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Abstract. We provide a finite basis for the (in)equational theory of theprocess
algebra BCCS modulo the weak failures preorder and equivalence. We also give
positive and negative results regarding the axiomatizability of BCCS modulo
weak impossible futures semantics.

1 Introduction

Labeled transition systems constitute a widely used model of concurrent computation.
They model processes by explicitly describing their statesand their transitions from
state to state, together with the actions that produce thesetransitions. Several notions
of behavioral semantics have been proposed, with the aim to identify those states that
afford the same observations [14, 12]. For equational reasoning about processes, one
needs to find an axiomatization that is sound andground-completemodulo the seman-
tics under consideration, meaning that all equivalent closed terms can be equated. Ide-
ally, such an axiomatization is alsoω-complete, meaning that all equivalentopenterms
can be equated. If such a finite axiomatization exists, it is said that there is afinite basis
for the equational theory.

For concrete semantics, so in the absence of the silent action τ , the existence of
finite bases is well-studied [16, 14, 7], in the context of theprocess algebra BCCSP,
containing the basic process algebraic operators from CCS and CSP. However, for weak
semantics, that take into account theτ , hardly anything is known on finite bases. In [12],
Van Glabbeek presented a spectrum of weak semantics. For several of the semantics
in this spectrum, a sound and ground-complete axiomatization has been given, in the
setting of the process algebra BCCS (BCCSP extended byτ ), see, e.g., [13]. But a finite
basis has been given only forweak, delay, η- andbranching bisimulationsemantics
[18, 11], and in case of an infinite alphabet of actions also for weak impossible futures
semantics [22]. The reason for this lack of results on finite bases, apart from the inherent
difficulties arising with weak semantics, may be that it is usually not so straightforward
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to define a notion of unique normal form foropenterms in aweaksemantics. Here we
will employ a saturation technique, in which normal forms are saturated with subterms.

In this paper, we focus on two closely related weak semantics, based on failures and
impossible futures. Aweak failureconsists of a tracea1 · · · an and a setA, both of con-
crete actions. A state exhibits this weak failure pair if it can perform the tracea1 · · · an

(possibly intertwined withτ ’s) to a state that cannot perform any action inA (even after
performingτ ’s). In a weak impossible future, A can be a set of traces. Weak failures
semantics plays an essential role for the process algebra CSP [3]. For convergent pro-
cesses, it coincides with testing semantics [8, 19], and thus is the coarsest congruence
for the CCS parallel composition that respects deadlock behavior. Weak impossible fu-
tures semantics [21] is a natural variant of possible futures semantics [20]. In [15] it is
shown that weak impossible futures semantics, with an additional root condition, is the
coarsest congruence containing weak bisimilarity with explicit divergence that respects
deadlock/livelock traces (or fair testing, or any livenessproperty under a global fairness
assumption) and assigns unique solutions to recursive equations.

The heart of our paper is a finite basis for the inequational theory of BCCS modulo
the weak failurespreorder. The axiomatization consists of the standard axioms A1-4 for
bisimulation, three extra axioms WF1-3 for failures semantics, and in case of a finite
alphabetA, an extra axiom WFA. The proof that A1-4 and WF1-3 are a finite basis in
case of an infinite alphabet is a sub-proof of the proof that A1-4, WF1-3 and WFA are
a finite basis in case of a finite alphabet. Our proof has the same general structure as
the beautiful proof for testing equivalences given in [8] and further developed in [17].
Pivotal to this is the construction of “saturated” sets of actions within a term [8]. Since
here we want to obtain anω-completeness result, we extend this notion to variables.
Moreover, to deal withω-completeness, we adopt the same general proof structure as
in the strong case [9]. In this sense, our proof strategy can be viewed as a combination
of the strategies proposed in [8] and [9]. Furthermore, we apply an algorithm from
[2, 10, 6] to obtain a finite basis for BCCS modulo weak failuresequivalencefor free.

At the end, we investigate the equational theory of BCCS modulo weak impossible
futures semantics. This shows a remarkable difference withweak failures semantics, in
spite of the strong similarity between the definitions of these semantics (and between
their ground-complete axiomatizations). As said, in case of an infinite alphabet, BCCS
modulo the weak impossible futures preorder has a finite basis [22]. However, we show
that in case of a finite alphabet, such a finite basis does not exist. Moreover, in case of
weak impossible futuresequivalence, there is no finite ground-completeaxiomatization,
regardless of the cardinality of the alphabet.

A finite basis for the equational theory of BCCSP modulo (concrete) failures seman-
tics was given in [9]. The equational theory of BCCSP modulo (concrete) impossible
futures semantics is studied in [4]. It is interesting to seethat our results for weak se-
mantics agree with their concrete counterparts, with very similar proofs. This raises a
challenging open question: can one establish a general theorem to link the axiomatiz-
ability (or nonaxiomatizability) of concrete and weak semantics?

An extended abstract of this paper appears as [5].
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2 Preliminaries

BCCS(A) is a basic process algebra for expressing finite process behavior. Its signature
consists of the constant0, the binary operator+ , and unary prefix operatorsτ and
a , wherea is taken from a nonempty setA of visible actions, called thealphabet,
ranged over bya, b, c. We assume thatτ /∈ A and writeAτ for A∪{τ}, ranged over by
α, β.

t ::= 0 | at | τt | t + t | x

ClosedBCCS(A) terms, ranged over byp, q, represent finite process behaviors, where
0 does not exhibit any behavior,p + q offers a choice between the behaviors ofp andq,
andαp executes actionα to transform intop. This intuition is captured by the transition
rules below. They give rise toAτ -labeled transitions between closed BCCS terms.

αx
α
→ x

x
α
→ x′

x + y
α
→ x′

y
α
→ y′

x + y
α
→ y′

We assume a countably infinite setV of variables;x, y, z denote elements ofV . Open
BCCS terms, denoted byt, u, v, w, may contain variables fromV . Write var (t) for
the set of variables occurring int. The operational semantics is extended verbatim to
open terms; variables generate no transition. We writet ⇒ u if there is a sequence of
τ -transitionst

τ
→ · · ·

τ
→ u; furthermoret

α
→ denotes that there is a termu with t

α
→ u,

and likewiset ⇒
α
→ denotes that there are a termsu, v with t ⇒ u

α
→ v.

The depthof a termt, denoted by|t|, is the length of thelongesttrace oft, not
countingτ -transitions. It is defined inductively as follows:|0| = |x| = 0; |at| = 1+ |t|;
|τt| = |t|; |t + u| = max{|t|, |u|}.

A (closed) substitution, ranged over byσ, ρ, maps variables inV to (closed) terms.
For open termst andu, and a preorder⊑ (or equivalence≡) on closed terms, we define
t ⊑ u (or t ≡ u) if σ(t) ⊑ σ(u) (resp.σ(t) ≡ σ(u)) for all closed substitutionsσ.
Clearly,t

a
→ t′ implies thatσ(t)

a
→ σ(t′) for all substitutionsσ.

An axiomatizationis a collection of equationst ≈ u or of inequationst 4 u. The
(in)equations in an axiomatizationE are referred to asaxioms. If E is an equational
axiomatization, we writeE ⊢ t ≈ u if the equationt ≈ u is derivable from the axioms
in E using the rules of equational logic (reflexivity, symmetry,transitivity, substitution,
and closure under BCCS contexts). For the derivation of an inequationt 4 u from an
inequational axiomatizationE, denoted byE ⊢ t 4 u, the rule for symmetry is omitted.
We will also allow equationst ≈ u in inequational axiomatizations, as an abbreviation
of t 4 u ∧ u 4 t.

An axiomatizationE is soundmodulo a preorder⊑ (or equivalence≡) if for all
termst, u, fromE ⊢ t 4 u (orE ⊢ t ≈ u) it follows thatt ⊑ u (or t ≡ u). E is ground-
completefor ⊑ (or ≡) if p ⊑ q (or p ≡ q) impliesE ⊢ p 4 q (or E ⊢ p ≈ q) for all
closed termsp, q. Moreover,E is ω-completeif for all termst, u with E ⊢ σ(t) 4 σ(u)
(or E ⊢ σ(t) ≈ σ(u)) for all closed substitutionsσ, we haveE ⊢ t 4 u (orE ⊢ t ≈ u).
WhenE is ω-complete as well as ground-complete, it iscompletefor ⊑ (or ≡) in the
sense thatt ⊑ u (or t ≡ u) implies E ⊢ t 4 u (or E ⊢ t ≈ u) for all termst, u.
The equational theory of BCCS modulo a preorder⊑ (or equivalence≡) is said to
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be finitely basedif there exists a finite,ω-complete axiomatization that is sound and
ground-complete for BCCS modulo⊑ (or≡).

A1-4 below are the core axioms for BCCS modulo bisimulation semantics. We write
t = u if A1-4 ⊢ t ≈ u.

A1 x + y ≈ y + x

A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x

A4 x + 0 ≈ x

Summation
∑

i∈{1,...,n} ti denotest1 + · · · + tn, where summation over the empty set
denotes0. As binding convention,+ and summation bind weaker thanα . For every
term t there exists a finite set{αiti | i ∈ I} of terms and a finite setY of variables
such thatt =

∑

i∈I αiti +
∑

y∈Y y. Theαiti for i ∈ I and they ∈ Y are called the
summandsof t. For a set of variablesY , we will often denote the term

∑

y∈Y y by Y .

Definition 1 (Initial actions). For any termt, the setI(t) of initial actions is defined
asI(t) = {a ∈ A | t ⇒

a
→}.

Definition 2 (Weak failures).
– A pair (a1 · · · ak, B), with k ≥ 0 andB ⊆ A, is aweak failure pairof a processp0

if there is a pathp0 ⇒
a1→⇒ · · · ⇒

ak→⇒ pk with I(pk) ∩ B = ∅.
– Write p ≤WF q if the weak failure pairs ofp are also weak failure pairs ofq.
– Theweak failures preorder⊑WF is given by

p ⊑WF q iff (1) p ≤WF q and (2)p
τ
→ implies thatq

τ
→.

– Weak failures equivalence≡WF is defined as⊑WF ∩ ⊑−1
WF.

It is well-known thatp ≤WF q is not a precongruencefor BCCS: e.g.,τ0 ≤WF 0 but
τ0 + a0 6≤WF 0 + a0. However,⊑WF is, meaning thatp1 ⊑WF q1 andp2 ⊑WF q2

implies p1 + p2 ⊑WF q1 + q2 andαp1 ⊑WF αq1 for α ∈ Aτ . In fact,⊑WF is the
coarsest precongruence contained in≤WF. Likewise,≡WF is acongruencefor BCCS.

3 A Finite Basis for Weak Failures Semantics

3.1 Axioms for the Weak Failures Preorder

On BCCS processes, the weak failures preorder as defined above coincides with the in-
verse of the must-testing preorder of [8]. A sound and ground-complete axiomatization
of the must-testing preorder preorder has been given in [8],in terms of a language richer
than BCCS. After restriction to BCCS processes, and reversing the axioms, it consists
of A1-4 together with the axioms:

N1 αx + αy ≈ α(τx + τy)
N2 τ (x + y) 4 x + τy

N3 αx + τ (αy + z) ≈ τ (αx + αy + z)
E1 x 4 τx + τy

Here we simplify this axiomatization to A1-4 and WF1-3 from Tab. 1. In fact it is an
easy exercise to derive WF1-3 from N1, N2 and E1, and N1, N2 andE1 from WF1-3. It
is a little harder to check that N3 is derivable from the otherthree axioms (cf. Lem. 1).
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WF1 ax + ay ≈ a(τx + τy)
WF2 τ (x + y) 4 τx + y

WF3 x 4 τx + y

Table 1.Axiomatization for the weak failures preorder

Theorem 1. A1-4+WF1-3is sound and ground-complete forBCCS(A) modulo⊑WF.

In this section, we extend this ground-completeness resultwith two ω-completeness
results. The first one says, in combination with Theo. 1, thatas long as our alphabet of
actions is infinite, the axioms A1-4+WF1-3 constitute a finite basis for the inequational
theory of BCCS(A) modulo⊑WF.

Theorem 2. If |A|=∞, thenA1-4+WF1-3is ω-complete forBCCS(A) modulo⊑WF.

To get a finite basis for the inequational theory of BCCS modulo⊑WF in case|A| < ∞,
we need to add the following axiom:

WFA

∑

a∈A

axa 4
∑

a∈A

axa + y

where thexa for a ∈ A andy are distinct variables.

Theorem 3. If |A| < ∞, thenA1-4+WF1-3+WFA is ω-complete forBCCS(A) mod-
ulo⊑WF.

The rest of this section up to Sec. 3.4 is devoted to the proofsof Theorems 1–3. For a
start, the inequations in Tab. 2 can be derived from A1-4+WF1-3:

D1 τ (x + y) + x ≈ τ (x + y)
D2 τ (τx + y) ≈ τx + y

D3 ax + τ (ay + z) ≈ τ (ax + ay + z)
D4 τx 4 τx + y

D5
P

i∈I
axi ≈ a(

P

i∈I
τxi) for finite nonempty index setsI

D6 τx + y ≈ τx + τ (x + y)
D7 τx + τy ≈ τx + τ (x + y) + τy

D8 τx + τ (x + y + z) ≈ τx + τ (x + y) + τ (x + y + z)
D9

P

i∈I
τ (ati + yi) ≈

P

i∈I
τ (at + yi) for finite I , wheret =

P

i∈I
τti.

Table 2.Derived inequations

Lemma 1. D1-9are derivable fromA1-4+WF1-3.

Proof. We shorten “A1-4+WF1-3⊢” to “⊢”.

1. By WF3,⊢ x 4 τx, and thus⊢ τx + x 4 τx. Moreover, by WF2,
⊢ τ(x + x) 4 τx + x, hence⊢ τx 4 τx + x. In summary,⊢ τx ≈ τx + x.
So⊢ τ(x + y) ≈ τ(x + y) + x + y + x ≈ τ(x + y) + x.
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2. By WF2,⊢ τ(x + τx) 4 τx + τx = τx, so by D1,⊢ ττx 4 τx. Hence, by WF2,
⊢ τ(τx + y) 4 ττx + y 4 τx + y.
Moreover, by WF3,⊢ τx + y 4 τ(τx + y).

3. By WF3,⊢ y 4 τy + τx. So by WF1,⊢ ay 4 a(τx + τy) ≈ ax + ay. This
implies⊢ τ(ay + z) 4 τ(ax + ay + z). Hence, by D1,⊢ ax + τ(ay + z) 4

ax + τ(ax + ay + z) ≈ τ(ax + ay + z).
Moreover, by WF2,⊢ τ(ax + ay + z) 4 ax + τ(ay + z).

4. By WF3 and D2,⊢ τx 4 ττx + y ≈ τx + y.

5. By induction on|I|, using WF1 and D2.

6. By D4 and D1,⊢ τx + y 4 τx + τ(x + y) + y ≈ τx + τ(x + y).
Moreover, by WF2,⊢ τx + τ(x + y) 4 τx + τx + y = τx + y.

7. By D4 in one direction; by D6 and D1 in the other.

8. By D4 in one direction; by D6 and D1 in the other.

9. By D1,⊢
∑

i∈I τ(ati + yi) ≈
∑

i∈I τ(ati + yi) + u, whereu =
∑

i∈I ati. Thus,
by repeated application of D3,⊢

∑

i∈I τ(ati + yi) ≈
∑

i∈I τ(ati + u + yi) =
∑

i∈I τ(u + yi). By D5 we haveu = at. ⊓⊔

3.2 Normal Forms

The notion of a normal form, which is formulated in the following two definitions,
will play a key role in the forthcoming proofs. For any setL ⊆ A ∪ V of actions and
variables letAL = L ∩ A, the set of actions inL, andVL = L∩ V , the set of variables
in L.

Definition 3 (Saturated family). SupposeL is a finite family of finite sets of actions
and variables. We sayL is saturatedif it is nonempty and

– L1, L2 ∈ L implies thatL1 ∪ L2 ∈ L; and
– L1, L2 ∈ L andL1 ⊆ L3 ⊆ L2 imply thatL3 ∈ L.

Definition 4 (Normal form).

(i) A term t is in τ normal form if

t =
∑

L∈L

τ

(

∑

a∈AL

ata + VL

)

where theta are in normal form andL is a saturated family of sets of actions and
variables. We writeL(t) for

⋃

L∈L L; note thatL(t) ∈ L.

(ii) t is in action normal form if

t =
∑

a∈AL

ata + VL

where theta are in normal form andL ⊆ A ∪ V . We writeL(t) for L.

(iii) t is in normal form if it is either inτ normal form or in action normal form.
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Note that the definition of a normal form requires that for anya ∈ A, if t ⇒
a
→ t1 and

t ⇒
a
→ t2, thent1 andt2 are syntactically identical.
We prove that every term can be equated to a normal form. We start with an example.

Example 1.Supposet = τ(at1 + τ(bt2 + ct3) + x) + τ(at4 + τx + τy) + z. Then
t can be equated to aτ normal form withL = {{a, b, c, x}, {a, x, y}, {a, b, c, x, y, z},
{a, b, c, x, y},{a, b, c, x, z},{a, b, x, y},{a, c, x, y},{a, x, y, z},{a, b, x, y, z},{a, c, x, y, z}}.
We give a detailed derivation. By D2,

⊢ t ≈ τ(at1 + bt2 + ct3 + x) + τ(at4 + x + y) + z

By D6,

⊢ t ≈ τ(at1 + bt2 + ct3 + x) + τ(at4 + x + y) + τ(at4 + x + y + z)

Let ua = τt1 + τt4, ub = t2 anduc = t3. By D9,

⊢ t ≈ τ(aua + bub + cuc + x) + τ(aua + x + y) + τ(aua + x + y + z)

By induction,ua can be brought into a normal formta, and likewise forub anduv. So

⊢ t ≈ τ(tua + btb + ctc + x) + τ(ata + x + y) + τ(ata + x + y + z)

By D7,

⊢ t ≈ τ(ata + btb + ctc + x) + τ(ata + x + y)
+τ(ata + x + y + z) + τ(ata + btb + ctc + x + y + z)

Finally, by D8,

⊢ t≈ τ(ata + btb + ctc + x) + τ(ata + x + y) + τ(ata + x + y + z)
+τ(ata + btb + ctc + x + y + z) + τ(ata + btb + ctc + x + y)
+τ(ata + btb + ctc + x + z) + τ(ata + btb + x + y) + τ(ata + ctc + x + y)
+τ(ata + btb + x + y + z) + τ(ata + ctc + x + y + z)

=
∑

L∈L τ(
∑

a∈AL
ata + VL)

Lemma 2. For any termt, A1-4+WF1-3⊢ t ≈ t′ for some normal formt′.

Proof. By induction on|t|. We distinguish two cases.

– t 6
τ
→. Let t =

∑

i∈I aiti + Y . By D5,

⊢ t ≈
∑

a∈I(t)

a(
∑

i∈I,ai=a

τti) + Y .

By induction, for eacha ∈ I(t),

⊢
∑

i∈I,ai=a

τti ≈ ta

for some normal formta. So we are done.
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– t
τ
→. By D6, t can be brought in the form

∑

i∈I τti with I 6= ∅, and using D2 one

can even make sure thatti 6
τ
→ for i ∈ I. Using the first case in this proof, we obtain,

for eachi ∈ I,
⊢ ti ≈

∑

a∈AL(i)

ata,i + VL(i)

for someL(i) ⊆ A ∪ V . Thus

⊢ t ≈
∑

i∈I

τ





∑

a∈AL(i)

ata,i + VL(i)



 .

For eacha ∈ I(t), we define ua =
∑

i∈I, a∈AL(i)

τta,i .

Then|ua| < |t|. By induction,⊢ ua ≈ ta for some normal formta.
DefineL = {L(i) | i ∈ I}. By repeated application of D9 we obtain

⊢ t ≈
∑

i∈I

τ





∑

a∈AL(i)

aua + VL(i)



 ≈
∑

L∈L

τ

(

∑

a∈AL

ata + VL

)

.

The latter term has the required form, except that the familyL need not be saturated.
However, it is straightforward to saturateL by application of D7 and D8. ⊓⊔

Lemma 3. Supposet andu are both in normal forms andt ⊑WF u. If t ⇒
a
→ ta, then

there exists a termua such thatu ⇒
a
→ ua andta ≤WF ua.

Proof. Supposet ⊑WF u and t ⇒
a
→ ta. Let σ be the closed substitution given by

σ(x) = 0 for all x ∈ V . As (a, ∅) is a weak failure pair ofσ(t) andσ(t) ⊑WF σ(u), it
is also a weak failure pair ofu. Thus there exists a termua such thatu ⇒

a
→ ua. By the

definition of a normal form, this term is unique. (*)
We now show thatta ≤WF ua. Let ρ be a closed substitution. Consider a weak

failure pair(a1 · · · ak, B) of ρ(ta). Then(aa1 · · · ak, B) is a weak failure pair ofρ(t),
and hence also ofρ(u). It suffices to conclude that(a1 · · ·ak, B) is a weak failure
pair of ρ(ua). However, we cannot conclude this directly, as possiblyu ⇒ x + u′

where (aa1 · · · ak, B) is a weak failure pair ofρ(x). To ascertain that nevertheless
(a1 · · · ak, B) is a weak failure pair ofρ(ua), we define a modificationρ′ of ρ such
that for allℓ ≤ k and for all termsv, ρ(v) andρ′(v) have the same weak failure pairs
(c1 · · · cℓ, B), while for all x ∈ V , (aa1 · · ·ak, B) is not a weak failure pair ofρ′(x).

We obtainρ′(x) from ρ(x) by replacing subtermsbp at depthk by 0 if b 6∈ B and
by bb0 if b ∈ B. That is,

ρ′(x) = chopk(ρ(x))

with chopm for all m ≥ 0 inductively defined by

chopm(0) = 0

chopm(p + q) = chopm(p) + chopm(q)
chopm(τp) = τ chopm(p)

chop0(bp) =

{

0 if b 6∈ B
bb0 if b ∈ B

chopm+1(bp) = b chopm(p)
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We proceed to prove thatρ′ has the desired properties mentioned above.

A. For all ℓ ≤ k andc1, . . . , cℓ ∈ A and for all termsv, ρ(v) andρ′(v) have the same
weak failure pairs(c1 · · · cℓ, B),
The difference betweenρ(v) andρ′(v) only appears within subterms of depthk,
that is for termsp such thatρ(v) ⇒

c1→⇒ · · · ⇒
ck→⇒ p for certainc1, . . . , ck ∈ A.

Such a subtermp of ρ(v) corresponds to a subtermp′ of ρ′(v)—still satisfying
ρ′(v) ⇒

c1→⇒ · · · ⇒
ck→⇒ p′—in which certain subtermsbq are replaced by0 if

b 6∈ B and bybb0 if b ∈ B. For such corresponding subtermsp andp′ we have
I(p)∩B = ∅ if and only ifI(p′)∩B = ∅. From this the claim follows immediately.

B. For allx ∈ V , (aa1 · · · ak, B) is not a weak failure pair ofρ′(x).

To this end we show that for all closed termsp, chopm(p) does not have any weak
failure pair(c0 · · · cm, B) with c0, . . . , cm ∈ A. We apply induction onm.

Base case:Since the summands ofchop0(p), when skipping over initialτ -steps,
arebb0 with b ∈ I(p) ∩ B, chop0(p) does not have a weak failure pair(c0, B).

Induction step:Let m > 0. By induction, for closed termsq, chopm−1(q) does
not have weak failure pairs(c1 · · · cm, B). Since the transitions ofchopm(p) are
chopm(p)

c
→ chopm−1(q) for p

c
→ q, it follows that chopm(p) does not have

weak failure pairs(c0 · · · cm, B).

Now, since(a1 · · · ak, B) is a weak failure pair ofρ(ta), by property (A) it is also a
weak failure pair ofρ′(ta), Therefore(aa1 · · · ak, B) is a weak failure pair ofρ′(t), and
hence also ofρ′(u). Since according to property (B) it isnot the case thatu ⇒ x + u′

with (aa1 · · · ak, B) a weak failure pair ofρ′(x), it must be the case thatu ⇒
a
→ u′′

such that(a1 · · · ak, B) is a weak failure pair ofρ′(u′′). By (*), u′′ = ua. Again by
property (A),(a1 · · · ak, B) is a weak failure pair ofρ(ua). ⊓⊔

3.3 ω-Completeness Proof

We are now in a position to prove Theo. 2 (ω-completeness in case of an infinite al-
phabet) and Theo. 3 (ω-completeness in case of a finite alphabet), along with Theo.1
(ground completeness). We will prove these three theorems in one go. Namely, in the
proof, two cases are distinguished; only in the second case (I(t) = A), in which theA
is guaranteed to be finite, will the axiom WFA play a role.

Proof. Let t ⊑WF u. We need to show that⊢ t 4 u. We apply induction on|t| + |u|.
By Lem. 2, we can writet andu in normal form.

We first prove thatL(t) ⊆ L(u). Suppose this is not the case. Then there exists
somea ∈ AL(t) \AL(u) or somex ∈ VL(t) \VL(u). In the first case, letσ be the closed
substitution withσ(z) = 0 for all z ∈ V ; we find that(a, ∅) is a weak failure pair of
σ(t) but not ofσ(u), which contradicts the fact thatσ(t) ⊑WF σ(u). In the second
case, pick somed > max{|t|, |u|}, and consider the closed substitutionσ(x) = ad

0

andσ(z) = 0 for z 6= x. Then(ad, ∅) is weak failure pair ofσ(t). However, it cannot
be a weak failure pair ofσ(u), again contradictingσ(t) ⊑WF σ(u).

We distinguish two cases, depending on whetherI(t) = A or not.
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1. I(t) 6= A. We distinguish three cases. Due to the condition thatt
τ
→ impliesu

τ
→,

it cannot be the case thatt is an action normal form andu a τ normal form.

(a) t andu are both action normal forms. Sot =
∑

a∈AL
ata + VL and u =

∑

a∈AM
aua +VM . We show thatL(t) = L(u). Namely, pickb ∈ A\AL, and

let σ be the closed substitution withσ(z) = 0 for anyz ∈ VL, andσ(z) = b0
for z 6∈ VL. As (ε, A \ I(t)) is a weak failure pair oft, and hence ofu, it must
be thatL(u) ⊆ L(t). Together withL(t) ⊆ L(u) this givesL(t) = L(u). By
Lem. 3, for eacha ∈ I(t), ta ≤WF ua, and thus clearlyta ⊑WF τua. By
induction,⊢ ta 4 τua and hence⊢ ata 4 aua. It follows that

⊢ t =
∑

a∈AL

ata + VL 4
∑

a∈AL

aua + VL =
∑

a∈AM

aua + VM = u

(b) Botht andu areτ normal forms:

t =
∑

L∈L

τ(
∑

a∈AL

ata + VL)

and
u =

∑

M∈M

τ(
∑

a∈AM

aua + VM )

By Lem. 3, for eacha ∈ I(t), ta ≤WF ua, and thus clearlyta ⊑WF τua. By
induction,⊢ ta 4 τua. By these inequalities, together with D4,

⊢ t 4
∑

L∈L

τ(
∑

a∈AL

aua + VL) + u (1)

We now show thatL ⊆ M. Take anyL ∈ L, pick b ∈ A \ AL, and consider
the closed substitutionσ(z) = 0 for anyz ∈ VL, andσ(z) = b0 for z 6∈ VL.
Sinceσ(t)

τ
→ σ(

∑

a∈L ata) andσ(t) ⊑WF σ(u), there exists anM ∈ M with
AM ⊆ AL andVM ⊆ VL. Since alsoL ⊆ L(t) ⊆ L(u), andM is saturated,
it follows thatL ∈ M. Hence,L ⊆ M.

SinceL ⊆ M,
∑

L∈L

τ(
∑

a∈AL

aua + VL) + u = u (2)

By (1) and (2),⊢ t 4 u.

(c) t is an action normal form andu is a τ normal form. Thenτt ⊑WF u. Note
thatτt is aτ normal form, so according to the previous case,

⊢ τt 4 u

By WF3,
⊢ t 4 τt 4 u
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2. I(t) = A. Note that in this case,|A| < ∞. So, according to Theo. 3, axiom WFA

is at our disposal. As before, we distinguish three cases.

(a) Both t and u are action normal forms. SinceL(t) ⊆ L(u) we havet =
∑

a∈A ata + W andu =
∑

a∈A aua + X with W ⊆ X . By WFA,

⊢
∑

a∈A

ata 4
∑

a∈A

ata + u

By Lem. 3, for eacha ∈ A, ta ≤WF ua, and thus clearlyta ⊑WF τua. By
induction,⊢ ta 4 τua. It follows, usingW ⊆ X , that

⊢ t =
∑

a∈A

ata + W 4
∑

a∈A

aua + u + W = u

(b) Botht andu areτ normal forms.

t =
∑

L∈L

τ(
∑

a∈AL

ata + VL)

and
u =

∑

M∈M

τ(
∑

a∈AM

aua + VM )

By D1 and WFA (clearly, in this caseAL(t) = A),

⊢ t ≈ t +
∑

a∈A

ata 4 t +
∑

a∈A

ata + u (3)

By Lem. 3, for eacha ∈ A, ta ≤WF ua, and thus clearlyta ⊑WF τua. By
induction,⊢ ta 4 τua. By these inequalities, together with (3),

⊢ t 4
∑

L∈L

τ(
∑

a∈AL

aua + VL) +
∑

a∈A

aua + u

So by D1,
⊢ t 4

∑

L∈L

τ(
∑

a∈AL

aua + VL) + u (4)

Now for L ∈ L with AL 6= A we haveL ∈ M using the same reasoning as
in 1(b). ForL ∈ L with AL = A we haveVL ⊆ VL(t) ⊆ VL(u). By WFA we
have

⊢ τ(
∑

a∈AL

aua + VL) 4 τ(
∑

a∈A

aua + VL(u)) (5)

As the latter is a summand ofu we obtaint 4 u.

(c) t is an action normal form andu is aτ normal form. This can be dealt with as
in case 1(c).

This completes the proof. ⊓⊔
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3.4 Weak Failures Equivalence

In [2, 10] an algorithm is presented which takes as input a sound and ground-complete
inequational axiomatizationE for BCCSP modulo a preorder⊑ which includes the
ready simulation preorderand isinitials preserving,1 and generates as output an equa-
tional axiomatizationA(E) which is sound and ground-complete for BCCSP modulo
the corresponding equivalence—its kernel:⊑ ∩ ⊑−1. Moreover, if the original axiom-
atizationE is ω-complete, so is the resulting axiomatization. The axiomatizationA(E)
generated by the algorithm fromE contains the axioms A1-4 for bisimulation equiva-
lence and the axiomsβ(αx + z) + β(αx + αy + z) ≈ β(αx + αy + z) for α, β ∈ Aτ

that are valid in ready simulation semantics, together withthe following equations, for
each inequational axiomt 4 u in E:

– t + u ≈ u; and
– α(t + x) + α(u + x) ≈ α(u + x) (for eachα ∈ Aτ , and some variablex that does

not occur int + u).

Moreover, ifE contains an equation (formally abbreviating two inequations), this equa-
tion is logically equivalent to the four equations inA(E) that are derived from it, and
hence can be incorporated in the equational axiomatizationunmodified.

Recently, we lifted this result to weak semantics [6], whichmakes the aforemen-
tioned algorithm applicable to all 87 preorders surveyed in[12] that are at least as
coarse as the ready simulation preorder. Namely, among others, we show that

Theorem 4. Let ⊑ be a weak initials preserving precongruence2 that contains the
strong ready simulation preorder⊑RS and satisfies T2 (the secondτ -law of CCS:
τx ≈ τx + x), and letE be a sound and ground-complete axiomatization of⊑. Then
A(E) is a sound and ground-complete axiomatization of the kernelof ⊑. Moreover, if
E is ω-complete, then so isA(E).

It is straightforward to check that weak failures meets the prerequisites of Theo. 4,
and thus we can run the algorithm and obtain the axiomatization in Tab. 3 for weak
failures equivalence. After simplification and omission ofredundant axioms, we obtain
the axiomatization in Tab. 4.

Lemma 4. The axioms inTab. 3are derivable from the axioms inTab. 4together with
A1-4.

Proof. WF1 is unmodified. WF2a and WF3a can be trivially derived from WFE2.
WF a

A is derivable using A3.
To proceed, we have that WFE2⊢ ττx ≈ τx (namely by substitutingτx for y and

invoking D1, which is also derivable from WFE2) and hence also WFE2⊢ D2 (namely
by substitutingτx for x in WFE2 and invoking D1); using D2, the instances of WF2b

1 meaning thatp ⊑ q implies thatI(p) ⊆ I(q), where the setI(p) of stronglyinitial actions is
I(p) = {α ∈ Aτ | p

α
→}

2 meaning thatp ⊑ q implies thatIτ (p) ⊆ Iτ (q), where the setIτ (p) of weakinitial actions is
Iτ (p) = {α ∈ Aτ | p ⇒

α
→}
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WF1 ax + ay ≈ a(τx + τy)
WF2a τ (x + y) + τx + y ≈ τx + y

WF2b α(τ (x + y) + z) + α(τx + y + z) ≈ α(τx + y + z)
WF3a x + τx + y ≈ τx + y

WF3b α(x + z) + α(τx + y + z) ≈ α(τx + y + z)
RS β(αx + z) + β(αx + αy + z) ≈ β(αx + αy + z)
WF a

A

P

a∈A
axa +

P

a∈A
axa + y ≈

P

a∈A
axa + y

WF b

A β(
P

a∈A
axa + z) + β(

P

a∈A
axa + y + z) ≈ β(

P

a∈A
axa + y + z)

Table 3.Axiomatization generated by the algorithm

WF1 ax + ay ≈ a(τx + τy)
WFE2 τ (x + y) + τx ≈ τx + y

WFE3 ax + τ (ay + z) ≈ τ (ax + ay + z)
WFEA τ (

P

a∈A
axa + z) + τ (

P

a∈A
axa + y + z) ≈ τ (

P

a∈A
axa + y + z)

Table 4.Axiomatization for weak failures equivalence

and WF3b with α = τ , as well as the instance of RS withβ = α = τ , are derivable
from WFE2.

The instances of WF2b and WF3b with α 6= τ , are derivable from WF1 and the
instances withα = τ ; the same holds for the instances of RS and WFb

A with β 6= τ .
Finally in the remaining instances of RS (withβ = τ andα = a ∈ A), we have

WFE2⊢ τ(ax + z) + τ(ax + ay + z) ≈ τ(ax + z) + ay, and thus they can be derived
from WFE3. The instance of WFbA with β = τ is exactly WFEA. ⊓⊔

The axioms WF1, WFE2-3 already appeared in [13]. A1-4+WF1+WFE2-3 is sound
and ground-complete for BCCS modulo≡WF (see also [13, 6]). By Theo. 2 and Theo. 3
(together with Lem. 4), we have:

Corollary 1. If |A| = ∞, then the axiomatizationA1-4+WF1+WFE2-3is ω-complete
for BCCS(A) modulo≡WF.

Corollary 2. If |A| < ∞, then the axiomatizationA1-4+WF1+WFE2-3+WFEA is ω-
complete forBCCS(A) modulo≡WF.

4 Weak Impossible Futures Semantics

Weak impossible futuressemantics is closely related to weak failures semantics. Only,
instead of the set of actions in the second argument of a weak failure pair (see Def. 2),
an impossible future pair contains a set oftraces.

Definition 5 (Weak impossible futures).

– A sequencea1 · · · ak ∈ A∗, with k ≥ 0, is atraceof a processp0 if there is a path
p0 ⇒

a1→⇒ · · · ⇒
ak→⇒ pk; it is acompleted traceof p0 if moreoverI(pk) = ∅. Let

T (p) denote the set of traces of processp, andCT (p) its set of completed traces.
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– A pair (a1 · · ·ak, B), with k ≥ 0 andB ⊆ A∗, is aweak impossible futureof a
processp0 if there is a pathp0 ⇒

a1→⇒ · · · ⇒
ak→⇒ pk with T (pk) ∩ B = ∅.

– Theweak impossible futures preorder⊑WIF is given byp ⊑WIF q iff (1) the weak
impossible futures ofp are also weak impossible futures ofq, (2)T (p) = T (q) and
(3) p

τ
→ implies thatq

τ
→.

– Weak impossible futures equivalence≡WIF is defined as⊑WIF ∩ ⊑−1
WIF.

⊑WIF is a precongruence, and≡WF a congruence, for BCCS [22]. The requirement (2)
T (p) = T (q) is necessary for this precongruence property. Without it wewould have
τa0 ⊑ τa0 + b0 butc(τa0) 6⊑ c(τa0 + b0).

A sound and ground-complete axiomatization for⊑WIF is obtained by replacing
axiom WF3 in Tab. 1 by the following axiom (cf. [22], where a slightly more compli-
cated, but equivalent, axiomatization is given):

WIF3 x 4 τx

However, surprisingly, there is no finite sound and ground-complete axiomatization for
≡WIF. We will show this in Sec. 4.1. A similar difference between the impossible fu-
tures preorder and equivalence in the concrete case (so in the absence ofτ ) was found
earlier in [4]. We note that, since weak impossible futures semantics is not coarser than
ready simulation semantics, the algorithm from [2, 10, 6] togenerate an axiomatization
for the equivalence from the one for the preorder, does not work in this case.

In Sec. 4.2 we establish that the sound and ground-complete axiomatization for
BCCS modulo⊑WIF is ω-complete in case|A| = ∞, and in Sec. 4.3 that there is no
such finite basis for the inequational theory of BCCS modulo⊑WIF in case|A| < ∞.
Again, these results correspond to (in)axiomatizability results for the impossible futures
preorder in the concrete case [4], with very similar proofs.

4.1 Nonexistence of an Axiomatization for Equivalence

We now prove that for any (nonempty)A there doesnotexist any finite, sound, ground-
complete axiomatization forBCCS(A) modulo≡WIF. The cornerstone for this nega-
tive result is the following infinite family of closed equations, form ≥ 0:

τa2m
0 + τ(am

0 + a2m
0) ≈ τ(am

0 + a2m
0)

It is not hard to see that they are sound modulo≡WIF. We start with a few lemmas.

Lemma 5. If p ⊑WIF q thenCT (p) ⊆ CT (q).

Proof. A processp has a completed tracea1 · · · ak iff it has a weak impossible future
(a1 · · · ak, A). ⊓⊔

Lemma 6. Supposet ⊑WIF u. Then for anyt′ with t ⇒
τ
→ t′ there is someu′ with

u ⇒
τ
→ u′ such thatvar (u′) ⊆ var (t′).
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Proof. Let t ⇒
τ
→ t′. Fix somem > |t|, and consider the closed substitutionρ defined

by ρ(x) = 0 if x ∈ var (t′) andρ(x) = am
0 if x 6∈ var (t′). Sinceρ(t) ⇒ ρ(t′)

with |ρ(t′)| = |t′| < m, andρ(t) ⊑WIF ρ(u), clearly ρ(u) ⇒ q for someq with
|q| < m. From the definition ofρ it then follows that there must existu ⇒ u′ with
var (u′) ⊆ var (t′). In caseu ⇒

τ
→ u′ we are done, so assumeu′ = u. Let σ be the

substitution withσ(x) = 0 for all x ∈ V . Sinceσ(t)
τ
→ and t ⊑WIF u we have

σ(u)
τ
→, sou

τ
→ u′′ for someu′′. Now var (u′′) ⊆ var (u) = var (u′) ⊆ var (t′). ⊓⊔

Lemma 7. Assume that, for termst, u, closed substitutionσ, actiona and integerm:

1. t ≡WIF u;
2. m > |u|;
3. CT (σ(u)) ⊆ {am, a2m}; and
4. there is a closed termp′ such thatσ(t) ⇒

τ
→ p′ andCT (p′) = {a2m}.

Then there is a closed termq′ such thatσ(u) ⇒
τ
→ q′ andCT (q′) = {a2m}.

Proof. According to proviso (4) of the lemma, we can distinguish twocases.

– There exists somex ∈ V such thatt ⇒ t′ with t′ = t′′+x andσ(x) ⇒
τ
→ p′ where

CT (p′) = {a2m}. Consider the closed substitutionρ defined byρ(x) = am
0 and

ρ(y) = 0 for anyy 6= x. Thenam ∈ CT (ρ(t)) = CT (ρ(u)), using Lem. 5, and
this is only possible ifu ⇒ u′ for someu′ = u′′ + x. Henceσ(u) ⇒

τ
→ p′.

– t ⇒
τ
→ t′ with CT (σ(t′)) = {a2m}. Since|t′| ≤ |t| = |u| < m, clearly, for

anyx ∈ var (t′), either|σ(x)| = 0 or norm(σ(x)) > m, wherenorm(p) denotes
the length of the shortest completed trace ofp. Sincet ≡WIF u, by Lem. 6,
u⇒

u
→ u′ with var (u′) ⊆ var (t′). Hence, for anyx∈var (u′), either|σ(x)|=0 or

norm(σ(x)) > m. Since|u′| < m, am /∈ CT (σ(u′)). It follows from CT (σ(u)) ⊆

{am, a2m} thatCT (σ(u′)) = {a2m}. Andu ⇒
τ
→ u′ impliesσ(u) ⇒

τ
→ σ(u′). �

Lemma 8. Assume that, forE an axiomatization sound for⊑WIF, closed termsp, q,
closed substitutionσ, actiona and integerm:
1. E ⊢ p ≈ q;
2. m > max{|u| | t ≈ u ∈ E};
3. CT (q) ⊆ {am, a2m}; and
4. there is a closed termp′ such thatp ⇒

τ
→ p′ andCT (p′) = {a2m}.

Then there is a closed termq′ such thatq ⇒
τ
→ q′ andCT (q′) = {a2m}.

Proof. By induction on the derivation ofE ⊢ p ≈ q.

– SupposeE ⊢ p ≈ q becauseσ(t) = p andσ(u) = q for somet ≈ u ∈ E or
u ≈ t ∈ E and closed substitutionσ. The claim then follows by Lem. 7.

– SupposeE ⊢ p ≈ q becauseE ⊢ p ≈ r andE ⊢ r ≈ q for somer. Since
r ≡WIF q, by proviso (3) of the lemma and Lem. 5,CT (r) ⊆ {am, a2m}. Since
there is ap′ such thatp ⇒

τ
→ p′ with CT (p′) = {a2m}, by induction, there is anr′

such thatr ⇒
τ
→ r′ andCT (r′) = {a2m}. Hence, again by induction, there is aq′

such thatq ⇒
τ
→ q′ andCT (q′) = {a2m}.
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– SupposeE ⊢ p ≈ q becausep = p1 + p2 andq = q1 + q2 with E ⊢ p1 ≈ q1 and
E ⊢ p2 ≈ q2. Since there is ap′ such thatp ⇒

τ
→ p′ andCT (p′) = {a2m}, either

p1 ⇒
τ
→ p′ or p2 ⇒

τ
→ p′. Assume, without loss of generality, thatp1 ⇒

τ
→ p′. By

induction, there is aq′ such thatq1 ⇒
τ
→ q′ andCT (q′) = {a2m}. Now q ⇒

τ
→ q′.

– SupposeE ⊢ p ≈ q becausep = cp1 andq = cq1 with c ∈ A andE ⊢ p1 ≈ q1. In
this case, proviso (4) of the lemma can not be met.

– SupposeE ⊢ p ≈ q becausep = τp1 andq = τq1 with E ⊢ p1 ≈ q1. By proviso
(4) of the lemma, eitherCT (p1) = {a2m} or there is ap′ such thatp1 ⇒

τ
→ p′ and

CT (p′) = {a2m}. In the first case,q ⇒
τ
→ q1 andCT (q1) = {a2m} by Lem. 5. In

the second, by induction, there is aq′ such thatq1 ⇒
τ
→ q′ andCT (q′) = {a2m}.

Againq ⇒
τ
→ q′. ⊓⊔

Theorem 5. There is no finite, sound, ground-complete axiomatization for BCCS(A)
modulo≡WIF.

Proof. Let E be a finite axiomatization overBCCS(A) that is sound modulo≡WIF.
Let m be greater than the depth of any term inE. Clearly, there is no termr such that
τ(am

0 + a2m
0) ⇒

τ
→ r andCT (r) = {a2m}. So according to Lem. 8, the closed

equationτa2m
0 + τ(am

0 + a2m
0) ≈ τ(am

0 + a2m
0) cannot be derived fromE.

Nevertheless, it is valid modulo≡WIF. ⊓⊔

In the same way as above, one can establish the nonderivability of the equations
a2m+1

0 + a(am
0 + a2m

0) ≈ a(am
0 + a2m

0) from any given finite equational
axiomatization sound for≡WIF. As these equations are valid modulo (strong) 2-nested
simulation equivalence, this negative result applies to all BCCS-congruences that are at
least as fine as weak impossible futures equivalence and at least as coarse as strong 2-
nested simulation equivalence. Note that the corresponding result of [1] can be inferred.

4.2 A Finite Basis for Preorder if |A| = ∞

In this section, we show that A1-4+WF1-2+WIF3 isω-complete in case|A| = ∞. Note
that this result was originally obtained in [22]. However, our proof is much simpler.
First, let us note that A1-4+WF1-2+WIF3⊢ D1, D2, D5.

Lemma 9. For any closed termsp, q, if p ⊑WIF q, thenA1-4+WF1-2+WIF3⊢ p 4 q.

Proof. Let p ⊑WIF q. We prove⊢ p 4 q by induction on|p| + |q|. We distinguish two
cases:

– q 6
τ
→. Thenp 6

τ
→ sincep ⊑WIF q. Supposep =

∑

i∈I aipi andq =
∑

j∈J bjqj .
Clearly, we haveI(p) = I(q). By D5, we have

⊢ p ≈
∑

a∈I(p)

a(
∑

ai=a,i∈I

τpi)

and
⊢ q ≈

∑

a∈I(p)

a(
∑

bj=a,j∈J

τqj)
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Sincep ⊑WIF q, for eacha ∈ I(p), the following relation holds:
∑

ai=a,i∈I

τpi ⊑
∑

bj=a,j∈J

τqj

By induction,
⊢

∑

ai=a,i∈I

τpi 4
∑

bj=a,j∈J

τqj

and thus
⊢ a(

∑

ai=a,i∈I

τpi) 4 a(
∑

bj=a,j∈J

τqj)

Summing these up fora ∈ I(p), we obtain that

⊢ p 4 q

– q
τ
→. By D2, we can writep ≈

∑

i∈I αipi andq ≈
∑

j∈J βjqj such that for each

αi = τ (resp.βj = τ ), pi 6
τ
→ (resp.qj 6

τ
→). Applying D1, for eachi ∈ I with αi = τ ,

the summands ofpi are also made summands ofp, and likewise forq. (*)

For eachi ∈ I with αi = τ we havep
τ
→ pi. Sincep ⊑WIF q and noqj with

βj = τ contains aτ -summand, eitherT (q) ⊆ T (pi) or there existsq
τ
→ qj such

thatT (qj) ⊆ T (pi). Sinceq
τ
→, in either case there exists someji ∈ J such that

bji
= τ andT (qji

) ⊆ T (pi). It follows that

pi ⊑WIF pi + qji

Sincepi 6
τ
→ andqji

6
τ
→, by the previous case,

⊢ pi 4 pi + qji

Hence by WF2,
⊢ τpi 4 τ(pi + qji

) 4 pi + τqji

and thus

⊢ p =
∑

αi=τ

τpi +
∑

a∈I(p)

∑

αi=a,i∈I

api 4
∑

αi=τ

(pi + τqji
) +

∑

a∈I(p)

∑

αi=a,i∈I

api

By (*),
⊢
∑

αi=τ

pi +
∑

a∈I(p)

∑

αi=a,i∈I

api ≈
∑

a∈I(p)

∑

αi=a,i∈I

api

Sincep ⊑WIF q, I(p) = I(q). Using (*), it is easy to see that for eacha ∈ I(p),
∑

αi=a,i∈I

api ⊑WIF

∑

βj=a,j∈J

aqj

So by the previous case,

⊢
∑

αi=a,i∈I

api 4
∑

βj=a,j∈J

aqj
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It follows that

⊢ p 4
∑

αi=τ

τqji
+
∑

a∈I(p)

∑

αi=a,i∈I

api 4
∑

αi=τ

τqj +
∑

a∈I(p)

∑

βj=a,j∈J

aqj

By WIF3,

⊢
∑

αi=τ

τqj +
∑

a∈I(p)

∑

βj=a,j∈J

aqj 4 q

Hence ⊢ p 4 q ⊓⊔

With this ground-completeness result at hand, it is straightforward to apply theinverted
substitutiontechnique of Groote [16] to derive:

Theorem 6. If |A| = ∞, thenA1-4+WF1-2+WIF3is ω-complete forBCCS(A) mod-
ulo⊑WIF.

Proof. Given an inequational axiomatizationE and open termst, u such thatE ⊢
σ(t) 4 σ(u) for all closed substitutionsσ, the technique of inverted substitutions is
a method to proveE ⊢ t 4 u. It does so by means of a closed substitutionρ encoding
open terms into closed terms, and an decoding operationR that turns closed terms back
into open terms. By assumption we haveE ⊢ ρ(t) 4 ρ(u). The pair(ρ, R) should be
chosen in such a way that, in essence, applyingR to all terms occurring in a proof of
ρ(t) 4 ρ(u) yields a proof oft 4 u. As observed in [16], this technique is applicable
when three conditions are met, one of which being thatR(ρ(t)) = t andR(ρ(u)) = u.
In fact, [16] dealt with equational logic only, but the very same reasoning applies to
inequational logic [4].

Here we use the same pair(ρ, R) that was used by Groote to obtain most of the
applications of the technique in [16]—it could be called thedefault(inverted) substitu-
tion. It is obtained by selecting for each variablex ∈ V an actionax ∈ A, not occurring
in t or u. This is possible because|A| = ∞. Now the default substitutionρ is given
by ρ(x) = ax0 and the default inverted substitutionR replaces any maximal subterm
of the formaxp into the variablex. Groote showed that with this particular (inverted)
substitution, 2 out of his 3 conditions are always met, and the third one simply says that
for each axiomt 4 u in E we should have thatE ⊢ R(t) 4 R(u). This condition
is clearly met for the axioms A1-4+WF1-2+WIF3, and hence this axiomatization isω-
complete. ⊓⊔

Note that we could have used the same method to obtain Theo. 2,but not Theo. 3.

4.3 Nonexistence of a Finite Basis for Preorder if|A| < ∞

1 < |A| < ∞. We prove that the inequational theory ofBCCS(A) modulo⊑WIF

doesnot have a finite basis in case of a finite alphabet with at least twoelements. The
cornerstone for this negative result is the following infinite family of inequations, for
m ≥ 0:

τ(amx) + Φm 4 Φm
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with
Φm = τ(amx + x) +

∑

b∈A

τ(amx + amb0)

It is not hard to see that these inequations are sound modulo⊑WIF. Namely, given a
closed substitutionρ, we haveT (ρ(τ(amx))) ⊆ T (ρ(Φm)) andρ(Φm)

τ
→. To argue

thatρ(τ(amx) + Φm) andρ(Φm) have the same impossible futures, we only need to
consider the transitionρ(τ(amx) + Φm)

τ
→ amρ(x) (all other cases being trivial). If

ρ(x) = 0, thenρ(Φm)
τ
→ am

0+0 generates the same impossible futures(ε, B). If, on
the other hand,b ∈ I(ρ(x)) for someb ∈ A, thenT (amρ(x) + amb0) = T (amρ(x)),
soρ(Φm)

τ
→ amρ(x) + amb0 generates the same impossible futures(ε, B).

We have already defined the traces and completed traces of closed terms. Now
we extend these definitions to open terms by allowing (completed) traces of the form
a1 · · · akx ∈ A∗V . We do this by treating each variable occurrencex in a term as if it
were a subtermx0 with x a visible action, and then apply Def. 5. Under this convention,
CT (Φm) = {amx, x, amb | b∈A}. We writeTV (t) for the set of traces oft that end in
a variable, andTA(t) for ones that end in an action.

Observation 1. Letm > |t| or am ∈ V . Thena1 · · ·am ∈ T (σ(t)) iff there is ak < m
andy ∈ V such thata1 · · · aky ∈ TV (t) andak+1 · · · am ∈ T (σ(y)).

Lemma 10. If |A| > 1 andt ⊑WIF u thenTA(t) = TA(u) andTV (t) = TV (u).

Proof. Letσ be the closed substitution defined byσ(x)=0 for all x∈V . Thent ⊑WIF u
impliesσ(t) ⊑WIF σ(u) and henceTA(t) = T (σ(t)) = T (σ(u)) = TA(u) by Def. 5.

For the second statement fix distinct actionsa, b ∈ A and an injectionp·q : V →
Z>0 (which exists becauseV is countable). Letm = |u| + 1 = |t| + 1. Define the
closed substitutionρ by ρ(z) = apzq·mb0 for all z ∈ V . Again, by Def. 5,t ⊑WIF u
impliesT (ρ(t)) = T (ρ(u)). By Obs. 1, for all termsv we havea1 · · · aky ∈ TV (v)
iff a1 · · ·akapyq·mb ∈ T (ρ(v)) with k < m. HenceTV (v) is completely determined by
T (ρ(v)) and thusTV (t) = TV (u). ⊓⊔

Lemma 11. Let |A| > 1. Supposet ⊑WIF u and t ⇒
τ
→ t′. Then there is a termu′

such thatu ⇒
τ
→ u′ andTV (u′) ⊆ TV (t′).

Proof. Defineρ exactly as in the previous proof. Sinceρ(t) ⇒ ρ(t′) andt ⊑WIF u
there must be au′ with ρ(u) ⇒ q andT (q) ⊆ T (ρ(t′)). Sinceρ(x) is τ -free for
x ∈ V it must be thatq = ρ(u′) for some termu′ with u ⇒ u′. Given the relationship
betweenTV (v) andT (ρ(v)) for termsv observed in the previous proof, it follows that
TV (u′) ⊆ TV (t′). In caseu ⇒

τ
→ u′ we are done, so assumeu′ = u. Let σ be the

substitution withσ(x) = 0 for all x ∈ V . Sinceσ(t)
τ
→ and t ⊑WIF u we have

σ(u)
τ
→, sou

τ
→ u′′ for someu′′. NowTV (u′′) ⊆ TV (u) = TV (u′) ⊆ TV (t′). ⊓⊔

Lemma 12. Let |A| > 1. Assume that, for some termst, u, substitutionσ, actiona and
integerm:

1. t ⊑WIF u;
2. m ≥ |u|; and
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3. σ(t) ⇒
τ
→ t̂ for a termt̂ without tracesax for x ∈ V or amb for b ∈ A.

Thenσ(u) ⇒
τ
→ û for a termû without tracesax for x ∈ V or amb for b ∈ A.

Proof. Based on proviso (3) there are two cases to consider.

– y ∈ TV (t) for somey ∈ V andσ(y) ⇒
τ
→ t̂. In that casey ∈ TV (u) by Lem. 10, so

σ(u) ⇒
τ
→ t̂.

– t ⇒
τ
→ t′ for some termt′ such that̂t = σ(t). By Lem. 11 there is a termu′

with u ⇒
τ
→ u′ andTV (u′) ⊆ TV (t′). Takeû = σ(u′). Clearlyσ(u) ⇒

τ
→ σ(u′).

Supposeσ(u′) would have a traceamb. Then, by Obs. 1, there is ak ≤ m and
y ∈ V such thataky ∈ TV (u′) andam−kb ∈ T (σ(y)). SinceTV (u′) ⊆ TV (t′) we
haveamb ∈ T (σ(t′)), which is a contradiction. The caseax ∈ T (σ(u)) is dealt
with in the same way. ⊓⊔

Lemma 13. Let |A| > 1 and letE be an axiomatization sound for⊑WIF. Assume that,
for some termsv, w, actiona and integerm:

1. E ⊢ v 4 w;
2. m ≥ max{|u| | t 4 u ∈ E}; and
3. v ⇒

τ
→ v̂ for a termv̂ without tracesax for x ∈ V or amb for b ∈ A.

Thenw ⇒
τ
→ ŵ for a termŵ without tracesax for x ∈ V or amb for b ∈ A.

Proof. By induction on the derivation ofE ⊢ v 4 w.

– SupposeE ⊢ v 4 w becauseσ(t) = v andσ(u) = w for somet 4 u ∈ E and
substitutionσ. The claim then follows by Lem. 12.

– SupposeE ⊢ v 4 w becauseE ⊢ v 4 u andE ⊢ u 4 w for someu. By induc-
tion, u ⇒

τ
→ û for a termû without tracesax or amb. Hence, again by induction,

w ⇒
τ
→ ŵ for a termŵ without tracesax or amb.

– SupposeE ⊢ v 4 w becausev = v1 +v2 andw = w1 +w2 with E ⊢ v1 4 w1 and
E ⊢ v2 4 w2. Sincev ⇒

τ
→ v̂, eitherv1 ⇒

τ
→ v̂ or v2 ⇒

τ
→ v̂. Assume, without

loss of generality, thatv1 ⇒
τ
→ v̂. By induction,w1 ⇒

τ
→ ŵ for a termŵ without

tracesax or amb. Now w ⇒
τ
→ ŵ.

– SupposeE ⊢ v 4 w becausev = cv1 andw = cw1 with c ∈ A andE ⊢ v1 ≈ w1.
In this case, proviso (3) of the lemma can not be met.

– SupposeE ⊢ v 4 w becausev = τv1 andw = τw1 with E ⊢ v1 ≈ w1. Then
eitherv1 = v̂ or v1 ⇒

τ
→ v̂. In the first case,w1 has no tracesax or amb by Lem. 10

and proviso (3) of the lemma; hencew has no such traces either. In the second case,
by induction,w1 ⇒

τ
→ ŵ for a termŵ without tracesax or amb. Againw ⇒

τ
→ ŵ.

⊓⊔

Theorem 7. If 1 < |A| < ∞, then the inequational theory ofBCCS(A) modulo⊑WIF

does not have a finite basis.

Proof. Let E be a finite axiomatization overBCCS(A) that is sound modulo⊑WIF.
Let m be greater than the depth of any term inE. According to Lem. 13, the inequation
τ(amx) + Φm 4 Φm cannot be derived fromE. Yet it is sound modulo⊑WIF. ⊓⊔
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|A| = 1. We prove that the inequational theory ofBCCS(A) modulo⊑WIF does
not have a finite basis in case of a singleton alphabet. The cornerstone for this negative
result is the following infinite family of inequations, form ≥ 0:

amx 4 amx + x

If |A| = 1, then these inequations are clearly sound modulo⊑WIF. Note that given a
closed substitutionρ, T (ρ(x)) ⊆ T (ρ(amx)).

Lemma 14. If t ⊑WIF u thenTV (t) ⊆ TV (u).

Proof. Fix a ∈ A and an injectionp·q : V → Z>0. Let m = |u|+ 1. Define the closed
substitutionρ by ρ(z) = apzq·m

0 for all z ∈ V . By Lem. 5,CT (ρ(t)) ⊆ CT (ρ(u)).
Now supposea1 · · · aky ∈ TV (t). Thena1 · · · akapyq·m ∈ CT (ρ(t)) ⊆ CT (ρ(u)) and
k < m. This is only possible ifa1 · · · aky ∈ TV (u). ⊓⊔

Lemma 15. Assume that, for termst, u, substitutionσ, actiona, variablex, integerm:

1. t ⊑WIF u;
2. m > |u|; and
3. x ∈ TV (σ(u)) andakx 6∈ TV (σ(u)) for 1 ≤ k < m.

Thenx ∈ TV (σ(t)) andakx 6∈ TV (σ(t)) for 1 ≤ k < m.

Proof. Sincex ∈ TV (σ(u)), by Obs. 1 there is a variabley with y ∈ TV (u) and
x ∈ TV (σ(y)). Consider the closed substitutionρ given byρ(y) = am

0 andρ(z) = 0

for z 6= y. Thenm > |u| = |t|, andy ∈ TV (u) impliesam ∈ T (ρ(u)) = T (ρ(t)), so
by Obs. 1 there is somek < m andz∈V such thatakz ∈ TV (t) andam−k ∈ T (ρ(z)).
As k < m it must be thatz = y. Sinceaky ∈ TV (t) andx ∈ TV (σ(y)), Obs. 1 implies
thatakx ∈ TV (σ(t)). By Lem. 14,akx 6∈ TV (σ(t)) for 1 ≤ k < m. Hence we obtain
k = 0. ⊓⊔

Lemma 16. Assume that, forE an axiomatization sound for⊑WIF and for termsv, w,
actiona, variablex and integerm:

1. E ⊢ v 4 w;
2. m > max{|u| | t 4 u ∈ E}; and
3. x ∈ TV (w) andakx 6∈ TV (w) for 1 ≤ k < m.

Thenx ∈ TV (v) andakx 6∈ TV (v) for 1 ≤ k < m.

Proof. By induction on the derivation ofE ⊢ v 4 w.

– SupposeE ⊢ v 4 w becauseσ(t) = v andσ(u) = w for somet 4 u ∈ E and
substitutionσ. The claim then follows by Lem. 15.

– SupposeE ⊢ v 4 w becauseE ⊢ v 4 u andE ⊢ u 4 w for someu. By
induction,x ∈ TV (u) andakx 6∈ TV (u) for 1 ≤ k < m. Hence, again by induction,
x ∈ TV (v) andakx 6∈ TV (v) for 1 ≤ k < m.
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– SupposeE ⊢ v 4 w becausev = v1 + v2 andw = w1 + w2 with E ⊢ v1 4 w1

andE ⊢ v2 4 w2. Sincex ∈ TV (w), eitherx ∈ TV (w1) or x ∈ TV (w2). Assume,
without loss of generality, thatx ∈ TV (w1). Sinceakx 6∈ TV (w) for 1 ≤ k < m,
surelyakx 6∈ TV (w1) for 1 ≤ k < m. By induction,x ∈ TV (v1), and hence
x ∈ TV (v). For1 ≤ k < m we haveakx 6∈ TV (w) and henceakx 6∈ TV (v), by
Lem. 14.

– SupposeE ⊢ v 4 w becausev = cv1 andw = cw1 with c ∈ A andE ⊢ v1 ≈ w1.
In this case, proviso (3) of the lemma can not be met.

– SupposeE ⊢ v 4 w becausev = τv1 andw = τw1 with E ⊢ v1 ≈ w1. Then,
by proviso (3) of the lemma,x ∈ TV (w1) andakx 6∈ TV (w1) for 1 ≤ k < m. By
induction,x ∈ TV (v1) andakx 6∈ TV (v1) for 1 ≤ k < m. Hencex ∈ TV (v) and
akx 6∈ TV (v) for 1 ≤ k < m. ⊓⊔

Theorem 8. If |A| = 1, then the inequational theory ofBCCS(A) modulo⊑WIF does
not have a finite basis.

Proof. Let E be a finite axiomatization overBCCS(A) that is sound modulo⊑WIF.
Let m be greater than the depth of any term inE. According to Lem. 16, the inequation
amx 4 amx + x cannot be derived fromE. Yet, since|A| = 1, it is sound modulo
⊑WIF. ⊓⊔

To conclude this subsection, we have

Theorem 9. If |A| < ∞, then the inequational theory ofBCCS(A) modulo⊑WIF does
not have a finite basis.

Concluding, in spite of the close resemblance between weak failures and weak im-
possible futures semantics, there is a striking differencebetween their axiomatizability
properties.
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