this definition agrees completely with Definition 4. Requirement \(^{(1)}\) above corresponds to R being a semantic translation in Definition 4.

If a correct translation up to ~ from \mathcal{L} into \mathcal{L}' exists, then ~ must be a congruence for \mathcal{L}.

Definition 7 An equivalence relation ~ is a congruence for a language \mathcal{L} interpreted in a semantic domain \mathbb{V} if $[E]_{\mathcal{L}'}(v) \sim [E]_{\mathcal{L}'}(v')$ for any \mathcal{L}'-expression E and any valuations $v, v' : \mathcal{X} \to \mathbb{V}$ with $v \sim v'$.

Proposition 1 ([24]) If \mathcal{T} is a correct translation up to ~ from \mathcal{L} into \mathcal{L}', then ~ is a congruence for \mathcal{L}.

The existence of a correct translation up to ~ from \mathcal{L} into \mathcal{L}' does not imply that ~ is a congruence for \mathcal{L}'. However, ~ has the properties of a congruence for those expressions of \mathcal{L}' that arise as translations of expressions of \mathcal{L}, when restricting attention to valuations into $U := \{ v \in \mathbb{V}' \mid \exists v \in \mathbb{V}, v' \sim v \}$. In [24] this called a congruence for $\mathcal{T}(\mathcal{L})$.

Definition 8 Let $\mathcal{T} : \mathbb{T}_{\mathcal{L}} \to \mathbb{T}_{\mathcal{L}'}$ be a translation from \mathcal{L} into \mathcal{L}'. An equivalence ~ on \mathbb{V}' is a congruence for $\mathcal{T}(\mathcal{L})$ if $[\mathcal{T}(E)]_{\mathcal{L}'}(\theta) \sim [\mathcal{T}(E)]_{\mathcal{L}'}(\eta)$ for any $E \in \mathbb{T}_{\mathcal{L}}$ and $\theta, \eta : \mathcal{X} \to U$ with $\theta \sim \eta$.

Proposition 2 ([24]) If \mathcal{T} is a correct translation up to ~ from \mathcal{L} into \mathcal{L}', then ~ is a congruence for $\mathcal{T}(\mathcal{L})$.

The following theorem tells that the notion of validity proposed in Section 1 can be seen as a generalisation of the notion of correctness from [24] that applies to equivalences (and preorders) ~ that are not necessarily congruences for \mathcal{L} or $\mathcal{T}(\mathcal{L})$.

Theorem 1 A translation \mathcal{T} from \mathcal{L} into \mathcal{L}' is correct up to a semantic equivalence ~ iff it is valid up to ~ and ~ is a congruence for $\mathcal{T}(\mathcal{L})$.

Proof: By Definitions 4 and any translation that is correct up to ~ is surely valid up to ~.

Suppose \mathcal{T} is valid up to ~ and ~ is a congruence for $\mathcal{T}(\mathcal{L})$. Then there is a semantic translation $R \subseteq \mathbb{V}' \times \mathbb{V}$ such that $R \subseteq ~$ and \mathcal{T} is correct w.r.t. R. To establish that \mathcal{T} is correct up to ~, let $E \in \mathbb{T}_{\mathcal{L}}$ and let $\eta : \mathcal{X} \to \mathbb{V}'$ and $\rho : \mathcal{X} \to \mathbb{V}$ be valuations with $\eta \sim \rho$. Let $\theta : \mathcal{X} \to \mathbb{V}'$ be a valuation with $\theta R \rho$—it exists since R is a semantic translation. Now $\theta \sim \rho \sim \eta$, using that $R \subseteq ~$, so $\theta, \eta : \mathcal{X} \to U$ and $\theta \sim \eta$. Hence $[\mathcal{T}(E)]_{\mathcal{L}'}(\eta) \sim [\mathcal{T}(E)]_{\mathcal{L}'}(\theta) \sim [E]_{\mathcal{L}'}(\rho)$, using that ~ is a congruence for $\mathcal{T}(\mathcal{L})$ and that T is correct w.r.t. R. □

This is called a lean congruence in [24]; in the presence of recursion, stricter congruence requirements are common. Those are not needed in this paper.
4 A hierarchy of expressiveness preorders

An equivalence or preorder \sim on a class Z is said to be finer, stronger, or more discriminating than another equivalence or preorder \cong on Z if $v \sim w \Rightarrow v \cong w$ for all $v, w \in Z$.

Observation 1 Let $T : \mathcal{L} \to \mathcal{L'}$ be a translation from \mathcal{L} into $\mathcal{L'}$, and let \sim be finer than \cong. If T is valid up to \sim, then it is also valid up to \cong.

The quality of a translation depends on the choice of the equivalence or preorder up to which it is valid. Any two languages are equally expressive up to the universal equivalence, relating any two processes. The quality of a translation depends on the choice of the equivalence or preorder up to which it is valid. Hence, the equivalence or preorder needs to be chosen carefully to match the intended applications of the languages under comparison. In general, as shown by Observation 1 using a finer equivalence or preorder yields a stronger claim that one language can be encoded in another. On the other hand, when separating two languages \mathcal{L} and $\mathcal{L'}$ by showing that \mathcal{L} cannot be encoded in $\mathcal{L'}$, a coarser equivalence or preorder yields a stronger claim.

Observation 2 The identity is a valid translation up to any preorder from any language into itself.

Theorem 2 If valid translations up to \sim exist from \mathcal{L}_1 into \mathcal{L}_2 and from \mathcal{L}_2 into \mathcal{L}_3, then there is a valid translation up to \sim from \mathcal{L}_1 into \mathcal{L}_3.

Proof: For $i = 1, 2, 3$ let $[\]_\mathcal{L}_i : \mathcal{F} \to (\mathcal{F} \to \mathcal{V}_i) \to \mathcal{V}_i$, and for $k = 1, 2$ let $R_k : \mathcal{F} \to \mathcal{F} \times \mathcal{V}_k$. I will show that the translation $R_2 \circ R_1 : \mathcal{F} \to \mathcal{F} \times \mathcal{V}_3$ from \mathcal{L}_1 into \mathcal{L}_3, given by $R_2 \circ R_1(E) = R_2(\mathcal{F}_3(E))$, is valid up to \sim. To this end, let $R_2 \circ R_1 \subseteq \mathcal{V}_3 \times \mathcal{V}_1$ be the relation given by $v_3 R_2 \circ R_1 v_1$ iff $\exists v_2 : v_3 R_2 v_2 \land v_2 R_1 v_1$—it is again a semantic translation, and satisfies $R_2 \circ R_1 \subseteq \sim$, using the transitivity of \sim. Now let $E \in \mathcal{F}_3$, $\rho : \mathcal{F} \to \mathcal{V}_3$ and $\theta : \mathcal{F} \to \mathcal{V}_3$, with $\theta R_2 \circ R_1 \rho$. Then there is a valuation $\eta : \mathcal{F} \to \mathcal{V}_2$ with $\theta R_2 \eta R_1 \rho$. Hence $[R_2(\mathcal{F}_3(E))]_{\mathcal{L}_1}(\theta) \sim [R_1(E)]_{\mathcal{L}_1}(\eta) \sim [E]_{\mathcal{L}_1}(\rho)$, so $R_2 \circ R_1$ is correct w.r.t. $R_2 \circ R_1$. □

Theorem 2 and Observation 2 show that the relation “being at least as expressive as” is a preorder on languages.

5 Closed-term languages

The languages considered in this paper feature variables, operators of arity $n \in \mathbb{N}$, and/or other constructs. The set \mathcal{F} of \mathcal{L}-expressions is inductively defined by:

- $X \in \mathcal{F}$ for each variable $X \in \mathcal{X}$,
- $f(E_1, \ldots, E_n) \in \mathcal{F}$ for each n-ary operator f and expressions $E_i \in \mathcal{F}$ for $i = 1, \ldots, n$,
- and clauses for the other constructs, if any.

Examples of other constructs are the infinite summation operator $\Sigma_{i \in I} E_i$ of CCS, which takes arbitrary many arguments, or the recursion construct $\mu X. E$, that has one argument, but binds all occurrences of X in that argument.

In general a construct has a number (possibly infinite) of argument expressions and it may bind certain variables within some of its arguments—the scope of the binding. An occurrence of a variable X in an expression is bound if it occurs within the scope of a construct that binds X, and free otherwise.

The semantics of such a language is given, in part, by a domain of values \mathcal{V}, and an interpretation of each n-ary operator f of \mathcal{L} as an n-ary operation $f^{\mathcal{V}} : \mathcal{V}^n \to \mathcal{V}$ on \mathcal{V}. Using the equations

$[X]_\mathcal{F}(\rho) = \rho(X)$ and $[f(E_1, \ldots, E_n)]_\mathcal{F}(\rho) = f^{\mathcal{V}}([E_1]_\mathcal{F}(\rho), \ldots, [E_n]_\mathcal{F}(\rho))$
this allows an inductive definition of the meaning $[E]_{\mathcal{L}}$ of an \mathcal{L}-expression E. Moreover, $[E]_{\mathcal{L}}(\rho)$ only depends on the restriction of ρ to the set $fv(E)$ of variables occurring free in E.

The set $T_{\mathcal{L}} \subseteq T_{\mathcal{L}}$ of closed terms of \mathcal{L} consists of those \mathcal{L}-expressions $E \in T_{\mathcal{L}}$ with $fv(E) = \emptyset$. If $P \in T_{\mathcal{L}}$ and $V \neq \emptyset$ then $[P]_{\mathcal{L}}(\rho)$ is independent of the choice of $\rho : \mathcal{X} \rightarrow V$, and hence written $[P]_{\mathcal{L}}$.

Definition 9 A substitution in \mathcal{L} is a partial function $\sigma : \mathcal{X} \rightarrow T_{\mathcal{L}}$ from the variables to the \mathcal{L}-expressions. For a given \mathcal{L}-expression $E \in T_{\mathcal{L}}$, $E[\sigma] \in T_{\mathcal{L}}$ denotes the \mathcal{L}-expression E in which each free occurrence of a variable $X \in dom(\sigma)$ is replaced by $\sigma(X)$, while renaming bound variables in E so as to avoid a free variable Y occurring in an expression $\sigma(X)$ ending up being bound in $E[\sigma]$. A substitution is closed if it has the form $\sigma : \mathcal{X} \rightarrow T_{\mathcal{L}}$.

An important class of languages used in concurrency theory are the ones where the distinction between syntax and semantic is effectively dropped by taking $V = T_{\mathcal{L}}$, i.e. where the domain of values where the language is interpreted in consists of the closed terms of the language. Here a valuation is the same as a substitution. An example of such languages is the pi-calculus.

Example: translating a synchronous into an asynchronous π-calculus

As an illustration of the concepts introduced above, consider the π-calculus as presented by Milner in [39], i.e., the one of Sangiorgi and Walker [62] without matching, τ-prefixing, and choice.

Given a set of names \mathcal{N}, the set T_{π} of process expressions or terms E of the calculus is given by

$$E ::= X \mid 0 \mid \bar{x}y.E \mid x(z).E \mid E \cdot E' \mid (vz)E \mid !E$$

with x,y,z ranging over \mathcal{N}, and X over \mathcal{X}, the set of process variables. Process variables are not considered in [62], although they are common in languages like CCS [38] that feature a recursion construct. Since process variables form a central part of my notion of a valid or correct translation, here they have simply been added. This works generally. In Section 12 I show that if for the purpose of accessing whether one language is as expressive as another, translations between them can be assumed to be compositional. This important result would be lost if process variables were dropped from the language. In that case compositionality would need to be stated as a separate requirement for valid translations.

Closed process expressions are called processes. The π-calculus is usually presented as a closed-term language, in that the semantic value associated with a closed term is simply itself. Yet, the real semantics is given by a reduction relation between processes, defined below.

Definition 10 Let structural congruence, \equiv, be the smallest congruence relation on processes satisfying

$$\begin{align*}
P_1|\{P_2|P_3\} & \equiv (P_1|P_2)|P_3 & \bar{1}P & \equiv P|\bar{1}P & (vw)(P|Q) & \equiv P|(vw)Q & \text{if } w \notin n(P) \\
P_1|P_2 & \equiv P_2|P_1 & (vz)0 & \equiv 0 & x(z).P & \equiv x(w).P\{w/z\} & \text{if } w \notin n(P) \\
P|0 & \equiv P & (vz)(vw)P & \equiv (vw)(vz)P & (vz).P & \equiv (vw).P\{w/z\} & \text{if } w \notin n(P).
\end{align*}$$

Here $n(P)$ denotes the set of names occurring in the process P, and $P\{w/z\}$ denotes the process obtained by replacing each occurrence of z in P by w.

3 In languages with multiple kinds of binding, such as for process variables $X \in \mathcal{X}$ and for names $x \in \mathcal{N}$ in the π-calculus below, all types of bound variables may be renamed.
Definition 11 The reduction relation, \(\rightarrow \subseteq \mathbb{T}_{\pi} \times \mathbb{T}_{\pi} \), is generated by the following rules.

\[
\begin{align*}
\bar{x}.P|x(z).Q & \rightarrow P|Q \\
P \rightarrow P' & \Rightarrow \frac{P|Q \rightarrow P'|Q}{(vz)P \rightarrow (vz)P'}
\end{align*}
\]

Let \(\equiv \) be the reflexive and transitive closure of \(\rightarrow \). The observable behaviour of \(\pi \)-calculus processes is often stated in terms of the outputs they can produce (abstracting from the value communicated on an output channel).

Definition 12 Let \(x \in \mathcal{N} \). A process \(P \) has a strong output barb on \(x \), notation \(P \downarrow_{x} \), if \(P \) can perform an output action \(\bar{x}(z) \). This is defined inductively:

\[
(\bar{x}(z).P)_{x} = \frac{P \downarrow_{x}}{(P|Q)_{x}} \quad \frac{Q \downarrow_{x}}{(P|Q)_{x}} \quad \frac{P \downarrow_{x}}{x \neq z} \quad \frac{P \downarrow_{x}}{(vz)P \downarrow_{x}} \quad \frac{P \downarrow_{x}}{(vz)P \downarrow_{x}}
\]

A process \(P \) has a weak output barb on \(x \), notation \(P \downarrow_{x} \), if there is a \(P' \) with \(P \rightarrow P' \downarrow_{x} \).

A common semantic equivalence applied in the \(\pi \)-calculus is weak barbed congruence \([40, 61, 62]\). Another technique for defining weak barbed congruence is to use a barb, or set of barbs, external to the language under investigation, that are added to the language as constants \([27]\), similar to the theory of testing from Hennessy and De Nicola \([15]\). This method is useful for languages with a reduction semantics that do not feature a clear notion of barb, or where there is ambiguity in which barbs should be counted and which not.

Example 1. \(\bar{x}z.0 \not\equiv_{x} (v\bar{u})(\bar{u}\bar{v}).0 \). For let \(E := X|x(u).\bar{v}(v).0 \) with \(\zeta(X) = (v\bar{u})(\bar{u}\bar{v}).0 \) and \(\rho(X) = \bar{x}z.0 \). Then \(E[\zeta] \rightarrow (v\bar{u})(\bar{u}\bar{v}).0 \) but \(E[\zeta] \not\equiv_{x} (v\bar{u})(\bar{u}\bar{v}).0 \).

The asynchronous \(\pi \)-calculus, as introduced by Honda & Tokoro in \([32]\) and by Boudol in \([8]\), is the sublanguage a\(\pi \) of the fragment \(\pi \) of the \(\pi \)-calculus presented above where all subexpressions \(\bar{x}y.E \) have the form \(x.0 \). Asynchronous barbed congruence, \(\equiv_{a} \), is the largest congruence for the asynchronous \(\pi \)-calculus included in \(\equiv \). Since a\(\pi \) is a sublanguage of \(\pi \), \(\equiv_{a} \) is at least as coarse an equivalence as \(\equiv_{a} \), i.e. \(\equiv_{a} \subseteq \equiv_{a} \). The inclusion is strict, since \(\bar{x}z.0 \not\equiv_{a} 0 \), yet \(\bar{x}z.0 \equiv_{a} 0 \) \([62]\). Since all expressions used in Example 1 belong to a\(\pi \), one even has \(\bar{x}z.0 \not\equiv_{a} (\bar{u}u.0) \).

Boudol \([8]\) defined a translation \(\mathcal{T} \) from \(\pi \) to a\(\pi \) inductively as follows:

\[
\begin{align*}
\mathcal{T}(X) &= X & & X \in \mathcal{X} \\
\mathcal{T}(0) &= 0 \\
\mathcal{T}(& \bar{x}.P) &= (\bar{u})\bar{x}(u)(\bar{v}z).\mathcal{T}(P)) \quad \text{choosing } u, v \notin n(P), \ u \neq v \\
\mathcal{T}(x(u).P) &= x(u)(v).\mathcal{T}(P) \quad \text{choosing } u, v \notin n(P), \ u \neq v \\
\mathcal{T}(P|Q) &= (\mathcal{T}(P)|\mathcal{T}(Q)) \\
\mathcal{T}(P) &= 1 \cdot \mathcal{T}(P) \\
\mathcal{T}(x(P)) &= (x) \mathcal{T}(P)
\end{align*}
\]

Example 1 shows that \(\mathcal{T} \) is not valid up to \(\equiv_{a} \). In fact, it is not even valid up to \(\equiv_{a} \). However, as shown in \([35]\), it is valid up to \(\hat{\approx} \). Since \(\hat{\approx} \) is not a congruence (for \(\pi \) or a\(\pi \)) it is not correct up to \(\hat{\approx} \).
7 Congruence closure

Definition 14 An equivalence relation \(\sim \) is a 1-hole congruence for a language \(\mathcal{L} \) interpreted in a semantic domain \(\mathbf{V} \) if \([E]_\mathcal{L}(v) \sim [E]_\mathcal{L}(\rho)\) for any \(\mathcal{L} \)-expression \(E \) and any valuations \(v, \rho : \mathcal{X} \to \mathbf{V} \) with \(v \sim \top \). Here \(v, \rho \) are \(\sim \)-equivalent, \(v \sim \top, \) if \(v(X) \sim \rho(X) \) for some \(X \in \mathcal{X} \) and \(v(Y) = \rho(Y) \) for all variables \(Y \neq X \).

An \(n \)-hole congruence for any finite \(n \in \mathbb{N} \) can be defined in the same vain, and it is well known and easy to check that a 1-hole congruence \(\sim \) is also an \(n \)-hole congruence, for any \(n \in \mathbb{N} \). However, in the presence of operators with infinitely many arguments, a 1-hole congruence need not be a congruence.

Example 2 Let \(\mathbf{V} \) be \((\mathbb{N} \times \mathbb{N}) \cup \{\infty\}\), with the well-order \(\leq \) on \(\mathbf{V} \) inherited lexicographically from the default order on \(\mathbb{N} \) and \(\infty \) the largest element. So \((n, m) \leq (n', m')\) iff \(n \leq n' \lor (n = m \land m \leq m')\). Consider the language \(\mathcal{L} \) with constants 0, 1 and (1), interpreted in \(\mathbf{V} \) as \((0,0), (1,0)\) and \((0,1)\), respectively, the binary operator \(+\), interpreted by \((n_1, m_1) + \mathbf{V} (n_2, m_2) = (n_1 + n_2, m_1 + m_2)\) and \(\infty + E = E + \infty = \infty \), and the construct \(\sup(E) \) that takes any number of arguments (dependant on the set of the index sets \(I \)). The interpretation of \(\sup \) in \(\mathbf{V} \) is to take the supremum of its arguments w.r.t. the well-order \(\leq \). In case \(\sup \) is given finitely many arguments, it simply returns the largest. However \(\sup((n,i))_{i \in \mathbb{N}} = (n+1,0) \).

Now let the equivalence relation \(\sim \) on \(\mathbf{V} \) be defined by \((n, m) \sim (n', m') \) iff \(n = n' \), leaving \(\infty \) in an equivalence class of its own. This relation is a 1-hole congruence on \(\mathcal{L} \). Hence, it is also a 2-hole congruence, so one has

\[
(n_1, m_1) \sim (n'_1, m'_1) \land (n_2, m_2) \sim (n'_2, m'_2) \Rightarrow (n_1, m_1) + (n_2, m_2) \sim (n'_1, m'_1) + (n'_2, m'_2).
\]

Yet it fails to be a congruence: \((n, i) \sim (n, 0)\) for all \(i \in \mathbb{N} \), but

\[
(n+1, 0) = \sup((n,i))_{i \in \mathbb{N}} \not\sim \sup((n,0))_{i \in \mathbb{N}} = (n, 0).
\]

It is well known and easy to check that the collection of equivalence relations on any domain \(\mathbf{V} \), ordered by inclusion, forms a complete lattice—namely the intersection of arbitrary many equivalence relations is again an equivalence relation. Likewise, the collection of 1-hole congruences for \(\mathcal{L} \) is a complete lattice, and moreover a complete sublattice of the complete lattice of equivalence relations on \(\mathbf{V} \). The latter implies that for any collection \(C \) of 1-hole congruence relations, the least equivalence relation that contains all elements of \(C \) (exists and) happens to be a 1-hole congruence relation. Again, this is a property that is well known \([29]\) and easy to prove. It follows that for any equivalence relation \(\sim \) there exists a largest 1-hole congruence for \(\mathcal{L} \) contained in \(\sim \). I will denote this 1-hole congruence by \(\sim_{\mathcal{L}} \) and call it the congruence closure of \(\sim \) w.r.t. \(\mathcal{L} \). One has \(v_1 \sim_{\mathcal{L}} v_2 \) for \(v_1, v_2 \in \mathbf{V} \) iff \([E]_{\mathcal{L}}(v) \sim [E]_{\mathcal{L}}(\rho)\) for any \(\mathcal{L} \)-expression \(E \) and any valuations \(v, \rho : \mathcal{X} \to \mathbf{V} \) with \(v(X) = v_1 \) and \(\rho(X) = v_2 \) for some \(X \in \mathcal{X} \) and \(v(Y) = \rho(Y) \) for all variables \(Y \neq X \). Such results do not generally hold for congruences.

Example 3 Continue Example 2 but skipping the operator \(+ \). Let \(\sim_k \) be the equivalence on \(\mathbf{V} \) defined by \((n, m) \sim_k (n', m') \) iff \(n = n' \land (m = m' \lor m, m' \leq k) \). It is easy to check that all \(\sim_k \) for \(k \in \mathbb{N} \) are congruences on the reduced \(\mathcal{L} \), and contained in \(\sim \). Yet their least upper bound (in the lattice of equivalence relations on \(\mathbf{V} \)) is \(\sim \), which is not a congruence itself. In particular, there is no largest congruence contained in \(\sim \).

When dealing with languages \(\mathcal{L} \) in which all operators and other constructs have a finite arity, so that each \(E \in \mathbb{T}_{\mathcal{L}} \) contains only finitely many variables, there is no difference between a congruence and a 1-hole congruence, and thus \(\sim_{\mathcal{L}} \) is a congruence relation for any equivalence \(\sim \). I will apply the theory of expressiveness presented in this paper also to languages like CCS that have operators (such as \(\Sigma_{i \in I} E_i \)) of infinite arity. However, in all such cases I’m currently aware of, the relevant choices of \(\mathcal{L} \) and \(\sim \)
have the property that \(\sim \) is in fact a congruence relation. As an example, consider weak bisimilarity \([38]\). This equivalence relation fails to be a congruence for \(\sum \). However, the coarsest 1-hole congruence contained in this relation, often called rooted weak bisimilarity, happens to be a congruence. In fact, when congruence-closing weak bisimilarity w.r.t. the binary sum, the result \([23]\) is also a congruence for the infinitary sum, as well as for all other operators of CCS \([38]\).

Definition 15 Let \(T \) be a translation from \(L \) into \(L' \). A subset \(W \) of \(V' \) is closed under \(T(\sum) \) if \([T(\sum)](\eta) \in W \) for any expression \(E \in \mathbb{T}_\sum \) and valuation \(\eta : \mathcal{X} \rightarrow W \). An equivalence \(\sim \) on \(W \) is a congruence (respectively 1-hole congruence) for \(\sum \) on \(W \) if for any \(E \in \mathbb{T}_\sum \) and \(\theta, \eta : \mathcal{X} \rightarrow W \) with \(\sim \) \(\eta \) (respectively \(\sim \) \(\theta \)) one has \([T(\sum)](\theta) \sim [T(\sum)](\eta)\).

Proposition 3 Let \(T \) be a translation from \(L \) into \(L' \) that is correct w.r.t. a semantic translation \(R \subseteq V' \times V \). Let \(R(V) := \{ v' \in V' \mid \exists v \in V. v' \mathcal{R} v \} \). Then \(R(V) \) is closed under \(T(\eta) \).

Proof: Let \(E \in \mathbb{T}_\sum \) and \(\eta : \mathcal{X} \rightarrow R(V) \). Take \(\rho : \mathcal{X} \rightarrow V \) with \(\rho \mathcal{R} \eta \). Then \([T(\sum)](\eta) R [T(\sum)](\rho)\). Since \([T(\sum)](\rho) \in V \) one has \([T(\sum)](\eta) \in R(V)\).

Proposition 4 Let the translation \(T \) from \(L \) into \(L' \) be correct w.r.t. the semantic translation \(R \subseteq \sim \). Then \(\sim \) is a (1-hole) congruence for \(L \) iff it is a (1-hole) congruence for \(T(L) \) on \(R(V) \).

Proof: First suppose \(\sim \) is a congruence for \(L \). Let \(E \in \mathbb{T}_\sum \) and \(\theta, \eta : \mathcal{X} \rightarrow R(V) \) with \(\sim \) \(\eta \). By the definition of \(R(V) \) there are valuations \(\nu, \rho : \mathcal{X} \rightarrow V \) with \(\theta \mathcal{R} \nu \) and \(\eta \mathcal{R} \rho \). Now \(\nu \sim \theta \sim \eta \sim \rho \), so

\[[T(\sum)](\theta) R [T(\sum)](\nu) \sim [T(\sum)](\rho) \]

and hence \([T(\sum)](\theta) \sim [T(\sum)](\eta)\). The other direction proceeds in the same way.

Now suppose \(\sim \) is a 1-hole congruence for \(L \). Let \(E \in \mathbb{T}_\sum \) and \(\theta, \eta : \mathcal{X} \rightarrow R(V) \) with \(\sim \) \(\eta \). Then \(\theta(X) \sim \eta(X) \) for some \(X \in \mathcal{X} \) and \(\theta(Y) = \eta(Y) \) for all \(Y \neq X \). So there must be \(\nu, \rho : \mathcal{X} \rightarrow V \) with \(\theta \mathcal{R} \nu \), \(\eta \mathcal{R} \rho \) and \(\nu(Y) = \rho(Y) \) for all \(Y \neq X \). Since \(\nu(X) \sim \theta(X) \sim \eta(X) \sim \rho(X) \) it follows that \(\nu \sim \rho \). The conclusion proceeds as above, and the other direction goes likewise.

The requirement of being a congruence for \(T(L) \) on \(R(V) \) is slightly weaker than that of being a congruence for \(T(L) \)—cf. Definition \([38]\)—for it proceeds by restricting attention to valuations into \(R(V) \subseteq U \).

Example 4 Let \(L \) be a language with two constants \(\text{Yes} \) and \(\text{No} \) and a unary operator \(\neg \). Its semantics is given by \(V = \{ 0, 1 \} \), \(\text{Yes} \theta = 1 \), \(\text{No} \theta = 0 \) and \(\neg \theta(b) = 1 - b \). Let \(L' \) be the extension of \(L \) with the constant \(\top \) and the semantic value \(\top \) so \(V' = \{ 0, 1, \top \} \) with \(\top \in V \) and \(\neg \theta \). Let \(\sim \) be the semantic equivalence on \(V' \subseteq V \) given by \(0 \not\sim \top \). Then the identity function \(\mathcal{I} \) is a translation from \(L \) into \(L' \) that is valid up to \(\sim \). This is witnessed by the semantic translation \(R := \{ (0, 0), (1, 1) \} \subseteq \sim \).

The relation \(\sim \) is a congruence for \(L \). In line with Proposition \([4]\) it also is a congruence for \(\mathcal{I}(\sum) \) on \(R(V) = \{ 0, 1 \} \). However it fails to be a congruence for \(\mathcal{I}(\sum) \) (on \(U = \{ 0, 1, \top \} \)). So by Proposition \([2]\) the translation \(\mathcal{I} \) is not correct up to \(\sim \). Indeed, for \(\rho : \mathcal{X} \rightarrow V \) a valuation that sends \(X \in \mathcal{X} \) to \(1 \) and \(\eta : \mathcal{X} \rightarrow \top \) a valuation that sends \(X \) to \(\top \), assuming \(\rho(Y) = \eta(Y) \) for other variables \(Y \), one has \(\rho \sim \eta \), yet \([\mathcal{I}(\neg X)](\eta) = [\neg X](\eta) = \neg \theta(X) = \top \neq 0 = \neg \theta(\rho(X)) = [\neg X](\rho)\).

8 A congruence closure property for valid translations

In many applications, semantic values in the domain of interpretation of a language \(L \) are only meaningful up to a semantic equivalence \(\sim \), and the intended semantic domain could just as well be seen as the set of \(\sim \)-equivalence classes of values. For this purpose it is essential that \(\sim \) is a congruence for \(L \).
Often \(~_c\) is the congruence closure of a coarser semantic equivalence \(~\), so that two values end up being identified iff they are \(~_c\)-equivalent in every context. An example of this occurred in Section 6 with \(\approx\) in the role of \(\sim\) and \(\equiv_c\) in the role of \(\sim_c\). Now Theorem 3 contributed in this section, says that if a translation from \(\mathcal{L}\) into \(\mathcal{L}'\) is valid up to \(\sim\), then it is even valid up to an equivalence \(\sim_{1c}\) that extends \(\sim\) from \(V\) to a subdomain \(W\) of \(V'\) that suffices for the interpretation of translated expressions from \(\mathcal{L}\). This equivalence \(\sim_{1c}\) coincides with the congruence closure of \(\sim\) on \(\mathcal{L}\), as well as on \(\mathcal{T}(\mathcal{L})\), and melts each equivalence class of \(V\) with exactly one of \(W\), and vice versa.

Let \(\mathcal{L}\) and \(\mathcal{L}'\) be languages with \([\]_{\mathcal{L}} : \wp \rightarrow ((\mathcal{X} \rightarrow V) \rightarrow V)\) and \([\]_{\mathcal{L}'} : \wp \rightarrow ((\mathcal{X} \rightarrow V') \rightarrow V')\). In this section I assume that \(V \cap V' = \emptyset\). To apply the results to the general case, just adapt \(\mathcal{L}'\) by using a copy of \(V'\)—any preorder \(\sim\) on \(V \cup V'\) extends to this copy by considering each copied element \(\sim\)-equivalent to the original.

Definition 16 Given any semantic translation \(\mathcal{R}\), let \(\equiv_R \subseteq (V \cup V')^2\) be the smallest equivalence relation on \(V \cup V'\) containing \(\mathcal{R}\).

Theorem 3 If a translation \(\mathcal{T}\) is correct w.r.t. the semantic translation \(\mathcal{R}\), then \(\equiv_R\) is a 1-hole congruence for \(\mathcal{L}\).

Proof: Let \(E \in \wp\) and \(v, \rho : \mathcal{X} \rightarrow V\) with \(v \equiv_R^1 \rho\). I have to show that \([E]_{\mathcal{L}}(v) \equiv_R [E]_{\mathcal{L}}(\rho)\).

Let \(X \in \mathcal{X}\) be such that \(v(X) \equiv_R \rho(X)\) and \(v(Y) = \rho(Y)\) for all \(Y \neq X\). Then, for some \(n \geq 0\) there are \(v_0, \ldots, v_n \in V\) and \(w_1, \ldots, w_n \in V'\) with \(v(X) = v_0 R^{-1} w_1 R v_1 R^{-1} w_2 R v_2 R^{-1} \ldots R v_n = \rho(X)\). For \(i = 0, \ldots, n\) let \(\eta_i : \mathcal{X} \rightarrow V'\) be given by \(\eta_i(X) = w_i\) and \(\eta_i(Y) = \rho(Y)\) for \(Y \neq X\), and for \(i = 1, \ldots, n\) let \(\eta_i : \mathcal{X} \rightarrow V'\) be given by \(\eta_i(X) = w_i\) and \(\eta_i(Y) = \eta(Y)\) for \(Y \neq X\), for some \(\eta : \mathcal{X} \rightarrow V'\) with \(\eta \mathcal{R} \rho\). Then \(\eta_0 = \rho_0 R^{-1} \eta_1 R \rho_1 R^{-1} \eta_2 R \rho_2 R^{-1} \ldots R \rho_n = \rho\). Hence \([E]_{\mathcal{L}}(\rho_0) R^{-1} [\mathcal{R}(E)]_{\mathcal{L}}(\eta_1) R [E]_{\mathcal{L}}(\rho_1) R^{-1} [\mathcal{R}(E)]_{\mathcal{L}}(\eta_2) R [E]_{\mathcal{L}}(\rho_2) R^{-1} \ldots R [E]_{\mathcal{L}}(\rho_n)\). Thus \([E]_{\mathcal{L}}(v) \equiv_R [E]_{\mathcal{L}}(\rho)\).

By Proposition 4 \(\equiv_R\) also is a 1-hole congruence for \(\mathcal{T}(\mathcal{L})\) on \(\mathcal{R}(V)\). Only the subset \(\mathcal{R}(V)\) of \(V'\) matters for the purpose of translating \(\mathcal{L}\) into \(\mathcal{L}'\). On \(V' \setminus \mathcal{R}(V)\) the equivalence \(\equiv_R\) is the identity.

Theorem 4 Let \(\mathcal{T}\) be a translation from a language \(\mathcal{L}\), with semantic domain \(V\), into a language \(\mathcal{L}'\), with domain \(V'\), that is valid up to a semantic equivalence \(\sim\). Then \(\mathcal{T}\) is even valid up to a semantic equivalence \(\sim_{1c}\) contained in \(\sim\), such that (1) the restriction of \(\sim_{1c}\) to \(V\) is the largest 1-hole congruence for \(\mathcal{L}\) contained in \(\sim\), (2) the set \(W := \{v \in V' \mid \exists v \in V. v' \sim_{1c} v\}\) is closed under \(\mathcal{T}(\mathcal{L})\), and (3) the restriction of \(\sim_{1c}\) to \(W\) is the largest 1-hole congruence for \(\mathcal{T}(\mathcal{L})\) on \(W\) that is contained in \(\sim\).

Proof: By assumption the translation \(\mathcal{T}\) from \(\mathcal{L}\) into \(\mathcal{L}'\) is correct w.r.t. a semantic translation \(\mathcal{R} \subseteq \sim\). Let \(\sim_{1c}\), the congruence closure of \(\sim\) w.r.t. \(\mathcal{L}\) and \(\mathcal{R}\), be the binary relation on \(V \cup V'\) defined by \(w_1 \sim_{1c} R w_2\) iff \(w_1 \equiv_R v_1 \sim_{1c} R v_2 \equiv_R w_2\) for some \(v_1, v_2 \in V\). Here \(\sim_{1c}\) is the largest 1-hole congruence for \(\mathcal{L}\), defined on \(V\), that is contained in \(\sim\).

Since \(\equiv_R\) is a 1-hole congruence for \(\mathcal{L}\) contained in \(\sim\) (by Theorem 5), and \(\sim_{1c}\) is the largest 1-hole congruence for \(\mathcal{L}\) contained in \(\sim\), one has \(v \equiv_R w \Rightarrow v \sim_{1c} R w\) for all \(v, w \in V\). From this it follows that \(\sim_{1c}\) is transitive. As \(\equiv_R\) and \(\sim_{1c}\) are reflexive and symmetric, so is \(\sim_{1c}\). Thus, \(\sim_{1c}\) is an equivalence relation. Since \(\sim_{1c}\) and \(\mathcal{R}\), and hence also \(\equiv_R\), are contained in \(\sim\), so is \(\sim_{1c}\). Moreover, \(\mathcal{R} \subseteq \sim_{1c} \subseteq \equiv_R\), so \(\mathcal{T}\) is valid up to \(\sim_{1c}\). It remains to check properties (1)–(3).

Let \(E \in \wp\) be an \(\mathcal{L}\)-expression and \(v, \rho : \mathcal{X} \rightarrow V\) be valuations with \(v \sim_{1c} \rho\). Then there are valuations \(v', \rho' : \mathcal{X} \rightarrow V\) with \(v \equiv_R v', \rho \equiv_R \rho'\). Since \(\equiv_R\) and \(\sim_{1c}\) are 1-hole congruences, it follows that \([E]_{\mathcal{L}}(v') \equiv_R [E]_{\mathcal{L}}(v') \sim_{1c} R [E]_{\mathcal{L}}(\rho') \equiv_R [E]_{\mathcal{L}}(\rho)\), so \([E]_{\mathcal{L}}(v) \sim_{1c} R [E]_{\mathcal{L}}(\rho)\). Thus \(\sim_{1c}\) is a 1-hole congruence for \(\mathcal{L}\) on \(V\). Since \(\sim_{1c}\) is the largest 1-hole congruence for \(\mathcal{L}\) contained in \(\sim\), it follows that, restricted to \(V\), \(\sim_{1c} \subseteq \sim_{1c}\). By the reflexivity of \(\equiv_R\) one moreover has \(\sim_{1c} \subseteq \sim_{1c}\), so \(\sim_{1c} = \sim_{1c}\), i.e. (1) holds.
Let \(W := \{ w \in V' \mid \exists v \in V, w \sim_{L,R} v \} \). By definition, \(W = R(V) \). So by Proposition 5 \(W \) is closed under \(\mathcal{F}(L) \), i.e. (2) holds.

By Proposition 4 \(\sim_{L,R} \) is a 1-hole congruence for \(\mathcal{F}(L) \) on \(W = R(V) \), contained in \(\sim \). Let \(\approx \) be any other 1-hole congruence on \(W \) contained in \(\sim \). Define the relation \(\neq_{\sim} \) on \(V \cup W \) by \(v_1 \neq_{\sim} v_2 \) if \(v_1 \equiv_{R} v_1 \wedge v_2 \equiv_{R} v_2 \) for some \(v_1, v_2 \in W \), and let \(\approx_{\sim} \) be its transitive closure. Then \(\approx_{\sim} \) is an equivalence relation on \(V \cup W \). Since \(\neq_{\sim} \) and \(\approx \) are 1-hole congruences for \(\mathcal{F}(L) \) on \(W \), by the same reasoning as above also \(\approx_{\sim}^{*} \) is a 1-hole congruence for \(\mathcal{F}(L) \) on \(W \). As \(R \subseteq \equiv_{\sim} \subseteq \approx_{\sim}^{*} \), by Proposition 4 \(\approx_{\sim} \) is a 1-hole congruence for \(L \). Since \(\sim_{L,R} \) is the largest 1-hole congruence for \(L \) contained in \(\sim \), it follows that, restricted to \(V, \approx_{\sim} \subseteq \sim_{L,R} \).

For each \(w_1, w_2 \in W \) with \(w_1 \equiv w_2 \) there are \(v_1, v_2 \in V \) with \(v_1 \equiv_{R} w_1 \equiv_{R} v_2 \) and hence \(v_1 \sim_{L,R} v_2 \), and thus \(w_1 \sim_{L,R} w_2 \), by definition. So \(\approx \subseteq \sim_{L,R} \) and (3) holds. \(\square \)

Note that each equivalence class of \(\sim_{L,R} \) on \(V \cup W \) equals an equivalence class of \(\sim_{L,R} \) on \(V \) with one of \(\sim_{L,R} \) on \(W \). Moreover, on \(V \) the relation is completely determined by \(L \) and \(\sim \). The following example shows that in general the whole relation \(\sim_{L,R} \) is not completely determined by \(L \) and \(\sim \).

Example 5 Let \(L \) be a language with two constants \(Yes \) and \(No \) and a binary operator \(same \). Its semantics is given by \(V = \{ 0, 1, \top, \bot \} \). \(Yes \in V = 1, No \in V = 0 \) and \(same(x,y) = 1 \) if \(x = y \), while \(same(x,y) = 0 \) if \(x \neq y \). The semantic values \(\top \) and \(\bot \) are not denotable as the interpretation of closed terms.

Let \(L' \) be an exact copy of \(L \), except that the semantic values are primed. Let \(\sim \) be the semantic equivalence on \(V \cup V' \) given by \(0 \sim 0' \not\sim 1 \sim 1' \not\sim \top \sim \top' \not\sim \bot \sim \bot' \). Then the identity function \(\mathcal{I} \) is a translation from \(L \) into \(L' \) that is valid up to \(\sim \). This is witnessed by the semantic translation \(\mathcal{I} := \{ (0,0), (1,1), (\top,\top), (\bot,\bot) \} \subseteq \sim \) or, alternatively, by the semantic translation \(\mathcal{R} := \{ (0',0), (1',1), (\top',\top), (\bot',\bot) \} \subseteq \sim \). Upon taking the congruence closure \(\sim_{L,R} \), the four semantic values of \(V \) become inequivalent. Yet, there are two candidates for \(\sim_{L,R} \) namely \(\mathcal{I} \) and \(\mathcal{R} \).

Corollary 1 Let \(\mathcal{F} \) be a translation from a language \(L \), with semantic domain \(V \), into a language \(L' \), with domain \(V' \), valid up to a semantic equivalence \(\sim \), and suppose the congruence closure \(\sim_{L,R} \) of \(\sim \) w.r.t. \(L' \) is in fact a congruence. Then \(\mathcal{F} \) is correct w.r.t. the semantic translation \(\mathcal{R} \subseteq \sim_{L,R} \), the restriction of \(\sim_{L,R} \) to \(V \) equals \(\sim_{L,R} \) and \(\mathcal{R}(V) = W \). Using that \(\sim_{L,R} \) is a congruence for \(L \), by Proposition 3 \(\sim_{L,R} \) is a congruence for \(\mathcal{F}(L) \) on \(R(V) \). Since \(R(V) = W \), which for \(\sim_{L,R} \) is the \(U \) used in Definition 8 \(\sim_{L,R} \) is a congruence for \(\mathcal{F}(L) \). So by Theorem 1 \(\mathcal{F} \) is correct up to \(\sim_{L,R} \). \(\square \)

The languages \(\pi \) and \(\pi \) of Section 6 do not feature operators (or other constructs) of infinite arity. Hence the congruence closure \(\sim_{L,R} \) or \(\sim_{L,R} \) of an equivalence \(\sim \) on \(\pi \) or \(\pi \) is always a congruence. So by Corollary 1 Boudol’s translation \(\mathcal{F} \) is correct up to an equivalence \(\approx_{\pi,R} \), defined on the disjoint union of the domains \(T_{\pi} \) and \(T_{\pi} \) on which the two languages are interpreted. This equivalence is contained in \(\approx \), and on the source domain \(T_{\pi} \) coincides with \(\equiv_{\pi} \). By Theorem 4 the restriction of \(\approx_{\pi,R} \) to a subdomain \(W \subseteq T_{\pi} \) is a congruence for \(\mathcal{F}(\pi) \) on \(W \) that is contained in \(\sim \). As \(\approx_{\pi} \) is a congruence for all of \(\pi \) and contained in \(\approx \), it is certainly a congruence for \(\mathcal{F}(\pi) \) on \(W \), but contained in \(\approx_{\pi,R} \). This inclusion turns out to be strict. As an illustration of that, note that \(xz, 0 \equiv \approx_{\pi,R} xz, 0 \). (This follows since these processes are strong (early) bisimilar [62] and thus strong full bisimilar by [62].) Consequently, their translations must be related by \(\approx_{\pi,R} \). So, for distinct \(u, v, w, x, z, a, x \in N \),

\[(u)(xu)(u(v)(\bar{z}x)(0)) = (u)(xu)(u(v)(\bar{z}x)(0)) \approx_{\pi,R} (y)(\bar{y}x)(u(w)(\bar{w}x)(u(v)(\bar{w}x)(0))) \]

Yet, these processes are not \(\approx_{\pi,R} \)-equivalent, as can be seen by putting them in a context \(x(y)x(y)f(s)|X \). In this context, only the left-hand side has a weak barb \(\perp \).
9 Integrating language features through translations

The results of the previous section show how valid translations are satisfactory for comparing the expressiveness of languages. If there is a valid translation T from L to L' up to \sim, and (as usual) \sim_{L}' is a congruence, then all truths that can be expressed in terms of L can be mimicked in L'. For the congruence classes of \sim_{L}' translate bijectively to congruence classes of an induced equivalence relation on the domain of $T(L)$ (within the domain of L'), and all operations on those congruence classes that can be performed by contexts of L have a perfect counterpart in terms of contexts of $T(L)$. This state of affairs was illustrated on Boudol’s translation from a synchronous to an asynchronous π-calculus.

There is however one desirable property of translations between languages that has not yet been achieved, namely to combines the powers of two languages into one unified language. If both languages L_1 and L_2 have valid translations into a language L'', then all that can be done with L_1 can be mimicked in a fragment of L'', and all that can be done with L_2 can be mimicked in another fragment of L''. In order for these two fragments to combine, one would like to employ a single congruence relation on L'' that specialises to congruence relations for $T_1(L_1)$ and $T_2(L_2)$, which form the counterparts of relevant congruence relations for the source languages L_1 and L_2.

In terms of the translation T from π to $\alpha\pi$, the equivalence \equiv_{π} on $T_{\alpha\pi}$ would be the right congruence relation to consider for $\alpha\pi$. Ideally, this congruence would extend to an equivalence $\equiv_{\pi,\alpha\pi}$ on the disjoint union $T_{\pi} \cup T_{\alpha\pi}$, such that the restriction of $\equiv_{\pi,\alpha\pi}$ to T_{π} is a congruence for π. Necessarily, this congruence on T_{π} would have to distinguish the terms $\bar{xz}.\top$ and $\bar{xz}.\emptyset$, since their translations are distinguished by \equiv_{π}. One therefore expects $\equiv_{\pi,\alpha\pi}$ on T_{π} to be strictly finer than \equiv_{π}. Here it is important that the union of T_{π} and $T_{\alpha\pi}$ on which this congruence is defined is required to be disjoint. For if one considers $T_{\alpha\pi}$ as a subset of T_{π}, then we obtain that the restriction of $\equiv_{\pi,\alpha\pi}$ to that subset (1) coincides with \equiv_{π} and (2) is strictly finer than \equiv_{π}. This contradicts the fact that \equiv_{π} is strictly finer than \equiv_{π}.

In Section [13] it will show that such a congruence $\equiv_{\pi,\alpha\pi}$ indeed exists. In fact, under a few very mild conditions this result holds generally, provided that the source language L is a closed-term language. The following example illustrated why that restriction needs to be imposed.

Example 6 Let L be a language with three constants \top, Yes and No. Its semantics is given by $V = \{+, -, \}$. Let L'' be a language with the same three constants and a unary operator next. Its semantics is given by $V' = \{0, 1, 2\}$ with $\top V' = 2$, $\text{Yes} V' = 1$ and $\text{No} V' = 0$, while $\text{next} V' = (n + 1) \mod 3$. Let \sim be the semantic equivalence on $V' \cup V'$ given by $\sim (n) \sim (n + 1)$ for $n = 2$. Then the identity function I is a translation from L into L'' that is valid up to \sim. This is witnessed by the semantic translation $R := \{(0, -), (1, +), (2, +)\} \subseteq \sim$. The congruence closure of \sim on V' is the identity relation. This relation cannot be extended to $V' \cup V'$ in such a way that T remains valid. For 1 and 2 need to be different; yet to make T valid both need to be related to $+$.

10 A unique decomposition of terms

The results of Sections [12, 16] apply only to languages that satisfy two postulates, and to preorders \sim that “respect α” (defined in Section [11]). Below and in Section [11] I formulate these postulates.

Definition 17 α-conversion is the act of renaming all occurrences of a bound variable X within the scope of its binding into another variable, say Y, while avoiding capture of free variables. Here one speaks of capture when a free occurrence of Y turns into a bound one.

Write $E \equiv F$ if expression E can be converted into F by multiple acts of α-conversion.
In languages where there are multiple types of bound variables, α-allows conversion of all of them. In a π-calculus with recursion, for instance, there could be bound process variables $X \in \mathcal{X}$ as well as bound names $x \in \mathcal{N}$. The last two conversions in the right column of Definition 10 define α-conversion for π-calculus names.

The following notation and observation is used below and in Section 12.1.

Definition 18 Given two substitutions $\sigma, \xi : \mathcal{X} \rightarrow \mathbb{T}_{\mathcal{X}}$, their composition $\xi \bullet \sigma$ with $\text{dom}(\xi \bullet \sigma) = \text{dom}(\sigma)$ is given by $(\xi \bullet \sigma)(X) = \sigma(X)[\xi]$.

Observation 3 If $\text{dom}(\sigma) = \text{fv}(E)$ then $E[\sigma][\xi] \overset{\alpha}{=} E[\xi \bullet \sigma]$.

An expression E of the form $f(E_1, \ldots, E_n)$ can be written as $H[\sigma]$, where H is an expression $f(X_1, \ldots, X_n)$ and $\sigma : \{X_1, \ldots, X_n\} \rightarrow \mathbb{T}_{\mathcal{X}}$ is the substitution with $\sigma(X_i) = E_i$ for $i = 1, \ldots, n$. Here H and σ are completely determined by E, except for the choice of the variables X_1, \ldots, X_n. The term H is called a head of E. In this paper, for the proofs of Section 12 I propose a unique decomposition of expressions E into H and σ, by making an arbitrary choice for the variables X_1, \ldots, X_n. Moreover, I extend this decomposition to all terms E that are not variables. This requires a postulate that says, in essence, that such a decomposition is always possible, and restricting attention to languages satisfying this postulate.

Definition 19 (24) A term $E \in \mathbb{T}_{\mathcal{X}}$ is a prefix of a term F, written $E \leq F$, if $F \overset{\alpha}{=} E[\sigma]$ for some substitution σ with $\text{dom}(\sigma) = \text{fv}(E)$.

Note that $E[\text{id}_E] = E$, where $\text{id}_E : \text{fv}(E) \rightarrow \mathbb{T}_{\mathcal{X}}$ is the identity. Moreover, if $\text{dom}(\sigma) = \text{fv}(E)$ then $E[\sigma][\xi] \overset{\alpha}{=} E[\xi \bullet \sigma]$, by Observation 3. It follows that \leq is reflexive and transitive, and hence a preorder. Write \equiv for the kernel of \leq, i.e. $E \equiv F$ iff $E \leq F$ and $F \leq E$. Note that $E \equiv F$ implies $E \equiv F$. If $E \equiv F$ then E can be converted into F by means of an injective renaming of its variables.

Definition 20 (24) A term $H \in \mathbb{T}_{\mathcal{X}}$ is a head if H is not a single variable and $E \leq H$ implies that E is a single variable or $E \equiv H$. It is a head of another term F if it is a head, as well as a prefix of F.

Example 7 Let c be a constant, g a unary operator, f a binary operator, and $\mu X.E$ the recursion construct of CCS. Then $f(X,Y)$ is a head of the term $f(c,g(c))$, and $\mu X.f(Y,g(g(X)))$ is a head of $\mu X.f(g(c),g(g(X)))$. See (24) for further detail.

Postulate 1 (24) Each expression E, if not a variable, has a head, which is unique up to \equiv.

This is easy to show for each common type of system description language, and I am not aware of any counterexamples. However, while striving for maximal generality, I consider languages with (recursion-like) constructs that are yet to be invented, and in view of those, this principle has to be postulated rather than derived. This means that in this section I consider only languages that satisfy this postulate.

Pick a representative from each \equiv-equivalence class of heads, and call the chosen representatives standard heads. Likewise, pick a representative from each $\overset{\alpha}{=} \text{-class of terms, and call a substitution } \sigma \text{ where } \sigma(X) \text{ is such a representative for each } X \in \text{dom}(\sigma) \text{ a standard substitution. Now each expression } E \notin \mathcal{X} \text{ can uniquely be written as } E \overset{\alpha}{=} H[\sigma], \text{ with } H \text{ a standard head and } \sigma \text{ a standard substitution with } \text{dom}(\sigma) = \text{fv}(E). \text{ I will refer to the pair } H, \sigma \text{ as the standard decomposition of } E.

11 Invariance of meaning under α-conversion

Write $v \overset{\alpha}{=} \mathcal{X} w$, with $v, w \in \mathcal{V}$, iff there are terms $E, F \in \mathbb{T}_{\mathcal{X}}$ with $E \overset{\alpha}{=} F$, and a valuation $\zeta : \mathcal{X} \rightarrow \mathcal{V}$ such that $[E]_{\mathcal{X}}(\zeta) = v$ and $[F]_{\mathcal{X}}(\zeta) = w$. This relation is reflexive and symmetric.
In [24] I limited attention to languages satisfying

\[\text{if } E \equiv F \text{ then } [E]_{\mathcal{L}} = [F]_{\mathcal{L}}. \] (2)

This postulate says that the meaning of an expression is invariant under \(\alpha \)-conversion. It can be reformulated as the requirement that \(\equiv_{\mathcal{L}} \) is the identity relation. This postulate is satisfied by all my intended applications, except for the important class of closed-term languages. Languages like CCS and the \(\pi \)-calculus can be regarded as falling in this class (although it is also possible to declare the meaning of a term under a valuation to be an \(\equiv_{\mathcal{L}} \)-equivalence class of closed terms). To bring this type of application within the scope of my theory, here I weaken this postulate by requiring merely that \(\equiv_{\mathcal{L}} \) is an equivalence.

Postulate 2 \(\equiv_{\mathcal{L}} \) is an equivalence relation.

This postulate is needed for the results of Sections [12][16] I also need to restrict attention to preorders \(\prec \) with \(\equiv_{\mathcal{L}} \subseteq \prec \). When that holds I say that the preorder \(\prec \) **respects** \(\equiv_{\mathcal{L}} \). If (2) holds—which strengthens of Postulate [2]—then any preorder respects \(\equiv_{\mathcal{L}} \).

12 Compositionality

An important property of translations, defined below, is **compositionality**. In this section show I that any valid translation up to a preorder \(\prec \) can be modified into such a translation that moreover is compositional, provided one restricts attention to languages that satisfy Postulates [1] and [2] and preorders \(\prec \) that respect \(\equiv \).

Definition 21 A translation \(\mathcal{T} \) from \(\mathcal{L} \) into \(\mathcal{L}' \) is compositional if

1. \(\mathcal{T}(E[\sigma]) \overset{\alpha}{=} \mathcal{T}(E)[\mathcal{T} \circ \sigma] \) for each \(E \in \mathcal{T}_{\mathcal{L}} \) and \(\sigma : fV(E) \to \mathcal{T}_{\mathcal{L}} \),
2. \(E \overset{\alpha}{=} F \) implies \(\mathcal{T}(E) \overset{\alpha}{=} \mathcal{T}(F) \) for all \(E, F \in \mathcal{T}_{\mathcal{L}} \),
3. and moreover \(\mathcal{T}(X) = X \) for each \(X \in \mathcal{L} \).

In case \(E = f(t_1, \ldots, t_n) \) for certain \(t_i \in \mathcal{T}_{\mathcal{L}} \) this amounts to \(\mathcal{T}(f(t_1, \ldots, t_n)) \overset{\alpha}{=} E_f(\mathcal{T}(t_1), \ldots, \mathcal{T}(t_n)), \) where \(E_f := \mathcal{T}(f(X_1, \ldots, X_n)) \) and \(E_f(u_1, \ldots, u_n) \) denotes the result of the simultaneous substitution in this expression of the terms \(u_i \in \mathcal{T}_{\mathcal{L}} \) for the free variables \(X_i \), for \(i = 1, \ldots, n \). The first requirement of Definition [21] is more general and covers language constructs other than functions, such as recursion. Requiring equality rather than \(\overset{\alpha}{=} \) is too demanding, as the following example illustrates.

Example 8 Take a source language \(\mathcal{L} \) that features an unary replication operator \(! \), as in the \(\pi \)-calculus, and a target language \(\mathcal{L}' \) that instead has a recursion construct \(\mu X.E \), as in CCS; both languages have a constant \(0 \). A suitable translation \(\mathcal{T} \) satisfies \(\mathcal{T}(X_1) = \mu X.(X_1|X) \) and \(\mathcal{T}(0) = 0 \). Applying Definition [21] with \(\sigma(X_1) = 0 \) gives \(\mathcal{T}(0) \overset{\alpha}{=} \mu X.(X|0) \), whereas applying it with \(\sigma(X_1) = X \) gives \(\mathcal{T}(!X) \overset{\alpha}{=} \mu Y.(Y|X) \). Here the bound variable \(X \) needed to be renamed (into \(Y \)) to avoid capture of the free variable \(X \) that is substituted for \(X_1 \). Furthermore, applying Definition [21] on \(\mathcal{T}(X) \overset{\alpha}{=} \mu Y.(Y|X) \) with \(\sigma(X) = 0 \) gives \(\mathcal{T}(0) \overset{\alpha}{=} \mu Y.(Y|0) \). Since \(X \neq Y \), this shows that \(\overset{\alpha}{=} \) cannot consistently be replaced by \(= \).

Lemma 1 If \(\mathcal{T}_1 : \mathcal{T}_{\mathcal{L}_1} \to \mathcal{T}_{\mathcal{L}_2} \) and \(\mathcal{T}_2 : \mathcal{T}_{\mathcal{L}_2} \to \mathcal{T}_{\mathcal{L}_3} \) are compositional translations, then so is their composition \(\mathcal{T}_2 \circ \mathcal{T}_1 : \mathcal{T}_{\mathcal{L}_1} \to \mathcal{T}_{\mathcal{L}_3} \), defined by \(\mathcal{T}_2 \circ \mathcal{T}_1(E) := \mathcal{T}_2(\mathcal{T}_1(E)) \) for all \(E \in \mathcal{T}_{\mathcal{L}_1} \).

Proof:

1. \(\mathcal{T}_2(\mathcal{T}_1[E[\sigma]]) \overset{\alpha}{=} \mathcal{T}_2(\mathcal{T}_1[E][\mathcal{T}_1 \circ \sigma]) \overset{\alpha}{=} \mathcal{T}_2(\mathcal{T}_1[E])[\mathcal{T}_2 \circ \sigma] \) for each \(\sigma : \mathcal{L}' \to \mathcal{T}_{\mathcal{L}_1} \) and \(E \in \mathcal{T}_{\mathcal{L}_1} \). Here the derivation of the first \(\overset{\alpha}{=} \) uses Property (2) of Definition [21]—and this is the reason for requiring that property.

2. \(E \overset{\alpha}{=} F \) implies \(\mathcal{T}_1(E) \overset{\alpha}{=} \mathcal{T}_1(F) \) and hence \(\mathcal{T}_2(\mathcal{T}_1(E)) \overset{\alpha}{=} \mathcal{T}_2(\mathcal{T}_1(F)) \) for all \(E, F \in \mathcal{T}_{\mathcal{L}_1} \).

3. \(\mathcal{T}_2(\mathcal{T}_1(X)) = \mathcal{T}_2(X) = X \) for each \(X \in \mathcal{X} \).

\(\Box \)
12.1 Translations that are compositional by construction

The following proposition shows that when verifying that a translation is compositional it suffices to check requirement (1) of Definition 21 for the case that the term \(E \) is a (standard) head only. In most applications (including the one of Section 6) a translation is defined inductively, in such a way that (1) for \(E \) a head, as well as (2) and (3), hold by definition; in such cases compositionality follows.

Proposition 5 Let \(\mathcal{L} \) be a language satisfying Postulate 1. Any translation \(\mathcal{T} \) from \(\mathcal{L} \) into \(\mathcal{L}' \) satisfying
\[
\mathcal{T}(X) = X \quad \text{for} \ X \in \mathcal{X}, \quad \text{and} \\
\mathcal{T}(E) \triangleq \mathcal{T}(H)[\mathcal{T} \circ \sigma] \quad \text{when} \ E \triangleq H[\sigma] \text{ with } H, \sigma \text{ the standard decomposition of } E.
\]
is compositional.

Proof: By assumption, this translation satisfies Properties (2) and (3) of Definition 21. Next, I show that \(\mathcal{T} \) also satisfies Property (1), using induction on \(E \). So let \(E \in \mathcal{T}_\mathcal{L} \) and \(\xi : \mathcal{T}(E) \to \mathcal{T}_\mathcal{L} \). I have to show that \(\mathcal{T}(E[\xi]) \triangleq \mathcal{T}(E)[\mathcal{T} \circ \xi] \). The case \(E \in \mathcal{X} \) is trivial, so let \(E \triangleq H[\sigma] \), with \(H \) a standard head and \(\sigma \) a standard substitution with \(\text{dom}(\sigma) = \mathcal{T}(H) \). For each free variable \(X \) of \(H \), \(\sigma(X) \) is a proper subterm of \(E \) up to \(\alpha \)-conversion, so by the induction hypothesis \(\mathcal{T}(\mathcal{T}(X)[\xi]) \triangleq \mathcal{T}(\mathcal{T}(X))[\mathcal{T} \circ \xi] \). Thus, for \(X \in \mathcal{T}(H) \),
\[
(\mathcal{T} \circ \xi)(X) = \mathcal{T}(\mathcal{T}(X)[\xi]) \quad \text{by definition of functional composition} \\
= \mathcal{T}(\mathcal{T}(X)[\xi]) \quad \text{by definition of the operation} \circ \text{ on substitutions} \\
= \mathcal{T}(\mathcal{T}(X))[\mathcal{T} \circ \xi] \quad \text{by induction, derived above} \\
= ((\mathcal{T} \circ \xi) \circ (\mathcal{T} \circ \xi))(X) \quad \text{by definition of the operations} \circ \text{ and} \bullet.
\]
This shows that the substitutions \(\mathcal{T} \circ \xi \bullet \sigma \) and \((\mathcal{T} \circ \xi) \bullet (\mathcal{T} \circ \sigma) \)—both with domain \(\mathcal{T}(H) \)—are equal up to \(\alpha \)-conversion, from which it follows that \(\mathcal{T}[\mathcal{T}(\mathcal{T}(X)[\xi]) \circ \mathcal{T}(\mathcal{T}(X))[\mathcal{T} \circ \xi]] = (\mathcal{T}[\mathcal{T}(\mathcal{T}(X)[\xi]) \circ \mathcal{T}(\mathcal{T}(X))[\mathcal{T} \circ \xi]] \) for all terms \(E \in \mathcal{T}_\mathcal{L} \).

Hence \(\mathcal{T}(E[\xi]) \triangleq \mathcal{T}(H[\sigma][\xi]) \quad \text{by Observation 3} \)
\[
\triangleq \mathcal{T}(H[\xi \bullet \sigma]) \quad \text{by assumption} \\
\triangleq \mathcal{T}(H[\xi \bullet \sigma]) \quad \text{for a standard substitution} \nu \triangleq \xi \bullet \sigma \]
\[
\triangleq \mathcal{T}(H[\mathcal{T}(\mathcal{T}(X)[\xi]) \circ \mathcal{T}(\mathcal{T}(X))[\mathcal{T} \circ \xi]]) \quad \text{replacing } \nu \text{ by } \xi \bullet \sigma, \text{ using (2)} \\
\triangleq \mathcal{T}(E)[\mathcal{T} \circ \xi] \quad \text{by assumption}. \quad \Box
\]

12.2 The denotation of a substitution

To obtain the compositionality of valid translations, I need the concept of the **denotation** of a substitution as a transformation of valuations. The semantic mapping \(\llbracket \cdot \rrbracket_\mathcal{L} : \mathbb{T}_\mathcal{L} \to (\mathcal{X} \to \mathbb{V}) \to \mathbb{V} \) extends to substitutions \(\sigma \) by \(\llbracket \sigma \rrbracket_\mathcal{L}(\rho)(X) := \llbracket \sigma(X) \rrbracket_\mathcal{L}(\rho) \) for all \(X \in \mathcal{X} \) and \(\rho : \mathcal{X} \to \mathbb{V} \)—here \(\sigma \) is extended to a total function by \(\sigma(Y) := \mathcal{Y} \) for all \(Y \notin \text{dom}(\sigma) \). Thus \(\llbracket \sigma \rrbracket_\mathcal{L} \) is of type \((\mathcal{X} \to \mathbb{V}) \to (\mathcal{X} \to \mathbb{V}) \), i.e. a map from valuations to valuations. The inductive nature of the semantic mapping \(\llbracket \cdot \rrbracket_\mathcal{L} \) ensures that for each expression \(E \in \mathbb{T}_\mathcal{L} \), substitution \(\sigma : \mathcal{X} \to \mathbb{T}_\mathcal{L} \) and valuation \(\rho : \mathcal{X} \to \mathbb{V} \) there exists a term \(F \) with \(E \triangleq F \) such that \(\llbracket E[\sigma] \rrbracket_\mathcal{L}(\rho) = \llbracket F[\sigma] \rrbracket_\mathcal{L}(\rho) = \llbracket F \rrbracket_\mathcal{L}(\llbracket \sigma \rrbracket_\mathcal{L}(\rho)) \), and hence
\[
\llbracket E[\sigma] \rrbracket_\mathcal{L}(\rho) \triangleq \llbracket E \rrbracket_\mathcal{L}(\llbracket \sigma \rrbracket_\mathcal{L}(\rho)). \quad (3)
\]
In case \(E = f(X_1, \ldots, X_n) \) this amounts to \(\llbracket f(E_1, \ldots, E_n) \rrbracket_\mathcal{L}(\rho) = f^\mathcal{L}([E_1]_\mathcal{L}(\rho), \ldots, [E_n]_\mathcal{L}(\rho)) \), but the above is more general and anticipates language constructs other than functions, such as recursion.

12.3 Closing a semantic translation under \(\alpha \)-conversion

The following lemma (assuming Postulate 2) says that \(\triangleq \) is a congruence.
Lemma 2 Let $E \in \mathcal{T}$ and $\nu, \rho : \mathcal{X} \to \mathcal{V}$. If $\nu \equiv_{\mathcal{L}} \rho$ then $[E]_{\mathcal{L}}(\nu) \equiv_{\mathcal{L}} [E]_{\mathcal{L}}(\rho)$.

Proof: Suppose $\nu \equiv_{\mathcal{L}} \rho$. Then, for each $X \in \mathcal{X}$, $\nu(X) \equiv_{\mathcal{L}} \rho(X)$, so there are terms $E_X, F_X \in \mathcal{T}$ with $E_X \equiv_{\mathcal{L}} F_X$ and a valuation $\zeta_X : \mathcal{X} \to \mathcal{V}$ such that $[E_X]_{\mathcal{L}}(\zeta_X) = \nu(X)$ and $[F_X]_{\mathcal{L}}(\zeta_X) = \rho(X)$. By renaming of variables one can assume that $fv(E_X) \cap fv(E_Y) = \emptyset$ for any different $X, Y \in fv(E)$. Here I assume that the set \mathcal{X} of variables is sufficiently large. Note that $fv(F_X) = fv(E_X)$ for all $X \in fv(E)$. Let $\zeta : \mathcal{X} \to \mathcal{V}$ be a valuation satisfying $\zeta(Z) = \zeta_X(Z)$ for all $Z \in fv(E_X)$ with $X \in fv(E)$. Define the substitutions $\sigma, \xi : fv(E) \to \mathcal{T}$ by $\sigma(X) = E_X$ and $\xi(X) = F_X$ for all $X \in fv(E)$. Then $\sigma(X) = \xi(X) = \rho(X)$ for all $X \in fv(E)$. Hence, using (3), $[E]_{\mathcal{L}}(\nu) = [E]_{\mathcal{L}}([\sigma]_{\mathcal{L}}(\zeta)) \equiv_{\mathcal{L}} [E]_{\mathcal{L}}(\rho)$ and $[E]_{\mathcal{L}}(\rho) = [E]_{\mathcal{L}}([\xi]_{\mathcal{L}}(\zeta)) \equiv_{\mathcal{L}} [E]_{\mathcal{L}}(\xi)(\zeta)$. As $\sigma(X) = \xi(X)$ for all $X \in \mathcal{X}$ one has $[\sigma]_{\mathcal{L}} \equiv_{\mathcal{L}} [\xi]_{\mathcal{L}}(\zeta)$, and thus $[E]_{\mathcal{L}}(\nu) \equiv_{\mathcal{L}} [E]_{\mathcal{L}}(\rho)$ with Postulate 2.

Given a relation $R \subseteq \mathcal{V} \times \mathcal{V}$, define α^R by $w \mathrel{R} v$ iff $\exists w', v'. w \mathrel{\equiv_{\mathcal{L}}} w' R v' \mathrel{\equiv_{\mathcal{L}}} v$.

Lemma 3 If a translation \mathcal{T} between languages \mathcal{L} and \mathcal{L}' that satisfy Postulate 2 is correct w.r.t. a semantic translation \mathcal{R}, then it is also correct w.r.t. \mathcal{R}^α.

Proof: Let $\mathcal{R} \subseteq \mathcal{V} \times \mathcal{V}$ be a semantic translation, and \mathcal{T} a translation that is correct w.r.t. \mathcal{R}. Let $E \in \mathcal{T}$, $\eta : \mathcal{X} \to \mathcal{V}$ and $\rho : \mathcal{X} \to \mathcal{V}$, with $\mathcal{R}^\alpha \rho$. Then there must be valuations $\theta : \mathcal{X} \to \mathcal{V}'$ and $\nu : \mathcal{X} \to \mathcal{V}$ with $\mathcal{R}^\alpha \theta \mathrel{\equiv_{\mathcal{L}}} \eta \mathrel{\equiv_{\mathcal{L}}} \rho$. Since \mathcal{T} is correct w.r.t. \mathcal{R} one has $[\mathcal{T}(E)]_{\mathcal{L}}(\theta) \mathrel{\mathcal{R}} [\mathcal{E}]_{\mathcal{L}}(\nu)$. By Lemma 2, $[\mathcal{T}(E)]_{\mathcal{L}}(\nu) \mathrel{\equiv_{\mathcal{L}}} [\mathcal{T}(E)]_{\mathcal{L}}(\theta) \mathrel{\mathcal{R}} [\mathcal{E}]_{\mathcal{L}}(\nu)$ and $[\mathcal{E}]_{\mathcal{L}}(\nu) \mathrel{\equiv_{\mathcal{L}}} [\mathcal{E}]_{\mathcal{L}}(\rho)$.

12.4 Only the effect on standard heads matters

Proposition 6 Let \mathcal{L} and \mathcal{L}' be languages that satisfy Postulates 1 and 2, and $\mathcal{R} \subseteq \mathcal{V} \times \mathcal{V}$ be a semantic translation. A compositional translation $\mathcal{T} : \mathcal{T}_{\mathcal{L}} \to \mathcal{T}_{\mathcal{L}'}$ is correct w.r.t. \mathcal{R}^α iff $[\mathcal{T}(H)]_{\mathcal{L}'}(\eta) \mathrel{\mathcal{R}^\alpha} [H]_{\mathcal{L}'}(\rho)$ for all standard heads $H \in \mathcal{T}$ and all valuations $\eta : \mathcal{X} \to \mathcal{V}'$ and $\rho : \mathcal{X} \to \mathcal{V}$ with $\mathcal{R}^\alpha \rho$.

Proof: “Only if” follows immediately from Definition 5. So assume $[\mathcal{T}(H)]_{\mathcal{L}'}(\eta) \mathrel{\mathcal{R}^\alpha} [H]_{\mathcal{L}'}(\rho)$ for all standard heads $H \in \mathcal{T}_{\mathcal{L}}$ and all $\eta : \mathcal{X} \to \mathcal{V}'$ and $\rho : \mathcal{X} \to \mathcal{V}$ with $\mathcal{R}^\alpha \rho$. I have to show that \mathcal{T} is correct w.r.t. \mathcal{R}^α, i.e. that $[\mathcal{T}(E)]_{\mathcal{L}'}(\eta) \mathrel{\mathcal{R}^\alpha} [E]_{\mathcal{L}'}(\rho)$ for all terms $E \in \mathcal{T}$ and all $\eta : \mathcal{X} \to \mathcal{V}'$ and $\rho : \mathcal{X} \to \mathcal{V}$ with $\mathcal{R}^\alpha \rho$. Let η and ρ be such valuations. I proceed with structural induction on E, up to \equiv. When handling a term $E \equiv H[\eta]$, $\sigma(X)$ is, up to \equiv, a proper subterm of E for each free variable X of H. So by induction $[\mathcal{T}(\sigma(X))]_{\mathcal{L}'}(\eta) \mathrel{\mathcal{R}^\alpha} [\sigma(X)]_{\mathcal{L}'}(\rho)$. The valuation $[\sigma(X)]_{\mathcal{L}'}(\rho)$ is defined such that $[\sigma(X)]_{\mathcal{L}'}(\rho)(X) = [\sigma(X)]_{\mathcal{L}'}(\rho)$ for each $X \in \mathcal{X}$. Likewise, $[\mathcal{T}(\sigma)]_{\mathcal{L}'}(\eta)(X) = [\mathcal{T}(\sigma)]_{\mathcal{L}'}(\eta)$ for each $X \in \mathcal{X}$. Hence $[\mathcal{T}(\sigma)]_{\mathcal{L}'}(\eta) \mathrel{\mathcal{R}^\alpha} [\sigma(X)]_{\mathcal{L}'}(\rho)$.

• $[\mathcal{T}(X)]_{\mathcal{L}'}(\eta) \equiv [X]_{\mathcal{L}'}(\eta)$ by definitions of \mathcal{T} and $[\]_{\mathcal{L}'}$.

• $[\mathcal{T}(E)]_{\mathcal{L}'}(\eta) \mathrel{\equiv_{\mathcal{L}'}} [\mathcal{T}(H)]_{\mathcal{L}'}(\eta) \mathrel{\equiv_{\mathcal{L}'}} [\mathcal{T}(\sigma)]_{\mathcal{L}'}(\eta)$ by the compositional property of \mathcal{T}, since $E \equiv H[\sigma]$.

• $[\mathcal{T}(E)]_{\mathcal{L}'}(\eta) \mathrel{\equiv_{\mathcal{L}'}} [\mathcal{T}(H)]_{\mathcal{L}'}(\eta) \mathrel{\equiv_{\mathcal{L}'}} [\mathcal{T}(\sigma)]_{\mathcal{L}'}(\eta)$ by assumption, using (*) above.

12.5 Correct and valid transitions can be made compositional

Theorem 5 Let \mathcal{L} and \mathcal{L}' be languages satisfying Postulates 1 and 2. If any correct translation from \mathcal{L} into \mathcal{L}' w.r.t. \mathcal{R}^α exists, then there is a compositional translation from \mathcal{L} into \mathcal{L}' that is correct w.r.t. \mathcal{R}^α.
Proof: Given a translation \mathcal{T}_0 that is correct w.r.t. R^0, define the translation \mathcal{T} inductively by

$$\mathcal{T}(X) := X \quad \text{for } X \in \mathcal{H}$$

$$\mathcal{T}(E) := \mathcal{T}_0(H)[\mathcal{T} \circ \sigma] \quad \text{when } E \cong H[\sigma] \text{ with } H, \sigma \text{ the standard decomposition of } E.$$

By filling in $H[id_H]$ for E, with H a standard head and id_H the identity substitution on $\nu(H)$, I obtain $\mathcal{T}(H) = \mathcal{T}_0(H)$ for each standard head H. Hence, by Proposition 5, \mathcal{T} is compositional. Moreover, since \mathcal{T}_0 is correct w.r.t. R^0, for all standard heads $H \in \mathcal{T}$ and all $\eta : \mathcal{H} \to V'$ and $\rho : \mathcal{H} \to V$ with $\eta R^0 \rho$ one has $[\mathcal{T}(H)]_{\mathcal{R}'}(\eta) = [\mathcal{T}_0(H)]_{\mathcal{R}'}(\eta) R^0 [H]_{\mathcal{R}'}(\rho)$. Thus, by Proposition 6, \mathcal{T} is correct w.r.t. R^0.

Corollary 2 Let L and L' be languages that satisfy Postulates 1 and 2 and \sim a preorder that respects $\equiv_{\mathcal{R}'}$ and $\equiv_{\mathcal{R}'_0}$. If any valid (or correct) translation from L into L' up to \sim exists, then there exists a compositional translation that is valid (or correct) up to \sim.

Proof: Let $\mathcal{T} : \mathcal{T} \to \mathcal{T}$ be valid up to \sim. Then \mathcal{T} is correct w.r.t. some semantic translation $R \subseteq V \times V$ with $R \subseteq \sim$. By Lemma 3 \mathcal{T} is correct w.r.t. R^0. By Theorem 5 there exists a compositional translation $\mathcal{T}' : \mathcal{T} \to \mathcal{T}$, that is correct w.r.t. R^0. Since \sim respects $\equiv_{\mathcal{R}'}$ and $\equiv_{\mathcal{R}'_0}$, one has $\mathcal{T}' \subseteq \sim$, and thus $R^0 \subseteq \sim$. The statement about correct translations up to \sim follows in the same way, or as a corollary by use of Theorem 4.

Hence, for the purpose of comparing the expressive power of languages, valid translations between them can be assumed to be compositional. For correct translations this was already established in [24], but assuming (2), a stronger version of Postulate 2.

13 Translations from closed-term languages reflect target congruences

I can now establish the theorem promised in Section 2. In view of Corollary 2 no great sacrifices are made by assuming that the translation \mathcal{T} is compositional. Additional “mild conditions” needed here are Postulate 2 for L' and $\equiv_{\mathcal{R}'}$.

Theorem 6 Let L be a closed-term language and L' a language that satisfies Postulate 2. Let \mathcal{T} be a compositional translation from L into L' that is valid up to \sim. Let \approx be any congruence for L' containing $\equiv_{\mathcal{R}'}$ and contained in \sim. Then \mathcal{T} is correct up to an equivalence $\approx \sim$ on $V \cup V'$, contained in \sim, that on V' coincides with \approx.

Proof: If $V = \emptyset$, the statement is trivial. Otherwise, pick a valuation $\zeta : \mathcal{R} \to V$. By assumption, \mathcal{T} is correct w.r.t. a semantic translation $R \subseteq \sim$. Now pick a valuation $\theta : \mathcal{R} \to V'$ with $R \subseteq \sim$. Let $\equiv_{\mathcal{R}'}$ be the smallest equivalence relation on $V \cup V'$ such that $[\mathcal{T}(P)]_{\mathcal{R}'}(\theta) \equiv_{\mathcal{R}'} [P]_{\mathcal{R}'}$ for all $P \in \mathcal{T}$. Since \mathcal{T} is correct w.r.t. R, one has $[\mathcal{T}(P)]_{\mathcal{R}'}(\zeta) R^0 [P]_{\mathcal{R}'}(\zeta) = [P]_{\mathcal{R}'}$ for all $P \in \mathcal{T}$. Hence $\equiv_{\mathcal{R}'} \subseteq \sim$.

Define \approx on $V \cup V'$ by $v_1 \approx v_2$ if and only if $v_1 \equiv_{\mathcal{R}'} v_2$ and $w_1 \equiv_{\mathcal{R}'} w_2$. Then $\approx \subseteq \sim$. Since \mathcal{L} is a closed-term language, for each $v \in V$ there is exactly one $P \in \mathcal{T}$ with $[P]_{\mathcal{R}'} = v$, namely $P = v$. Hence, each $\equiv_{\mathcal{R}'}$-equivalence class on $V \cup V'$ contains exactly one element of V'. It follows that $\approx \subseteq \sim$, and hence an equivalence relation. Moreover, on V' it coincides with \approx. It remains to show that \mathcal{T} is valid up to \approx. For then Theorem 1 implies that \mathcal{T} is correct up to \approx.

Let $R^\approx := \{(w, v) \mid v \in \mathcal{T} \wedge w \equiv_{\mathcal{R}'} [\mathcal{T}(v)]_{\mathcal{R}'}(\theta)\}$. Then R^\approx is a semantic translation with $R^\approx \subseteq \approx$, using that $\equiv_{\mathcal{R}'} \subseteq \approx$. To show validity of \mathcal{T} up to \approx it suffices to establish that \mathcal{T} is correct w.r.t. R^\approx. So let $E \in \mathcal{T}$ and let $\eta : \mathcal{R} \to V'$ and $\rho : \mathcal{R} \to V$ be valuations with $\eta R^\approx \rho$. I have to show that $[\mathcal{T}(E)]_{\mathcal{R}'}(\eta) R^\approx [E]_{\mathcal{R}'}(\rho)$. Since \mathcal{L} is a closed-term language, ρ also is a closed substitution, and $[E]_{\mathcal{R}'}(\rho) := E[\rho] \equiv_{\mathcal{R}'} [E[\rho]]_{\mathcal{R}'}$. Let $\mathcal{T} \circ \rho : \mathcal{R} \to \mathcal{T}$ be the substitution with $(\mathcal{T} \circ \rho)(X) = \mathcal{T}(\rho(X))$ for
all X. Then—filling in $(\eta(X), \rho(X))$ for (w, v) in the definition of $R_{\mathcal{F}} \rightarrow \eta(X) \equiv_{\mathcal{F}} [(\mathcal{F} \circ \rho)(X)]_{\mathcal{F}}(\theta)$ for all $X \in \mathcal{X}$, i.e., $\eta \equiv_{\mathcal{F}} [(\mathcal{F} \circ \rho)]_{\mathcal{F}}(\theta)$. So, using Lemma[2][3] and compositionality,

$$([\mathcal{F}(E)]_{\mathcal{F}}(\eta) \equiv_{\mathcal{F}} [\mathcal{F}(E)]_{\mathcal{F}}([\mathcal{F}(\sigma)]_{\mathcal{F}}(\theta)) \equiv_{\mathcal{F}} [\mathcal{F}(E)(\mathcal{F} \circ \sigma)]_{\mathcal{F}}(\theta) \equiv_{\mathcal{F}} [\mathcal{F}(E)[\sigma]]_{\mathcal{F}}(\theta) \equiv_{\mathcal{F}} R_{\mathcal{F}} [E[\sigma]]_{\mathcal{F}} \equiv_{\mathcal{F}} [E]_{\mathcal{F}}(\rho)$$

It follows that $[\mathcal{F}(E)]_{\mathcal{F}}(\eta) \equiv_{\mathcal{F}} [E]_{\mathcal{F}}(\rho)$ using Postulate[2] \qed

Since by Theorem[6], \mathcal{F} is correct up to $\approx_{\mathcal{F}}$, by Proposition[1] is a congruence for \mathcal{L}, contained in \sim. Consequently, on V, $\approx_{\mathcal{F}}$ is contained in $\sim_{\mathcal{F}}$, the coarsest 1-hole congruence for \mathcal{L} contained in \sim. As remarked in Section[9], for the example of Section[6] this inclusion is strict.

14 Comparison with the definition of validity from [24]

An earlier definition of validity occurs in [24]. A shortcoming of that notion was that it only applied to languages for which all values in the domain of interpretation are denotable by closed terms. Here I show that the current notion of validity, which does not suffer from this limitation, generalises the one of [24].

Let \mathcal{L} and \mathcal{L}' be languages with $[\]_{\mathcal{L}} : T_{\mathcal{L}} \rightarrow ((\mathcal{X} \rightarrow V) \rightarrow V)$ and $[\]_{\mathcal{L}'} : T_{\mathcal{L}'} \rightarrow ((\mathcal{X} \rightarrow V') \rightarrow V')$. The property of a language that all values in the domain of interpretation are denotable by closed terms can be stated as

$$\forall v \in V. \exists P \in T_{\mathcal{L}}. [P]_{\mathcal{L}} = v \tag{4}$$

Definition 22 (24) A translation \mathcal{F} from \mathcal{L} into \mathcal{L}' respects \sim if (1) holds and $[\mathcal{F}(P)]_{\mathcal{L}'}(\eta) \equiv [P]_{\mathcal{L}}$ for all closed \mathcal{L}-expressions $P \in T_{\mathcal{L}}$ and all valuations $\eta : \mathcal{X} \rightarrow U$, with $U := \{v \in V' | \exists v \in V. v' \sim v\}$.

In case $V = \emptyset$, then $U = \emptyset$, so by lack of any $\eta : \mathcal{X} \rightarrow U$ each translation \mathcal{F} from \mathcal{L} into \mathcal{L}' respects \sim. When $V \neq \emptyset$ the valuation η is needed because $\mathcal{F}(P)$ need not be a closed term, even if P is.

Definition 23 In [24], a translation from \mathcal{L} into \mathcal{L}' is called valid up to \sim if it is compositional and respects \sim, while \mathcal{L} satisfies (4).

Whereas (1) is an unwanted limitation, Example 2 in [24] shows that simply skipping requirement (1) in Definition[23] would yield a criterion that is too weak. The solution proposed by the current paper is to skip (1), while simultaneously strengthening or replacing the requirement of respecting \sim by the one of being valid up to \sim. Section[2]. The following result state that, for languages \mathcal{L} and \mathcal{L}' that satisfy Postulate[2] and preorders \sim that respect $\alpha \equiv_{\mathcal{L}}$ and $\alpha \equiv_{\mathcal{L}'}$, any translation that is valid up to \sim according to [24] is certainly valid according to Definition[5] of the current paper.

Theorem 7 Let \mathcal{L} and \mathcal{L}' satisfy Postulate[2] let \mathcal{L} satisfy (4), and let \mathcal{F} be a compositional translation from \mathcal{L} into \mathcal{L}' that respects \sim, where \sim respects $\alpha \equiv_{\mathcal{L}}$ and $\alpha \equiv_{\mathcal{L}'}$. Then \mathcal{F} is valid up to \sim.

Proof: In case $V = \emptyset$, there is a unique semantic transition $R \subseteq V' \times V$, namely $\emptyset \subseteq \sim$. Since there are no valuations $\rho : \mathcal{X} \rightarrow V$, \mathcal{F} is correct w.r.t. R, and thus valid up to \sim.

Otherwise, let $\theta : \mathcal{X} \rightarrow U := \{v \in V' | \exists v \in V. v' \sim v\}$—it exists by (1)—and define the semantic translation $R \subseteq V' \times V$ by $R := \{(\mathcal{F}(P), [P]_{\mathcal{L}}) | P \in T_{\mathcal{L}}\}$. Then $R \subseteq \sim$, since \mathcal{F} respects \sim. Since \sim respects $\alpha \equiv_{\mathcal{L}}$ and $\alpha \equiv_{\mathcal{L}'}$, also $R' \alpha \subseteq \sim$. Hence it suffices to show that \mathcal{F} is correct w.r.t. $R' \alpha$. So let $E \in T_{\mathcal{L}}$, $\rho : \mathcal{X} \rightarrow V$ and $\eta : \mathcal{X} \rightarrow V'$ with $\eta R' \rho$. I need to show that $[\mathcal{F}(E)]_{\mathcal{L}'}(\eta) \equiv_{\mathcal{L}'} [E]_{\mathcal{L}}(\rho)$.
Pick \(\rho : \mathcal{X} \to \mathcal{V} \) and \(\eta : \mathcal{X} \to \mathcal{V}' \) such that \(\eta \overset{a}{=}_{\mathcal{X}} \eta \), \(\mathcal{R} \overset{a}{=} \mathcal{X} \rho \). Then there is a closed substitution \(\sigma : \mathcal{X} \to \mathcal{T}_\mathcal{X} \) such that \(\rho(\mathcal{X}) = [\sigma(\mathcal{X})]_{\mathcal{X}} \) and \(\eta(\mathcal{X}) = [\mathcal{T}(\sigma(\mathcal{X}))]_{\mathcal{X}}(\theta) \) for all \(X \in \mathcal{X} \), i.e., \(\rho = [\sigma]_{\mathcal{X}} \) and \(\eta = [\mathcal{T} \circ \sigma]_{\mathcal{X}}(\theta) \). Hence, \([\mathcal{T}(E)]_{\mathcal{X}}(\eta) = [\mathcal{T}(E)]_{\mathcal{X}}(\rho) \) by Lemma 2

\[
\begin{align*}
&= \mathcal{T}(E)(\sigma) [\mathcal{X}]_{\mathcal{X}}(\eta) & \text{by compositionality of } \mathcal{T} \\
&= [\mathcal{T}(E)]_{\mathcal{X}}(\theta) & \text{by definition of } \mathcal{R} \\
&\overset{a}{=} \mathcal{X}[E]_{\mathcal{X}}(\sigma) & \text{by (3)} \\
&\overset{a}{=} \mathcal{X}[E]_{\mathcal{X}}(\rho) & \text{by Lemma 2}
\end{align*}
\]

\[\square\]

15 The case where all semantic values are denotable by closed terms

Here I show that the notion of validity from the current paper agrees with the one of [24] when applied to languages for which all values are denotable by closed terms.

Usually one employs translations \(\mathcal{T} \) with the property that for any \(E \in \mathcal{T}_{\mathcal{X}} \) any free variable of \(\mathcal{T}(E) \) is also a free variable of \(E \)—I call these free-variable respecting translations, or fvr-translations [24]. If \(\mathcal{T}_0 \) in the proof of Theorem 5 is an fvr-translation, then so is \(\mathcal{T} \). Hence, replaying the proof of Corollary 2 one obtains:

Observation 4 Let \(\mathcal{L} \) and \(\mathcal{L}' \) be languages that satisfy Postulates 1 and 2 and \(\sim \) a preorder that respects \(\overset{a}{=} \mathcal{X} \) and \(\overset{a}{=} \mathcal{X'} \). If any valid (or correct) fvr-translation from \(\mathcal{L} \) into \(\mathcal{L}' \) up to \(\sim \) exists, then there exists a compositional fvr-translation that is valid (or correct) up to \(\sim \).

An fvr-translation \(\mathcal{T} \) from \(\mathcal{L} \) into \(\mathcal{L}' \) respects \(\sim \) iff either \(\mathcal{V} = \emptyset \), or (1) holds and \([\mathcal{T}(P)]_{\mathcal{X}}, \sim [P]_{\mathcal{X}} \) for all closed \(\mathcal{L} \)-expressions \(P \in \mathcal{T}_{\mathcal{X}} \).

Observation 5 Any fvr-translation that is valid up to \(\sim \) respects \(\sim \).

Lemma 4 Let \(\mathcal{L}' \) satisfy (4) and \(\mathcal{V} \neq \emptyset \). If there is a translation from \(\mathcal{L} \) into \(\mathcal{L}' \) that is valid up to a preorder \(\sim \), then there is a fvr-translation from \(\mathcal{L} \) into \(\mathcal{L}' \) that is valid up to \(\sim \).

Proof: Let \(\mathcal{T} \) be a translation from \(\mathcal{L} \) into \(\mathcal{L}' \) that is valid up to \(\sim \). Let \(\mathcal{R} \subseteq \sim \) be a semantic translation such that \(\mathcal{T} \) is correct w.r.t. \(\mathcal{R} \). Let \(P \in \mathcal{T}_{\mathcal{X}} \) be a closed \(\mathcal{L}' \)-term with \([P]_{\mathcal{X}} \mathcal{R} \mathcal{v} \) for some \(v \in \mathcal{V} \)—such a \(P \) exists by (4). Let the translation \(\mathcal{T}' \) be obtained from \(\mathcal{T} \) by defining \(\mathcal{T}'(E) := \mathcal{T}(E) \sigma_E \) for all \(E \in \mathcal{T}_{\mathcal{X}} \)—here \(\sigma_E \) is the substitution that (only) substitutes \(P \) for all variables \(X \) that occur in \(\mathcal{T}(E) \) but not in \(E \). Then \(\mathcal{T}' \) is a fvr-translation. It remains to show that \(\mathcal{T}' \) is correct w.r.t. \(\mathcal{R} \).

So let \(E \in \mathcal{T}_{\mathcal{X}}, \eta : \mathcal{X} \to \mathcal{V}' \) and \(\rho : \mathcal{X} \to \mathcal{V} \) with \(\eta \mathcal{R} \rho \). I aim to show that \([\mathcal{T}'(E)]_{\mathcal{X}}(\eta) \mathcal{R} [E]_{\mathcal{X}}(\rho) \).

Let \(\tilde{\eta} : \mathcal{X} \to \mathcal{V}' \) and \(\tilde{\rho} : \mathcal{X} \to \mathcal{V} \) be substitutions with \(\tilde{\eta}(X) = \eta(X) \) and \(\tilde{\rho}(X) = \rho(X) \) for all \(X \in \text{fv}(E) \), such that \(\tilde{\eta} = [\rho]_{\mathcal{X}} \tilde{\rho} \).

\[
[\mathcal{T}'(E)]_{\mathcal{X}}(\eta) = [\mathcal{T}(E)]_{\mathcal{X}}(\sigma_E)(\eta) = [\mathcal{T}(E)]_{\mathcal{X}}(\tilde{\eta}) \mathcal{R} [E]_{\mathcal{X}}(\tilde{\rho}) = [\mathcal{T}(E)]_{\mathcal{X}}(\eta) \mathcal{R} [E]_{\mathcal{X}}(\rho).
\]

The following result states that in case both \(\mathcal{L} \) and \(\mathcal{L}' \) satisfy (4), as well as Postulates 1 and 2 and \(\sim \) a preorder respecting \(\overset{a}{=} \mathcal{X} \) and \(\overset{a}{=} \mathcal{X}' \), the validity-based notion of expressiveness from [24] coincides with the one here.

Corollary 3 Let \(\mathcal{L} \) and \(\mathcal{L}' \) be languages satisfying Postulates 1 and 2 as well as (4), and \(\sim \) a preorder respecting \(\overset{a}{=} \mathcal{X} \) and \(\overset{a}{=} \mathcal{X}' \). There exists a valid translation from \(\mathcal{L} \) into \(\mathcal{L}' \) up to \(\sim \) iff there exists a compositional translation from \(\mathcal{L} \) into \(\mathcal{L}' \) that respects \(\sim \).
Proof: Suppose a valid translation up to \sim exists. In case $V = \emptyset$, by Corollary 2 there exists a compositional translation T that is valid up to \sim, and by the remark following Definition 22, T respects \sim.

In case $V \neq \emptyset$, by Lemma 4 there exists an fvr-translation that is valid up to \sim. By Observation 4 there exists a compositional fvr-translation T that is valid up to \sim. By Observation 5 T respects \sim.

The converse direction follows from Theorem 7. \qed

16 A potential generalisation of the concept of a valid translation

In this section I consider a potentially more liberal concept of a valid translation up to a preorder \sim, namely a translation that is compositional and preserves \sim, as in Definition 24 below. Like correctness w.r.t. a semantic translation (Definition 3) and consequently also correctness and validity up to \sim (Definitions 4, 5 and 6), the requirement of Definition 24 is that the translation preserves the meaning of expressions: the meaning of the translation of an expression E should be semantically equivalent to the meaning of E—see [24] for an elaboration. In fact, this should hold under any valuation of the variables occurring in E. The difference between Definitions 6 and 24 is that the former is based on universal quantification of all matching valuations in the target language, whereas the latter associates with any valuation in the source language a single matching valuation in the target language. This requires a translation $T : \mathcal{L} \rightarrow \mathcal{T}_{\mathcal{L}'}$ to have a semantic counterpart $T : V \rightarrow V'$ that maps the possible meanings of \mathcal{L}-expressions into the possible meanings of \mathcal{L}'-expressions.

Definition 24 A translation T from \mathcal{L} into \mathcal{L}' preserves \sim iff there exists a mapping $T : V \rightarrow V'$ such that $T(v) \sim v$ for all $v \in V$ and $[\mathcal{T}(E)]_{\mathcal{L}'}(T \circ \rho) \sim [E]_{\mathcal{L}'}(\rho)$ for all $E \in \mathcal{T}_{\mathcal{L}'}$ and all $\rho : \mathcal{X} \rightarrow V$.

Note that the existence of T implies (1) in Section 3.

Proposition 7 Any valid translation up to a preorder \sim preserves \sim.

Proof: Let T be correct w.r.t. the semantic translation $R \subseteq \sim$. Take any $T : V \rightarrow V'$ with $T \subseteq R$. Then $T \circ \rho \in R$ for any valuation $\rho : \mathcal{X} \rightarrow V$. Hence T preserves \sim using the semantic counterpart T. \qed

Example 9 Let \mathcal{L} be a language with unary operators S and 2, and \mathcal{L}' a language with unary operators S and G_k for each $k > 0$. Their semantics is given by $V = V' = \mathbb{N}$, $S^n (n) = S^n (n) = n + 1$ for each $n \in \mathbb{N}$, $G_k^n (n) = 2k(n + 1)$ for each $n \in \mathbb{N}$ and $k > 0$.

Let \sim be the equivalence relation on \mathbb{N} defined by $n \sim m$ iff n and m differ only by a factor 2^k for some $k \in \mathbb{N}$, i.e., $n = m = 0$ or their prime factorisations, when leaving out the factors of 2, are the same.

Each term $E \in \mathcal{T}_{\mathcal{L}}$ is obtained from a single variable X by applications of the operators S and 2. Using the equation $2SF = SS2F$, each such term E can be rewritten into a unique normal form $S^i 2^j X$ for some $i, j \in \mathbb{N}$—notation $E \mapsto S^i 2^j X$. If $E \mapsto S^i 2^j X$ then $[S^i 2^j X]_{\mathcal{L}'}(\rho) = i + 2^j \rho(X) = [\mathcal{T}(X)]_{\mathcal{L}'}(\rho)$ for each valuation $\rho : \mathcal{X} \rightarrow \mathbb{N}$, and thus $[S^i 2^j X]_{\mathcal{L}} \sim [E]_{\mathcal{L}'}$.

Let $T : \mathcal{T}_{\mathcal{L}} \rightarrow \mathcal{T}_{\mathcal{L}'}$ be the translation given by

\[
\begin{align*}
\mathcal{T}(E) &= \mathcal{T}(S^i 2^j X) & \text{if } E \mapsto S^i 2^j X \\
\mathcal{T}(2^j X) &= X \\
\mathcal{T}(S^i 2^j X) &= S^i 2^j X \\
\mathcal{T}(S^i 2^j X) &= S^i G_j X.
\end{align*}
\]

Then T preserves \sim, taking T to be the identity function on \mathbb{N}. Moreover, the preconditions of Corollary 2 are trivially satisfied. Yet, there is no compositional translation that preserves \sim.

For suppose \mathcal{T}' is such a compositional translation, with semantic counterpart T. Then there is a term E_2 such that $\mathcal{T}'(2X) = E_2$. Using that \mathcal{T}' preserves \sim, one has $[E_2]_{\mathcal{L}'}(T \circ \rho) \sim [2X]_{\mathcal{L}'}(\rho)$ for
for each $\rho : \mathcal{X} \to \mathbb{N}$. Take $\rho(X) = 0$ and $\rho(Y) = 7$ for each $Y \neq X$. Then $T(\rho(Y)) \sim 7$, so $T(\rho(Y)) \geq 7$, for each $Y \neq X$. Since $[2X]_{\mathcal{X}}(\rho_0) = 0$, also $[E_2]_{\mathcal{X}}(T \circ \rho_0) = 0$. As the operators S and G_t are strictly increasing, it follows that E_2 contains none of these operators, nor variables $Y \neq X$. So $E_2 = X$.

As \mathcal{T}' is compositional, it follows that $\mathcal{T}'(S2X) = \mathcal{T}'(SX)$. Thus, taking $\rho(X) = 1$, one obtains $2 = [SX]_{\mathcal{T}'}(\rho) = \mathcal{T}'(T \circ \rho) = [\mathcal{T}'(S2X)]_{\mathcal{T}'}(T \circ \rho) \sim [S2X]_{\mathcal{T}'}(\rho) = 3$, a contradiction.

For this reason, when using preservation of \sim as a criterion like validity and correctness up to \sim, compositionality has to be required separately.

By Observation 4 and Proposition 7 assuming that \mathcal{L} and \mathcal{L}' satisfy Postulates 1 and 2 and \sim-respects $\alpha_{\mathcal{L}}$ and $\alpha_{\mathcal{L}'}$, if a valid fvr-translation from \mathcal{L} into \mathcal{L}' up to \sim exists, then there exists a compositional fvr-translation that preserves \sim. Below I establish the reverse, thereby showing that my concept of a valid translation is quite general.

Theorem 8 Let \mathcal{L} and \mathcal{L}' be languages that satisfy Postulate 2 and \sim a preorder that respects $\alpha_{\mathcal{L}}$ and $\alpha_{\mathcal{L}'}$. Any compositional fvr-translation $\mathcal{T} : \mathcal{T} \to \mathcal{T}$, that preserves \sim is valid up to \sim.

Proof: Let \mathcal{T} be a compositional fvr-translation that preserves \sim, say by means of the semantic counterpart $T : V \to V'$. Let $R \subseteq V' \times V$ be the smallest relation containing T^{-1} such that \mathcal{T} is correct w.r.t. R. By Lemma 5 T is correct w.r.t. R^α. I need to show that $R^\alpha \subseteq \sim$.

Claim: If $v' \mathcal{R} v$ then $v' \alpha_{\mathcal{L}'} [\mathcal{T}(E)]_{\mathcal{L}'}(T \circ v)$ and $[E]_{\mathcal{L}'}(v) \alpha_{\mathcal{L}} v$ for some $E \in \mathcal{T}$ and $v : \mathcal{X} \to V$.

Establishing the validity of this claim is sufficient, because by Definition 24 and the transitivity of \sim, using that $\alpha_{\mathcal{L}}, \alpha_{\mathcal{L}'} \subseteq \sim$, it immediately implies that $R^\alpha \subseteq \sim$.

I prove the claim with induction on the construction of R.

Induction base: If $v' \mathcal{R} v$ because $v' = T(v)$ the claim holds by taking $E := X$ and $v(X) = v$.

Induction step: Let $v' = [\mathcal{T}(E)]_{\mathcal{L}'}(\eta)$ and $v = [E]_{\mathcal{L}'}(\rho)$ for some $E \in \mathcal{T}$, $\eta : \mathcal{X} \to V'$ and $\rho : \mathcal{X} \to V$ with $\mathcal{R} \mathcal{R}$. By induction one may assume that for each $X \in \mathcal{X}$ there are $E_X \in \mathcal{T}$ and $\nu_X : \mathcal{X} \to V$ such that $\eta(X) \alpha_{\mathcal{L}'} [\mathcal{T}(E_X)]_{\mathcal{L}'}(T \circ \nu_X)$ and $[E_X]_{\mathcal{L}'}(\nu_X) \alpha_{\mathcal{L}} \rho(X)$. Let $(\sigma_X)_{X \in \mathcal{E}(E)}$ be a family of injective renamings of variables with $\text{dom}(\sigma_X) = \mathcal{E}(E)$, such that the sets $\text{range}(\sigma_X) := \sigma_X(\mathcal{E}(E))$ for $X \in \mathcal{E}(E)$ are pairwise disjoint. Here I assume the pool of variables to draw from is large enough. Note that $[\mathcal{T}(E_X)]_{\mathcal{L}'}(T \circ \nu_X \circ \sigma_X^{-1}) = \nu_X$ and $[E_X]_{\mathcal{L}'}(T \circ \nu_X \circ \sigma_X^{-1}) = T \circ \nu_X$. Therefore, using (3), $[\mathcal{T}(E_X)]_{\mathcal{L}'}((T \circ \nu_X) \sim \mathcal{T}(E)(\sigma_X)(T \circ \nu_X \circ \sigma_X^{-1})$ and $[E_X]_{\mathcal{L}'}([\mathcal{T}(E_X)]_{\mathcal{L}'}(T \circ \nu_X \circ \sigma_X^{-1}) \mathcal{R} [E_X]_{\mathcal{L}'}(\nu_X)$. By the compositionality of \mathcal{T}, $[\mathcal{T}(E_X)]_{\mathcal{L}'}(\sigma_X) \mathcal{R} [\mathcal{T}(E_X)](\sigma_X)$, so $\eta(X) \sim_{\mathcal{L}'} [\mathcal{T}(E_X)]_{\mathcal{L}'}(T \circ \nu_X \circ \sigma_X^{-1})$.

Now let $v : \mathcal{X} \to V$ be a valuation such that $v(Y) = \nu_X \circ \sigma_X^{-1}(Y)$ if $Y \in \mathcal{E}(E)$ for some $X \in \mathcal{E}(E)$. Furthermore, define the substitution $\sigma : \mathcal{E}(E) \to \mathcal{X}$ by $\sigma(X) = \mathcal{E}(E)$ for all $X \in \mathcal{E}(E)$, then $\rho(X) \sim_{\mathcal{L}} \mathcal{T}(X)_{\mathcal{L}'}(v)$ for all $X \in \mathcal{E}(E)$, so $v \mathcal{R} [E]_{\mathcal{L}'}([\mathcal{T}(E)]_{\mathcal{L}'}(T \circ v))$ by Lemma 2. Likewise, $\eta(X) \sim_{\mathcal{L}'} [\mathcal{T}(E_X)]_{\mathcal{L}'}(T \circ \nu_X)$ for all $X \in \mathcal{E}(E)$, so $v' \mathcal{R} [E]_{\mathcal{L}'}([\mathcal{T}(E_X)]_{\mathcal{L}'}(T \circ \nu_X))$. Now (3) yields $v \mathcal{R} [E]_{\mathcal{L}'}(\sigma(X))$ and $v' \mathcal{R} [\mathcal{T}(E)]_{\mathcal{L}'}(T \circ \nu_X)$. By compositionality, $[\mathcal{T}(E)]_{\mathcal{L}'}(T \circ \sigma) \sim_{\mathcal{L}} [\mathcal{T}(E)]_{\mathcal{L}'}(T \circ v)$.

Corollary 4 Let \mathcal{L} and \mathcal{L}' be languages satisfying Postulates 1 and 2 and \mathcal{R} a preorder respecting $\alpha_{\mathcal{L}}$ and $\alpha_{\mathcal{L}'}$. There exists a valid fvr-translation from \mathcal{L} into \mathcal{L}' up to \sim iff there exists a compositional fvr-translation from \mathcal{L} into \mathcal{L}' that preserves \sim.

There exist translations that are compositional and preserve \sim but are not fvr-translations and not valid in the sense of Definition 5. Examples are hard to find and do not appear very natural. Moreover, major results I establish about valid translations (Theorems 3 and 4) do not generalise to such examples. For these reasons I prefer to exclude them from my definition of a valid translation.
Example 10 Let \(\mathcal{L} \) be a language with constants \(0 \) and \(1 \), and a semantics given by \(V = \{ a, b \}, 0^V = a \) and \(1^V = b \). Let \(\mathcal{L}' \) be a language with a unary operator \(f \), and a semantics given by \(V' = \{ 1, 2, 3, 4 \} \) and \(f^V(n) = n+1 \mod 4 \). Finally, let \(\sim \) be the equivalence on \(V \cup V' \) given by \(a \sim 1 \sim 2 \not\sim 3 \sim 4 \sim b \).

The translation \(\mathcal{T} : T_{\mathcal{L}} \to T_{\mathcal{L}'} \) given by \(\mathcal{T}(0) = f(X_0) \) and \(\mathcal{T}(1) = f(f(f(X_0))) \) for some \(X_0 \in \mathcal{X} \), and \(\mathcal{T}(X) = X \) for all \(X \in \mathcal{X} \), is compositional by construction, and preserves \(\sim \). This is witnessed by its semantic counterpart \(\mathcal{T} : V \to V' \) given by \(\mathcal{T}(a) = 1 \) and \(\mathcal{T}(b) = 4 \).

Since \(T_{\mathcal{L}'} = \emptyset \), there do not exists \(\mathcal{F} \)-translations from \(\mathcal{L} \) to \(\mathcal{L}' \). Up to symmetry, \(\mathcal{F} \) is in fact the only translation from \(\mathcal{L} \) to \(\mathcal{L}' \) that preserves \(\sim \). For considering that \(f^V(n) = n \) and the choice of \(X_0 \) is immaterial, any such translation \(\mathcal{T}_{k,\ell} \) must satisfy \(\mathcal{T}(0) = f^V(X_0) \) and \(\mathcal{T}(1) = f^V(X_0) \), where \(k, \ell \in \{ 0, 1, 2, 3 \} \). The only choices for \(T(a) \) are 1 or 2, and by symmetry one can pick \(T(a) = 1 \). Hence, to satisfy \([\mathcal{T}_{k,\ell}(a)]_{\mathcal{L}'}(T \circ \rho) \sim [a]_{\mathcal{L}'}(\rho) \) when \(\rho(X_0) = a \), one must take \(k \in \{ 0, 1 \} \). To also satisfy this formula when \(\rho(X_0) = b \), one must take \(k = 1 \) and \(T(b) = 4 \). This forces \(\ell \in \{ 2, 3 \} \cap \{ 3, 0 \} \), so \(\mathcal{T}_{k,\ell} = \mathcal{T}_{1,3} \).

However, there does not exists a translation from \(\mathcal{L} \) to \(\mathcal{L}' \) that is valid up to \(\sim \). For by symmetry, using Proposition 7 \(\mathcal{F} \) is the only candidate for such a translation. Suppose \(\mathcal{R} \) is a semantic translation w.r.t. which \(\mathcal{F} \) is correct. Then \(1 \mathcal{R} a \) or \(2 \mathcal{R} a \). Suppose \(1 \mathcal{R} a \). Take valuations \(\rho, \eta \) with \(\eta \mathcal{R} \rho \), such that \(\rho(X_0) = a \) and \(\eta(X_0) = 1 \). As \(\mathcal{F} \) is correct w.r.t. \(\mathcal{R} \), one has

\[
2 = f^V(1) = [f(X_0)]_{\mathcal{L}'}(\eta) = [\mathcal{F}(0)]_{\mathcal{L}'}(\eta) \mathcal{R} [0]_{\mathcal{L}'}(\rho) = a.
\]

So one must have \(2 \mathcal{R} a \). Now take valuations \(\rho, \eta \) with \(\eta \mathcal{R} \rho \), such that \(\rho(X_0) = a \) and \(\eta(X_0) = 2 \). As \(\mathcal{F} \) is correct w.r.t. \(\mathcal{R} \), one has

\[
3 = f^V(2) = [f(X_0)]_{\mathcal{L}'}(\eta) = [\mathcal{F}(0)]_{\mathcal{L}'}(\eta) \mathcal{R} [0]_{\mathcal{L}'}(\rho) = a.
\]

This contradicts the requirement that \(\mathcal{R} \subseteq \sim \).

Theorem 6 does not extend to this translation. For \(\mathcal{L} \) is a closed-term language and \(\mathcal{L}' \) trivially satisfies Postulate 2 (for by lack of bound variables \(\alpha_{\mathcal{L}'} \) is the identity). Any congruence \(\approx \) for \(\mathcal{L}' \) contained in \(\sim \) must distinguish all four semantic values. Suppose \(\mathcal{T} \) would preserve an equivalence \(\approx_{\mathcal{L}} \) on \(V \cup V' \), contained in \(\approx \), that on \(V' \) coincides with \(\approx \). Let \(T' \) be a semantic counterpart of \(\mathcal{T} \). Then \(T'(a) = 1 \) or \(T'(a) = 2 \). Suppose \(T'(a) = 1 \). Take a valuation \(\rho \) with \(\rho(X_0) = a \). Then

\[
2 = f^V(1) = [f(X_0)]_{\mathcal{L}'}(T' \circ \rho) = [\mathcal{F}(0)]_{\mathcal{L}'}(T' \circ \rho) \approx_{\mathcal{L}} [0]_{\mathcal{L}'}(\rho) = a.
\]

So one has \(2 \approx_{\mathcal{L}} a \approx_{\mathcal{L}} 1 \), a contradiction. The case \(T'(a) = 2 \) leads to a contradiction in the same way. Hence \(\mathcal{F} \) does not preserve such an equivalence \(\approx_{\mathcal{L}} \).

17 Related work: full abstraction

The concept of full abstraction stems from Milner [37]. It indicates a particularly nice connection between a denotational and an operational semantics of a language \(\mathcal{L} \). Here a denotational semantics is a function \([_]_{\mathcal{L}} \) as introduced in Section 2 whereas an operational semantics is given by an evaluation function \(\mathcal{E} : T_{\mathcal{L}} \to \mathcal{O} \) from the closed terms, there called programs, to a set \(\mathcal{O} \) of observations. Evaluation determines an equivalence relation on programs: \(P \sim_{\mathcal{E}} Q \) iff \(\mathcal{E}(P) = \mathcal{E}(Q) \). Let \(\sim_{\mathcal{E}}^{1c} \) be the congruence closure of \(\sim_{\mathcal{E}} \) for the language \(\mathcal{L} \), as defined in Section 7.

Definition 25 (37) The semantic function \([_]_{\mathcal{L}} \) for \(\mathcal{L} \) is fully abstract w.r.t. \(\mathcal{E} \) iff for all \(P, Q \in T_{\mathcal{L}} \)

\[
[P]_{\mathcal{L}} = [Q]_{\mathcal{L}} \iff P \sim_{\mathcal{E}}^{1c} Q.
\]
A semantic function \([\cdot]_{\mathcal{L}}\) always induces an equivalence relation on \(T_{\mathcal{L}}\) by \(P \equiv_{\mathcal{L}} Q\) iff \([P]_{\mathcal{L}} = [Q]_{\mathcal{L}}\). When this semantics is defined inductively as indicated in Section 5, \(\equiv_{\mathcal{L}}\) must be a congruence. Now \([\cdot]_{\mathcal{L}}\) is fully abstract w.r.t. \(\varepsilon\) iff \(\equiv_{\mathcal{L}} = \sim^\varepsilon\).

Note that any equivalence relation \(\sim^\varepsilon\) can be extracted from an evaluation function \(\varepsilon : T_{\mathcal{L}} \rightarrow \emptyset\), namely by taking \(\varepsilon\) to be the set of \(\sim^\varepsilon\)-equivalence classes of closed terms, with \(\varepsilon\) mapping each \(p \in T_{\mathcal{L}}\) to its own equivalence class. Likewise, each congruence relation \(\equiv\) on \(T_{\mathcal{L}}\) can be obtained from a semantics \([\cdot]_{\mathcal{L}}\): take \(V\) to be the set of \(\equiv\)-equivalence classes of closed terms, and for \(E \in T_{\mathcal{L}}\) and \(\rho : \mathcal{L} \rightarrow V\) define \([E]_{\mathcal{L}}(\rho)\) by to be the \(\equiv\)-equivalence class of \(E[\sigma]\), where \(\sigma : \mathcal{X} \rightarrow T_{\mathcal{L}}\) is a closed substitution that maps each variable \(X\) to a member of the \(\equiv\)-equivalence class of closed terms \(\rho(X)\). Since \(\equiv\) is a congruence, this definition is independent of the choice of \(\sigma\).

Consequently, full abstraction can equally well be stated as a relation between two equivalence relations \(\equiv\) and \(\sim\) on \(T_{\mathcal{L}}\):

\(\equiv\) is fully abstract w.r.t. \(\mathcal{L}\) and \(\sim\) iff \(\equiv = \sim^\varepsilon\).

It is in this spirit that full abstraction has been employed in 21 and subsequent papers.

Riecke[59] and Shapiro[63] extend the notion of full abstraction to translations between languages. Riecke[59] compares languages \(L_S\) and \(L_T\) with a shared evaluation function \(\varepsilon : T_{L_S} \cup T_{L_T} \rightarrow 2^\emptyset\), associating with each closed expression a set of observations. Write \(P \subseteq^\varepsilon Q\), for \(P, Q \in T_{L_S} \cup T_{L_T}\), if \(\varepsilon(P) \subseteq \varepsilon(Q)\), and let \(\subseteq^\varepsilon_{\mathcal{L}}\) be the congruence closure of \(\subseteq^\varepsilon\) w.r.t. \(\mathcal{L}\), for \(i = S, T\) (source and target). He calls a translation \(T : T_{L_S} \rightarrow T_{L_T}\) fully abstract iff, for all \(P, Q \in T_{L_S}\),

\[P \subseteq^\varepsilon_{L_S} Q \iff T(P) \subseteq^\varepsilon_{L_T} T(Q).\]

The same notion occurs earlier in Mitchell[41], although not under the name “full abstraction”, and using equivalence relations instead of preorders—taking \(P \sim^\varepsilon Q\) iff \(\varepsilon(P) = \varepsilon(Q)\). He compares the expressive power of programming languages in terms of abstraction preserving reductions between them. These are translations that are compositional as well as fully abstract in the above sense. Later work abstracts from the evaluation function \(\varepsilon\), and casts full abstraction directly in terms of equivalences \(\sim_S\) and \(\sim_T\) on the source and target languages[60].

Felleisen[16] compares the expressive power of programming languages through a notion of eliminability of language constructs. With some effort, this approach can be seen to have significant similarities with the approach of Mitchell[41], although it allows certain degenerate reductions[41].

Whereas most work on expressiveness deals with closed-term languages, allowing a focus on syntax over semantics, Shapiro[63] works entirely on the semantic side, leaving the syntax largely implicit. His languages are triples \((V, \mathcal{L}, \sim)\), consisting of a semantic domain \(V\), a collection \(\mathcal{L}\) of partial operators on \(V\), and a semantic equivalence \(\sim\) on \(V\). A language embedding of one such language \((V_S, \mathcal{L}_S, \sim_S)\) into another \((V_T, \mathcal{L}_T, \sim_T)\) is defined to be a homomorphism of the partial algebra \((V_S, \mathcal{L}_S)\) into the partial algebra \((V_T, \mathcal{L}_T)\). Recasting this definition in terms of my framework, this is a function \(R : V_S \rightarrow V_T\) such that there exists a compositional translation \(T : \mathcal{L}_1 \rightarrow \mathcal{L}_2\) correct w.r.t. \(R\) (as in Definition 3). For \(i = S, T\) let \(\sim_{\mathcal{L}_i}\) be the congruence closure of \(\sim_i\) w.r.t. \(\mathcal{L}_i\)—Shapiro calls this the fully-abstract congruence of \(\mathcal{L}_i\). Then a language embedding is deemed fully abstract iff, for all \(v, w \in V_S\),

\[v \sim_S w \iff T(v) \sim_T T(w).\]

In[64] these fully abstract language embeddings are used to classify a number of concurrent programming languages on expressive power.

In Nestmann & Pierce[44] the notion of full abstraction was generalised by dropping the requirement that the source and target equivalences being compared need to be congruence closures.
Definition 26 A translation \(\mathcal{T} : \mathcal{T}_S \rightarrow \mathcal{T}_T \) is fully abstract w.r.t. the equivalences \(\sim_S \subseteq \mathcal{T}_S^2 \) and \(\sim_T \subseteq \mathcal{T}_T^2 \) if, for all \(P, Q \in \mathcal{T}_S \),
\[
P \sim_S Q \iff \mathcal{T}(P) \sim_T \mathcal{T}(Q).
\]

In this form, full abstraction has found widespread applications \([42] [4]\).

As stressed in \([28] [50]\), the notion of full abstraction is meaningful only in relation to a well-chosen pair of source and target equivalences, and only in combination with a criterion like compositionality. In particular, for each encoding \(\mathcal{T} \) and each target equivalence \(\sim_T \) there exits a source term equivalence \(\sim_S \), namely \(\{(P, Q) \mid \mathcal{T}(P) \sim_T \mathcal{T}(Q)\} \), such that \(\mathcal{T} \) is fully abstract w.r.t. \(\sim_S \) and \(\sim_T \). For each injective encoding \(\mathcal{T} \) and each source term relation \(\sim_S \), there exits \(\sim_T \subseteq \mathcal{T}_T^2 \), namely \(\{(\mathcal{T}(P), \mathcal{T}(Q)) \mid P \sim_S Q\} \), such that \(\mathcal{T} \) is fully abstract w.r.t. \(\sim_S \) and \(\sim_T \). Finally, for each pair \(\sim_S \) and \(\sim_T \) such that the cardinality of \(\mathcal{T}_S^2 / \sim_S \) is greater than or equal to the cardinality of \(\mathcal{T}_T^2 / \sim_T \) there exists a translation from \(\mathcal{T}_S \) to \(\mathcal{T}_T \) that is fully abstract w.r.t. \(\sim_S \) and \(\sim_T \).

Naturally, any translation that is valid up to an equivalence \(\sim \) as in Definition 5 of the current paper is also fully abstract, namely w.r.t. the same equivalence \(\sim \) in the role of both \(\sim_S \) and \(\sim_T \). Furthermore, validity entails compositionality through Corollary 2. Both full abstraction and validity imply an injective translation from the \(\sim_S \)-equivalence classes of closed source terms to the \(\sim_T \)-equivalence classes of closed target terms. However, validity demands that this link between source and target terms is again governed by \(\sim \), whereas full abstraction implies no counterpart to this crucial requirement.

A typical example of a valid transition is the encoding of the synchronous into the asynchronous \(\pi \)-calculus described in Section 6. This encoding is valid up to weak barbed bisimilarity \(\approx \). Consequently, it is also fully abstract w.r.t. \(\approx \) and \(\approx \) according to Definition 26. However, it is not fully abstract w.r.t. \(\approx \) and \(\approx \) in the more original sense of Shapiro \([63]\) and others, due to the fact that \(\approx \) is not a congruence for either the source or the target language. By Theorem 4, the same translation is also fully abstract w.r.t. the congruence closure of \(\approx \) on the source language, and a somewhat artificial equivalence on the target language that is the congruence closure of \(\approx \) under translated source contexts. Although closer, this is still not a full-abstraction result according to Shapiro, as the latter equivalence fails to be a congruence for all of the target language. Finally, by Theorem 6, the same encoding is furthermore fully abstract w.r.t. the congruence closure of \(\approx \) on the target language, and an artificial congruence on the source language that is strictly finer than the congruence closure of \(\approx \) on the source language. This is a full abstraction result in the framework of \([63]\). However, in line with the observations of \([28] [50]\), the latter two full abstraction results should not be regarded as lending additional credibility to this particular encoding of the synchronous into the asynchronous \(\pi \)-calculus. Since Theorems 4 and 6 hold in great generality, these full abstraction results are merely consequences of the validity of the encoding up to \(\approx \).

18 Related work: validity of encodings according to Gorla

In the last few years, a great number of encodability and separation results have appeared, comparing CCS, Mobile Ambients, and several versions of the \(\pi \)-calculus (with and without recursion; with mixed choice, separated choice or asynchronous) \([60] [33] [6] [42] [44] [4] [48] [14] [13] [9] [12] [45] [3] [4] [47] [43] [46] [57] [11] [66] [10] [80] [85] [54] [56] [53] [55] [1] [31] [5] [17] [18] [19] [20] [54] [2]\); see \([26] [27]\) for an overview. Many of these results employ different and somewhat ad-hoc criteria on what constitutes a valid encoding, and thus are hard to compare with each other. Several of these criteria are discussed and compared in \([49]\) and \([51]\). Gorla \([27]\) collected some essential features of these approaches and integrated them in a proposal for a valid encoding that justifies most encodings and some separation results from the literature.
Like Boudol [7] and the present paper, Gorla requires a compositionality condition for encodings. However, his criterion is weaker than mine (cf. Definition [21]) in that the expression \(E_f \) encoding an operator \(f \) may be dependent on the set of names occurring freely in the expressions given as arguments of \(f \). This issue is further discussed in [24]. It is an interesting topic for future research to see if there are any valid encodability results à la [27] that suffer from my proposed strengthening of compositionality.

The second criterion of [27] is a form of invariance under name-substitution. It serves to partially undo the effect of making the compositionality requirement name-dependent. In my setting I have not yet found the need for such a condition. In [24] I argue that this criterion as formalised in [27] is too restrictive.

The remaining three requirements of Gorla (the ‘semantic’ requirements) are very close to an instantiation of mine with a particular preorder \(\sim \). If one takes \(\sim \) to be weak barbed bisimilarity with explicit divergence (i.e. relating divergent states with divergent states only), using barbs external to the language, as discussed in Section [5] then an valid translation in my sense satisfies Gorla’s semantic criteria, provided that the equivalence \(\equiv \) on the target language that acts as a parameter in Gorla’s third criterion is also taken to be weak barbed bisimilarity with explicit divergence. The precise relationships between the proposals of [24] and [27] are further discussed in [52].

Further work is needed to sort out to what extent the two approaches have relevant differences when evaluating encoding and separation results from the literature. Another topic for future work is to sort out how dependent known encoding and separation results are on the chosen equivalence or preorder.

References

A Theory of Encodings and Expressiveness

