From edge-disjoint paths to independent paths

Serge Gaspers*

Abstract

Let \(f(k) \) denote the maximum such that every simple undirected graph containing two vertices \(s, t \) and \(k \) edge-disjoint \(s-t \) paths, also contains two vertices \(u, v \) and \(f(k) \) independent \(u-v \) paths. Here, a set of paths is independent if none of them contains an interior vertex of another. We prove that

\[
 f(k) = \begin{cases}
 k & \text{if } k \leq 2, \\
 3 & \text{otherwise.}
 \end{cases}
\]

Since independent paths are edge-disjoint, it is clear that \(f(k) \leq k \) for every positive integer \(k \).

Let \(\mathcal{P} \) be a set of edge-disjoint \(s-t \) paths in a graph \(G \). Clearly, if \(|\mathcal{P}| \leq 1 \), then the paths in \(\mathcal{P} \) are independent. If \(\mathcal{P} = \{P_1, P_2\} \), a set of two independent \(u-v \) paths can easily be obtained as follows. Set \(u := s \) and let \(v \) be the vertex that belongs to both \(P_1 \) and \(P_2 \) and is closest to \(s \) on \(P_1 \). Then, the \(u-v \) subpaths of \(P_1 \) and \(P_2 \) are independent. This proves that \(f(k) = k \) if \(k \leq 2 \).

The lower bound for \(f(k), k \geq 3 \), is provided by the following lemma.

Lemma 1. Let \(G = (V, E) \) be a graph. If there are two vertices \(s, t \in V \) with 3 edge-disjoint \(s-t \) paths in \(G \), then there are two vertices \(u, v \in V \) with 3 independent \(u-v \) paths in \(G \).

Proof. Let \(P_1, P_2, P_3 \) denote 3 edge-disjoint \(s-t \) paths, and let \(S = \{s_1, s_2, s_3\} \), where \(s_i \) neighbors \(s \) on \(P_i \), \(1 \leq i \leq 3 \). Consider the connected component \(G' \) of \(G \setminus \{s\} \) containing \(t \). Then, \(G' \) contains all vertices from \(S \). Let \(T \) be a spanning tree of \(G' \). Select \(v \) such that the \(s_i-v \) subpaths of \(T \), \(1 \leq i \leq 3 \), are independent. This vertex \(v \) belongs to every subpath of \(T \) that has two vertices from \(S \) as endpoints.

To see that this vertex exists, consider the \(s_1-s_3 \) subpath \(P_{1,3} \) of \(T \) and the \(s_2-s_3 \) subpath \(P_{2,3} \) of \(T \). Set \(v \) to be the vertex that belongs to both \(P_{1,3} \) and \(P_{2,3} \) and is closest to \(s_2 \) on \(P_{2,3} \) (if \(P_{1,3} \) contains \(s_2 \), then \(v = s_2 \)). Set \(u := s \), and obtain 3 independent \(u-v \) paths in \(G \) by moving from \(u \) to \(s_i \), and then along the \(s_i-v \) subpath of \(T \) to \(v \), \(1 \leq i \leq 3 \).

For the upper bound, consider the following family of graphs, the recursive diamond graphs \(\square \). The recursive diamond graph of order 0 is \(G_0 = (\{s, t\}, \{s\}) \), and the diamond graph \(G_p \) of order \(p \geq 1 \) is obtained from \(G_{p-1} \) by replacing each edge \(e = xy \) by the set of edges \(\{xp, pe, qe, qy\} \), where \(pe \) and \(qe \) are new vertices. See Figure 1 for an illustration.

The following lemma entails the upper bound for \(f(k), k \geq 3 \).

Lemma 2. For every \(k \geq 3 \), there is a graph \(G = (V, E) \) containing two vertices \(s, t \in V \) with \(k \) edge-disjoint \(s-t \) paths, but no two vertices \(u, v \in V \) with \(4 \) independent \(u-v \) paths.

Proof. Consider the diamond graph \(G = G_p \) of order \(p = \lceil \log k \rceil \). \(G \) has \(2^p \geq k \) edge-disjoint \(s-t \) paths.

Let \(u, v \) be any two vertices in \(G \). We will show that there are at most 3 independent \(u-v \) paths.

Observe that each recursive diamond graph \(G_r \) contains 4 edge-disjoint copies of \(G_{r-1} \). The extremities of \(G_r \) are the vertices \(s \) and \(t \), and the extremities of a subgraph \(H \) of \(G_r \) that is isomorphic to \(G_r', r' < r \), are the two vertices from \(H \) whose neighborhoods in \(G_r \) are not a subset of \(V(H) \).

Let \(Q \) be the smallest vertex set containing \(u \) and \(v \) such that \(G[Q] \) is a recursive diamond graph. Let \(q \) be the order of the recursive diamond graph \(G[Q] \).

If \(q = 0 \), then \(uv \) is an edge in \(G \), and either \(u \) or \(v \) has degree 2. But then, the number of independent \(u-v \) paths in \(G \) is at most 2 since independent paths pass through distinct neighbors of \(u \) and \(v \).

If \(q > 0 \), then \(uv \) is not an edge in \(G \). Decompose \(G[Q] \) into 4 edge-disjoint graphs \(H_1, \ldots, H_4 \) isomorphic to \(G_{q-1} \) such that \(u \in V(H_1) \) and the \(H_i \) are ordered cyclically by their index (i.e., \(V(H_1) \cap \)}

*Institute of Information Systems, Vienna University of Technology, gaspers@ir.tuwien.ac.at

Research supported by the European Research Council (COMPLEX REASON, 239962).
Figure 1: The recursive diamond graphs of order 0, 1, 2, and 3.

Since we chose Q to be minimum, u and v do not belong to the same H_i, $1 \leq i \leq 4$. If $u \notin V(H_2) \cup V(H_4)$, then the extremities of H_1 are a u–v-vertex cut of size 2 in $G[Q]$ and in G. Otherwise, suppose, without loss of generality, that $u \in V(H_1) \cap V(H_3)$. Since $v \notin V(H_1) \cup V(H_3)$, the other two extremities of H_1 and H_3 form a u–v-vertex cut C of size 2 in $G[Q]$. The set C is also a u–v-vertex cut in G, unless $q < p$ and u is an extremity of another subgraph J of G isomorphic to G_q that is edge-disjoint from $G[Q]$. In the latter case, add the other extremity of J to C to obtain a u–v-vertex cut in G of size 3.

Since G has a u–v-vertex cut of size at most 3, by Menger’s theorem \[6\], there are at most 3 independent u–v paths in G. \qed

An application Lemma \[1\] has been used in an algorithm \[2\] for the detection of backdoor sets to ease Satisfiability solving. A backdoor set of a propositional formula is a set of variables such that assigning truth values to the variables in the backdoor set moves the formula into a polynomial-time decidable class; see \[3\] for a survey. The class of nested formulas was introduced by Knuth \[5\] and their satisfiability can be decided in polynomial time. To find a backdoor set to the class of nested formulas, the algorithm from \[2\] considers the clause-variable incidence graph of the formula. If the formula is nested, this graph does not contain a $K_{2,3}$-minor with the additional property that the independent set of size 3 is obtained by contracting 3 connected subgraphs containing a variable each. In the correctness proof of the algorithm it is shown that in certain cases the formula does not have a small backdoor set. This is shown by exhibiting two vertices u, v and 3 independent u–v paths in an auxiliary graph using Lemma \[4\]. Expanding these edges to the paths they represent in the formula’s incident graph gives rise to a $K_{2,3}$-minor with the desired property.

On the other hand, Lemma \[2\] shows the limitations of this approach if we would like to enlarge the target class to more general formulas.

Acknowledgment We thank Chandra Chekuri for bringing the recursive diamond graphs to our attention \[1\], and we thank Herbert Fleischner for valuable discussions on an earlier version of this note.

References

