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Abstract. We provide a finite basis for the (in)equational theory of phecess
algebra BCCS modulo the weak failures preorder and equigaléNe also give
positive and negative results regarding the axiomatizghif BCCS modulo
weak impossible futures semantics.

1 Introduction

Labeled transition systems constitute a widely used madebiecurrent computation.
They model processes by explicitly describing their stated their transitions from
state to state, together with the actions that produce tiassitions. Several notions
of behavioral semantics have been proposed, with the aiatetatify those states that
afford the same observatiorls 4] 12]. For equational r@agoabout processes, one
needs to find an axiomatization that is sound gralind-completenodulo the seman-
tics under consideration, meaning that all equivalenteddlderms can be equated. Ide-
ally, such an axiomatization is alsscompletemeaning that all equivaleopenterms
can be equated. If such a finite axiomatization exists, iid that there is &éinite basis
for the equational theory.

For concrete semantics, so in the absence of the silentactithe existence of
finite bases is well-studied [116,114, 7], in the context of fiecess algebra BCCSP,
containing the basic process algebraic operators from @@&£8&P. However, for weak
semantics, that take into account théardly anything is known on finite bases.[In{[12],
Van Glabbeek presented a spectrum of weak semantics. Feratef the semantics
in this spectrum, a sound and ground-complete axiomatizdtas been given, in the
setting of the process algebra BCCS (BCCSP extended, lsge, e.g.[113]. But a finite
basis has been given only fareak delay, »- and branching bisimulatiorsemantics
[18,[11], and in case of an infinite alphabet of actions alsavieak impossible futures
semanticd[22]. The reason for this lack of results on firéteds, apart from the inherent
difficulties arising with weak semantics, may be that it isall/ not so straightforward

* This work is partially supported by the Dutch Bsik projectIBKS.
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to define a notion of unique normal form fopenterms in aveaksemantics. Here we
will employ a saturation technique, in which normal forms saturated with subterms.

In this paper, we focus on two closely related weak semaitased on failures and
impossible futures. Aveak failureconsists of a trace; - - - a,, and a set4, both of con-
crete actions. A state exhibits this weak failure pair ifah@erform the trace; - - - a,,
(possibly intertwined with-'s) to a state that cannot perform any actiotlieven after
performing7’s). In aweak impossible futured can be a set of traces. Weak failures
semantics plays an essential role for the process algel?g¥}S-or convergent pro-
cesses, it coincides with testing semantid$§ [8, 19], and ihthe coarsest congruence
for the CCS parallel composition that respects deadlockWieh Weak impossible fu-
tures semantic$121] is a natural variant of possible fieggemantic< [20]. Ir [15] it is
shown that weak impossible futures semantics, with an mdditroot condition, is the
coarsest congruence containing weak bisimilarity withliekaivergence that respects
deadlock/livelock traces (or fair testing, or any livenpssperty under a global fairness
assumption) and assigns unique solutions to recursiveiegaa

The heart of our paper is a finite basis for the inequatioresdhof BCCS modulo
the weak failurepreorder. The axiomatization consists of the standard axioms Alr4 fo
bisimulation, three extra axioms WF1-3 for failures serntand in case of a finite
alphabet4, an extra axiom WEg. The proof that A1-4 and WF1-3 are a finite basis in
case of an infinite alphabet is a sub-proof of the proof thalAWF1-3 and WE are
a finite basis in case of a finite alphabet. Our proof has theesgeneral structure as
the beautiful proof for testing equivalences givenlih [8Yidarther developed ir117].
Pivotal to this is the construction of “saturated” sets dfats within a term[[B]. Since
here we want to obtain an-completeness result, we extend this notion to variables.
Moreover, to deal withu-completeness, we adopt the same general proof structure as
in the strong case]9]. In this sense, our proof strategy eavidwed as a combination
of the strategies proposed inl [8] arid [9]. Furthermore, walyapn algorithm from
[2LI10]6)] to obtain a finite basis for BCCS modulo weak faigquivalencdor free.

At the end, we investigate the equational theory of BCCS rwdeak impossible
futures semantics. This shows a remarkable differencewetik failures semantics, in
spite of the strong similarity between the definitions ofstheemantics (and between
their ground-complete axiomatizations). As said, in cdssndnfinite alphabet, BCCS
modulo the weak impossible futures preorder has a finiteslf2&]. However, we show
that in case of a finite alphabet, such a finite basis does Iigit &4oreover, in case of
weak impossible futuresquivalencethere is no finite ground-complete axiomatization,
regardless of the cardinality of the alphabet.

Afinite basis for the equational theory of BCCSP modulo (eete) failures seman-
tics was given in[[B]. The equational theory of BCCSP modulan¢rete) impossible
futures semantics is studied A [4]. It is interesting to 8&# our results for weak se-
mantics agree with their concrete counterparts, with venjlar proofs. This raises a
challenging open question: can one establish a generaiaimeio link the axiomatiz-
ability (or nonaxiomatizability) of concrete and weak setizs?

An extended abstract of this paper appearslas [5].
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2 Preliminaries

BCCS(A) is a basic process algebra for expressing finite processioeHés signature
consists of the constant the binary operatar+ _, and unary prefix operators and
a-, whereaq is taken from a nonempty set of visible actions, called thalphabet
ranged over by, b, c. We assume that ¢ A and writeA, for AU {7}, ranged over by
a, (.

tu=0at|7t|t+t]|x

ClosedBCCS(A) terms, ranged over by, ¢, represent finite process behaviors, where
0 does not exhibit any behaviar;+ ¢ offers a choice between the behaviorpaidg,
andap executes action to transform intg. This intuition is captured by the transition
rules below. They give rise td .-labeled transitions between closed BCCS terms.

@ @
r— T y—y

ar S x r+ySa r+y Sy

We assume a countably infinite détof variables;z, y, z denote elements df. Open
BCCS terms, denoted by u, v, w, may contain variables froriy. Write var(t) for
the set of variables occurring in The operational semantics is extended verbatim to
open terms; variables generate no transition. We write « if there is a sequence of
r-transitionst = - - - 5 u; furthermoret = denotes that there is a terawith ¢ = «,
and likewiset =% denotes that there are a terms with t = u - v.

The depthof a termt¢, denoted byj¢|, is the length of thdongesttrace of¢, not
countingr-transitions. It is defined inductively as follows] = |z| = 0; |at| = 1+ |¢];
|7t| = [t]; [t + ul = max{[¢], [ul},

A (closed) substitution, ranged over byp, maps variables iy to (closed) terms.
For open termg andu, and a preord€eE (or equivalences) on closed terms, we define
t Cu(ort =u)if o(t) C o(u) (resp.o(t) = o(u)) for all closed substitutions.
Clearly,t % t' implies thato(t) % o (') for all substitutionsr.

An axiomatizatioris a collection of equations~ u or of inequationg < u. The
(in)equations in an axiomatizatiall are referred to aaxioms If £ is an equational
axiomatization, we writd? - ¢ ~ v if the equatiornt ~ « is derivable from the axioms
in E using the rules of equational logic (reflexivity, symmetrgnsitivity, substitution,
and closure under BCCS contexts). For the derivation of aquationt < « from an
inequational axiomatizatiof, denoted by¥ I ¢ < u, the rule for symmetry is omitted.
We will also allow equations = « in inequational axiomatizations, as an abbreviation
oftxunu<t.

An axiomatizationFE is soundmodulo a preordeC (or equivalences) if for all
termst, u, fromE Ft < u (or B+ t = w) it follows thatt C u (ort = u). E isground-
completefor C (or=) if p C g (orp = q) impliesE - p < g (or E + p = q) for all
closed termg, ¢. Moreover,E is w-completef for all termst, u with E F o (t) < o(u)
(orE F o(t) = o(u)) for all closed substitutions, we haveF -t < u (or E F ¢ = w).
When E is w-complete as well as ground-complete, ic@mpletefor C (or =) in the
sense that C w (ort = w) impliesE -t < u (or E + t =~ u) for all termst, u.
The equational theory of BCCS modulo a preor@efor equivalence=) is said to
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be finitely basedf there exists a finitew-complete axiomatization that is sound and
ground-complete for BCCS modulo (or =).

Al-4 below are the core axioms for BCCS modulo bisimulatemantics. We write
t=uifAl-4 +t =~ u.

Al r+y =~ y+zx

A2 (z4y)+z & z+(y+2)
A3 r+r X x

A4 z+0 =~ z

Summation ;. (; ,; t; denotes; + - - - + ¢, where summation over the empty set
denoted). As binding convention,+ _ and summation bind weaker than. For every
term¢ there exists a finite sdl;t; | i € I} of terms and a finite sét of variables
such that = Ziel a;t; + Zyey y. Thea;t; for i € I and they € Y are called the
summandsf ¢. For a set of variable¥, we will often denote the ter@yey ybyY.

Definition 1 (Initial actions). For any terny, the setZ(¢) of initial actions is defined
asI(t) ={ac A|t=>5)

Definition 2 (Weak failures).
— Apair(ay - - ax, B), with k > 0 andB C A, is aweak failure pairof a procesg,
if there is a pathpy == --- =% = p, with Z(px) N B = 0.
— Write p <wr ¢ if the weak failure pairs of are also weak failure pairs of
— Theweak failures preordeCwr is given by
p Cwr qiff (1) p <wr gand (2)p N |mpI|eS thaty 5.
— Weak failures equivalencewr is defined as&wr N QV‘\}F.

It is well-known thatp <wr ¢ is notaprecongruencéor BCCS: e.g.70 <wr 0 but
70 + a0 Lwr 0 + a0. However,Cwr iS, meaning thap; Cwr g1 andps Cwr ¢o
impliesp; + p2 Ewr g1 + ¢2 andap; Cwr agq; for a € A.. In fact, Cwr is the
coarsest precongruence containegligr. Likewise,=wr is acongruencdor BCCS.

3 A Finite Basis for Weak Failures Semantics

3.1 Axioms for the Weak Failures Preorder

On BCCS processes, the weak failures preorder as definee abmcides with the in-

verse of the must-testing preorderlof [8]. A sound and grecmplete axiomatization
of the must-testing preorder preorder has been givén inn8rms of a language richer
than BCCS. After restriction to BCCS processes, and ravgitsie axioms, it consists
of Al-4 together with the axioms:

N1 ar + ay ~ a(tT + TY)

N2 Tz+y) S z+7Y

N3 ar + 7(ay + 2) = T(ar + ay + 2)
E1l T TT+TY

Here we simplify this axiomatization to Al1-4 and WF1-3 frombI[l. In fact it is an
easy exercise to derive WF1-3 from N1, N2 and E1, and N1, NZEdnfdom WF1-3. It
is a little harder to check that N3 is derivable from the otheee axioms (cf. Lenf]1).
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WF1 ar + ay = a(tx + 1Y)
WF2 r(z4y)s71+y
WEF3 rTT+Y

Table 1. Axiomatization for the weak failures preorder

Theorem 1. A1-4+WF1-3is sound and ground-complete BBCCS(A) moduloCwr.

In this section, we extend this ground-completeness redgtht two w-completeness
results. The first one says, in combination with THéo. 1, éisdbng as our alphabet of
actions is infinite, the axioms A1-4+WF1-3 constitute a ériasis for the inequational
theory of BCC$A4) moduloC .

Theorem 2. If |A|= o0, thenA1-4+WF1-3is w-complete foBCCS(A) moduloC .

To get a finite basis for the inequational theory of BCCS modu in casgA| < oo,
we need to add the following axiom:

WF 4 Zaxa—szaxa—i-y

acA a€A

where ther, for a € A andy are distinct variables.

Theorem 3. If |A] < oo, thenA1-4+WF1-3+WE, is w-complete foBCCS(A) mod-
ulo Cwr.

The rest of this section up to S€C.13.4 is devoted to the prafofheorem§NH3. For a
start, the inequations in TdH. 2 can be derived from A1-4+\V8F1

D1 Tz+y)+z~7(r+Y)

D2 T(re+y)~T0+Yy

D3 az + 7(ay + z) =~ T(ax + ay + 2)

D4 T X TT+Y

D5 Y icr ari = a(d ;o Tx;) for finite nonempty index sets
D6 Tet+y~Tr+T7(r+y)

D7 Te+ry~Tr+T1(r+y)+TY

D8 Te+T(zty+z)=Tet+T(e+y) +7(z+y+2)
D9 YicrTlati i) = Y0, T(at +y;) for finite I, wheret = 5. | 7t;.

Table 2. Derived inequations

Lemma 1. D1-9are derivable fromA1-4+WF1-3

Proof. We shorten “A1-4+WF1-3-"to “I-".

1. By WF3,- x < 7z, and thus- 72 + < 7z. Moreover, by WF2,
Fr(z+z) < 7z + 2, hence- 7z < 7z + x. In summaryt- 7z =~ 7 + x.
Sobr(z+y)=1(zr+y)+ae+tytae~t(r+y) +a
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2. ByWF2,- 7(z + t2) < 7o + 7o = 72, S0 by D1} 772 < 2. Hence, by WF2,
Frite+y) s tre+y <1+ y.
Moreover, by WF3|- 7z + y < 7(7x + v).

3. By WF3,F y < 7y + 72. So by WF1}F ay < a(rx + 1y) = ax + ay. This
impliest 7(ay + z) < 7(ax + ay + z). Hence, by D1} az + 7(ay + 2) <
ax + 7(ax + ay + 2) = 7(ax + ay + 2).

Moreover, by WF2\- 7(ax + ay + 2) < ax + 7(ay + 2).

4, ByWF3and D2k rz X 77z +y =~ 72 + v.
5. By induction onI|, using WF1 and D2.

6. ByD4dandDlF e +y<te+7(z+y)+ty~1e+7(z+y).
Moreover, by WF2- 1z + 7(z +y) S 7o + 72 +y = 7 + .

7. By D4 in one direction; by D6 and D1 in the other.
8. By D4 in one direction; by D6 and D1 in the other.

9. ByDL,- > ., 7(ati +yi) = Y, 7(at; + yi) +u, whereu = >, at;. Thus,
by repeated application of D8, >, _; 7(at; + y;) = > ;c;7(at; +u +y;) =
> icr T(u +y;). By D5 we haveu = at. n

3.2 Normal Forms

The notion of a normal form, which is formulated in the foling two definitions,
will play a key role in the forthcoming proofs. For any detC A U V of actions and
variables letA;, = L N A, the set of actions i, andV;, = L NV, the set of variables
in L.

Definition 3 (Saturated family). SupposeC is a finite family of finite sets of actions
and variables. We sa§ is saturatedf it is nonempty and

— L1, Ly € LimpliesthatL; U L, € £; and
- Ll,LQGEL:andlAVg‘nggléinqmythatL3EE£.

Definition 4 (Normal form).
(i) Atermtisin7 normal form if

t:ZT(Z ata-l—VL)

LeLl a€AL

where thet, are in normal form and’ is a saturated family of sets of actions and
variables. We write.(t) for | J, . L; note thatl(t) € L.

(i) tisin action normal form if
t= Y ate+Vy
a€AL

where the, are in normal form and. C AU V. We write L(¢) for L.

(iii) tisin normal form if it is either inr normal form or in action normal form.
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Note that the definition of a normal form requires that for any A, if t =-% ¢, and
t =5 t,, thent; andt, are syntactically identical.
We prove that every term can be equated to a normal form. \WWensth an example.

Example 1.Suppose = 7(at1 + 7(bta + ct3) + z) + 7(aty + 72 + TY) + 2. Then
t can be equated to anormal form withL = {{a,b,¢,z},{a,z,y}, {a,b,c, z,y, 2},

{a7 b7 C’x7y}7{a7b7 C’%Z}v{avb>$>y}7{a707$>y}7{a7557y>3}7{(17b,x,y:Z}>{a>C7$,y,Z}}-
We give a detailed derivation. By D2,

Ft=7(aty +bte+cts+x)+7(ats +x+y) + 2

By D6,

Ftmr(at; +bta+cts+z)+7(ats+x+y)+7(ats+2+y+2)
Letu, = 7ty + Tt4, up = t2 andu,. = t3. By D9,

Ft=7(aug + bup + cuec + ) + 7(aug +  + y) + 7(aug + .+ y + 2)

By induction,u, can be broughtinto a normal forty, and likewise for;, andu,,. So

Ftm7(tug + bty + cte + ) + 7(ate + 2+ y) + (aty +x+y + 2)
By D7,

Ft~ 7(aty + bty + cte + ) + 7(ate + ¢+ y)
+7(ate +x+y+2)+ 7(aty + bty +cte + x+y + 2)

Finally, by D8,

Fitr1(aty + bty +cte + ) +m(at, + x+y) + 7(aty + 2 +y+ 2)
+7(aty + bty +cte +x +y+ 2) + 7(aty + bty + cte + x+y)
+7(aty + bty + cte + x + 2) + 7(at, + bty + x + y) + 7(aty + cte + .+ y)
+r(aty + bty +x+y+2)+71(aty +cte + x4+ y + 2)
- ZLGC T(ZGGAL ata + VL)

Lemma 2. For any term¢, A1-4+WF1-3F t ~ ¢’ for some normal forn'.
Proof. By induction on|¢|. We distinguish two cases.
-t Lett=>, ;a;it; +Y.ByD5,
Ft~ Z a(z Tti) +Y .
a€Z(t) i€l,ai=a
By induction, for eaclu € Z(t),
Y rtinta
i€l,a;=a

for some normal form,. So we are done.
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- t 5. By D6, ¢ can be brought in the forfv,_; 7¢; with I # (), and using D2 one
can even make sure that-% for i € I. Using the first case in this proof, we obtain,
for eachi € I,

Fi~ Z atai + Vi
a€AL )

for someL(i) C AU V. Thus

Fit~ Z T Z atw + VL(z)

icl a€AL )

Foreachu € Z(t), we define  wo = 3 Tta;.
i€l GEAL(i)

Then|u,| < |¢|. By induction ;- u, = t, for some normal form,,.
DefineL = {L(i) | ¢ € I}. By repeated application of D9 we obtain

thZT ZauaJrVL(i) zZT<Z ataJrVL).
i€l a€AL ) LeL \a€Ag

The latter term has the required form, except that the fafitged not be saturated.

However, it is straightforward to saturafeby application of D7 and D8. a

Lemma 3. Suppose andu are both in normal forms antiCwr u. If t =% ¢,, then
there exists a term, such thatu =% u, andt, <wr uq.

Proof. Suppose¢ Cwr u andt =-5 t,. Let o be the closed substitution given by
o(z) =0forallz € V. As (a,0) is a weak failure pair of(t) andeo (¢t) Cwr o(u), it
is also a weak failure pair af. Thus there exists a term, such that: =% u,. By the
definition of a normal form, this term is unique. *

We now show that, <wr u,. Let p be a closed substitution. Consider a weak
failure pair(a; - - - a, B) of p(t,). Then(aa; - - - ax, B) is a weak failure pair op(t),
and hence also of(u). It suffices to conclude thalu, - - - ax, B) is a weak failure
pair of p(u,). However, we camot conclude this directly, as possibly = = + '
where (aa; - - - ax, B) is a weak failure pair op(z). To ascertain that nevertheless
(a1 ---ag, B) is a weak failure pair op(u,), we define a modificatiop’ of p such
that for all¢ < k and for all termsy, p(v) andp’(v) have the same weak failure pairs
(c1---ce, B), whileforallz € V, (aas - - - ax, B) is not a weak failure pair of’ ().

We obtainp’(z) from p(x) by replacing subtermip at depthk by 0 if b ¢ B and
by bb0 if b € B. Thatis,

p'(x) = chop,(p(x))

with chop,,, for all m > 0 inductively defined by

Chop'rn (O) =0
chop,,,(p + q) = chop,(p) + chop,,(q)
chop,,(tp) = T chop,,(p)

_fo ifbeB
chopo(bp) = {bbo ifbeB

Chop'rrb+1(bp) = b Chop’rn(p)
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We proceed to prove that has the desired properties mentioned above.

A. Forall? < kandcy,...,c, € Aandforall terms, p(v) andp’(v) have the same
weak failure pairgc; - - - ¢, B),
The difference betweep(v) andy’(v) only appears within subterms of depth
that is for termg such thap(v) = 3= ... =%= pfor certainc,, ..., c; € A.
Such a subtermp of p(v) corresponds to a subterph of p’(v)—still satisfying
() =%= ... =% = y'—in which certain subtermky are replaced by if
b ¢ B and bybbO0 if b € B. For such corresponding subtermandp’ we have
I(p)nB = Pifand onlyif Z(p’)N B = 0. From this the claim follows immediately.

B. Forallx € V, (aa; - - - ax, B) is not a weak failure pair g’ ().

To this end we show that for all closed terms:hop,,, (p) does not have any weak
failure pair(co - - - ¢, B) With ¢y, . . ., ¢y, € A. We apply induction omn.

Base caseSince the summands ehop,(p), when skipping over initial--steps,
arebb0 with b € Z(p) N B, chop,(p) does not have a weak failure péiy, B).

Induction step:Let m > 0. By induction, for closed termsg, chop,,_;(q) does

not have weak failure pairg; - - - ¢, B). Since the transitions afhop,, (p) are

chop,,(p) = chop,, 1(q) for p 5 ¢, it follows that chop,, (p) does not have
weak failure pairgco - - - ¢, B).

Now, since(a; - - - ax, B) is a weak failure pair op(t,), by property[[@) it is also a
weak failure pair of’ (¢, ), Thereforgaa; - - - ax, B) is a weak failure pair of’(¢), and
hence also of’(u). Since according to propertiZlB) it iotthe case that = « + o’
with (aa; - - - ay, B) a weak failure pair of/(z), it must be the case that =% u”
such that(a; - - - a, B) is a weak failure pair op’(u"). By (*), v’ = u,. Again by
property [A),(a; - - - a, B) is a weak failure pair op(u, ). O

3.3 w-Completeness Proof

We are now in a position to prove Thdd. 2-¢ompleteness in case of an infinite al-
phabet) and The@] 3.écompleteness in case of a finite alphabet), along with Tleo.
(ground completeness). We will prove these three theorarnaé go. Namely, in the
proof, two cases are distinguished; only in the second &sg¢ € A), in which theA

is guaranteed to be finite, will the axiom \Wmplay a role.

Proof. Lett Cwr u. We need to show that ¢ < «. We apply induction o] + |ul.
By Lem.[3, we can writ¢ andw in normal form.

We first prove thatL(¢t) C L(u). Suppose this is not the case. Then there exists
somea € Ap) \ Arw) Orsomex € Vi) \ Vi . Inthe first case, let be the closed
substitution witho(z) = 0 for all z € V; we find that(a, ) is a weak failure pair of
o(t) but not ofo(u), which contradicts the fact that(t) Cwr o(u). In the second
case, pick somé > max{|t|,|u|}, and consider the closed substitutiofr) = a0
ando(z) = 0 for z # z. Then(a?, 0)) is weak failure pair ofr(¢). However, it camot
be a weak failure pair of (u), again contradicting (¢) Cwr o(u).

We distinguish two cases, depending on wheff{@¢j = A or not.



10

Taolue Chen, Wan Fokkink & Rob van Glabbeek

1. Z(t) # A. We distinguish three cases. Due to the condition thatimpliesu —,
it cannot be the case thais an action normal form and a~ normal form.

(a) t andw are both action normal forms. So= ZaeAL at, + Vrp andu =

(b)

(€)

Y acA, W+ Var. We show thatl(t) = L(u). Namely, pickb € A\ A, and
let o be the closed substitution with(z) = 0 for anyz € V;, ando(z) = b0
for z ¢ V. As (e, A\ Z(t)) is a weak failure pair of, and hence of;, it must
be thatL(u) C L(t). Together withL(¢t) C L(u) this givesL(t) = L(u). By
Lem.[d, for eachu € Z(t), t, <wr uq, and thus clearly, Cwr Tu,. By
induction,* t, < Tu, and henceé- at, < au,. It follows that

FHit= Z at, + Vi < Z aug + Vg = Z aug +Vy =u

ac€Ar a€cAyp, a€An

Botht andu arer normal forms:

t=>_7( Y ata+Vy)

LelL a€Ap

U= Z T(Z avg + Var)

MeM a€Am

and

By Lem.[3, for eachu € Z(t), t, <wF ua, and thus clearly, Cwr Tu,. By
induction,l- ¢, < Tu,. By these inequalities, together with D4,

I—t—sZT(Z aug + V) +u 1)

LeLl a€AL

We now show that C M. Take anyL € £, pickb € A\ Ay, and consider
the closed substitution(z) = 0 for anyz € V,, ando(z) = b0 for z & V..
Sinceo(t) = o(>,c; ate) ando(t) Cwr o(u), there exists an/ € M with
Ay C Ap andVy, C Vi, Since alsd C L(t) € L(u), and M is saturated,
it follows thatL € M. Hence L C M.

Sincel C M,
ZT(Z aug + Vo) +u=u (2)

LeLl a€Ar

By @) and @)} t < u.

t is an action normal form and is a7 normal form. Thenrt Cywr u. Note
thatrt is ar normal form, so according to the previous case,

Frt<u

By WF3,
Fitttxu
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2. I(t) = A. Note that in this caséA| < co. So, according to Thefl 3, axiom WF
is at our disposal. As before, we distinguish three cases.

(a) Botht andu are action normal forms. Sinck(t) C L(u) we havet =
Yogcatta+Wandu =3, au, + X with W C X. By WFy4,

- Zata < ZataJru
acA acA
By Lem.[3, for eachu € A, t, <wr uq, and thus clearly, Cwr Tus. By
induction,t- ¢, < Tu,. It follows, usingiv C X, that

Ft:Zata+W<Zaua+u+W:u
acA acA

(b) Botht andwu areT normal forms.

t=>_7(Y_ ata+Vy)

Lel a€Ap

u = Z T( Z auaJrVM)

MeM a€Aym
By D1 and WF; (clearly, in this casel ) = A),

and

Ftat4 Y ata<t+ Y atatu (3)
acA ac€A

By Lem.[3, for eachu € A, t, <wr uq, and thus clearly, Cwr Tus. By
induction - ¢, < Tu,. By these inequalities, together wiff (3),

Fit< ZT(Z auaJrVL)JrZauaJru

LeL a€ApL acA
So by D1,
H<ZT(Z aug + Vi) +u (4)
LeL a€cAp

Now for L € £ with A, # A we havelL € M using the same reasoning as
in 1(b). ForL € £ with Ap, = Awe haveVy C Vi) C V). By WF4 we
have

I—T(Z aug + Vi) 47(2 atg + Vi(u)) (5)
a€Ar acA

As the latter is a summand afwe obtaint < u.

(c) tis an action normal form andis a~ normal form. This can be dealt with as
in case 1(c).

This completes the proof. a
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3.4 Weak Failures Equivalence

In [2L[10] an algorithm is presented which takes as input ad@und ground-complete
inequational axiomatizatiow for BCCSP modulo a preord€r which includes the
ready simulation preordeand isinitials preservingﬂ and generates as output an equa-
tional axiomatizationA(E) which is sound and ground-complete for BCCSP modulo
the corresponding equivalence—its kernigln C~1. Moreover, if the original axiom-
atizationF is w-complete, so is the resulting axiomatization. The axioratiopn A(E)
generated by the algorithm frofd contains the axioms A1-4 for bisimulation equiva-
lence and the axiom8(ax + 2) + flax + ay + 2) ~ B(ax + ay + z) fora, B € A,

that are valid in ready simulation semantics, together wiehfollowing equations, for
each inequational axiom< « in E:

—t+u~wu;and
- a(t+x)+a(u+z) = a(u+ z) (for eacha € A,, and some variable that does
not occur int + u).

Moreover, if E contains an equation (formally abbreviating two inequa)othis equa-
tion is logically equivalent to the four equations#(E) that are derived from it, and
hence can be incorporated in the equational axiomatizatiomodified.

Recently, we lifted this result to weak semantics [6], whichkes the aforemen-
tioned algorithm applicable to all 87 preorders surveyel®] that are at least as
coarse as the ready simulation preorder. Namely, amongstive show that

Theorem 4. Let C be a weak initials preserving precongrueﬂdeat contains the
strong ready simulation preordeErg and satisfies T2 (the secondlaw of CCS:
Tx =~ Tx + x), and letE be a sound and ground-complete axiomatizationoffhen
A(FE) is a sound and ground-complete axiomatization of the keshel. Moreover, if
E isw-complete, then so id(E).

It is straightforward to check that weak failures meets thergquisites of Thedl4,
and thus we can run the algorithm and obtain the axiomatizati Tab.[B for weak

failures equivalence. After simplification and omissiomedundant axioms, we obtain
the axiomatization in Tall 4.

Lemma 4. The axioms iMfab.[3are derivable from the axioms ifab.[4together with
Al-4.

Proof. WF1 is unmodified. WF2 and WF3 can be trivially derived from WFE2.
WEF ¢ is derivable using A3.

To proceed, we have that WFE2r7z ~ T2 (namely by substitutingz for y and
invoking D1, which is also derivable from WFE2) and hence 84~E2+ D2 (namely
by substitutingrz for = in WFE2 and invoking D1); using D2, the instances of WF2

! meaning thap C ¢ implies thatI (p) C I(q), where the sef(p) of stronglyinitial actions is
I(p) ={a € A; [p =}
meaning thap C ¢ implies thatZ, (p) C Z-(q), where the sef, (p) of weakinitial actions is
Ir(p) = {a € A- | p =5}

2
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WF1 ar +ay =~ a(tx + TY)
WF2* Te+y) +rz+y~Tr+y

WF2 a(tfz+y)+2)+atz+y+z)~alte+y+2)
WF3* r+Trt+yxTr+yY

WF3 alz+z2)taltz+y+z2)~alte+y+2)
RS Blax + z) + Blax + ay + 2z) = B(ax + ay + 2)
WF ,* Y acaTa + D, ca0Ta +Y R, 00T+ Y

WFAb B(EaeA aze + z) + ﬁ(EaeA ate +y+2) & ﬁ(EaeA ate +y + 2)

Table 3. Axiomatization generated by the algorithm

WF1 ar +ay =~ a(tx + TY)
WFE2 T@+y) +rrRTT 4y
WFE3 ax + 7(ay + z) = 7(ax + ay + 2)

WFE4 T(ZaeA atq + z) + T(ZaeA are +y+2)~ T(ZaeA atqe +y+ 2)

Table 4. Axiomatization for weak failures equivalence

and WF3 with o = 7, as well as the instance of RS with= o = 7, are derivable
from WFE2.
The instances of WE2and WF3 with o« # 7, are derivable from WF1 and the
instances withv = 7; the same holds for the instances of RS and y\MFith 3 # 7.
Finally in the remaining instances of RS (with= 7 anda = a € A), we have
WFE2+: 7(azx + 2) + 7(ax + ay + z) =~ 7(axz + 2) + ay, and thus they can be derived
from WFE3. The instance of W[ with 3 = 7 is exactly WFE;. a

The axioms WF1, WFE2-3 already appeared.in [13]. A1l-4+WFEB2&3 is sound
and ground-complete for BCCS moduigyr (see alsd[1316]). By Thell 2 and ThEb. 3
(together with Lem4), we have:

Corollary 1. If |A| = oo, then the axiomatizatioA1-4+WF1+WFE2-3s w-complete
for BCCS(A) modulo=wr.

Corollary 2. If |A| < oo, then the axiomatizatioAl-4+WF1+WFE2-3+WFE is w-
complete foBCCS(A) modulo=wr.

4 Weak Impossible Futures Semantics

Weak impossible futureemantics is closely related to weak failures semantick, On
instead of the set of actions in the second argument of a vealake pair (see Defl2),
an impossible future pair contains a setraices

Definition 5 (Weak impossible futures).

— Asequence; ---a; € A*, with k > 0, is atraceof a proces9 if there is a path
po =>B= ... =%= p,itis acompleted tracef p if moreoverZ(p;) = (. Let
7 (p) denote the set of traces of procesandC7 (p) its set of completed traces.
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— A pair (ay - --ax, B), with &£ > 0 andB C A*, is aweak impossible futuref a
procesgy if there is a pathpy == - - == p, with T (px) N B = 0.

— Theweak impossible futures preorderyr is given byp Cwir ¢ iff (1) the weak
impossible futures gf are also weak impossible futures©f2) 7 (p) = 7 (¢) and
(3) p = implies thaty .

— Weak impossible futures equivalereg r is defined aswir N ;V‘\}IF.

Cwir IS a precongruence, asskyp a congruence, for BCCS522]. The requirement (2)
T (p) = 7 (q) is necessary for this precongruence property. Without itweald have
7a0 C 760 + b0 bute(7a0) Z ¢(1a0 + b0).

A sound and ground-complete axiomatization fogr is obtained by replacing
axiom WF3 in Tab[lL by the following axiom (cf_IR2], where égsitly more compli-
cated, but equivalent, axiomatization is given):

WIF3 z < 7z

However, surprisingly, there is no finite sound and grouadyglete axiomatization for
=wrir. We will show this in Sed4l1. A similar difference betwebar tmpossible fu-
tures preorder and equivalence in the concrete case (se absence of) was found
earlier in [4]. We note that, since weak impossible futuesaantics is not coarser than
ready simulation semantics, the algorithm frani[2/10, 6§éoerate an axiomatization
for the equivalence from the one for the preorder, does nok wcthis case.

In Sec[ZP we establish that the sound and ground-comptétenatization for
BCCS moduloC wr is w-complete in cas@A| = oo, and in Sed4]3 that there is no
such finite basis for the inequational theory of BCCS modiigr in case/4| < co.
Again, these results correspond to (in)axiomatizabibguits for the impossible futures
preorder in the concrete caé [4], with very similar proofs.

4.1 Nonexistence of an Axiomatization for Equivalence
We now prove that for any (nonemptyt)there doesiot exist any finite, sound, ground-
complete axiomatization faBCCS(A) modulo=ywr. The cornerstone for this nega-
tive result is the following infinite family of closed equattis, form > 0:

7a*™0 + 7(a™0 + a*™0) ~ 7(a™0 + a*™0)
It is not hard to see that they are sound moduigr. We start with a few lemmas.

Lemma 5. If p Cwir ¢ thenC7 (p) C CT (q).

Proof. A procesgp has a completed traeg - - - ay, iff it has a weak impossible future
(ay---ag, A). O

Lemma 6. Supposé Cwir u. Then for anyt’ with t =5 ¢’ there is some:’ with
u =" ' such thawar (u') C var(t').
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Proof. Lett = t. Fix somem > |t|, and consider the closed substitutiodefined
by p(x) = 0if z € var(t') andp(z) = a™0 if © & var(t'). Sincep(t) = p(t')
with [p(t")| = |t/| < m, andp(t) Cwir p(u), clearly p(u) = ¢ for someq with
|g] < m. From the definition of it then follows that there must exist = ' with
var(u') C var(t'). In caseu = «’ we are done, so assumé = u. Let o be the
substitution witho(z) = 0 for all z € V. Sinces(t) = andt Cwir u we have
o(u) 5, sou = u” for someu”. Now var (u”) C var (u) = var(v') C var(t'). O

Lemma 7. Assume that, for termsu, closed substitution, actiona and integenn:
1. t =wrr u;

2. m > |ul;

3. CT(o(u)) C {a™,a®*m}; and

4. there is a closed terpl such thawr(t) == p’ andCT (p') = {a®*™}.

Then there is a closed tergi such thar (u) == ¢ andCT (¢') = {a*™}.
Proof. According to proviso (4) of the lemma, we can distinguish tages.

— There exists some € V such that = ' with ¢’ = ¢ +x ando(z) = p’ where
CT(p') = {a®™}. Consider the closed substitutiprdefined byp(z) = a™0 and
p(y) = 0 for anyy # x. Thena™ € CT(p(t)) = CT (p(u)), using Lem[b, and
this is only possible ifs = v/ for someu’ = v” + 2. Henceo (u) =5 p'.

-t =5 ' with CT (o(t")) = {a®™}. Since|t'| < |t| = |u| < m, clearly, for
anyz € var(t'), either|o(z)| = 0 or norm(o(x)) > m, wherenorm(p) denotes
the length of the shortest completed tracepofSincet =wr u, by Lem.[®,
u= % v’ with var (u') C var(t'). Hence, for any € var (u'), either|o(x)| =0 or
norm(c(x)) > m. Sincelu'| < m, a™ ¢ CT (o(u)). It follows from CT (o (u)) C
{a™, a®"} thatCT (o(u')) = {a*™}. Andu =5 o' implieso(u) =5 o(u’). O

Lemma 8. Assume that, foE’ an axiomatization sound fdEwr, closed term9, ¢,
closed substitution, actiona and integenn:

1. EFp=g;

2. m > max{|u| |t =u € E};

3. CT(q) C {a™,a*"}; and

4. there is a closed terpl such thatp == p’ andC7 (p') = {a*™}.
Then there is a closed tergi such thayy = ¢’ andC7 (¢') = {a*™}.

Proof. By induction on the derivation ab’ - p ~ q.

— SupposeF + p ~ ¢ becauser(t) = p ando(u) = ¢ for somet ~ u € E or
u ~ t € FE and closed substitution. The claim then follows by Lenfl] 7.

— Supposel’ + p =~ g becausel + p =~ randE + r =~ ¢ for somer. Since
r =wrr ¢, by proviso (3) of the lemma and Lefd. 87 (r) C {a™, a*™}. Since
there is @' such thap =5 p’ with CT (p') = {a*™}, by induction, there is arf
such that =5 ¢/ andC7 (') = {a®>™}. Hence, again by induction, there ig/a
such thay == ¢’ andC7 (¢') = {a®>™}.
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— Supposer - p ~ g because = p; + ps andg = q1 + g2 With £+ p; =~ ¢; and
E F py ~ ¢. Since there is @ such thap =5 p’ andCT (p’) = {a®™}, either
p1 = p’ orpy = p'. Assume, without loss of generality, that == p’. By
induction, there is @ such that; = ¢’ andC7 (¢') = {a*™}. Nowq =5 ¢'.

— Supposer - p ~ g because = c¢p; andg = cq; withc e AandE F p; = ¢;. In
this case, proviso (4) of the lemma can not be met.

— Supposél + p =~ ¢ because = tp; andg = 7¢q; with E' + p; =~ ¢;. By proviso
(4) of the lemma, eithe€7 (p;) = {a®>™} or there is @’ such thap; =" p’ and
CT(p") = {a®™}. In the first caseg = ¢; andC7 (¢1) = {a®>™} by Lem.[B. In
the second, by induction, there ig/asuch thaly; =" ¢’ andC7 (¢') = {a*"}.
Againg =5 ¢. O

Theorem 5. There is no finite, sound, ground-complete axiomatizatoBICCS(A)
modulo=wip.

Proof. Let E be a finite axiomatization ovdBCCS(A) that is sound moduleyr.
Let m be greater than the depth of any terminClearly, there is no term such that
7(a™0 + a®>"0) =5 r andC7(r) = {a*}. So according to Lenf]8, the closed
equationra?m0 + 7(a™0 + a®>™0) ~ 7(a™0 + a*™0) cannot be derived fronk.
Nevertheless, it is valid modulawr. ad

In the same way as above, one can establish the nondettyaifiihe equations
a®™*10 + a(a™0 + a®™0) =~ a(a™0 + a*™0) from any given finite equational
axiomatization sound faewr. As these equations are valid modulo (strong) 2-nested
simulation equivalence, this negative result appliesitB@LCS-congruences that are at
least as fine as weak impossible futures equivalence andsttds coarse as strong 2-
nested simulation equivalence. Note that the correspgndsult of [1] can be inferred.

4.2 A Finite Basis for Preorder if |A| = oo

In this section, we show that A1-4+WF1-2+WIF3d4scomplete in caspd| = oo. Note
that this result was originally obtained in_|22]. Howeveur g@roof is much simpler.
First, let us note that A1-4+WF1-2+WIF3D1, D2, D5.

Lemma 9. For any closed terms, ¢, if p Cwir ¢, thenA1-4+WF1-2+WIF3- p < q.

Proof. Letp Cwir ¢. We prove- p < ¢ by induction onp| + |¢|. We distinguish two
cases:

— ¢ . Thenp 7 sincep Cwir ¢. SUPPOS® = Y., aip; andq = > ; big;.
Clearly, we hav& (p) = Z(q). By D5, we have

Fpr Z a( Z TPi)

a€Z(p) ai=a,i€l

Fam Y al ) Tgy)

a€Z(p) bj=a,jet

and
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Sincep Cwir ¢, for eacha € Z(p), the following relation holds:

Z i & Z

a;=a,i €] bj=a,jeJ
By induction,
Y ms ¥
a;=a,ie€l bj=a,jcJ
and thus
Fa( Z i) < a Z Tq;)
a;=a,i€l bj=a,jeJ

Summing these up far € Z(p), we obtain that

Fp<gq

q . By D2, we can writey ~ Y, a;p; andg ~ >_je Biq; such that for each
a; = 7 (resp,3; = 1), pi 7 (resp.q; -). Applying D1, for eachi € I with o; = 7,
the summands qf; are also made summandsppfand likewise for. *)

For eachi € I with a; = 7 we havep = p;. Sincep Cwir ¢ and nog; with

B; = T contains ar-summand, eithe? (q) C 7 (p;) or there existg - ¢; such
that7 (¢;) C 7 (p;). Sinceq Z., in either case there exists soec J such that
b;, =T and7 (¢;;) C 7 (p;). It follows that

pi Ewir pi + gy,
Sincep; % andg;, -, by the previous case,

Fpi < pit+qj,

Hence by WF2,
Frpi < T(pi + ¢5) < pi + TG
and thus
o= T+ >, Y apis Y i+Tg)+ >, Y
Q=T a€Z(p) ai=a,i€l Q=T a€Z(p) ai=a,i€l
By (%),
IR DD DR LD DD DI
;=T a€Z(p) ai=a,ic€l a€Z( )ozL_aZEI

Sincep Cwir ¢, Z(p) = Z(q). Using (*), it is easy to see that for eaete Z(p),
Z ap; Ewir Z aq;
a;=a,i€l Bij=a,j€J
So by the previous case,

FOY aps Y. ag

a;=a,i€l ﬁj:a,jGJ
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It follows that

Fps D Tg > > api< > T+ Y, > ag

=T a€Z(p) cy=a,i€l Q=T a€Z(p) Bj=a.j€J
By WIF3,
YTt >, ) agi<g
=T a€Z(p) Bj=a,j€J
Hence Fp<gq .

With this ground-completeness result at hand, it is stitédgward to apply thenverted
substitutiontechnique of Groote [16] to derive:

Theorem 6. If |A| = oo, thenA1-4+WF1-2+WIF3is w-complete foBCCS(A) mod-
ulo Cwir.

Proof. Given an inequational axiomatizatidii and open termsg, « such thatF +
o(t) < o(u) for all closed substitutions, the technique of inverted substitutions is
a method to prové + ¢ < u. It does so by means of a closed substituticgncoding
open terms into closed terms, and an decoding oper&tithat turns closed terms back
into open terms. By assumption we haWe- p(t) < p(u). The pair(p, R) should be
chosen in such a way that, in essence, applying all terms occurring in a proof of
p(t) < p(u) yields a proof oft < u. As observed in[[16], this technique is applicable
when three conditions are met, one of which being R@i(t)) = t andR(p(u)) = u.

In fact, [16] dealt with equational logic only, but the vergnse reasoning applies to
inequational logicll4].

Here we use the same pdjy, R) that was used by Groote to obtain most of the
applications of the technique in16]—it could be called tlegault(inverted) substitu-
tion. It is obtained by selecting for each variable V an actioms, € A, not occurring
in ¢ or u. This is possible becausgd| = co. Now the default substitutiop is given
by p(z) = a,0 and the default inverted substitutidhreplaces any maximal subterm
of the forma,p into the variabler. Groote showed that with this particular (inverted)
substitution, 2 out of his 3 conditions are always met, aedhird one simply says that
for each axiomi < « in E we should have thab - R(t) < R(u). This condition
is clearly met for the axioms A1-4+WF1-2+WIF3, and hencs thiiomatization iss-
complete. a

Note that we could have used the same method to obtain Thbot Aot Theo[13.

4.3 Nonexistence of a Finite Basis for Preorder ifA| < oo

1 < |A| < oco. We prove that the inequational theoryBECS(A) modulo Ty
doesnot have a finite basis in case of a finite alphabet with at leasteiements. The
cornerstone for this negative result is the following irtériamily of inequations, for
m > 0:

T(a"x) + Py < Py
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with

D, = 1@+ )+ Z T(a™x + a™b0)

beA

It is not hard to see that these inequations are sound madge. Namely, given a
closed substitutiop, we haveZ (p(r(a™z))) C 7 (p(P,)) andp(P,,) . To argue
thatp(r(a™z) + D,,) andp(P,,) have the same impossible futures, we only need to
consider the transitiop(r(a™z) + ®,,) — a™p(x) (all other cases being trivial). If
p(x) = 0, thenp(®,,) = a™0 + 0 generates the same impossible futuees3). If, on
the other handy € Z(p(z)) for someb € A, then7 (a™p(z) + a™b0) = T (a™p(x)),
S0p(P) = a™p(z) + a™b0 generates the same impossible futuees3).

We have already defined the traces and completed traces s#dcterms. Now
we extend these definitions to open terms by allowing (cotag)etraces of the form
a1 ---apx € A*V. We do this by treating each variable occurremda a term as if it
were a subternz0 with = a visible action, and then apply DEF. 5. Under this convemtio
CT (D) = {a™z,z,a™b | be A}. We write Ty, (t) for the set of traces dfthat end in
a variable, and4 (t) for ones that end in an action.

Observation 1. Letm > |t| ora,, € V.Thena; - - - a,, € T(o(t)) iffthereisak < m
andy € V suchthatu; - - - agy € Ty (t) andagy1 -+ - am € 7 (0(y)).

Lemma 10. If |A| > 1 and¢ Cywir wthenT4(t) = Ta(u) and 7y () = Ty (u).

Proof. Leto be the closed substitution defineddir)=0 for allz€ V. Thent Cwir u
implieso(t) Ewir o(u) and hencd 4 (t) = T (a(t)) = T (o(u)) = Ta(u) by Def.[B.

For the second statement fix distinct actiang € A and an injection-": V. —
Z~o (which exists becaus¥ is countable). Lein = |u| + 1 = [¢| + 1. Define the
closed substitutiop by p(z) = a"*"™b0 for all z € V. Again, by Def[bt Cwir u
implies 7 (p(t)) = 7 (p(u)). By Obs[1, for all terms we havea; - --ary € Ty (v)
iff ay---ara¥"™b € T (p(v)) with k < m. HenceTy (v) is completely determined by
7 (p(v)) and thusTy (t) = Ty (u). O

Lemma 11. Let |A| > 1. Supposeé Cwir u andt = t'. Then there is a term/
such thatu == «' and Ty (u') C Ty (t').

Proof. Define p exactly as in the previous proof. Singét) = p(t') andt Cwir u
there must be a’ with p(u) = g and7(q) C T (p(t')). Sincep(z) is T-free for

x € V it must be thay = p(u’) for some termu” with « = «’. Given the relationship
betweerZy (v) and7 (p(v)) for termsv observed in the previous proof, it follows that
Ty (u') C Ty (t'). In caseu = u’ we are done, so assumé = u. Let o be the
substitution witho(z) = 0 for all z € V. Sinces(t) = andt Cwir u we have
o(u) =, sou = u” for someu”. Now Ty (v”) C Ty (u) = Ty (u') C Ty (t'). O

Lemma 12. Let|A| > 1. Assume that, for some terms:, substitutiors, actiona and
integerm:

1.t Cwir u;
2. m > |u|;and
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3. o(t) =5 t for a term¢ without tracesuz for z € V or a™b for b € A.
Theno(u) = @ for a terma without tracesux for z € V or a™b for b € A.

Proof. Based on proviso (3) there are two cases to consider.

— y € Ty (t) for somey € V ando(y) = £. In that case € Ty (u) by Lem[ID, so
o(u) =5t

-t =5 t' for some term’ such thatt = o(t). By Lem.[T1 there is a term’
with v =5 o’ and 7y (v') C Ty (). Taketd = o(u’). Clearlyo(u) == o(u').
Supposer(v’) would have a trace™b. Then, by Obs[11, there is/fa < m and
y € V such that*y € Ty (v') anda™ kb € T (o (y)). SinceTy (u') C Ty (t') we
havea™b € T (o(t")), which is a contradiction. The cagse € 7 (c(u)) is dealt
with in the same way. a

Lemma 13. Let|A| > 1 and letE be an axiomatization sound f@rwr. Assume that,
for some terms, w, actiona and integemn:

1. FFov=xw;

2. m>max{|u| |t < u € E};and

3. v =5 ¢ for a termo without tracesuz for z € V or a™b for b € A.
Thenw =5  for a term without tracesaz for z € V or a™b for b € A.

Proof. By induction on the derivationaf - v < w.

— Suppose - v < w because (t) = v ando(u) = w for somet < v € F and
substitutions. The claim then follows by Leni12.

— Supposeér - v < w becausdy v < v andE + u < w for someu. By induc-
tion, u =5 4 for a termd without traceszz or ™b. Hence, again by induction,
w = 1 for a termid without tracesuz or a™b.

— Suppose& F v 5 w because = v; + v, andw = wy +wy With £ + v1 < wy and
E vy < wsy. Sincev =5 9, eitherv; == 9 or vy =5 4. Assume, without
loss of generality, that; = . By induction,w; = & for a termi without
tracesax or a™b. Now w =— .

— Supposé? - v < w because = cv; andw = cw; withc € AandFE + v ~ ws.
In this case, proviso (3) of the lemma can not be met.

— Supposer F v < w because = 7v; andw = 7wy with £ - v; = w;. Then
eitherv; = 9 orv; =5 0. Inthe first casey, has no tracesz or a™b by Lem [TD
and proviso (3) of the lemma; henaehas no such traces either. In the second case,
by inductionw; =5 b for a termd without tracesiz or a™b. Againw = .

O

Theorem 7. If 1 < |A] < oo, then the inequational theory BfCCS(A) moduloC wig
does not have a finite basis.

Proof. Let E be a finite axiomatization ovdBCCS(A) that is sound modul& v r.
Letm be greater than the depth of any ternfinAccording to Lem[II3, the inequation
T(a™x) + Py < Py, cannot be derived front. Yet it is sound modul@ wir. O
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|A] = 1. We prove that the inequational theory BECS(A) modulo Cywr does
not have a finite basis in case of a singleton alphabet. The csiomer for this negative
result is the following infinite family of inequations, far > 0:

amx _\< amm +x
If |A] = 1, then these inequations are clearly sound modujar. Note that given a
closed substitutiop, 7 (p(x)) C T (p(a™x)).

Lemma 14. If t Cwir uthenTy (t) C Ty (u).

Proof. Fix a € A and an injectiof -7 : V' — Z~(. Letm = |u| 4+ 1. Define the closed
substitutionp by p(z) = a#"™0 for all = € V. By Lem.[8,C7T (p(t)) C CT (p(u)).
Now suppose:; - - -axy € Ty (t). Thenay - --axa™¥ ™ € CT (p(t)) € CT (p(u)) and
k < m. Thisis only possible ifi; - - - apy € Ty (u). O

Lemma 15. Assume that, for terntsu, substitutiors, actiona, variablex, integerm:

1. ¢ Cwir
2. m > |ul;and
3. 2z € Ty(o(u)) anda*z & Ty (o (u)) for 1 < k < m.

Thenz € Ty (o(t)) anda*x & Ty (o(t)) for 1 < k < m.

Proof. Sincez € Ty (o(u)), by Obs[1 there is a variable with y € 7y (u) and
x € Ty (o(y)). Consider the closed substitutiprgiven byp(y) = a™0 andp(z) = 0
for z # y. Thenm > |u| = |t|, andy € Ty (u) impliesa™ € T (p(u)) = 7T (p(t)), SO
by Obs[1 there is some< m andz € V such that*z € Ty (t) anda™* € T (p(2)).
As k < m it must be that = y. Sincea*y € Ty, (¢) andz € Ty (o (y)), Obs[l implies
thata*z € Ty (o(t)). By Lem.[I3,a*x ¢ Ty (o(t)) for 1 < k < m. Hence we obtain
k=0. ad

Lemma 16. Assume that, foE' an axiomatization sound farwr and for terms, w,
actiona, variablex and integemn:

1. FFouv=xw;
2. m>max{|u| |t < u € E}; and
3. 2z € Ty (w) anda*z & Ty (w) for 1 < k < m.

Thenz € 7y (v) andakz ¢ Ty (v) for 1 < k < m.
Proof. By induction on the derivation af - v < w.

— Supposer F v < w becauser(t) = v ando(u) = w for somet < v € E and
substitutions. The claim then follows by Leni15.

— Supposer + v 5 w becausey + v x wandE + u < w for someu. By
induction,z € 7y (u) anda*z ¢ Ty (u) for 1 < k < m. Hence, again by induction,
r € Ty (v) anda*z & Ty (v) for 1 < k < m.
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— Supposer - v < w because = vy + vo andw = wy + wo With £+ v < wy
andE + vy < we. Sincex € Ty (w), eitherz € Ty (wy) or z € Ty (wz). Assume,
without loss of generality, that € 7y (w; ). Sincea*z ¢ Ty (w) for 1 < k < m,
surelya*r ¢ Ty (wy) for 1 < k < m. By induction,> € Ty(v;), and hence
x € Ty (v). Forl < k < m we havea*r ¢ Ty (w) and hence*z ¢ Ty (v), by
Lem.[13.

— Supposé? - v < w because = cv; andw = cw; withc € AandFE + v ~ ws.
In this case, proviso (3) of the lemma can not be met.

— SupposeF + v 5 w because = Tv; andw = Tw; with £ - v; =~ w;. Then,
by proviso (3) of the lemma; € 7y (w1) anda*z & Ty (w) for 1 < k < m. By
induction,z € Ty (v1) anda®z € Ty (v;) for 1 < k < m. Hencez € Ty (v) and
abx & Ty (v) for 1 < k < m. O

Theorem 8. If |A| = 1, then the inequational theory &CCS(A) moduloC w1 does
not have a finite basis.

Proof. Let E be a finite axiomatization ovdBCCS(A) that is sound modul@ ywr.
Letm be greater than the depth of any termfinAccording to Lem[Il6, the inequation
a™z < a™z + x cannot be derived fronk. Yet, since|4| = 1, it is sound modulo
Cwir. O

To conclude this subsection, we have

Theorem 9. If |A] < oo, then the inequational theory BiCCS(A) moduloC v r does
not have a finite basis.

Concluding, in spite of the close resemblance between waidlkvds and weak im-
possible futures semantics, there is a striking differdreteveen their axiomatizability
properties.
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