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Abstract. We provide a finite basis for the (in)equational theory of phecess
algebra BCCS modulo the weak failures preorder and equigaléNVe also give
positive and negative results regarding the axiomatigghif BCCS modulo
weak impossible futures semantics.

1 Introduction

Labeled transition systems constitute a widely used maoidebiecurrent computation.
They model processes by explicitly describing their stated their transitions from
state to state, together with the actions that produce thassitions. Several notions
of behavioral semantics have been proposed, with the aidetttify those states that
afford the same observations [14, 12]. For equational r@agoabout processes, one
needs to find an axiomatization that is sound graind-completenodulo the seman-
tics under consideration, meaning that all equivalentezlderms can be equated. Ide-
ally, such an axiomatization is alsgcompletemeaning that all equivaleopenterms
can be equated. If such a finite axiomatization exists, iid that there is &inite basis
for the equational theory.

For concrete semantics, so in the absence of the silentnactithe existence of
finite bases is well-studied [16, 14, 7], in the context of fiecess algebra BCCSP,
containing the basic process algebraic operators from @G&8&P. However, for weak
semantics, that take into account théaardly anything is known on finite bases. In [12],
Van Glabbeek presented a spectrum of weak semantics. Ferat®f the semantics
in this spectrum, a sound and ground-complete axiomatizdtas been given, in the
setting of the process algebra BCCS (BCCSP extended, lsge, e.g., [13]. But a finite
basis has been given only fareak delay, »- and branching bisimulatiorsemantics
[18,11], and in case of an infinite alphabet of actions alsavieak impossible futures
semantics [22]. The reason for this lack of results on firdéteds, apart from the inherent
difficulties arising with weak semantics, may be that it isaly not so straightforward
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to define a notion of unique normal form fopenterms in aveaksemantics. Here we
will employ a saturation technique, in which normal forms saturated with subterms.

In this paper, we focus on two closely related weak semattaesed on failures and
impossible futures. Aveak failureconsists of a trace; - - - a,, and a set4, both of con-
crete actions. A state exhibits this weak failure pair ifahgerform the trace; - - - a,,
(possibly intertwined withr’s) to a state that cannot perform any actiotieven after
performing7’s). In aweak impossible futured can be a set of traces. Weak failures
semantics plays an essential role for the process algelPd&S~or convergent pro-
cesses, it coincides with testing semantics [8, 19], and ihthe coarsest congruence
for the CCS parallel composition that respects deadlockvieh Weak impossible fu-
tures semantics [21] is a natural variant of possible figgmmantics [20]. In [15] it is
shown that weak impossible futures semantics, with an imadditroot condition, is the
coarsest congruence containing weak bisimilarity withlieklivergence that respects
deadlock/livelock traces (or fair testing, or any livenpssperty under a global fairness
assumption) and assigns unique solutions to recursiveieqaa

The heart of our paper is a finite basis for the inequatioreadthof BCCS modulo
the weak failurepreorder. The axiomatization consists of the standard axioms Alr4 fo
bisimulation, three extra axioms WF1-3 for failures sen@ntand in case of a finite
alphabet4, an extra axiom WEg. The proof that A1-4 and WF1-3 are a finite basis in
case of an infinite alphabet is a sub-proof of the proof thatAWF1-3 and WE are
a finite basis in case of a finite alphabet. Our proof has theesgeneral structure as
the beautiful proof for testing equivalences given in [8fidarther developed in [17].
Pivotal to this is the construction of “saturated” sets dfats within a term [8]. Since
here we want to obtain an-completeness result, we extend this notion to variables.
Moreover, to deal withu-completeness, we adopt the same general proof structure as
in the strong case [9]. In this sense, our proof strategy eavidwed as a combination
of the strategies proposed in [8] and [9]. Furthermore, wayapn algorithm from [2,

10, 6] to obtain a finite basis for BCCS modulo weak failuggsivalencéor free.

At the end, we investigate the equational theory of BCCS rwodeak impossible
futures semantics. This shows a remarkable differencewsgtik failures semantics, in
spite of the strong similarity between the definitions ofstheemantics (and between
their ground-complete axiomatizations). As said, in cdsendnfinite alphabet, BCCS
modulo the weak impossible futures preorder has a finitestjagj. However, we show
that in case of a finite alphabet, such a finite basis does Iigit 84oreover, in case of
weak impossible futuresquivalencgthere is no finite ground-complete axiomatization,
regardless of the cardinality of the alphabet.

Afinite basis for the equational theory of BCCSP modulo (cet&) failures seman-
tics was given in [9]. The equational theory of BCCSP modalangrete) impossible
futures semantics is studied in [4]. It is interesting to #&x our results for weak se-
mantics agree with their concrete counterparts, with venjlar proofs. This raises a
challenging open question: can one establish a generaieimeio link the axiomatiz-
ability (or nonaxiomatizability) of concrete and weak senics?

Due to space restriction, some proofs, remarks and exarapéesmitted in the

current paper. These include, in particular, proofs of Lexarh and 3 and Theorems 5
and 6. However, they can be found in the full version of thisgrg5].
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2 Preliminaries

BCCS(A) is a basic process algebra for expressing finite processioehés signature
consists of the constaft the binary operatar+ _, and unary prefix operators and
a-, whereq is taken from a nonempty set of visible actions, called thalphabet
ranged over by, b, c. We assume that ¢ A and writeA. for AU {7}, ranged over by
a, (.

tu=0at|7t|t+t|x

ClosedBCCS(A) terms, ranged over by, ¢, represent finite process behaviors, where
0 does not exhibit any behavigr+ ¢ offers a choice between the behaviorpaidg,
andap executes action to transform intg. This intuition is captured by the transition
rules below. They give rise td .-labeled transitions between closed BCCS terms.

@ @

ar >z r4y>a Tty >y

We assume a countably infinite détof variables;z, i, z denote elements df. Open
BCCS terms, denoted by u, v, may contain variables frof. Write var(t) for the
set of variables occurring it The operational semantics is extended verbatim to open
terms; variables generate no transition. We wtite> v if there is a sequence of
transitionst = --- 5 wu; furthermoret = denotes that there is a termwith ¢t % «,
and likewiset == denotes that there are a terms with t = u = v.

The depthof a termt, denoted byj¢|, is the length of thdongesttrace oft, not
countingr-transitions. It is defined inductively as follow$] = |z| = 0; |at| = 1+ [¢];
[t = [¢]; [t + ul = max{]t], [ul]}.

A (closed) substitution, ranged over byp, maps variables ifv" to (closed) terms.
For open terms andu, and a preorder (or equivalence=) on closed terms, we define
t Cu(ort =w)if o(t) C o(u) (resp.o(t) = o(u)) for all closed substitutions.
Clearly,t % t" implies thato(t) % o(¢') for all substitutionss.

An axiomatizationis a collection of equations~ w or of inequationg < u. The
(in)equations in an axiomatizatiafi are referred to aaxioms If E is an equational
axiomatization, we writd? - t ~ v if the equatiort ~ w is derivable from the axioms
in £ using the rules of equational logic (reflexivity, symmetrgnsitivity, substitution,
and closure under BCCS contexts). For the derivation of aquationt < « from an
inequational axiomatizatiof, denoted by¥ I ¢ < u, the rule for symmetry is omitted.
We will also allow equations = v in inequational axiomatizations, as an abbreviation
oft<uNnu<t.

An axiomatizationF is soundmodulo a preorde (or equivalence=) if for all
termst, u, fromE Ft < u (or B + t =~ u) it follows thatt C « (ort = ). F isground-
completefor C (or=) if p C g (orp = q) impliesE F p < g (or E F p = q) for all
closed termg, q. Moreover,E is w-completsf for all termst, u with E + o (¢) < o(u)
(or E + o(t) = o(u)) for all closed substitutions, we haveF -t < u (or E + t & w).
When E is w-complete as well as ground-complete, it@mpletefor C (or =) in the
sense that C u (ort = w) impliesE F t < u (or E + t = u) for all termst, u.
The equational theory of BCCS modulo a preordefor equivalence=) is said to
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be finitely basedf there exists a finitew-complete axiomatization that is sound and
ground-complete for BCCS modulo (or =).

Al-4 below are the core axioms for BCCS modulo bisimulatemantics. We write
t=uifAl-4 -t =~ u.

Al Tty * yt+zx

A2 (z+y)+2z ~ z+(y+2)
A3 rT+zr = x

A4 r+0 = x

Summationzie{lwn} t; denoteg; + - - - + t,,, where summation over the empty set
denoted). As binding convention,+ _ and summation bind weaker than. For every
term¢ there exists a finite seiw;t; | ¢ € I} of terms and a finite sét” of variables
such that = >, _; ast; + Zyey y. Theq;t; fori € I and they € Y are called the
summandsf ¢. For a set of variable®’, we will often denote the ter@yey ybyY.

Definition 1 (Initial actions). For any tern¥, the setZ(¢) of initial actions is defined
asI(t) ={ac A|t=>S)

Definition 2 (Weak failures).
— Apair(ay ---a, B),withk > 0andB C A, is aweak failure pairof a procesgg
if there is a pathyy =3= .- =% = p, with Z(px) N B = 0.
— Write p <wr ¢ if the weak failure pairs of are also weak failure pairs of
— Theweak failures preordeEwr is given by
p Cwr qiff (1) p <wr ¢ and (2)p = implies thatg —.
— Weak failures equivalencewr is defined a&wr N QV*‘}F.

It is well-known thatp <y ¢ is notaprecongruencéor BCCS: e.g.70 <wr 0 but
70 + a0 Lwr 0 + a0. However,Cwr is, meaning thap; Cwr g1 andps Cwr ¢o
impliesp; + p2 Cwr q1 + g2 andap; Cwr agq for a € A.. In fact, Cwr is the
coarsest precongruence containeglifr. Likewise,=wr is acongruencdor BCCS.

3 A Finite Basis for Weak Failures Semantics

3.1 Axioms for the Weak Failures Preorder

On BCCS processes, the weak failures preorder as definee abmcides with the in-

verse of the must-testing preorder of [8]. A sound and grecmaplete axiomatization
of the must-testing preorder preorder has been given im{8rms of a language richer
than BCCS. After restriction to BCCS processes, and ravgithie axioms, it consists
of Al-4 together with the axioms:

N1 ar + ay = a(rr + 1Y)

N2 Tz+y) S z+71Y

N3 az + 7(ay + 2) = T(ax + ay + 2)
E1l T+ TY

Here we simplify this axiomatisation to A1-4 and WF1-3 frombT 1. In fact it is an
easy exercise to derive WF1-3 from N1, N2 and E1, and N1, NZEdnfdom WF1-3. It
is a little harder to check that N3 is derivable from the ottheee axioms (cf. Lem. 1).
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WF1 ax + ay =~ a(7z + 7Y)
WR2 r(z+y) 7 +y
WEF3 rxT1x+Y

Table 1. Axiomatization for the weak failures preorder

Theorem 1. A1-4+WF1-3is sound and ground-complete BBCCS(A) moduloC .

In this section, we extend this ground-completeness retlt two w-completeness
results. The first one says, in combination with Theo. 1, isdbng as our alphabet of
actions is infinite, the axioms A1-4+WF1-3 constitute a @érfbasis for the inequational
theory of BCC$A4) moduloC .

Theorem 2. If |A|= o0, thenA1-4+WF1-3is w-complete foBCCS(A) moduloC .

To get a finite basis for the inequational theory of BCCS moduk r in casg 4| < oo,
we need to add the following axiom:

WE 4 Zaxaﬁzaxa—i—y

a€A ac€A

where ther, for a € A andy are distinct variables.

Theorem 3. If |A| < oo, thenAl-4+WF1-3+WF, is w-complete foBCCS(A) mod-
ulo Cwr.

The rest of this section up to Sec. 3.4 is devoted to the prfothieorems 1-3. For a
start, the inequations in Tab. 2 can be derived from A1-4+V8F1

D1 Tz+y)+tx=1(z+y)

D2 T(re+y) =T +y

D3 az 4+ 7(ay + z) = 7(ax + ay + 2)

D4 TE X TT+Y

D5 Y e axi = a(d, o, Tas) for finite nonempty index sets
D6 Te+y~Tte+1(z+y)

D7 Tet+rTy~Tr+T(x+y)+TY

D8 Te+T(ety+z)xTrt+T(e+y) +r(x+y+2)
D9 YoierTlati i) = 37, T(at +y;) for finite I, wheret = 5. | 7t,.

Table 2. Derived inequations

Lemma 1. D1-9are derivable fromA1-4+WF1-3

Proof. Here we derive D3 only. The other proofs can be found in [5].

By WF3,F y < 7y +72. So by WF1} ay < a(rx 4+ 7y) = ax + ay. This implies
Fr(ay+2) < 7(ax+ay+2). Hence, by D1 az+7(ay+2) < ax+7(ax+ay+2z) =
T(ax + ay + z).

Moreover, by WF2f- 7(ax + ay + 2) < ax + 7(ay + 2). O
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3.2 Normal Forms

The notion of a normal form, which is formulated in the foliog two definitions,

will play a key role in the forthcoming proofs. For any 9etC A U V of actions and
variables letAr, = L N A, the set of actions i, andV;, = L NV, the set of variables
in L.

Definition 3 (Saturated family). SupposeC is a finite family of finite sets of actions
and variables. We sag is saturatedif it is nonempty and

— L1, Ly € LimpliesthatL; U Ly € £; and
— Ly, L5 € LandL, C L3 C Ly Imply thatLg eL.

Definition 4 (Normal form).
(i) Atermtisin7 normal form if

t—ZT(Z ata—l-VL)

LeLl a€AL

where thet, are in normal form and’ is a saturated family of sets of actions and
variables. We writd.(t) for | J, . . L; note thatL(t) € L.

(ii) tisin action normal form if

t= Z ate + Vi
a€AL

where the, are in normal form and. C AU V. We write L(t) for L.

(i) tisin normal form if it is either inr normal form or in action normal form.

Note that the definition of a normal form requires that for ang A, if t =% ¢, and
t =5 t,, thent; andt, are syntactically identical.
We prove that every term can be equated to a normal form.

Lemma 2. For any term¢, A1-4+WF1-3F t ~ ¢’ for some normal forn'.

Proof. By induction on|¢|. We shorten “A1-4+WF1-3-" to “F" and distinguish two
cases.

-t Lett =3, ;a;it; +Y.ByD5,
Fita Z a(z Tt)+Y .
a€Z(t) i€l,a;=a
By induction, for eaclu € Z(t),
Y rtint
i€l,a;=a

for some normal form,. So we are done.
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— t 5. By D6, ¢ can be brought in the forfy, ., 7t; with I # (), and using D2 one

can even make sure that-% fori € I. Using the first case in this proof, we obtain,
for eachi € I,
Fit ~ Z atq; + VL(i)
GEAL(T;)

for someL(i) C AU V. Thus

Ft= Z T Z atai + Vi

icl a€AL )

For eachu € Z(t), we define Uq = Z Ttai -
i€l aEAL(i>

Then|u,| < |¢|. By induction t- u, = t, for some normal forna,.
Definel = {L(i) | i € I}. By repeated application of D9 we obtain

l—t%ZT Zaua—i—VL(i) ’&’ZT<Z ata—i—VL).

iel aGAL(i) Lel a€AL

The latter term has the required form, except that the fathitged not be saturated.
However, it is straightforward to saturafeby application of D7 and D8. a

Lemma 3. Suppose andu are both in normal forms antd Cwr u. If t =% ¢,, then
there exists a term,, such thatu =-% u, andt, <wr Uq.

Proof. Cf. [5]. a

3.3 w-Completeness Proof

We are now in a position to prove Theo. @-¢ompleteness in case of an infinite al-
phabet) and Theo. 3utcompleteness in case of a finite alphabet), along with Theo.
(ground completeness). We will prove these three theorarngé go. Namely, in the
proof, two cases are distinguished; only in the second &&g¢ £ A), in which theA

is guaranteed to be finite, will the axiom Viplay a role.

Proof. Lett Cwr u. We need to show that ¢ < «. We apply induction o] + |ul.
By Lem. 2, we can writé andw in normal form.

We first prove thatl.(t) C L(u). Suppose this is not the case. Then there exists
somea € Ar ) \ Az Orsomer € Vi) \ Vo). Inthe first case, let be the closed
substitution witho(z) = 0 for all z € V; we find that(a, ) is a weak failure pair of
o(t) but not ofo(u), which contradicts the fact that(t) Cwr o(u). In the second
case, pick somé > max{|t|, |u|}, and consider the closed substitutiofw) = a0
ando(z) = 0 for z # z. Then(a?, ) is weak failure pair ot (¢). However, it camot
be a weak failure pair of (u), again contradicting (t) Cwr o(u).

We distinguish two cases, depending on wheff{¢j = A or not.
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1. Z(t) # A. We distinguish three cases. Due to the condition thatimpliesu =,
it cannot be the case thais an action normal form and a = normal form.

(a) t andu are both action normal forms. So= ZGGAL ate + Vi andu =

(b)

(©)

Y acA, Wa+ Var. We show thatl(t) = L(u). Namely, pickb € A\ A, and
let o be the closed substitution with(z) = 0 for anyz € V;,, ando(z) = b0
for z ¢ V1. As (e, A\ Z(¢)) is a weak failure pair of, and hence of;, it must
be thatL(u) C L(t). Together withL(¢t) C L(u) this givesL(t) = L(u). By
Lem. 3, for eactu € Z(t), t, <wr uq, and thus clearly, Cwr Tu,. By
induction,t- ¢, < Tu, and henceé- at, < au,. It follows that

Ft= Z ate + Vi, < Z aug + Vi, = Z aug + V= u
a€AyL a€AL a€An

Botht andu arer normal forms:

t=> 7(Y ata+Vi)

LeL acAp

U= Z 7( Z aug + Var)

MeM ac€Apn

and

By Lem. 3, for eaclu € Z(t), to <wr uq, and thus clearly, Cwr Tu,. By
induction,i- t, < Tu,. By these inequalities, together with D4,

Ft%ZT(Z au, + Vi) +u (1)

LeLl a€AL

We now show that C M. Take anyL € L, pickb € A\ Ay, and consider
the closed substitution(z) = 0 for anyz € Vi, ando(z) = b0 for z & V.

Sinces(t) = (3, ata) ando(t) Cwr o(u), there exists al! € M with
Ay € Ap andVy, C Vi, Since alsdl C L(t) € L(u), andM is saturated,
it follows that L € M. Hence £ C M.
Sincel C M,

ZT(Z avg + Vi) tu=u 2

LeL a€Ay
By (1) and (2)} t < .

t is an action normal form and is aT normal form. Thenrt Cwr u. Note
thatrt is ar normal form, so according to the previous case,

Frt<u

By WF3,
Ft<1t<u
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2. I(t) = A. Note that in this caseéA| < co. So, according to Theo. 3, axiom \WF
is at our disposal. As before, we distinguish three cases.

(a) Botht and v are action normal forms. Sinck(t) C L(u) we havet =
Yogeate +Wandu =3 ., au, + X with W C X. By WFy4,

[ Zata < Zata—i—u
a€EA acA
By Lem. 3, for eachu € A, t, <wr uq, and thus clearly, Cwr Tu,. By
induction,i- t, < Tu,. It follows, usinglV C X, that

l—t:Zata—i-W#Zaua—i—u—i—W:u
a€A acA

(b) Botht andu areT normal forms.

t=> 7(Y ata+ Vi)

LeL acAp

u = Z 7( Z aug + Var)

MEM a€An
By D1 and WF; (clearly, in this casel ) = A),

and

I—t%t—l—Zata#t—i—Zata—i—u 3)
a€EA acA

By Lem. 3, for eachu € A, t, <wr uq, and thus clearly, Cwr Tu,. By
induction,F- t, < Tu,. By these inequalities, together with (3),

Ft< ZT(Z aua—i—VL)—i—Zaua—i—u

LeL a€AL acA
So by D1,
e Y T aua+ Vi) +u (4)
LelL acAp

Now for L € £ with Ay, # A we havel € M using the same reasoning as
in 1(b). ForL € £ with Ay, = A we haveVy, C Vi C Vi(,. By WFa we
have

kq—( Z CLUa+VL) 47’(2 aua—l-VL(u)) (5)
a€Ap acA

As the latter is a summand afwe obtaint < w.

t is an action normal form and is aT normal form. This can be dealt with as
in case 1(c).

(c

~—

This completes the proof. a
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3.4 Weak Failures Equivalence

In[2,10] an algorithm is presented which takes as input ad@nd ground-complete
inequational axiomatizatio®y for BCCSP modulo a preordé€r which includes the
ready simulation preordeand isinitials preserving' and generates as output an equa-
tional axiomatizationd(E) which is sound and ground-complete for BCCSP modulo
the corresponding equivalence—its kerneln C~1. Moreover, if the original axiom-
atizationE isw-complete, so is the resulting axiomatization. The axiorasipn A(E)
generated by the algorithm frofd contains the axioms A1-4 for bisimulation equiva-
lence and the axiom3(ax + z) + B(ax + ay + 2) = flax + ay + z) fora, 5 € A,

that are valid in ready simulation semantics, together #iehfollowing equations, for
each inequational axiom< « in E:

—t+u~uwu;and
— a(t+2z)+ alu+zx) = a(u+ z) (for eacha € A,, and some variable that does
not occur int + w).

Recently, we lifted this result to weak semantics [6], whichkes the aforementioned
algorithm applicable to all 87 preorders surveyed in [12{tthre at least as coarse as
the ready simulation preorder. Namely, among others, we shat

Theorem 4. Let C be a weak initials preserving precongrueRdbat contains the
strong ready simulation preordeErg and satisfies T2 (the secondlaw of CCS:
Tx = Tr + x), and letE be a sound and ground-complete axiomatization.offhen
A(E) is a sound and ground-complete axiomatization of the keshel. Moreover, if
E isw-complete, then so id(FE).

It is straightforward to check that weak failures meets thergruisites of Theo. 4,
and thus we can run the algorithm, and after simplificatioth @mission of redundant
axioms obtain the axiomatization for weak failures equnak in Tab. 3. The axioms

WF1 ar + ay =~ a(tx + TY)
WFE2 Tty +rr~TT+Y
WFE3 az 4+ 7(ay + z) = 7(ax + ay + 2)

WFEA T(ZaeA arq + z) + T(ZaeA are +y+2)~ T(ZaeA azqe +y+ 2)

Table 3. Axiomatization for weak failures equivalence

WF1, WFE2-3 already appeared in [13]. A1-4+WF1+WFE2-3 isreband ground-
complete for BCCS modulewr (see also [13, 6]). By Theo. 2 and Theo. 3, we have:

Corollary 1. If | A] = oo, then the axiomatizatioAl-4+WF1+WFE2-3s w-complete
for BCCS(A) modulo=wr.

Corollary 2. If |A| < oo, then the axiomatizatioAl-4+WF1+WFE2-3+WFE is w-
complete foBCCS(A) modulo=wr.

! meaning thap C ¢ implies thatl (p) C I(q), where the sef (p) of stronglyinitial actions is
Ip)={ac A, |p>}

2 meaning thap C ¢ implies thatZ, (p) C Z,(q), where the sef, (p) of weakinitial actions is
Ir(p) ={a € Ar |p ==}
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4 Weak Impossible Futures Semantics

Weak impossible futureeemantics is closely related to weak failures semantick, On
instead of the set of actions in the second argument of a wlakd pair (see Def. 2),
an impossible future pair contains a setraices

Definition 5 (Weak impossible futures).

— Asequence; ---a € A*, with k > 0, is atraceof a proces9y if there is a path
po =5B= ... =% p,; itis acompleted tracef py if moreoverZ(p,) = (. Let
7 (p) denote the set of traces of procesandC7 (p) its set of completed traces.

— A pair (a; - - -ax, B), with £ > 0 andB C A*, is aweak impossible futuref a
procesgy if there is a pathpy == - . == p, with T (px) N B = 0.

— Theweak impossible futures preordesyr is given byp Cwir ¢ iff (1) the weak
impossible futures of are also weak impossible futures©f2) 7 (p) = 7 (¢) and
(3)p = implies thaty 5.

— Weak impossible futures equivaleregr is defined as wir N EQVIIF.

Cwir IS a precongruence, asskyr a congruence, for BCCS [22]. The requirement (2)
T (p) = T (q) is necessary for this precongruence property. Without itweald have
7a0 E 7a0 + b0 bute(7a0) £ ¢(7a0 + b0).

A sound and ground-complete axiomatization fog 1 is obtained by replacing
axiom WF3 in Tab. 1 by the following axiom (cf. [22], where &$ltly more compli-
cated, but equivalent, axiomatization is given):

WIF3 z < 72

However, surprisingly, there is no finite sound and grouadyglete axiomatization for
=wir. We will show this in Sec. 4.1. A similar difference betweae tmpossible fu-
tures preorder and equivalence in the concrete case (se abtence of) was found
earlier in [4]. We note that, since weak impossible futueraantics is not coarser than
ready simulation semantics, the algorithm from [2, 10, 6Jéoerate an axiomatization
for the equivalence from the one for the preorder, does nokt wcthis case.

We also established that the sound and ground-completmaxiration for BCCS
modulo Cyyr is w-complete in cas¢A| = oo, and that there is no such finite basis
for the inequational theory of BCCS moduloyr in case|A| < oo. Again, these
results correspond to (in)axiomatizability results fog tmpossible futures preorder in
the concrete case [4], with very similar proofs.

Theorem 5. If |A| = oo, thenA1-4+WF1-2+WIF3is w-complete foBCCS(A) mod-
ulo Cwir.

Proof. In [22]. A somewhat simpler proof can be found in [5].

Theorem 6. If | A| < oo, then the inequational theory BfCCS(A) moduloC iy does
not have a finite basis.

Proof. In the full version of this paper [5].

Concluding, in spite of the close resemblance between waidlkvds and weak im-
possible futures semantics, there is a striking differdsateveen their axiomatizability
properties.
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4.1 Nonexistence of an Axiomatization for Equivalence

We now prove that for any (nonemptyt)there doesiot exist any finite, sound, ground-
complete axiomatization faBCCS(A) modulo=ywr. The cornerstone for this nega-
tive result is the following infinite family of closed equattis, form > 0:

7a*™0 + 7(a™0 + a*™0) ~ 7(a™0 + a*™0)
It is not hard to see that they are sound moduigr. We start with a few lemmas.
Lemma 4. If p =wir ¢ thenCT (p) = CT (q).

Proof. A processp has a completed traeg - - - ay, iff it has a weak impossible future
(ay---ag, A). O

Lemma 5. Supposé Cwir u. Then for anyt’ with t =5 ¢’ there is some:’ with
T / / /
u =— ' such thatar (u") C var(t').

Proof. Lett == . Fix somem > |t|, and consider the closed substitutiodefined
by p(z) = 0if z € var(¥') andp(z) = a™0 if = & wvar(t'). Sincep(t) = p(t')
with |p(t")] = |t'] < m, andp(t) Cwir p(u), clearly p(u) = ¢ for someq with
lg| < m. From the definition of it then follows that there must exist = «' with
var(u') C var(t'). In caseu = ' we are done, so assumé = u. Let o be the
substitution witho(z) = 0 for all z € V. Sinces(t) - andt Cwir u we have
o(u) 5, sou = u” for someu”. Now var (u”) C var (u) = var(v') C var(t'). O

Lemma 6. Assume that, for termisu, closed substitution, actiona and integenn:

1.¢ =WIF U,

2. m > |ul;

3. CT(o(u)) C {a™,a*}; and

4. there is a closed terpl such thaw (t) == p’ andCT (p') = {a®*™}.

Then there is a closed tergh such thatr (u) == ¢’ andCT (¢') = {a*"}.

Proof. According to proviso (4) of the lemma, we can distinguish tases.

— There exists some € V such that = ' with ¢’ = ¢’ +x ando(z) == p’ where
CT (p') = {a®™}. Consider the closed substitutiprdefined byp(z) = «™0 and
ply) = 0 foranyy # x. Thena™ € CT (p(t)) = CT (p(u)), using Lem. 4, and
this is only possible it = ' for someu’ = u” 4 z. Henceo (u) == p'.

-t =5 ' with CT (o(t")) = {a®™}. Since|t'| < |t| = |u| < m, clearly, for
any z € var(t'), either|o(z)| = 0 or norm(o(z)) > m, wherenorm(p) denotes
the length of the shortest completed tracepofSincet =wir u, by Lem. 5,
u= - ' with var (v') C var (). Hence, for any: € var (u'), either|o(z)| =0 or
norm(o(x)) > m. Sincelu’| < m, a™ ¢ CT (o(u)). It follows fromCT (o (u)) C
{a™, a®"} thatCT (o(u')) = {a*™}. Andu =5 o' implieso(u) =5 o(u’). O
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Lemma 7. Assume that, foE’ an axiomatization sound fdfwr, closed term9, ¢,
closed substitution, actiona and integenn:

1. EFp=~yg;

2. m>max{|u| |t = u € E};

3. CT(q) C {a™,a*"}; and

4. there is a closed terpf such thap =5 p’ andC7 (p') = {a®™}.

Then there is a closed tergi such thayy == ¢’ andC7 (¢') = {a*™}.
Proof. By induction on the derivation af’ - p ~ q.

— Supposer + p ~ g becauser(t) = p ando(u) = ¢ for somet ~ v € E or
u ~ t € F and closed substitution. The claim then follows by Lem. 6.

— Supposell + p =~ g becausel + p =~ randE + r ~ ¢ for somer. Since
r =wrr ¢, by proviso (3) of the lemma and Lem. @7 (r) C {a™, a*™}. Since
there is @’ such thap =5 p’ with CT (p') = {a®™}, by induction, there is anf
such that =5 " andC7 (') = {a*™}. Hence, again by induction, there ig'a
such thay =5 ¢ andC7 (¢') = {a®*™}.

— Supposer - p ~ g because = p; + p2 andg = ¢1 + g2 with E - p; =~ ¢; and
E I py ~ go. Since there is @' such thap =5 p’ andC7 (p') = {a®™}, either
p1 == p' orpy =5 p'. Assume, without loss of generality, that == p’. By
induction, there is @ such thaty; == ¢’ andC7 (¢') = {a*™}. Nowq =5 ¢'.

— Supposer - p ~ g becaus® = c¢p; andg = c¢q; withc e AandE F p; = ¢;. In
this case, proviso (4) of the lemma can not be met.

— Supposél + p ~ ¢ because = tp; andg = 7¢q; with E'  p; =~ ¢;. By proviso
(4) of the lemma, eithe€7 (p;) = {a®>™} or there is @’ such thap; == p’ and
CT(p') = {a®™}. In the first caseg = ¢, andC7 (¢1) = {a®>™} by Lem. 4. In
the second, by induction, there is/asuch thaiy; == ¢’ andC7(¢') = {a*™}.
Againg =5 ¢. O

Theorem 7. There is no finite, sound, ground-complete axiomatizatoBICCS(A)
modulo=w1r.

Proof. Let FE be a finite axiomatization ovédBCCS(A) that is sound moduley k.
Let m be greater than the depth of any terminClearly, there is no term such that
7(@™0 + a*"0) =5 r andC7(r) = {a*™}. So according to Lem. 7, the closed
equationra®>m0 + 7(a™0 + a®>™0) ~ 7(a™0 + a*™0) cannot be derived fronk.
Nevertheless, it is valid modulawr. O

In the same way as above, one can establish the nondettyaifiihe equations
a* 10 + a(a™0 + a®>™0) =~ a(a™0 + a®™0) from any given finite equational
axiomatization sound faewr. As these equations are valid modulo (strong) 2-nested
simulation equivalence, this negative result appliesitB@LCS-congruences that are at
least as fine as weak impossible futures equivalence andsitds coarse as strong 2-
nested simulation equivalence. Note that the correspgndsult of [1] can be inferred.
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