
SE Degree Handbook

(Draft 11/11/2016)

SE Degree General Information ... 2

SE Degree Learning Outcomes ... 3

SE Degree Structure ... 4

SE Degree Proposed Specialisations .. 7

COMP1531 Software Engineering and Data Modelling ... 11

COMP2511 Object-Oriented Design & Programming ... 14

COMP1521 Computer Systems Fundamentals .. 17

COMP1511 Introduction to Programming ... 20

COMP2521 Data Structures and Algorithms ... 23

COMP2041 - Software Construction .. 26

COMP2111 Formal Modelling and Specification ... 35

SENG2011: Reasoning about Programs: from Specification to Implementation 37

SENG2021 Requirements and Design Workshop .. 38

SENG3011 Implementation Workshop .. 43

COMP3141 Design and Software Quality .. 48

COMP4920/SENG4920 Management and Ethics .. 50

COMP Courses List ... 58

ISTM BIS Curriculum Review (June 2016) .. 63

COMP3331 Computer Networks and Applications ... 75

COMP3311: Database Systems .. 82

COMP3511 Human Computer Interaction .. 85

SE Degree General Information

What is Software Engineering?

Software Engineering is an Engineering profession concerned with the processes,
methods and tools for the design and development of high quality, reliable software
systems. This involves the study and application of software specification, design,
implementation, testing and documentation of software. Target systems may range
from simple software applications to mission-critical real-time systems.

Career Opportunities

The software industry is one of the fastest growing industries in the world. Even
companies that have been associated largely with hardware in the past estimate that
80-90% of their engineers are involved in software development. As a consequence of
this rapid expansion there is a serious worldwide shortage of software engineers who
are able to deal with the complexity of developing high-quality software systems.

Given the ubiquitous nature of software in modern society, software engineers can find
employment opportunities in many areas. These include, but are not limited to,
Information and Communication Technologies (ICT), Business, Hardware and Defence
industries.

Assumed Knowledge

Mathematics Extension 1, English Standard Band 3 or English (ESL) Band 4.
Students who do not meet these levels should contact CSE Student Office about
alternatives, including bridging courses and alternative Program structures.

Advantageous Knowledge

Mathematics Extension 2.
Subjects listed under the Advantageous Knowledge will be useful for a more in-depth
study of the field. Obtaining a result in Band E4 in Mathematics Extension 2 allows
students to take the higher level maths course MATH1141.

SE Degree Learning Outcomes
1. Demonstrate a solid understanding of the software engineering knowledge and

skills, necessary to begin practice as a software engineer.
2. ability to appropriately define and apply relevant abstractions from

algorithmics, computer science, and mathematics to complex software system
development.

3. ability to design and build a system, component, or process to meet desired
needs within realistic constraints such as technical, economic, and ethical
constraints.

4. ability to think at multiple levels of detail and abstraction encompassing an
appreciation for the structure of computer systems and the processes involved
in their construction and analysis.

5. ability to think and design software systems from the perspective of the end
user and to communicate clearly and effectively with business stakeholders

6. have the understanding that software interacts with many different domains
and the ability to be able to communicate with, and learn from, experts from
different domains

7. be knowledgeable about current software engineering practices in the
workplace, collaborative software development and management processes
and their role in the development of quality software systems.

SE Degree Structure
The current program structure described in:
http://webapps.cse.unsw.edu.au/cse/new/

In the new structure, students must complete 192 Units of Credit (UoC) including:

 168 UOC from SE Stream
 12 UOC of General Education courses
 12 UOC electives (Foundational Disciplinary or Disciplinary Knowledge Courses

SE Stream Core courses1 (114 UOC):

 COMP1511 Introduction to Programming (6 UOC)
 COMP1521 Computer Systems Fundamentals (6 UOC)

1 For latest information on core courses syllabuses, see
http://webapps.cse.unsw.edu.au/cse/core/index.php

http://webapps.cse.unsw.edu.au/cse/new/
http://webapps.cse.unsw.edu.au/cse/core/index.php

 COMP1531 Software Engineering and Data Modelling (6UOC)
 COMP2041 Software Construction (6 UOC)
 COMP2111 Formal Modelling and Specification (6 UOC)
 COMP2511 Object-oriented Design & Programming (6 UOC)
 COMP2521 Data Structures and Algorithms (6 UOC)
 COMP3141 Software Quality and Testing (6 UOC)
 SENG4920 Ethics and Management (6 UOC)
 COMP4930 Thesis Part A (6 UOC)
 COMP4931 Thesis Part B (6 UOC)
 ENGG1000 Engineering Design (6 UOC)
 MATH1081 Discrete Mathematics (6 UOC)
 MATH1131 Mathematics 1A (6 UOC) or MATH1141 Higher Mathematics 1A (6

UOC)
 MATH1231 Mathematics 1B (6 UOC) or MATH1241 Higher Mathematics 1B (6

UOC)
 MATH2400 Finite Mathematics (3 UOC)
 MATH2589 Probability and Statistics (3 UOC)
 SENG2011 Reasoning about Programs Workshop (6 UOC)
 SENG2021 Requirements and Design Workshop (6 UOC)
 SENG3011 Implementation Workshop 3 (6 UOC)

Plus:

 Professional Electives (48 UOC): Any course from
o level 3, 4, 6 or 9 COMP courses, or
o level 3 or 4 INFS/MATH/ELEC/TELE courses

 Free Elective (6 UOC)
 60 days Industrial Training

Professional Elective Definition:

 any level 3 Computer Science (COMP) course

 any level 4 Computer Science (COMP) course

 any level 6 Computer Science (COMP) course

 any level 9 Computer Science (COMP) course

 any level 3 Information Systems (INFS) course

 any level 4 Information Systems (INFS) course

 any level 3 Mathematics (MATH) course

 any level 4 Mathematics (MATH) course

 any level 6 Mathematics (MATH) course

 any level 3 Electrical Engineering (ELEC) course

 any level 4 Electrical Engineering (ELEC) course

 any level 3 Telecommunications (TELE) course

 any level 4 Telecommunications (TELE) course
A number of specialisations are proposed with “packages” of electives.

Limit Requirements

Level 4 UOC Minimum Students must complete a minimum of 30 UOC of the following
courses.

 COMP4920 - Management and Ethics (6 UOC)

 COMP4930 - Thesis Part A (6 UOC)

 COMP4931 - Thesis Part B (6 UOC)

 any level 4 Computer Science (COMP) course

 any level 4 Information Systems (INFS) course

 any level 4 Mathematics (MATH) course

 any level 4 Electrical Engineering (ELEC) course

SE Degree Proposed Specialisations

Security specialisation

Defined around new courses funded by CBA initiative.

Information Systems Specialisation

Defined around courses offered by SISTM (www.sistm.unsw.edu.au)

http://www.sistm.unsw.edu.au/

Software as a Service Specialisation

Defined around the work of Service Oriented Computing Research Group
https://sites.google.com/site/unswsoc/

https://sites.google.com/site/unswsoc/

Formal Methods Specialisation

Data science Specialisation (awaiting information)

Defined around the work of Databases Research Group
https://www.engineering.unsw.edu.au/computer-science-
engineering/research/research-activities/database-research-group

Networks Specialisation

Defined around the work of Networked Systems and Security Research Group
https://www.engineering.unsw.edu.au/computer-science-
engineering/research/research-activities/networked-systems-and-security-group-
netsys

https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/database-research-group
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/database-research-group
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/networked-systems-and-security-group-netsys
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/networked-systems-and-security-group-netsys
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/networked-systems-and-security-group-netsys

Embedded Systems Specialisation (awaiting information)

Defined around the work of Trustworthy (http://ts.data61.csiro.au/projects/TS/) and
Embedded Systems Research Groups

AI Specialisation (awaiting information)

Defined around the work of AI Research Group

http://ts.data61.csiro.au/projects/TS/

COMP1531 Software Engineering and Data Modelling
School of Computer Science and Engineering, UNSW

Overview

Code/Title COMP1531 Software Engineering Fundamentals

Abbreviations SEF, 1531

Units of
Credit

6

Pre-requisites COMP1511

Excluded SENG1031

Equivalent SENG1031

Offered In S1, S2 (commencing 17s2)

Classes 2 hours lectures/week, 2 hours tute-lab/week, 1 hour mentor
meeting/week

Assessment Exam (theory+prac), Labs, Assignments, Quizzes

Technologies Python, Linux, web frameworks, HTML, css, javascript, git

Introduction

This course provides an introduction to software engineering principles: basic software
lifecycle concepts, modern development methodologies, conceptual modelling and
how these activities relate to programming. It also introduces the basic notions of
team-based project management via conducting a project to design, build and deploy a
simple web-based application. It is typically taken in the semester after completing
COMP1511, but could be delayed and taken later. It provides essential background for
the teamwork and project management required in many later courses.

The goal of this course is to expose the students to:

 Basic principles of conceptual data modelling and databases

 basic elements of software engineering - derived from the lifecycle of a
software system, including requirements elicitation, analysis and specification;
design; construction; verification and validation; deployment; and operation
and maintenance

 software engineering methodologies, processes, tools and techniques

 Web-based project and development practices on Web platforms

Assumed Knowledge

We assume that students have taken a first programming course, which has included
exposure to a moderate-sized, team-based project and some testing/debugging ideas.

Learning Outcomes

 On successful completion of this course, students should be able to ...

 describe the phases of software development and life-cycle of software - and
illustrate them from experience

 understand conceptual data modelling and develop simple data models

 get some exposure to project management and software development tools

 describe common behaviour that contribute to the effective functioning of a
team and identify necessary roles in a software development team

 understand agile methods and the principles of testing, code development and
validating software

 understand the architecture of simple Web systems

Topics

 software processes and project management

 software tools and development environments

 web technologies and web application architectures

 software requirements engineering

 software architectures and software design

 agile software development practice

 software construction

 software validation

 teamwork strategies

Schedule

Week Lectures Labs

Week 1 Intro (to course aims and software engineering). Sotware Design
Cycle. Methodologies for Software Development

xxx

Week 2 Software Requirement Engineering - requirement elicitation,
describing system data using UML or ER, functional/non-
functional requirements

xxx

WeeksWeek
3-6

CData modelling and introduction to databases, E-R model, E-R
diagrams

Week 4 Relational model, SQL schemas, E-R-to-SQL

Week 5 SQL: tables, select, from, where, aggregation

Week 6 SQL: join, group-by, views

Week 7 Agile Software Development Practice - requirement
engineering/software design/coding/testing in practice

xxx

Week 8 Software Construction - robust coding practice (tracking
defects/logging, checking input, initialisation, exception handling,
coding standards, framework development)

xxx

Week 9 Group Project. Overview of version control, build/deployment
management, tool integration

xxx

Week 10 Group project: Web front-ends, Javascript/CSS Introduction xxx

Week 11 Group Project Demonstrations -

Week 12 Group Project Showcase -

COMP2511 Object-Oriented Design & Programming
School of Computer Science and Engineering, UNSW

Overview

Code/Title COMP2511 Object-Oriented Design & Programming

Abbreviations OODP, 2511

Units of Credit 6

Pre-requisites COMP1531, COMP2521

Excluded COMP2911

Equivalent COMP2911

Offered In S1, S2 (commencing 18s1)

Classes 3 hours lectures/week, 2 hours tut-lab/week

Assessment Exam (theory/prac), Labs, Assignments, Quizzes

Technologies Java, UML, JUnit, Eclipse

Introduction

This course aims to introduce students to the principles of object-oriented design and
to fundamental techniques in object-oriented programming. Such knowledge is
important in later project-based courses.

The goal of the course is to expose students to:

 the fundamental principles of object-oriented design

 an object-oriented programming language such as Java

 the systematic application of object-oriented software design processes

 problem solving and modelling real world problems using the object-oriented
paradigm

Assumed Knowledge

Students should have some experience in working on team-based assignments, and at
least two semesters of programming, including a course on data structures and
algorithms. This requirement restricts the course to being taken in second year or later.

Learning Outcomes

On successful completion of this course, students should be able to ...

 design appropriate solutions to medium-scale problems using an object-
oriented approach

 apply a systematic object-oriented design process as a part of following
software engineering best practices

 apply an agile software development method to organize team-based projects

 create medium-scale object-oriented programs using appropriate design
principles

 use appropriate software engineering tools for the development of medium-
scale software systems

Topics

 object-oriented design

 object-oriented programming

 agile software processes

 design patterns

 introduction to user interface design and programming

 introduction to concurrency

Schedule

Week Lectures Tut-Labs

Week
1

Principles of Design; Software Engineering; Java basics,
Eclipse

Week
2

Object-Oriented Programming (Objects vs ADTs,
inheritance, encapsulation, polymorphism, Java object
model, equality, cloning)

Basic Java
programming

Week
3

Design by Contract (Pre- and Postconditions, Class
invariants, exceptions, Javadoc, Unit testing, JUnit)

Programming by
Contract

Week
4

Object-Oriented Design (Use cases, CRC Cards, UML) Object-Oriented
Design

Week
5

Generic Types and Polymorphism (Java type system,
generic types, Arrays and Lists, Interface types)

Generic Types

Week Introduction to Design Patterns (Iterator Pattern, Strategy Search Algorithms

6 Pattern)

Week
7

Problem-Solving Algorithms (A* search, heuristics) Problem-Solving
Algorithms

Week
8

Agile Software Processes (Scrum, Extreme Programming,
Agile Planning and Estimation)

Agile Software
Processes

Week
9

User Interface Design and Programming (Java GUI
programming, event-driven programming, Observer
Pattern)

User Interface
Programming

Week
10

Complex Design Patterns (Decorator Pattern, Composite
Pattern)

Sprint Reviews

Week
11

Introduction to Concurrency (multi-threaded systems,
race conditions, synchronization, locks)

Design Patterns

Week
12

Review Concurrency

COMP1521 Computer Systems Fundamentals
School of Computer Science and Engineering, UNSW

Overview

Code/Title COMP1521 Computer Systems Fundamentals

Abbreviations CSF, 1521

Units of Credit 6

Pre-requisites COMP1511

Excluded -

Equivalent -

Offered In S1, S2 (commencing 17s2)

Classes 3 hours lectures/week, 3 hours tute-lab/week

Assessment Exam, Labs, Assignments, Quizzes

Technologies C, Linux, make, gdb, git

Introduction

This course provides a programmer's view on how a computer system executes programs,
manipulates data and communicates. It enables students to become effective programmers
in dealing with issues of performance, portability, and robustness. It is typically taken in the
semester after completing COMP1511, but could be delayed and taken later. It serves as a
foundation for later courses on networks, operating systems, computer architecture and
compilers, where a deeper understanding of systems-level issues is required.

The goal of the course is to expose students to:

 this

 that
 something else

Assumed Knowledge

The course assumes that students have completed a first course in programming in the C
programming language. Students who completed their first programming course in a higher-
level language such as Java, C++ or Python are encouraged to ???

Learning Outcomes

On successful completion of this course, students should be able to ...

 Describe the layers of architectures in modern computer systems from hardware
device levels upwards

 Describe the principles of memory management and explain the workings of a
system with virtual memory management

 Explain how the major components of a CPU work together, including how data
(including instructions) is represented in a computer

 Design, implement and analyse small programs at the assembly/machine level,
including the use of I/O, interrupts and traps

 Describe the relationship between high-level procedural languages (e.g., C) and
assembly/machine language in the conventional machine layer, including how a
compiled program is executed in a classical von Neumann machine, with extensions
for threads, multiprocessor synchronization, and SIMD execution

 Explain how input/output operations are implemented, and describe some basic I/O
devices

 Describe the layered structure of a typical networked architecture

Topics

 architecture of computer systems
 machine-level programming
 mapping HLLs to machine-level
 runtime representation of HLL programs (stack, heap, code)
 memory architectures: virtual memory, caching
 input/output, disk devices, interrupts
 processor/memory architecture
 parallelism, synchronisation, coordination
 overview of operating system architecture
 overview of network architecture

Schedule

Week Lectures Labs

Week
1

introduction/overview, review of C, number representation bit-manipulation

Week
2

data structures: stacks, queues, linked lists accuracy of C
computations

Week
3

machine-level programming linked lists

Week
4

machine-level programming xxx

Week
5

compilation, assembly, linking, loading; runtime memory,
stack, heap

xxx

Week
6

memory hierarchy, caching, locality xxx

Week
7

virtual memory, file systems, operating systems xxx

Week
8

I/O, disk, exceptions (interrupts & traps) file manipulation

Week
9

computer systems as a series of layers, Flynn's taxonomy,
shared vs distributed, SMP, SIMD (incl. GPUs), embedded
processors, desktops, servers, mobile devices

xxx

Week
10

parallelism: thread-level, instruction-level, data-level, task-
level

xxx

Week
11

synchronisation, coordination, communication parallel
programming

Week
12

I/O revisited, networks

COMP1511 Introduction to Programming
School of Computer Science and Engineering, UNSW

Overview

Code/Title COMP1511 Introduction to Computing

Abbreviations ITP, 1511

Units of Credit 6

Pre-requisites none

Excluded COMP1917, COMP1911, COMP1921

Equivalent COMP1917

Offered In S1, S2 (commencing 17s1)

Classes 3 hours lectures/week, 3 hours tute-lab/week

Assessment Exam (theory+prac), Labs, Assignments, Quizzes

Technologies C, Linux, gcc, make, git, gdb

Introduction

This course aims to introduce students to the practice of developing software solutions to
(simple) problems. It would typically be taken in a student's first semester of study. It forms
a critical introduction to both computing and the CSE community, and leads on to all of the
other courses offered by CSE.

The goal of the course is to expose students to:

 fundamentals of programming
 problem-solving via software
 data structures
 how objects are represented in memory
 issues of code quality
 pair programming and teamwork
 software development as an engineering discipline

Assumed Knowledge

We assume minimal background in computing, but do assume that students have solid
HSC maths and can speak reasonable english. We assume no background in programming
or computing, but offer familiarisation labs prior to and early in semester for students who
want to learn more about the CSE lab environment.

Learning Outcomes

On successful completion of this course, students should be able to ...

 Design software solutions for simple problems
 Design software solutions for larger problems using abstraction and interfaces
 Distinguish between well-written programs and poorly written programs
 Write programs using good programming style
 Understand and appropriately use abstraction
 Effectively use memory and pointers in C
 Understand the low-level functioning of computers (memory, instructions)
 Create and use simple dynamic data structures such as linked lists and trees
 Know a range of sorting algorithms and be able to compare their performance

 Explain the complexity of simple algorithms
 Test and debug programs
 Work in a team to develop software

Topics

 Introduction to Programming
 Abstraction
 Variables and storage
 Control flow: if, while, functions
 Structured data: arrays, structs, linked lists
 Problem analysis, Design principles
 Craftsmanship and style
 Code review & writing codes to be read and modified
 Searching: linear, binary, simple hashing
 Sorting: selection, insertion, quicksort
 Introduction to complexity
 Programming in the large - programming and design principles
 Unit testing and debugging
 Professionalism: time management, teamwork, quality
 Issues in large projects - practical issues and shipping working product
 Agile development
 Simple networking (web based)
 Major group project (involving agile development and unit testing)

Schedule

Week Lectures Labs

Week
1

introduction, about university, learning,
abstraction, estimation, programming, C,
problem solving

introduction,
lab/workstation orientation,
first program

Week types, variables, memory, design with functions, program style, version

2 top down design, arithmetic expressions, layout,
programming style

control

Week
3

control structures (choice (if), repetition (while)),
more functions, scope, defining vs declaring,
pass by copy, unit testing

defining, using and testing
functions

Week
4

chars, strings, memory, addresses, pointers BMP file format, version
control

Week
5

arrays, using arrays, pointers and arrays, passing
arrays, time management

fractals

Week
6

run-time stack, frames, typedef team project, group
formation

Week
7

heap, malloc, structs, abstraction, abstract data
types (ADTs), teamwork

buffer overflow, stack frame
hacking

Week
8

more ADTs, standards, interfaces, concrete vs
abstract types

Quiet Week (no labs)

Week
9

dynamic structures, linked lists, realloc implementing an ADT

Week
10

searching in arrays, sorting algorithms,
complexity

linked lists

Week
11

project management, testing, unit tests,
software development methodologies

sorting

Week
12

professionalism, ethics practice Prac Exam

COMP2521 Data Structures and Algorithms
School of Computer Science and Engineering, UNSW

Overview

Code/Title COMP2521 Data Structures and Algorithms

Abbreviations DSA, 2521

Units of Credit 6

Pre-requisites COMP1511

Excluded COMP1927

Equivalent COMP1927

Offered In S1, S2 (commencing 17s2)

Classes 3 hours lectures/week, 3 hours tute-lab/week

Assessment Exam (theory+prac), Labs, Assignments, Quizzes

Technologies C, gcc, make, git, gdb

Introduction

The goal of this course is to deepen students' understanding of data structures and
algorithms and how these can be employed effectively in the design of software systems.
We anticipate that it will generally be taken in the second year of a program (and it was
originally assigned a level-2 course code), but since its only pre-requisite is ITP, is it
possible to take it in first year. It is an important course in covering a range of core data
structures and algorithms that will be used in context in later courses.

Assumed Knowledge

On entry to the course, we assume that students can:

 implement software in the procedural paradigm up to several 1000's LoC
 employ a range of fundamental data types in developing software solutions

(e.g. arrays, structs, matrices, sets, lists, ...)
 can design and implement simple abstract data types
 reason about the behaviour (correctness and efficiency) of programs

(e.g. defining pre- and post-conditions, efficiency of sorting algorithms)
 explain how programs work at the machine level (stack, heap, ...)
 work effectively in teams, following a systematic development process
 develop and use test suites for functions and programs
 work with a range of tools for program develoment

(editors, compilers, debuggers, profilers, version control systems)
 effectively use structures from discrete mathematics

(e.g. sets/relations/functions, basic logic, proof techniques from MATH1081)

Learning Outcomes

On successful completion of this course, students should be able to ...

 implement software in the procedural paradigm up to several 10,000's LoC
 use a range of algorithmic strategies in problem-solving
 reason about a wide range of data structures and their algorithms
 analyse the performance characteristics of algorithms
 measure the performance behaviour of programs
 reason about the correctness of programs
 choose/justify/implement an appropriate data structure for a given problem
 choose/analyse/implement appropriate algorithms to manipulate this data structure
 describe a range of fundamental concepts in parallelism

Topics

 fundamental data structures: lists, trees, graphs
 algorithm and program analysis
 techniques for sorting, searching, traversing

Schedule

Week Lectures Labs

Week 1 Introduction; Revision of data structures + ADTs
+ O(n)

Linked-list revision

Week 2 Sorting Review, Parallel Sorting External merge-sort

Week 3 Algorithmic Strategies: recursion, divide-and-
conquer, brute-force

Sorting Detective

Week 4 Graphs: Representation, Traversal, Paths, Tours Debugging with gdb

Week 5 Graph Algorithms: Shortest Path, MSTs Web crawling and directed
graphs

Week 6 Fundamentals of Tree Structures Minimum Cost Paths

Week 7 Searching (trees): Balanced Trees Tree Construction and
Traversal

Week 8 Searching (tables): Hashing Balanced Trees

Week 9 Searching (files): Files, B-Trees, Linear Hashing Hashing Performance
Experiment

Week
10

Searching (text): substring, regular expressions,
LCS

B-Tree Performance
Analysis

COMP2041 - Software Construction

Course Staff

Staff Name Role Email

Andrew Taylor

Lecturer & Admin

andrewt@cse.unsw.edu.au

Class Details

Day Time Room

Tuesday

13:00-15:00

Rex Vowels (EE LG1)

Thursday

17:00-18:00

Rex Vowels (EE LG1)

You will have chosen a 3 hour tut-lab slot when you enrolled.
Consultations times vary through session and are listed on the course home page.

Distance Stream

A distance (WEB) stream is available. Students in this stream will need to rely on
lecture recordings and the material placed on the web. Student should consider
carefully whether this is sufficient for them to successfully complete the course.

Communication

Sometimes urgent information may be sent to you by email. Make sure you pay careful
attention to any email you receive.
All official email will be sent to your CSE email address which is by dfefault forwarded
to your UNSW address. If you redirect your mail please do so carefully & check that
your redirection works.
Additional information will be provided in the Course Forum (linked to the class home
page). You should read it regularly. The forums is the best place to ask questions about
the course.

Course Summary

The following is a summary of the topics that will be covered in this course.

1. Tools for software construction
o Programming languages (C)
o Scripting languages (Perl, Shell, brief intro to python)
o Filters (sort, sed, grep, tr, ...)
o Analysis tools (debuggers, profilers)
o development tools (make, git, ...)

2. Techniques for software construction
o Analysis, design, coding, testing, debugging, tuning
o Interface design, documentation, configuration

3. Qualities of software systems
o Correctness, clarity, reliability, efficiency, portability, ...

The focus for the practical work will be on C and Perl. However, you would be well
advised to acquaint yourselves with the facilities provided by the Unix shell.

Course Aims

This course is designed for students who have mastered the basics of programming. It
aims to broaden your knowledge of techniques and tools for software construction.

Learning Outcomes

By the end of the course, you should have these attributes which will be useful to you
for the remainder of your studies and after graduation:

 have practical experience in programming the scripting languages Perl, the Unix
shell and optionally some Python.

 have a broader & deeper knowledge of building software systems

 more appreciation of the use of specific technologies and strategies during
software development

 exposure to tools for version control, performance improvement, configuration
and debugging,

 improvement of your ability to articulate & communicate concepts related to
programming & systems

Assumed Knowledge:

COMP2041/9041 assumes that you have a sound understanding of a procedural
programming language such as C and can:

 produce a correct procedural program from a spec

 understand fundamental data structures + algorithms (char, int, float, array,
struct, pointers, sorting, searching)

 appreciate use of abstraction in computing

For undergraduate (COMP2041) students, the above material will have been covered in
first year courses such as COMP1917 Higher Computing 1 and COMP1927 Higher Data
Str. & Algos.

For postgraduate (COMP9041) students, the above material will have been covered in
COMP9021 Principles of Programming and COMP9024 Data Structures/Algorithms, or
similar material will have been covered in their undergraduate degree.
A limited amount of specific knowledge of the C programming language may be
assumed during the course.

Students who are not competant C programmers should discuss with the lecturer at
the first lecture the impact this might have. Typically students who are competant in a
similar languages such as C++ and Java only need to do some extra reading.

Teaching Strategies

Lectures: Lectures will be used to present the theory and practice of the techniques
and tools in this course. There will be extensive use of case studies and practical
demonstrations during lectures. Lecture notes will be available on the course web
pages before each lecture. Tutorials From week 2 you will also be expected to attend a
one-hour tutorial session to clarify ideas from lectures and work through exercises
based on the lecture material. You should make sure that you use them effectively by
examining in advance the material to be covered in each week's tute, by asking
questions, by offering suggestions and by generally participating. The tutorial questions
will be posted on the Web in the week before each tute. There are no marks for
tutorial attendance. Laboratory Classes: following the tute class each week, there will
be a two-hour lab class, during which you will work on a variety of small practical
problems involving the tools introduced in lectures. Because this course is practical in
nature, lab class are a very important component, and you should make every effort to
attend the labs and complete the exercises diligently. In particular, keep up-to-
date with the Lab work; if you fall behind it affects your ability to understand later
material in the course.
To obtain a mark for a lab exercise you must both demonstrate the completed lab
exercise to your tutor during a lab class and submit it using give.

If you don't complete a lab exercise during the scheduled class, you can still obtain the
mark if you both submit the completed exercises before midnight Monday and you
demonstrate it to you tutor in the follow week's lab.

COMP9041 students are recommended to attend tutorials and labs, but may opt to
complete the work in their own time and not have it formally assessed. To do this, they
must advise the lecturer by email by the end of week 2.

Assignments

In the assignment work, you will work through the process of building and/or
modifying software systems, using the tools and techniques described in lectures. The
assignment work will focus on Perl and Perl+CGI.
There will be two assignments the first will be a Perl application due week 7/8, the
second due will be Perl/CGI due week 12. They will be of roughly equal weight.

Exam

There will be a three-hour primarily practical exam, to be held in the CSE labs during
the exam period. It consists of five small implementation tasks and one written section.
During this exam you will be able to execute, debug and test your answers. The
implementation tasks will be similar to those encountered in lab exercises

You will not be expected to remember the details of programming languages used in
the course; reference information will be provided along with the exam paper, giving a
summary of any language that we expect you to use.

It is a hurdle requirement for this course that you pass the exam.
It also is a hurdle requirement for this course that you perform satisfactorily on the
implementation tasks in the exam. This is defined as successfully at least two of the five
implementation tasks.

Teaching Rationale

This course has a heavy practical orientation. Lectures will revolve around live
demonstrations of programming and use of tools. Labs & assignments form a key part.

Assessment

Component Value

Lab Work 10%

Assignments 30%

Exam 60%

These assessment weights might be varied by a few percent when the assignments
have been chosen.
If your final exam mark is less than 50% then your overall mark will not be allowed to
exceed your exam mark. In other words you must pass the final exam to pass the
course.
As mentioned above, your performance on the practical component of the final exam
must also be satisfactory to pass the course.
The lecturer may scale overall marks, or individual components, up or down to obtain a
desired mark distribution.
You may be excluded from the prac exam if you have < 10/40 for assignments+labs.

ass = mark for assignments (out of 30)

labs = mark for assessed labs (out of 10)

exam = mark for exam (out of 60)

okExam = two implementation tasks solved on exam

mark = ass + labs + pexam + texam

grade = HD|DN|CR|PS if mark >= 50 && okExam

 = FL if mark < 50 && okExam

 = UF if !okExam

Academic honesty and plagiarism

What is Plagiarism?

Plagiarism is the presentation of the thoughts or work of another as one's own.*
Examples include:

 direct duplication of the thoughts or work of another, including by copying
material, ideas or concepts from a book, article, report or other written
document (whether published or unpublished), composition, artwork, design,
drawing, circuitry, computer program or software, web site, Internet, other
electronic resource, or another person's assignment without appropriate
acknowledgement;

 paraphrasing another person's work with very minor changes keeping the
meaning, form and/or progression of ideas of the original;

 piecing together sections of the work of others into a new whole;

 presenting an assessment item as independent work when it has been
produced in whole or part in collusion with other people, for example, another
student or a tutor; and

 claiming credit for a proportion a work contributed to a group assessment item
that is greater than that actually contributed.

For the purposes of this policy, submitting an assessment item that has already been
submitted for academic credit elsewhere may be considered plagiarism. Knowingly
permitting your work to be copied by another student may also be considered to be
plagiarism.
Note that an assessment item produced in oral, not written, form, or involving live
presentation, may similarly contain plagiarised material.
The inclusion of the thoughts or work of another with attribution appropriate to the
academic discipline does not amount to plagiarism.
The Learning Centre website is main repository for resources for staff and students on
plagiarism and academic honesty. These resources can be located
via:www.lc.unsw.edu.au/plagiarism

The Learning Centre also provides substantial educational written materials,
workshops, and tutorials to aid students, for example, in:

 correct referencing practices;

 paraphrasing, summarising, essay writing, and time management;

 appropriate use of, and attribution for, a range of materials including text,
images, formulae and concepts.

Individual assistance is available on request from The Learning Centre. Students are
also reminded that careful time management is an important part of study and one of
the identified causes of plagiarism is poor time management. Students should allow
sufficient time for research, drafting, and the proper referencing of sources in
preparing all assessment items.

All work submitted for assessment must be your own work. Lab exercises and
assignments must be completed individually. We regard copying of assignments or lab
exercises, in whole or part, as a very serious offence. We use plagiarism detection
software to search for multiply-submitted work.

1. Submitting part or all of other students' work, with or without
acknowledgement, is not acceptable.

2. Submitting solutions written by other persons is also not acceptable.
3. Building on ideas and partial solutions obtained from public sources, such as

web resources, may be acceptable, provided full acknowledgement is made.
However, the final mark will take into account the starting point and how much

http://www.lc.unsw.edu.au/plagiarism

development work would have been required. Failing to acknowledge web or
other resources is unacceptable.

4. Discussing approaches to solutions with other students is quite appropriate, but
any discussions should remain at the design level, and must not include
program text. Comparison tools will detect any common code across the
student body.

5. The safest approach is to work diligently on your own, seeking help from the
forum or course staff.

6. Submission of work derived from another person, or jointly written with
someone else will, may result in automatic failure for COMP2041/COMP9041
with a mark of zero.

7. Allowing another student to copy from you will may result in a mark of zero for
your own assignment or lab exercises. Do not provide your work to any other
person, even people who not UNSW students. You will be held responsible for
the actions of anyone you provide your work to.

8. Severe or second offences will result in automatic failure, exclusion from the
university, and possibly other academic discipline.

Refer also to the Yellow Form material on plagiarism and the Learning Centre

website

Course schedule

The anticipated course sequence is: shell scripting (weeks 1-3), Perl (weeks 3-6), web
applications (6-9), programming tools(9-12) We may need to vary this to some degree
as we update material in the courses.
The lectures are timetabled for weeks 1-12. It is possible the week 13 lecture slots will
be used for a remedial revision lecture or other optional presentations so please keep
them free.

Resources for Students

There is no required textbook for the course. Useful reference books include the
following:

 Kernighan & Pike, The Practice of Programming,
Addison-Wesley, 1998.
(Inspiration for 2041 - philosophy and some tool details)

 McConnell, Code Complete (2ed),
Microsoft Press, 2004.
(Many interesting case studies and practical ideas)

http://www.cse.unsw.edu.au/~studentoffice/policies/yellowform.html#assign
http://www.lc.unsw.edu.au/plagiarism
http://www.lc.unsw.edu.au/plagiarism
http://books.google.com.au/books?id=to6M9_dbjosC
http://books.google.com.au/books?id=QnghAQAAIAAJ

 Wall, Christiansen & Orwant , Programming Perl (3ed),
O'Reilly, 2000. (Original & best Perl reference manual)

 Schwartz, Phoenix & Foy, Learning Perl (5ed),
O'Reilly, 2008. (gentle & careful introduction to Perl)

 Christiansen & Torkington, Perl Cookbook (2ed),
O'Reilly, 2003. (Lots and lots of interesting Perl examples)

 Schwartz & Phoenix, Learning Perl Objects, References, and Modules (2ed),
O'Reilly, 2003. (gentle & careful introduction to parts of Perl mostly not
covered in this course)

 Schwartz, Phoenix & Foy, Intermediate Perl (2ed),
O'Reilly, 2008. (good book to read after 2041 - starts where this course
finishes)

 Sebesta, A Little Book on Perl,
Prentice Hall, 1999. (Modern, concise introduction to Perl)

 Orwant, Hietaniemi, MacDonald, Mastering Algorithms with Perl,
O'Reilly, 1999. (Algorithms and data structures via Perl)

 Kochgan & Wood 2003, UnixÂ® Shell Programming,
Sams Publishing 2003 (Careful intoduction to Shell Programming)

 Peek, O'Reilly, Loukides, Bash Cookbook,
O'Reilly, 2007. (Recipe(example) based intro to Shell programming)

 Powers, Peek, O'Reilly, Loukides, Unix Power Tools (3ed),
O'Reilly, 2003. (Comprehensive guide to common Unix tools)

 Loukides & Oram, Programming with GNU Software,
O'Reilly, 1997. (Tutorial on the GNU programming tools (gcc,gdb,...))

 Robbins, Unix in a Nutshell (4ed),
O'Reilly, 2006. (Concise guide to Unix and its toolset)

 Kernighan & Pike, The Unix Programming Environment,
Prentice Hall, 1984. (Pre-cursor to the textbook, intro to Unix tools)

For pointers to other useful reading material, including documentation for all of the
tools used in the practical work, see the course Web pages.

Course evaluation and development

Student feedback on this course will be obtained via electronic survey at the end of
session, and will be used to make continual improvements to the course. Students are
also encouraged to provide informal feedback during the session, and to let the
lecturer in charge know of any problems, as soon as they arise. Suggestions will be
listened to very openly, positively, constructively and thankfully, and every reasonable
effort will be made to address them.
This feedback is used to improve the course materials & their delivery. In the most
recent session feedback was very favourable probably as results of changes based on

http://books.google.com.au/books?id=xx5JBSqcQzIC
http://books.google.com.au/books?id=lNVHi3TunxsC
http://books.google.com.au/books?id=IzdJIax6J5oC
http://books.google.com.au/books?id=EeDqu4npkqMC
http://books.google.com.au/books?id=oziJDqV0rRMC
http://books.google.com.au/books?id=mYXfQwAACAAJ
http://books.google.com.au/books?id=z9xMfXGoWd0C
http://books.google.com.au/books?id=hxEL__hcpSoC
http://books.google.com.au/books?id=Qu6H8fnAvGoC
http://books.google.com.au/books?id=tDDb5zRoONwC
http://books.google.com.au/books?id=IWzjnR8xLW0C
http://books.google.com.au/books?id=YkNiiLupct4C
http://books.google.com.au/books?id=mcO0Vh9efE0C

previous session's feedback. Some lab exercises and lecture topics will be updated to
better reflect current practice.

Other matters

 Occupational Health and Safety policies

 Information for students with disabilities Contact the lecturer ASAP if you

have any disabilities that may affect this course.

http://www.hr.unsw.edu.au/ohswc/ohs/ohs_policies.html
http://www.studentequity.unsw.edu.au/

COMP2111 Formal Modelling and Specification

Learning Objectives:

• develop an appreciation of the relevance of discrete mathematics to com-
puting

• improve facility in the use of discrete mathematics concepts

• improve capacity for rigorous reasoning

• learn to use a toolkit of formal modelling approaches frequently used in
computing

The course as a whole addresses MAA.md.2, DES.dd.4

Content areas:

• Propositional Logic. Validity, Satisfiability.

Applications to hardware design, refactoring/simplification of conditional
statements, scheduling problems, SAT as a basis for verification.

• Natural deduction for propositional logic.

Reasoning about propositional specifications.

• Set theory: Relations, transitive closure

Application: relational databases

• Predicate Logic: terms, substitution, term rewriting, pattern matching

Operational semantics of a simple imperative language using relations,
transitive closure

Hoare logic rules for assignment statements, if statements

36 | P a g e

• Predicate Logic: quantification

Applications: database integrity constraints, program interface specifica- tions
(preconditions and postconditions)

Exercise: Drill in writing predicate logic specifications with a proper in-
teraction between quantifiers and propositional operators, understanding
subtleties of universal quantification in the trivial case.

• Set Theory: functions and types

Introduction to functional programming, functional programs as high level
specs.

• Inductively defined sets, and structural induction.

Application: recursive data type definitions, recursive functions defined over
these, and reasoning about these.

Practical Exercise: write some simple Haskell programs, prove properties of
them

• Hoare Logic for loops (MAA.md.2)

Simple examples, e.g. summation, max (More complex examples left for
SE2011)

• Reasoning: natural deduction for predicate logic (MAA.mf.2)

Applications: reasoning about equivalent formulations of a specification,
examples showing that a postcondition implies a precondition (examples of
this for loop exit conditions)

• State Machine models (MAA.tm.2)

Invariants (MAA.md.2)

Manual proof of invariants.

Model checking of invariants (MAA.af.2)

• Formal Languages, Deterministic and Nondeterministic Finite State Au-
tomata, Regular expressions (FND.mf.7)

Application: exercises with unix tools using regexp, simple concurrency
questions

(Leave determinization, pumping lemma for COMP4141)

• Context Free Grammars (FND.mf.8)

Application: grammar for a simple expression language, grammar for a
fragment of HTML

Practical exercise: Given a Haskell parser (generated from a CFG using
happy) and evaluator for a simple expression language, extend it to a more
expressive language

37 | P a g e

 SENG2011: Reasoning about Programs: from Specification to
Implementation

Learning Objectives:

• Gain practical experience in rigorous modelling and specification

• Learn patterns of reasoning by which programs implementing a specifica- tion
can be derived through a compositional process.

• Learn patterns of reasoning for showing program correctness.

• Understand decomposition, abstraction and refinement.

The course uses formal methods, but the focus is on acquiring an understand- ing
of the patterns of reasoning treated, which can also be applied informally to
improve students’ program development ability – this will be the take-away
message for many students.

Topics:

• Hoare logic, pre-conditions, post-conditions and invariants, revisited through
larger applications (MAA.md.1)

• Termination: variants, well-founded orders, lexicographic order.

• Refinement Calculus and program derivation (MAA.md.1)

• Replacement of an inefficient datatype implementation by an equivalent,
more efficient implementation – coupling invariants

• Use of a formal verification tool (e.g., Dafny/Alloy) (MAA.mf.4)

The emphasis is on developing an understanding of these ideas through many
worked examples of correct program development.

38 | P a g e

SENG2021 Requirements and Design Workshop

Course
Code:

SENG2021

Course Title: Requirements and Design Workshop

Units of
Credit:

6

Course
Website:

http://www.cse.unsw.edu.au/~se2021/

Handbook
Entry:

http://www.handbook.unsw.edu.au/undergraduate/courses/2015/SENG2021.htm
l

Course Summary

This course is part the series of software engineering workshops designed to teach students
to work in teams and apply their knowledge to solve real-life problems. This workshop will
offer students the opportunity to concentrate on software requirements analysis and design
issues including artefacts produced as well techniques and tools to support this process
(brainstorming, problem statements, requirements elicitation, producing design documents
and prototyping). In addition, it aims to provide students with some of teamwork skills,
requirements engineering and design techniques that an engineer would use in the early
stages of the development process. The students will also be getting experience on different
aspects of designing a Web application with a major focus on the front-end. The
requirements for this course will be determined in collaboration with industry partners and
will relate to developing a realistic application. Most of the teaching will be conducted via
mentoring of the teams. At the beginning of the course, some lectures will give background
on some key concepts and technologies and on how to produced artefacts in general. The
course has a number of industry sponsors that include Fairfax Media and Macquarie Bank.

Course Aims

To develop:

 a practical appreciation of the software requirements and design process;

 an understanding of the relation between user requirements, design concepts and
implementation considerations;

 an understanding of the quality of project management and the role of managers,
users, designers, programmers and analysts throughout the system’s development
process

 an understanding of Web systems requirements, design and prototyping
approaches;

 an ability to produce key requirements and design documents describing how a
specified system will be implemented;

 an appreciation of basic usability and Human Computer Interaction (HCI) issues

http://www.cse.unsw.edu.au/~se2021/
http://www.handbook.unsw.edu.au/undergraduate/courses/2015/SENG2021.html
http://www.handbook.unsw.edu.au/undergraduate/courses/2015/SENG2021.html

39 | P a g e

Student Learning Outcomes

After completing this course, students will:

 reinforce existing knowledge about the concepts and principles in the early stages of
the software development life cycle

 experience with the development of project plans, brainstorming, requirement
documents, prototyping techniques, issues and tasks management, peer reviews

 learn about the processes of converting requirements to design in a realistic context
 acquire practical design skills, particularly in architectural design and software

component integration
 experience the process of implementing a prototype Web system by choosing

appropriate languages, libraries and frameworks.
 acquire additional skills involved in working as part of a project team working within

strict time constraints.
 learn the process of writing reports and documentation for specific needs.
 the recognition that production of quality software is a task demanding a disciplined

approach to all stages of its development
 an appreciation of the many and varied issues involved in the development of

software systems and the role and the importance that Software Engineering review
processes play in producing quality systems

 develop an awareness of the community of engineering professions and the
importance of keeping current through life-long learning and through interacting
with that community. Students will also be encouraged to develop their research
skills as one of the means of acquiring the necessary knowledge and skills to solve
engineering problems

This course contributes to the development of the following graduate attributes:

Graduate Attribute
Where
Acquired

the skills involved in scholarly enquiry yes

an in-depth engagement with relevant disciplinary knowledge in its
interdisciplinary context

yes

the capacity for analytical and critical thinking and for creative problem
solving

yes

the ability to engage in independent and reflective learning yes

the skills to locate, evaluate and use relevant information (Information
Literacy)

yes

the capacity for enterprise, initiative and creativity yes

an appreciation of and respect for, diversity no

a capacity to contribute to, and work within, the international community no

the skills required for collaborative and multidisciplinary work yes

40 | P a g e

an appreciation of, and a responsiveness to, change yes

a respect for ethical practice and social responsibility no

the skills of effective communication yes

Assumed Knowledge

Before commencing this course, students should have:

 The ability to develop requirements documents

 The ability to design and implement general algorithms

 Basic knowledge of essential design concepts and techniques (equivalent to UML class
diagrams and ER)

 Basic knowledge of scripting and Web technologies

 Writing and communication skills

These are assumed to have been acquired in the previous software engineering courses and
workshops

Teaching Rationale

In this course, students will learn and apply generic skills including requirement elicitation
techniques, the design review process, developing team skills, working creatively through
group work and brainstorming and managing the varying levels of uncertainty involved in
these processes. A primary goal of this course is to teach students the importance and
process of group work. Students will learn that both human and technical views of design
and implementation are equally important issues. In order to develop long-lasting and
efficient software systems—in essence a quality product—Software Engineers need to be
aware of and address both these factors in the development process. Less tangible
outcomes are for students to also see that specifications are not the panacea of correctness,
specification can be wrong and more importantly they can be subtly wrong. In addition,
students will see first hand how assumptions and bias can sometimes be embodied in a
specification unintentionally.
The workshop follows a product-based framework to the project-based learning. A set of
intermediate deliverables leading to a product are specified by the stakeholder, a role
assumed by the lecturer in charge. Some weekly lecture slots will be used to elaborate on
the deliverables and answer general questions. During these meetings, teams are
encouraged to discuss their progress and demonstrate work-in-progress. Teams can also
arrange additional meetings with the stakeholder if required. A tutor will be available to
assist with technical matters and answer queries related to the case study.

Teaching Strategies

Early weeks will consist of lectures; afterwards, all teams will meet weekly with their
mentors. The Schedule specifies the activities for each week. Teams are offered the

41 | P a g e

possibility to hold additional mentoring sessions if the need arises. Students can also ask for
lectures on particular topics.
The Macquarie Second Year Software Engineering prize is awarded to one team from
SENG2021 in a particular year. A number of teams usually three are chosen on the basis of
their final demonstration and are asked to prepare a 20 to 30 minute presentation
explaining their design and prototype implementation of the current project. The
presentation is to be made to members of Macquarie Bank.

Assessment

The assessable components for the course are:
 Brainstorming
 Software specification artefacts (problem statements, stories, class
 Requirements diagrams, use cases, low-fidelity prototypes, high-fidelity prototypes)
 Design reports: architectural design, GUI design, class and sequence diagrams
 Group presentations: pitching, prototype demo
 Peer reviews

For more information on these deliverables, see the Course Web page.

It is assumed that all students will have read and understood the regulations outlined in the
myUNSW Assessment Policy If you have not familiarised yourself with these it is strongly
suggested that you do so. This course will be administered using those regulations.

Academic Honesty and Plagiarism

Plagiarism is defined as using the words or ideas of others and passing them off as your
own. UNSW and CSE treat plagiarism as academic misconduct, which means that it carries
penalties as severe as being excluded from further study at UNSW. There are several on-line
sources to help you understand what plagiarism is and how it is dealt with at UNSW:

 Plagiarism

 Academic Integrity and Plagiarism

 CSE: Addendum to UNSW Plagiarism Guidelines

 CSE: Yellow Form (whose terms you have agreed to)

Make sure that you read and understand these. Ignorance is not accepted as an excuse for
plagiarism.

Course Schedule (TO BE DONE)

Weekly Schedule

Additional details and changes will be posted on the course's noticeboard.

https://student.unsw.edu.au/what-plagiarism
https://student.unsw.edu.au/what-plagiarism
https://student.unsw.edu.au/plagiarism
http://www.cse.unsw.edu.au/~chak/plagiarism/plagiarism.html
http://www.cse.unsw.edu.au/people/studentoffice/policies/yellowform.html

42 | P a g e

Resources for Students

For domain knowledge, students are encouraged to research appropriate sources of
information depending on their needs. They are also expected to learn about the basic
concepts using Web data sources.

Course Evaluation and Development

This course is evaluated each session using the CATEI system.

During the last CATEI evaluation, students have raised many issues related to the clarity of
the specifications given. Although every effort is made to produce good specifications,
students must appreciate that most workshops projects are open ended and leave room for
innovation by students. Therefore, it is important that they seek information about the
project requirements stakeholder on a continuous basis during mentoring sessions.

43 | P a g e

SENG3011 Implementation Workshop

Course Details

Course
Code:

SENG3011

Course Title: Software Engineering Workshop 3

Units of
Credit:

6

Course
Website:

http://www.cse.unsw.edu.au/~se3011/

Handbook
Entry:

http://www.handbook.unsw.edu.au/undergraduate/courses/2016/SENG3011.html

Course Summary

The purpose of the 3rd year software engineering workshop is to give students experience
with a group-based large-scale software development project involving a realistic
application in the business domain (finance). In this session, teams will be developing a
complex software application and the focus is to learn about a new application domain,
study the requirements, manage the project, liaise with the stakeholder and deliver high
quality working solutions. Another aspect of the workshop is to reinforce skills in software
design, testing, reporting and the use of support tools around these activities.

Course Aims

This third year workshop focuses on the issues of designing and implementing a quality
software system that conforms to the requirements of a stakeholder. Besides sharpening
their design and coding skills, students will have to get immersed in a complex application
domain, learn the basic concepts to be able to understand the requirements and
continuously communicate with the stakeholder to discuss issues arising from the project
such as design trade-offs, additional functionalities, new interface features etc. In addition,
students will develop interpersonal communication skills by preparing correctly formatted
and structured reports, negotiating technical, management and interpersonal issues within
their teams and resolving problems within their development teams using effective conflict
resolution techniques.

Unlike previous projects with rigid requirements, groups are encouraged to be creative in
their implementation by focusing on delivering the best quality product in consultation with
the stakeholder. Consequently, they have the complete freedom in choosing the
implementation technologies of their choice e.g. (Java, C++, J2EE, .NET or hybrids) providing
they meet the requirements of the stakeholder.

http://www.cse.unsw.edu.au/~se3011/
http://www.handbook.unsw.edu.au/undergraduate/courses/2016/SENG3011.html

44 | P a g e

The application domain selected in this session is in the finance area. In this workshop,
students will be issued with an initial requirements document outlining the essential
features of a product. Additional information will be given on a needs basis throughout the
workshop in a variety of ways (emails, regular meetings, class lecture). Many guest lectures
will be organised with industry speakers and access to relevant data for the project will be
facilitated.

Student Learning Outcomes

After completing this course, students will:

 reinforce existing knowledge about the concepts and principles of software
development associated with the implementation of quality software within an
organisational context.

 learn about the processes of requirements elicitation and engineering in a realistic
context

 acquire practical design skills, particularly in architectural design and software
component integration

 experience the process of implementing a quality software system by choosing
appropriate languages, libraries and frameworks.

 acquire additional skills involved in working as part of a project team implementing a
quality software system within strict time constraints.

 learn the process of writing reports and documentation for specific needs.

 get introduced to a new business application domain (financial market operations in
this case)

This course contributes to the development of the following graduate attributes:

Graduate Attribute
Where
Acquired

the skills involved in scholarly enquiry yes

an in-depth engagement with relevant disciplinary knowledge in its
interdisciplinary context

yes

the capacity for analytical and critical thinking and for creative problem
solving

yes

the ability to engage in independent and reflective learning yes

the skills to locate, evaluate and use relevant information (Information
Literacy)

yes

the capacity for enterprise, initiative and creativity yes

an appreciation of and respect for, diversity no

a capacity to contribute to, and work within, the international community no

the skills required for collaborative and multidisciplinary work yes

an appreciation of, and a responsiveness to, change yes

45 | P a g e

a respect for ethical practice and social responsibility no

the skills of effective communication yes

Assumed Knowledge

Before commencing this course, students should have:

 The ability to develop complex programs from stated requirements
 The ability to design and implement algorithms for text and data processing
 Good knowledge of design concepts and techniques (equivalent to UML class diagrams and

ER)
 Good knowledge of database and Web technologies
 Writing and communication skills

These are assumed to have been acquired in the previous software engineering courses and
workshops

Teaching Rationale

This course adopts a project-based approach to Learning and Teaching where students learn
through applying their knowledge in situations inspired from real-life. Software
development in a group situation is encouraged with the lecturer and other external
evaluators guiding and providing continuous feedback to each group.

Teaching Strategies

In this workshop, a set of intermediate deliverables leading to a product are specified by the
stakeholder, a role assumed by the lecturer in charge. Some weekly lecture slots will be
used to elaborate on the deliverables and answer general questions. During these meetings,
teams are encouraged to discuss their progress and demonstrate work-in-progress. Teams
can also arrange additional meetings with the stakeholder if required. A tutor will be
available to assist with technical matters and answer queries related to the case study.
Assistance can also given over email by the lecturer in charge.

Assessment

The assessable components for the course are:

 Functionality and technical quality of the four prototypes (5%+10%+15%+35%=65%).
 Quality of 3 written reports: Initial, Testing and Final Reports (5%+10%+20%=35%).

Details about these assessment components and the deadlines will be given via the course's
on-line system.

46 | P a g e

Academic Honesty and Plagiarism

Plagiarism is defined as using the words or ideas of others and presenting them as your
own. UNSW and CSE treat plagiarism as academic misconduct, which means that it carries
penalties as severe as being excluded from further study at UNSW. There are several on-line
sources to help you understand what plagiarism is and how it is dealt with at UNSW:

 Learning Centre: Plagiarism and Academic Integrity
 MyUNSW: Plagiarism and Academic Misconduct
 CSE: Addendum to UNSW Plagiarism Guidelines
 CSE: Yellow Form (whose terms you have agreed to)

Make sure that you read and understand these. Ignorance is not accepted as an excuse for
plagiarism.

Course Schedule

Weekly Schedule

 Week1: Introductory lecture. Group Formation.
 Week2: Guest lecture by Optiver. Finalising Groups.
 Week3: Mentoring.
 Week4: Mentoring. Management Report due.
 Week5: Guest lectures by industry.Prototype 1 due.
 Week6: Mentoring Meeting.
 Week7: Mentoring. Prototype 2 due.
 Week8: Public Holiday.
 Week9: Mentoring Meeting. Testing Report due.
 Week10: Public Demonstrations. Prototype 3 public demonstrations
 Week11: Mentoring Meeting.
 Week12: Final demonstrations. Prototype 4 and Final Report due.

Additional details and changes will be posted on the course's noticeboard.

Resources for Students

For domain knowledge, students are encouraged to research appropriate sources of
information depending on their needs. They are also expected to learn about the basic
concepts using Web sources (more information will be given).

Course Evaluation and Development

This course is evaluated each session using the CATEI system.

In the previous offering of this course, feedback was generally positive mainly because of
the industry nature of the project and the involvement of industry partners. The course
sponsor (Optiver) gave at the end of the workshop a very clear message that this course

https://my.unsw.edu.au/student/atoz/Plagiarism.html
http://www.lc.unsw.edu.au/plagiarism/index.html
https://my.unsw.edu.au/student/atoz/Plagiarism.html
https://my.unsw.edu.au/student/academiclife/assessment/AcademicMisconductStudentMisconduct.html
http://www.cse.unsw.edu.au/~chak/plagiarism/plagiarism.html
http://www.cse.unsw.edu.au/people/studentoffice/policies/yellowform.html

47 | P a g e

supports software development skills being put into practice and provides a great
foundation for working with industry.

Most suggestions for improvements relate to how deliverables were assessed. In response,
every effort will be made at explaining the criteria used for marking in the documentation
and during mentoring sessions with students.

Having said that, students must also appreciate that workshop projects are not
programming assignments. They deliberately have some ambiguities in the requirements
and whenever unsure, students should seek advice during mentoring sessions. In industry, it
is rare that all requirements are clearly written down in advance for every project and
workshops are designed to teach students to cope with uncertainty in business
environments.

48 | P a g e

COMP3141 Design and Software Quality

 Software correctness

 Functional programming

 Introduction to functional programming

 Types and software quality

 Ensuring software quality (industry guest lecture)

 Unit testing versus property based testing

 Logical program properties

 Static versus dynamic checking

 Controlling effects

 Machine checked program properties

 Concurrency and parallelism

49 | P a g e

50 | P a g e

COMP4920/SENG4920 Management and Ethics

Contact Details

Name Role E-Mail Phone

Wayne Wobcke Lecturer in charge w.wobcke@unsw.edu.au 9385 6475

Bruno Gaeta Lecturer bgaeta@unsw.edu.au 9385 7213

Course Details

Units of Credit: 6

Web Site: http://www.cse.unsw.edu.au/~cs4920/

Timetable:

Lecture Time Room Lecturers

Wed 12.00-2.00 Rex Vowels Wayne Wobcke, Bruno Gaeta

Seminar Time(**) Room Facilitator E-Mail

Mon 10.00-12.00 Square House 208 Sandeepa Kannangara s.kannangara@unsw.edu.au

Mon 12.00-2.00 Square House 208 Bruno Gaeta bgaeta@unsw.edu.au

Tue 10.00-12.00 Mathews 123 Rob Everest robertce@cse.unsw.edu.au

Tue 12.00-2.00(*) Mathews 125 Wayne Wobcke w.wobcke@unsw.edu.au

Tue 3.00-5.00(*) Square House 207 Wayne Wobcke w.wobcke@unsw.edu.au

Wed 10.00-12.00 Quad G054 Sandeepa Kannangara s.kannangara@unsw.edu.au

Wed 2.00-4.00 Mathews 226 Rob Everest robertce@cse.unsw.edu.au

Wed 4.00-6.00 Mathews 309 John Calvo-Martinez jcalvo@cse.unsw.edu.au

Thu 9.00-11.00 Ainsworth G01 John Calvo-Martinez jcalvo@cse.unsw.edu.au

Note: (*) Class for SENG students only
Note: (**) Seminars may be cancelled depending on enrolments

Preamble

COMP4920 is taken by two groups of students: SENG students who have completed
software project management as part of Software Engineering workshops, and COMP
students (Computer Science, Computer Engineering and Bioinformatics students) who have
not previously studied software project management. Lectures are common, but seminars
and assessment differ between the two groups. Differences are highlighted in blue.

http://www.cse.unsw.edu.au/~wobcke
http://www.cse.unsw.edu.au/~bgaeta
http://www.cse.unsw.edu.au/~cs4920/

51 | P a g e

Course Aims

COMP4920 covers practical aspects of both software project management and professional
issues and ethics, and as such is critical preparation for graduates about to enter the
workforce, in addition to being essential for accreditation of the Software Engineering,
Computer Science, Computer Engineering and Bioinformatics degree programmes. Students
enrolling should be in the final year of study or nearing completion of their degree.

There are two specific themes and objectives.

 Software Project Management. To gain practical experience in all phases of the
planning and execution of a software project, including requirements scoping, choice
of software process methodology, project planning and scheduling, teamwork and
communication, and risk and change management. SENG students study project
management only in seminars: there is no practical component.

 Professional Issues and Ethics. To appreciate the responsibilities of a professional
software engineer and understand the ethical dimensions of the IT industry as
applied to specific issues such as software correctness, privacy and security,
intellectual property and legal obligations of IT practitioners. SENG students study
professional issues to a greater depth and breadth than COMP students.

Student Learning Outcomes

On successfully completing this course, students should be able to:

 Software Project Management. (COMP students only)
o Understand the range of activities involved in a large software project.
o Be able to plan and successfully execute a team-based software project.
o Take on different roles in a team to contribute to team success.
o Understand and appropriately apply software engineering processes.
o Understand the importance of teamwork and communication in a software

project.
 Professional Issues and Ethics.

o Understand the responsibilities of a professional software engineer.
o Appreciate and apply ethical frameworks to make professional judgements.
o Develop critical thinking in relation to professional issues.
o Gain in-depth understanding of several topical professional issues.
o Appreciate different ways of managing intellectual property.
o Understand the societal context of technology developments.
o Improve communication skills needed to present reasoned arguments.

This course contributes to the following UNSW graduate attributes.

 The skills involved in scholarly enquiry. The course emphasizes professional codes of
ethics and conduct that oblige engineers to keep up to date and rigorously apply the
latest methods and technology.

52 | P a g e

 The capacity for analytical and critical thinking and for creative problem
solving. Critical thinking is developed through analysis of professional issues and case
studies in seminars and through writing an analytical essay involving in-depth
research on a topical issue.

 Capacity for enterprise, initiative and creativity. The course covers management of
intellectual property and innovation including aspects specific to the software
industry, such as software patents and open source software.

 An appreciation and respect for diversity. Societal benefits and drawbacks of
software engineering are discussed explicitly.

 Skills required for collaborative and multidisciplinary work. The software project
requires the ability to work within technical teams in the development of a product
that requires teamwork and management of a project. (COMP students only)

 Respect for ethical practice and social responsibility. Explicit discussion of ethical
theories and professional codes provides students with frameworks to make ethical
judgements and knowledge of what society expects of professional engineers.

 Skills of effective communication. Effective communication skills are encouraged
through preparation and delivery of a student-led seminar and through writing a
critical essay on a topical issue.

Assumed Knowledge

Students are assumed to be in their final year of study (or nearing
graduation) and completed around half of their Stage 3 or 4 courses, so are assumed to
have reasonable knowledge and maturity in Software Engineering, Computer Science,
Computer Engineering or Bioinformatics.

COMP students only: Students are assumed to be competent computer programmers with
knowledge of agile software processes and experience of working in agile teams based on
the Scrum methodology. The level of experience is assumed to be sufficient to undertake
(from conception and planning to completion) a moderately large software development
project. Note that seminar facilitators play the role of clients, and cannot provide technical
advice on programming languages or platforms.

Teaching Rationale

COMP4920 is an important course to help students become "job ready". The course covers
both software project management from a practical point of view, and professional issues
and ethics as related to the IT industry. Students benefit by having the opportunity to
interact with industry experts, hence attendance at lectures is very important, especially as
the course focuses on "soft skills".

For software project management, the teaching philosophy is that much of this knowledge
cannot be "taught" but rather is gained through experience and reflection. Hence the
approach taken in this course is that students learn about software project management
through working in and managing a team-based software project, encompassing all phases
of the project from requirements scoping, application of a software process methodology,
project planning and scheduling, teamwork and communication, risk management and

53 | P a g e

change management. Students develop a project plan in the first half of semester and will
be held to that plan for the second half of semester (subject to any agreed modifications).

For professional issues and ethics, teaching is based on seminar-style discussion groups,
encouraging students to express their ideas and form their own judgements on specific
issues relating to the IT industry on the basis of rational arguments. Seminars also promote
team organization and presentation skills through a team-based student-led seminar.
Critical thinking is developed through researching and writing an in-depth analytical essay
on a specific professional issue of relevance to the industry. SENG students also conduct a
debate and have an essay-style written exam.

Time management is an important aspect of this course. It is expected that each student
attends all lectures and seminars, prepares for each seminar by reading the relevant
material in advance, contributes actively to seminar discussion, and spends roughly 10-15
hours on the student-led seminar and roughly 15-20 hours on the essay and 15-20 hours on
the lecture summaries.

SENG students only: Students should spend 10-15 hours on the debate and a further 25-35
hours on exam preparation.

COMP students only: The software project is a major component of the course and should
take 40-50 hours per person for planning and execution.

Teaching Strategies

The course has a mixture of guest lectures on topics of interest and seminars focusing on
particular professional issues, case studies and the software project.

Lectures provide an overview of one particular aspect of software project management or a
professional or ethical issue. Guest lecturers are able to provide expertise in a variety of
areas and the lectures provide an essential foundation to apply in seminars and essays. Note
that due to the commercially sensitive nature of the material, it is not possible to provide
lecture recordings.

Seminars provide students an opportunity for more in-depth discussion on particular topics
and, in student-led seminars, enable students to develop skills in expression, critical analysis
and presentation.

Essays enable students to study in-depth a topic of interest and promotes the development
of critical thinking and analytical abilities and written communication skills.

Software projects are the means through which students develop an understanding of
software project management and the ability to apply software processes in all phases of
planning and executing a software project.

54 | P a g e

Assessment

The assessment for this course consists of the following weighted components.

 Seminar participation (10%)
 Student-led seminar (10%)
 Essay (20%)
 Lecture summaries (10%)

SENG students only:

 Debate (10%)
 Written examination (40%)

COMP students only:

 Software project plan – presentation and document (20%)
 Software product (30%)

The student-led seminar and debate combine an individual and team mark, and in addition
include a peer assessment component. Seminar participation and the essay, lecture
summaries and written examination are assessed individually.

The seminar participation mark is based on active and relevant contributions over all
seminars (including student-led seminars), which requires attendance at all lectures and
reading the seminar material in advance. It is not an attendance mark. See the UNSW
Teaching website for more details on why and how seminar participation is assessed.

The student-led seminar mark is based on coverage of the chosen topic, including
identification of relevant ethical issues, presentation style and engagement of the audience
in discussion.

The essay mark is based on the originality and depth of ethical analysis applied to the
chosen topic, drawing on the main ethical theories discussed in the course, and on the
quality of the writing and appropriate use of evidence in developing a reasoned argument.

The lecture summaries, due in Week 13, should consist of summaries and short
reflections on any 5 guest lectures relating to professional issues and ethics (i.e. not
software processes). Each summary (at most 1 page) should contain an overview of the
main points of the lecture, identify a professional/ethical issue discussed in the lecture, and
include a short reflection on how that issue can be addressed by applying ethical reasoning.

The assessment of the software project includes the presentation and written submission of
a project plan (in Week 8) and a presentation/demonstration of the final system (in Week
13). Two seminars will be devoted to the informal presentation and class discussion of the
projects (sprint reviews) to enable the group to provide feedback on the progress of each
project. The mark for the software product consists of an individual component and a team
component; each team member generally receives the same mark for the team component.

https://teaching.unsw.edu.au/assessing-classroom-participation
https://teaching.unsw.edu.au/assessing-classroom-participation

55 | P a g e

The individual mark will in part be based on a project diary shown to the facilitator at
various intervals. Part of the assessment is based on project management and teamwork,
including the appropriate use of project management tools.

The final mark for the course is determined by adding together these component marks
according to the above weighting to give a result out of 100, which is subject to further
scaling.

Late submission policy for assignments: Assignments (project plan document, essay and
lecture summaries) submitted late are subject to the penalty that the mark reduces by 20%
per (calendar) day late, for up to three days, after which a mark of 0 is received. Projects
submitted late will receive a 0 mark.

Academic Honesty and Plagiarism

UNSW has instituted severe penalties for academic plagiarism. Therefore it is important for
students to understand what is acceptable and unacceptable in the presentation of work for
assessment.

You should carefully read the UNSW policy on academic integrity and plagiarism. Note, in
particular, that copying (taking ideas and/or text from other students or the Internet and
presenting them as your own), and collusion (working together on an assignment, or sharing
parts of assignment solutions) are forms of plagiarism. That is, giving your assignment
solution to another student counts as collusion, regardless of the originality of your work. In
COMP4920, this applies particularly to the essay, which must be written in your own words,
and with properly cited sources. General expectations of students at UNSW, and the
procedures for handling student misconduct (including plagiarism), are set out in theUNSW
student code.

In essence, as applied to COMP4920, copying or sharing material from the Internet such as
slides, text or program code (that is, without proper citation) counts as plagiarism and is
unacceptable. In a student-led seminar, essay or debate, all material must be in the
student's own words (except quotations, which should be kept to a minimum and must be
clearly identified as such). References must be from primary sources (i.e. do not
cite Wikipedia articles or the like). Essays will be run through turnitin for plagiarism
detection. In the software project, sharing code amongst team members is acceptable, but
sharing code between (members of) different teams is unacceptable.

The penalties for plagiarism range from receiving 0 marks for the assignment, through
receiving a mark of 00 FL for the course, to expulsion from UNSW (for repeat offenders). The
school maintains a register of students with confirmed plagiarism offences. Note that
allowing someone else to copy your work counts as academic misconduct, and makes you
liable to a penalty, even if you can prove that the work is yours originally.

https://student.unsw.edu.au/plagiarism
https://student.unsw.edu.au/conduct
https://student.unsw.edu.au/conduct

56 | P a g e

Course Schedule

The following is the rough sequence of lecture topics by week. Broadly speaking, there are
two lectures on each of (i) ethics, (ii) agile methods, (iii) legal perspectives, (iv) software
licensing, and (v) business perspectives. However, as most lectures are given by guest
lecturers, this schedule is subject to change. More details will be provided during the
semester as the lectures are confirmed.

Week Topic

1 Introduction to Project Management and Ethics

2 Theoretical Underpinnings of Ethics

3 Moral Reasoning and Professional Ethics

4 Agile Software Processes in Practice

5 Legal Perspectives on System Development

6 Agile Product Management and User Experience

7 Data Privacy and Uberveillance

8 Intellectual Property and Software Patents

9 Open Source Software

10 Innovation and Entrepreneurship

11 Employment Conditions and Contracts

Resources for Students

References

Reference material for lectures and seminars will be provided on the course web pages
throughout the semester. There is no set textbook for the course, however some of the
introductory lecture on software project management uses material from the following
book, which is an excellent reference for software engineering generally (though not
specifically for agile methods).

Sommerville, I. Software Engineering. Tenth Edition. Pearson Education, Upper
Saddle River, NJ, 2015.

Course Evaluation and Development

Computer Science and Engineering courses are evaluated by student survey each time they
are taught. The survey includes standard questions asked of all comparable courses so that
it is possible to compare a course with other relevant UNSW courses, and also includes
space for free-form comments. Survey responses are anonymous. The completed survey
forms are analysed statistically by someone independent of the course staff, and the results,
including free-form comments, are made available to the lecturer in charge after grades
have been reported and released.

http://iansommerville.com/software-engineering-book/

57 | P a g e

For COMP students, COMP4920 was offered for the first time in 2012 as a replacement for
COMP3711 Software Project Management (taught by the School of Information Systems,
Technology and Management) and a previous 3 unit course COMP2920 Professional Issues
and Ethics. Feedback from these previous courses is primarily that the offering of
COMP3711 treats project management at too abstract a level for Computer Science and
Engineering students, which is the reason for the more practical approach to software
project management taken in COMP4920. For SENG students, COMP4920 replaces and
largely builds on the previous course SENG4921 Professional Issues and Ethics.

Students are generally satisfied with the current course. However, a few students
commented in 2015 that the requirements for the lecture summaries were not clear. To
address this concern, a more precise template for lecture summaries has been provided.

58 | P a g e

COMP Courses List

Semester 1

Code Course

COMP2121 Microprocessors & Interfacing

COMP3121
COMP9801
COMP3821
COMP9101

Algorithms & Programming
Tech

COMP3131
COMP9102

Programming Languages &
Compil

COMP3141
Software Sys
Des&Implementat'n

COMP3153
COMP9153

Algorithmic Verification

COMP3211
COMP9211

Computer Architecture

COMP3231
COMP9283
COMP3891
COMP9201

Operating Systems

COMP3311 Database Systems

COMP3331
COMP9331

Computer
Networks&Applications

COMP3411
COMP9814
COMP9414

Artificial Intelligence

COMP3441
COMP9441

Security Engineering

COMP4128 Programming Challenges

59 | P a g e

COMP4141 Theory of Computation

COMP4337
COMP9337

Securing Wireless Networks

COMP6441
COMP6841

Security Engineering and
Cyber Security

COMP6443
COMP6843

Web Application Security and
Testing

COMP6752
Modelling Concurrent
Systems

COMP9020
Foundations of Comp.
Science

COMP9021 Principles of Programming

COMP9024 Data Structures & Algorithms

COMP9243 Distributed Systems

COMP9311 Database Systems

COMP9313 Big Data Management

COMP9318
Data Warehousing & Data
Mining

COMP9319
Web Data Compression &
Search

COMP9321 Web Applications Engineering

COMP9322
Service-Oriented
Architectures

60 | P a g e

COMP9334 Systems Capacity Planning

COMP9417
Machine Learning & Data
Mining

Semester 2

Code Course

COMP2121
Microprocessors &
Interfacing

COMP3151
COMP9151

Foundations of Concurrency

COMP3161
COMP9161

Concepts of Programming
Lang.

COMP3222
COMP9222

Digital Circuits and Systems

COMP3331
COMP9331

Computer
Networks&Applications

COMP3421
COMP9415

Computer Graphics

COMP3431
COMP9431

Robotic Software
Architecture

COMP3511
COMP9511

Human Computer Interaction

COMP4121
Advanced & Parallel
Algorithms

COMP4161 Advanced Verification

COMP4336
COMP9336

Mobile Data Networking

61 | P a g e

COMP4418 Knowledge Representation

COMP4920 Management and Ethics

COMP6447

COMP6714
Info Retrieval and Web
Search

COMP6733

COMP6741
Parameterized & Exact
Comp.

COMP6771 Advanced C++ Programming

COMP9000 Special Program

COMP9020
Foundations of Comp.
Science

COMP9021 Principles of Programming

COMP9024 Data Structures & Algorithms

COMP9032
Microprocessors &
Interfacing

COMP9242
Advanced Operating
Systems

COMP9311 Database Systems

COMP9313 Big Data Management

COMP9321
Web Applications
Engineering

62 | P a g e

COMP9322
Service-Oriented
Architectures

COMP9323 e-Enterprise Project

COMP9418

COMP9444
COMP9844

Neural Networks

COMP9517 Computer Vision

63 | P a g e

ISTM BIS Curriculum Review (June 2016)

Overview

64 | P a g e

Core Courses

INFS1602 Digital Transformation in Business

This is a foundational (Level 1) Information Systems (IS) course that introduces students to
the use of IS in business and society. As an overarching theme, INFS1602 examines the
issues and management of information systems in relation to human behaviour and their
consequences. Through this course, students will learn to appreciate existing and emerging
technologies affecting businesses, business relationships and their products and services. In
taking this course, students will be provided with tasks and assignments that will aid in
refining their professional business skills and the ability to evaluate the value of technology
to businesses. This includes communication and group-work skills, time management and
research skills.

The topics that are covered in INFS1602 include understanding the role of Information
Systems and IS Professionals in Global Business, the relationship between Information
Systems, Organisations, and Strategy, the Dominant Business Models Enabled by the
Internet, and the emergence of Web 2.0 Technology. The course also touches on popular
enterprise-level information systems such as Enterprise Systems, Supply Chain and
Customer Relationship Management Systems and the emergence of Business Intelligence in
Supporting Organisation Decision Making. The course also involves the discussion of the
considerations behind the Acquisition and Building of Information Systems and the issues
common to the Management of Information Systems Projects. Lastly, the course addresses
the need to secure the Information Systems and the potential Ethical and Social Issues faced
by businesses in relation to their use of Information Systems.

INFS1603 Introduction of Business Databases

This is a foundational (Level 1) Information Systems (IS) course that introduces students to
the concepts, techniques and technologies relevant for creating and managing business
databases. It will explain the major components of information systems, which are
important to capturing, transmitting, storing, retrieving, manipulating and displaying
information used in business processes. Through this course, students will be exposed to
the fundamental knowledge on business databases, which are foundational for many
advanced courses. Students will be given tasks and assignments to help them acquire the
ability to create and manage business databases.

The topics that are covered in INFS1603 include Entity Relationship Modeling, Relational
Modeling, and Normalisation. The course also introduces the topics related to creating and
managing business databases, such as SQL and PL/SQL. The course ends with the discussion
of Object-Oriented Modeling and Relational Algebra.

65 | P a g e

INFS1609 Fundamentals of Business Programming

This is a foundational (Level 1) Information Systems (IS) course that introduces students to
application programming. The course provides a first step towards learning the principle of
object-oriented programming through the Java programming language. Programming refers
to the development of software, which is also called a program. Essentially, software
contains the instructions that tell computerised devices what to do. In lectures, students will
be introduced to the theoretical component of the course, learning fundamental
programming concepts. During weekly workshop tutorials, students will engage in the
practical component of the course, learning how to write code using the BlueJ integrated
development environment (IDE).

The topics that are covered in INFS1609 introduce students to the fundamentals of Java
programming. This begins with an overview of data types and methods before introducing
students to small problem-solving exercises that require the use of conditional statements,
loops and Arrays (including Multi-Dimensional Arrays and Array Lists). Students are then
introduced to the topics of modular programming, testing and debugging (using JUNIT).
Finally, having gained a general understanding of these concepts, students further explore
the principles of object-oriented programming, including objects, classes, abstraction,
polymorphism, inheritance and encapsulation.

INFS2603 Business Analysis Using Design Thinking

This is a Level 2 Information Systems (IS) course that continues the students’ study of IS by
furthering their knowledge and skills in relation to the analysis and design of business
information systems. This course introduces students to the contemporary method of
design thinking, and the object-oriented approach to understand and solve business
problems. In lectures, students will study a range of methods, tools and techniques used in
planning, analyzing, designing and implementing business relevant systems. During weekly
practical workshops, students will get the chance to apply design thinking principles to
understand and solve real-world cases, utilizing their conceptual knowledge.

The topics that are covered in INFS2603 include understanding design thinking principles,
methods and process. The course will then cover topics related to project management:
including project plans, work plans and feasibility analysis, and developing analysis strategy:
including requirements determination using design thinking methods, business process
modelling, structural and behavioral modelling. Once the students have an understanding of
how to develop project plans and system proposals, topics related to developing system
specification will be covered, including: architecture design, interface design, database
design and program design. The last few topics will cover the installation phase of systems
including: change management plan, test plan, training plan, support plan and migration
plan.

66 | P a g e

INFS2605 Intermediate Business Programming

This is a Level 2 Information Systems (IS) course that continues the students’ study of IS by
furthering their knowledge and skills in relation to business application programming. The
course continues the study of Java programming from INFS1609 (Fundamentals of Business
Programming) and examines contemporary approaches to software development. In
lectures, students will study a range of topics from advanced Java concepts, software
development frameworks and practices, to user experience and design. During weekly
workshop tutorials, students will engage in the practical component of the course and
problem-solving exercises through the development of Java applications using the Netbeans
Integrated Development Environment (IDE).

The topics that are covered in INFS2605 build on those introduced in INFS1609, providing
students with a thorough review of software development processes and object-oriented
programming principles. Students will then expand their Java skills and knowledge through
the study of Model View Controller (MVC) architecture, event-driven programming and
Graphical User Interfaces (GUI). Specifically, the course introduces students to the
development of JavaFX GUI applications, using Scenebuilder. Building on this, students are
then provided with an overview of exception handling and taught how to develop basic
database applications using Java Database Connectivity (JDBC), an application programming
interface (API), which defines how a client may access a database. This concludes with an
introduction to API’s that facilitate the development of reporting functionalities (e.g.
exporting data to excel) from database applications.

INFS2608 Database Management & Big Data Infrastructure

INFS2608 is a Level 2 Information Systems (IS) course that continues students’ study of IS by
covering various advanced topics pertinent to database management, which includes both
relational and analytical data system infrastructure. It will explain advanced concepts used
to design and manage relational and analytical data system infrastructure. Through this
course, students will learn to evaluate issues associated with enterprise database
management and business data analytics, such as data quality and security. In taking this
course, students will be provided with tasks and assignments that will aid in refining their
ability to evaluate the value of data focused infrastructures.

The topics that are covered in INFS2608 include Database Architectures and the Web,
Transaction Management and Enterprise Database Security. The course also covers
emerging database infrastructure and analytics infrastructure, such as Data Warehouse
Concepts and Infrastructure, Data Quality in Big Database Systems, and Big Data Business
Analytics Infrastructure Design. The course ends with the discussion of leading big data
analytics infrastructure, such as Hadoop.

67 | P a g e

INFS2621 Enterprise Systems

This is a Level 2 Information Systems (IS) course that continues the students’ study of IS by
introducing students to Enterprise Systems (often referred to as ERP systems), specifically,
how they can be used by organisations to run their operations more efficiently and
effectively. The course will present the evolution, components and architecture of
Enterprise Systems and help students to understand the benefits and drawbacks of
implementing such systems and how they can assist organisations to improve their overall
efficiency. Furthermore, the course aims to help students understand the impact of
Enterprise Systems on managing complex organisational processes including procurement,
order fulfilment and logistics within a supply chain. In lectures, students will learn about the
challenges associated with implementing Enterprise Systems for managing complex supply
chains and their impact on organisations. Students will learn to develop models for selected
business process including procurement, fulfilment and logistics. Students will learn to
communicate and assess an organisation's readiness for enterprise system implementation
with a professional approach in written form, and describe the selection, acquisition and
implementation of Enterprise Systems. In workshops, students will learn to complete a set
of common business processes including procurement, fulfilment and logistics, using an
Enterprise Systems package-SAP ERP ECC6. Students will also learn about the scope of
common Enterprise Systems modules (e.g., MM, SD, FI and CO), and other extended
Enterprise Systems solutions such as SAP HANA, SAP ERP Simulation Games. Students will
develop an understanding of the issues in systems use of an Enterprise Systems package
(e.g. SAP) to support business operations and decision-making through design thinking and
play.

INFS3603 Introduction to Business Analytics

This is a level 3 Information Systems (IS) course and a foundational course in Business Analytics (BA).

This course provides students an understanding of business needs and technology trends
driving investment in business analytics and big data technologies. The course also presents
the fundamentals of implementing and managing business analytics in organisations. In lectures,
students will learn business analytics methods and tools as well as the challenges associated with
implementing business analytics projects. Through real-world case studies, students will develop
their understanding of the applications of business analytics as well as the social and ethical
implications of business analytics. Students will also improve their critical thinking, problem solving,
research, communication, and team-working skills through their group assignments.

Topics that are covered in this course include: decision making process; business analytics concepts,

methods, and frameworks; frameworks for putting analytics to work; the governance, oversight
and business value gained from business analytics within organisations; ethical and social
implications of business analytics; and future directions for business analytics.

68 | P a g e

INFS3604 Business Process Management

This is a level 3 Information Systems (IS) course that considers the management of business
processes and their continuous improvement including identification, analysis and redesign.
A business process is a set of related activities that jointly realise a business goal in an
organisational and technical environment. These processes take place in a single
organisation but may need to interact with processes within other organisations. Business
process management (BPM) is concerned with the concepts, methods, and techniques that
support the design, improvement, management, configuration, enactment, and analysis of
business processes. Modelling is a significant component of the course enabling explicit
representation of processes – once they are defined, processes can be analysed, improved,
and enacted. Software in the form of business process management systems can be used to
manage business processes. By taking this course students will be able to understand
business process from a management and process analyst perspective, learn tools,
analytical frameworks and general principles for managing and improving business
processes. The course will incorporate a laboratory component using BPM software.

INFS3617 Networking & Cyber Security

This is a level 3 Information Systems (IS) course that continue students’ study in IS by further
developing their knowledge and understanding in information technology infrastructure and
security in a business environment. The course will provide students with a learning
experience which encourages participation, building of ideas in regard to current issues in
business data networks, telecommunications and infrastructure along with overall
discussions through the topics. The course has a technical component in which students
gain practical knowledge and experience in networking and IS security techniques.

Topics to be covered in this course include inter-networked data communications and
distributed data processing. Topics covered include, the business imperatives for distributed
systems, systems architectural design (client/server; distributed processing, etc) layered
architecture models (TCP/IP, OSI, etc), key network models and technologies, security issues
related to architecture, design and technology, network configuration and management
techniques.

INFS3634 Mobile Applications Development

This is a Level 3 Information Systems (IS) course that continues students’ study of IS by
furthering their knowledge and skills in relation to mobile application
programming. Continuing from INFS2605 (Business Application Programming), this course
focuses on the development of software applications using the Android mobile platform. In
lectures, students will be provided with an overview of mobile programming concepts and
tools, and engage in case studies with regards to mobile App development and the current
mobile market. During the weekly practical workshops, students will use the Android Studio

69 | P a g e

Integrated development environment (IDE) in learning how to design and develop a range of
mobile applications. Students will be required to evaluate the quality of their own, and
peers’, coding solutions. Students will also research and analyze current trends in the mobile
market and present a portfolio of their design work at the end of the course.

INFS3605 Information Systems Innovation & Transformation

This is a Level 3 Information Systems (IS) course that concludes the students’ study of IS
through the application, integration and synthesis of students’ knowledge from previous IS
courses. Specifically, INFS3605 is the ‘capstone’ IS course that is centrally organised around
practical, experiential, group software projects. Throughout the course, students will apply
programming knowledge and teamwork skills learnt in previous courses in an applied and
integrated fashion. The course begins with student groups brainstorming and developing
their software project ideas and then gathering requirements. Following this, student
groups engage in an iterative development process in designing and refining their software
application. Specifically, students will use the agile scrum framework in developing their
software project, working in two-week sprints/iterations. This hands-on project course takes
a blended approach to learning, mixing online content provided through the school’s e-
learning platform (Moodle) with weekly flipped workshop sessions. Throughout the course,
students will perform various roles (including scrum master and product owner) and
ceremonies (including sprint planning, stand-up sessions, sprint reviews, sprint
retrospectives, and backlog refinement), as well as utilise a number of a tools (such as
kanban boards, burndown charts and planning poker).

INFS3605 does not introduce ‘new topics’ to students. Instead, this capstone project course
requires students to apply, integrate and build upon existing knowledge and skills learnt in
previous IS courses. In particular, the course requires students to perform as agile scrum
teams and develop complex software applications in an iterative and incremental manner.

Elective Courses

INFS2631 Innovation and Technology Management

This is a level 2 multi-disciplinary course at the intersection of information systems,
entrepreneurship and operations management. The course aims to develop students’
conceptual knowledge and practical skills regarding managing technological innovation
through various phases of the innovation process. The course emphasizes the role of
crowdsourcing, crowdfunding, social media and social networks in developing, driving, and
managing innovations.

70 | P a g e

INFS3632 Service and Quality Management

This is a Level 3 Information Systems (IS) course that introduces students to the key
concepts in managing service operations and quality management. This presents an in-
depth coverage of topics crucial to the effective and efficient operation of a service system.
In lectures, students will learn the "state of the art" of process management of service firms
and the opportunities provided by information technology and data analytics in enhancing
their competitiveness. Students will be engaged in simulations, where they can apply the
concepts learned in the class to real-world settings and learn how to manage process
variabilities and quality control. In a project which involves conducting a walk-through-audit
to a real company of the students’ choice, they will learn how to implement a service
business to meet customer satisfaction.

In INFS3632 two main areas in services are covered: process management and quality
management. In service process management, the topics covered include the introduction
of the service economy, service strategy, and how to develop new services. From studying
customer service encounters, this course will look into the design of supporting facilities and
service processes. This course will also cover process analysis techniques and how to
manage process variability and waiting lines. In the area of service quality management, this
course will cover total quality management (TQM), statistical quality control, process
improvement, six-sigma and lean operations.

INFS3830 Social Media and Analytics

This is a Level 3 Information Systems (IS) course that continues students’ study of strategies
to create and extract value from social media. In particular, the course will focus on the
power of social media to influence, the effect of social media on operational matters, social
media metrics and strategic aspects of social media analytics. The course will help students
better understand various social media technologies, platforms and analytics, and how they
are able to be applied in a business context. The course will present the purpose, function
and design of social media platforms and help students to understand the benefits and
drawbacks of using such technologies. The course will also present social media data
analyses and how they can assist organisations to improve their overall efficiency and
provide competitive advantage. In lectures, students will learn about the scope and metrics
for assessing the effectiveness of social media and networking and to develop models for
implementing and leveraging social media. In addition, students will, understand techniques
for sentiment and text analytics and communicate and assess a firm’s social media strategy
with a professional approach in written form, and discuss the challenges associated with
implementing social media, analytics and networking technologies and their impacts on
organisations. In workshops, students will learn to apply a set of techniques to create and
extract value from social media, social media metrics and strategic aspects of social media
analytics. Students will work on practical examples to complement the theoretical
frameworks and concepts. Some of the workshops are also intended to provide students
gain basic hands-on experience and practical proficiency using SAS text mining software.

71 | P a g e

INFS3873 Business Analytics Methods

This is a level 3 course in Business Analytics (BA) that builds on the fundamentals of business
intelligence presented in INFS3603. This course exposes students to applications of
descriptive, predictive, and prescriptive analytics in order to develop students’ ability to use
analytics to drive business insights. To develop these skills, students will learn
methodological theory and use SAS Enterprise Miner and SAS Visual Analytics software tools
to analyse a variety of case studies describing organisational problems with real-world
relevance. Emphasis will be placed on using analytics to create value for organisations and
being able to communicate analytic findings to a managerial audience.

The first major topic covered in INFS3873 is on conduct segmentation to perform descriptive
analytics for large datasets, students will then use visual analytics for data exploration and
data presentation. The course will then teach students various regression and data mining
techniques to examine relationships between variables. In addition, students will learn a
variety of forecasting and optimisation techniques to make data-driven decisions

INFS3020 International Information Systems and Technology Practicum

This is a level 3 Information Systems (IS) course that continues students’ study of IS by
furthering their knowledge and understanding in international aspects of information
systems/technology (IT) business operations (e.g. global IS/IT teams, distributed systems
development, eBusiness, and localisation management). This will be attained via first-hand
observations of businesses in Asian countries such as China, India, Hong Kong, and South
Korea. The central components of the course include a series of seminars and a two-week
study tour to one Asian country. During this study tour, students will visit a number of
leading international and national organisations, including companies operating in the IS/IT
sector and those in other sectors with a significant IS/IT footprint. The primary purpose of
these visits will be to enable students to develop an appreciation of the ways in which IS/IT-
enabled business operations and business systems differ across national boundaries.
Students are required to prepare a written assignment based on the field trip at the end of
the tour based on their observations of the businesses and the country. A group
presentation and personal reflection report are to be delivered prior to the end of the
Semester.

72 | P a g e

Honours Courses

INFS4886 Principles of Research Design

This is a Level 4 Information Systems (IS) course that continues students’ study of IS by
furthering their knowledge and skills in relation to research designs. This course focuses on
the understanding of IS research philosophies and designs. Students will develop practical
skills in developing instruments for both qualitative and quantitative methods.

Topics to be covered in the lectures include an overview of the research process, theory and
theorizing, critiquing a research paper, conducting a systematic literature review, writing a
literature review, conceptual modelling and research design, archival research, case studies,
surveys, experimental and simulation research, action and design research, writing and
defending a research proposal. During the weekly practical workshops, students will learn to
develop a research proposal and be able to evaluate the quality of their own, and peers’,
research designs. Students will also research and analyse current trends in various IS topics
and present a research proposal at the end of the course.

INFS4887 Business Research Methods

This is a Level 4 Information Systems (IS) course that continues students’ study of IS by
furthering their knowledge and skills in relation to research methods and analytical skills.
Continuing from INFS4886 (Principles of Research Design), this course focuses on the
understanding of IS research methodologies.

Topics to be covered in the lectures include overview of knowledge in research methods
and techniques of data collection and analysis, SPSS, experimental research, fieldwork,
grounded theory, literature review, and thesis writing. During the weekly practical
workshops, students will learn from key IS literature how to design and develop a range of
research designs and know-how. Students will learn to prepare an independent study
including formulating research questions and selecting a research approach, applying
research methodology – designing a study and selecting specific methods and techniques
appropriate for answering the research questions.

Honours Elective Courses

INFS4805 Information Systems Auditing and Assurance

This is a Level 4 Information Systems (IS) course that continues students’ study of IS by
furthering their knowledge and skills in relation to information systems auditing. The course
examines contemporary IS audit practices and draws on student’s business and IS studies
to-date. The course introduces students to key auditing concepts and techniques and
applies those to the IT environment. In the seminars, students will study a range of topics
from the role of the IS audit function to specific IS Audit tools, techniques and

73 | P a g e

methodologies for the various types of IS Audit. Students will also learn about professional
standards (COBIT 5, ITAF), professional practice, ethical behaviour and the legislative and
regulatory environment.

Topics to be covered in this course include contemporary IT audit standards and frameworks
(including ITAF and COBIT 5) and IT audit regulatory environment. Topics such as developing
Audit Programs, auditing Data centres and the physical IT environment, auditing IT security
and operating systems, auditing software systems and applications, auditing e-business and
mobile applications, and auditing IT projects will also be discussed. Finally, course also
covers areas in undertaking risk evaluations and ethical and professional practice
considerations for IS Auditors.

INFS4831 Information Systems Consulting

This is a Level 4 Information Systems (IS) course that familiarises students with the key
concepts, practices and issues relevant to engaging and providing IS consulting services. The
lectures cover a range of themes related to the content and practice of IS consulting,
including relevant theories to illustrate how IS consultants engage with organisations and
help them solve business problems as well as the challenges and opportunities in
contemporary business environments brought about by technological advancements. The
weekly seminars encourage the students to further reflect on and apply these concepts to
examples and cases from practice.

The topics covered in the course include both the IS consulting process and content. On the
process side, the course looks at topics such as style, communication, and stakeholder
management. On the content side, the course considers a range of contemporary issues in
IS consulting, revolving around the organisational impact of key technology trends that drive
the demand for IS consulting, such as crowdsourcing, social media, business analytics,
service innovation, as well as security and privacy.

INFS4848 Project, Portfolio and Program Management

This is a Level 4 Information Systems (IS) course that continues students’ study of IS by
further providing a comprehensive introduction to project management. The course aims to
equip students with both theory and practical skills in the management and implementation
of projects. The course teaches the following areas of project management knowledge:
Integration Management, Scope Management, Time Management, Cost Management,
Quality Management, Human Resource Management, Communications Management, Risk
Management, Procurement Management, and Stakeholder Management. In addition,
students gain knowledge on technical, behavioural and strategic aspects of project, portfolio
and program management. During the weekly practical workshops, students work on
project teams producing a comprehensive and realistic project plan, thus acquiring

74 | P a g e

knowledge on IS project management and on principles of ethical and responsible
management.

INFS4854 Information Systems Strategy

This is a Level 4 Information Systems (IS) course that familiarises students with the key
concepts, practices and issues in the strategic management of IS. The lectures cover
theoretical and practical considerations across a variety of strategic IS management issues,
which are further examined and applied in the weekly seminars. The course aims to equip
the students with the foundational skills needed to be able to meaningfully participate in, or
interact with, this aspect of IT management.

The course covers four key themes. It begins with a discussion of the strategic value of IT,
including the role of business-IT alignment in realising that value. Second, the course looks
at strategic IT decision processes, including planned and emergent strategy-making and
governance. Third, the course considers strategy implementation issues, including the role
of IT leadership, project and portfolio management, and sourcing decisions. The course
closes with a discussion of the strategic role of IT-enabled innovation and current trends in
strategy and IT.

INFS4907 Managing Security, Ethics & Privacy in Cyberspace

This is a Level 4 Information Systems (IS) course that introduces students to the awareness
and knowledge of IS/IT security related issues occurring in cyberspace. It has a specific
emphasis on the need for ethical viewpoints, approaches and practices from a management
perspective when addressing the multidimensional challenges and solutions posed by the
IS/IT related security problems. The class will be conducted in a semi-formal workshop
fashion. Using business cases and scenarios addressing various cyberspace issues, students
will study and discuss the ethical and related implications these issues pose to stakeholders.
They will learn to manage cyber related security issues responsibly from ethical, social,
corporate, responsible management, and professional perspectives. In some situations, they
may encounter dilemmas which require a careful balance and trade-off in the way decisions
are made.

The topics that are covered in this course include: the nature of cyberspace and
ethics/definitions/frameworks and related perspectives and their relevance to cyberspace.

It also covers the importance of IS/IT Security and consequences of security breaches, key IT
trends [e.g. 1) Cloud computing, IT outsourcing – client/vendor relationships, Intellectual
property, privacy and confidentiality; 2) Social Media; 3) E-business/commerce; 4) E-
government] that highlight the importance of security and ethics in cyberspace. Finally, the
course also discuss topics in international business and globalisation, difficulties in enforcing
ethical practises – cultural, legal, education and accreditation, dilemmas etc., and
implications to training and education.

75 | P a g e

COMP3331 Computer Networks and Applications

Course Code COMP3331

Course Title Computer Networks and Applications

Units of Credit 6

Course Website http://cse.unsw.edu.au/~cs3331

Handbook Entry http://www.handbook.unsw.edu.au/undergraduate/courses/curren
t/COMP3331.html

Course Summary

This course is an introductory course on computer networks, aimed at students with a
background in computer science / electrical engineering. We will focus on common
paradigms and protocols used in present data communication. Through lectures, in-class
activities, labs and assignments, you will learn the theory and application of (1) medium
access control, congestion control, flow control, and reliable transmission, (2) addressing
and naming, (3) routing and switching, (4) widely used protocols such as Ethernet, IP, TCP,
UDP, HTTP, etc. (5) security threats and common defensive techniques, and (6) special
purpose networks such as content delivery networks, peer-to-peer networks and wireless
networks. This is a combined undergraduate and postgraduate course. The written exams
for the postgraduate students will contain some questions, which are different from the
undergraduate exam, and will more challenging.

Course Timetable

There will be 3 hours of lectures every week: (i) 2-hour lecture on Monday 16:00 - 18:00 in
Ritchie Theatre and (ii) 1-hour lecture on Wednesday 14:00 - 15:00 in Rex Vowels Theatre.
There will be 2-hour labs during 9 weeks (starting in Week 2). The detailed lab schedule will
be posted on lab exercises page. The detailed course timetable is available here.

Course Aims

To provide an in-depth introduction to a wide range of topics in the field of computer
networks including the Internet. To get a hands-on understanding of the working on
network protocols. To gain expertise in network programming, designing and implementing
network protocols, evaluating network performance and problem-solving skills. To build the
necessary foundational knowledge required in subsequent networking courses (COMP4335-
4337, COMP9332-9337).

Student Learning Outcomes

After completing this course, students will:

http://cse.unsw.edu.au/~cs3331
http://www.handbook.unsw.edu.au/undergraduate/courses/current/COMP3331.html
http://www.handbook.unsw.edu.au/undergraduate/courses/current/COMP3331.html
https://webcms3.cse.unsw.edu.au/COMP3331/16s2/timetable

76 | P a g e

 have a working knowledge of computer networks, and will be able to demonstrate
their knowledge both by describing aspects of the topics and by solving problems
related to the topics

 have a solid understanding of the current architecture of the Internet and the
entities involved in its operations

 be able to identify soundness or potential flaws in proposed protocols

 be equipped with the necessary skills to design networked applications and
protocols

 implement and write protocols and applications in C, Java or Python

 analyse and evaluate the performance of computer networks

 be able to capture and analyse network traffic

 be able to understand and explain security and ethical issues in computer
networking

This course contributes to the development of the following graduate capabilities:

Graduate Capability Acquired in

scholarship: understanding of their discipline
in its interdisciplinary context

lectures, labs, assignments

scholarship: capable of independent and
collaborative enquiry

labs, assignments

scholarship: rigorous in their analysis, critique,
and reflection

lectures, labs, exams, sample problems

scholarship: able to apply their knowledge and
skills to solving problems

labs, assignments, exams, sample problems

scholarship: capable of effective
communication

labs, assignments, lectures, exams

scholarship: information literate all aspects of the course

scholarship: digitally literate all aspects of the course

leadership: collaborative team workers labs, assignments

professionalism: capable of independent, self-
directed practice

all aspects of the course

professionalism: capable of lifelong learning all aspects of the course

professionalism: capable of operating within
an agreed Code of Practice

labs, assignments

global citizens: culturally aware and capable of
respecting diversity and acting in socially
just/responsible ways

labs, course forums

Assumed Knowledge

Before commencing this course, students should:

77 | P a g e

 have a good understanding of data structures and algorithms, basic probability
theory.

 be able to write working programs in C, Java or Python. The course will include
programming assignments and labs.

These skills are assumed to have been acquired in the courses: COMP1921 or COMP1927 or
MTRN3530 (for undergraduates) and COMP9024 (for postgraduates)

Teaching Rationale

This course takes a top-down approach to teaching computer networks. The rationale
behind this is that most students have first-hand experience using applications running over
the Internet. This allows them to relate to each layer of protocol stack as we travel down
the layers. Once they are committed, they participate in appropriate cognitive aspects such
as learning the details with a focus to understand them. Students get mentally prepared to
answer questions where very often there is no single answer or the answers can be
unexpected. This results in deep learning and gives students a sense of accomplishment and
confidence.

Learning will be largely facilitated through the delivery of lectures. The hands-on
laboratories will provide an opportunity to gain deeper understanding of the concepts
discussed in the lectures. The sample problems, homework problem set and tutorials will
help in the development of problem-solving skills and in preparing for the exams. The
programming assignments are mainly geared to allow students to gain familiarity with basic
network programming and designing network protocols.

Teaching Strategies

 Lectures: introduce theory and concept and demonstrate how they apply in practice
 Lab Work: reinforce concepts taught in lectures by conducting hands-on experiments

and analyse network performance
 Assignments: allow students to design and implement network protocols and

evaluate network performance
 Sample Problems: allow students to solve problems based on content from lectures,

develop problem-solving skills, assist with exam preparation
 Consultations and Course Forum: allow students an opportunity to ask questions and

seek help.

Assessment

There will be four assessment components as listed below:

Component Weight

Lab Exercises 20%

Programming Assignments 25%

78 | P a g e

Component Weight

Mid-semester Exam 20%

Final Exam 35%

To pass the course a student MUST receive at least 40% marks in the final exam. The
following formula outlines precisely how the final mark will be computed:

lab = marks for lab exercises (scaled to 20)

assign = marks for the two programming assignments (scaled to 25)

midExam = mark for the mid-semester exam (out of 20 marks)

finalExam = mark for the final exam (out of 35 marks)

mark = lab + assign + midExam + finalExam

grade = HD|DN|CR|PS if mark >= 50 && finalExam >= 14

 = FL if mark < 50 || finalExam < 14

Academic Honesty and Plagiarism

Plagiarism is defined as using the words or ideas of others and presenting them as your
own . UNSW and CSE treat plagiarism as academic misconduct, which means that it carries
penalties as severe as being excluded from further study at UNSW. There are several on-line
sources to help you understand what plagiarism is and how it is dealt with at UNSW:

 Learning Centre: Plagiarism and Academic Integrity
 MyUNSW: Plagiarism and Academic Misconduct
 CSE: Addendum to UNSW Plagiarism Guidelines
 CSE: Yellow Form (whose terms you have agreed to)

Make sure that you read and understand these. Ignorance is not accepted as an excuse for
plagiarism.

Course Schedule

The following table lists the tentative weekly schedule. Students will be informed of any changes
during the lecture and by announcements on the notices page.

Week Lecture Dates Lecture Topics Labs Assessment Tasks

1 25 & 27 July Course Logistics
Introduction:
What is a network made of?
How is it shared?
How is it organised?

No Lab

https://student.unsw.edu.au/what-plagiarism
http://www.lc.unsw.edu.au/plagiarism/index.html
https://student.unsw.edu.au/plagiarism
https://www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf
http://www.cse.unsw.edu.au/~chak/plagiarism/plagiarism.html
http://www.cse.unsw.edu.au/people/studentoffice/policies/yellowform.html

79 | P a g e

Week Lecture Dates Lecture Topics Labs Assessment Tasks

How does communication
happen?

2 1 & 3 August Introduction:
How do we evaluate a
network?
How did the Internet come
about?
Application Layer:
Client-server and P2P
architectures
The Web & HTTP
E-mail

Lab 1

3 8 & 10 August Application Layer:
Domain Name Service (DNS)
Content Distribution
Networks
Socket Programming

Lab 2 Assignment 1
Released

4 15 & 17 August Application Layer:
Peer-to-Peer Networks and
DHT
Transport Layer:
Transport services
Multiplexing &
Demultiplexing
UDP

Lab 3

5 22 & 24 August Transport Layer:
Principles of reliable data
delivery
TCP

Tutorial 1
for Exam
Prep

6 29 & 31 August Transport Layer:
Congestion control
Fairness

No LAB Mid-semester
Exam on 29th
August

7 5 & 7
September

Network Layer:
Network services
Datagram vs Virtual Circuits
IP
Addressing

Lab 4

8 12 & 14 Network Layer: Lab 5 Assignment 1 Due

80 | P a g e

Week Lecture Dates Lecture Topics Labs Assessment Tasks

September Router internals
Routing algorithms
Link Layer:
Services
Error detection

Assignment 2
Released

9 19 & 21
September

Link Layer:
medium access control
link layer addressing
Ethernet switches
Wireless and Mobile
Networks
Wireless characteristics
CDMA

Lab 6

 Mid-semester Break

10 5 October

3 October is
public holiday

Wireless and Mobile

802.11
Network mobility
Network Security

Basic Cryptography

Remedial
Marking for
Assignment
1 (optional)

11 10 & 12
October

Network Security
Message integrity & Digital
signatures
Authentication
Secure E-mail
Firewalls
SSL

Lab 7

12 17 & 19
October

Optional (one of the
following):
Multimedia Networking
SDN, Virtualisation
Internet of Things
Problem Solving and
Revision

Tutorial 2
for Exam
Prep

13 24 October Remedial Lecture if
necessary

 Assignment 2 Due

Exam 4th November - Exam Period Final Exam

81 | P a g e

Week Lecture Dates Lecture Topics Labs Assessment Tasks

Period 22nd
November

Resources for Students

Course Textbook:

 Computer Networking - A Top-Down Approach Featuring the Internet, J. Kurose and
K. Ross, Addition Wesley , Sixth Edition, 2012.

Reference Texts:

 Unix Network Programming Volume 1 - Networking APIs: Sockets and XTI, W.
Richard Stevens, Prentice Hall, Second Edition, 1998.

 Java Network Programming, E. R. Harold, O'Reilly, Third Edition, 2004.
 Learning Python, Mark Lutz, O'Reilly, Fifth Edition, 2013.
 Computer Networks: A Systems Approach, Larry Peterson and Bruce Davie, Morgan

Kaufmann, Fifth Edition, 2011.
 Introduction to Computer Networks and Cybersecurity, John Wu and J. David Irwin,

CRC Press, 2013.
 Computer Networks, Andrew Tanenbaum and David Wetherall, Fifth Edition,

Pearson, 2010.

Links to additional reading material will be available on the lecture notes page.
Software:
For the labs, we will be using several Unix-based network utility programs. The purpose of
these programs and information on how to use them will be provided in the lab handouts.
We will also use a packet sniffing tool called Wireshark , which has been widely deployed on
CSE machines. In addition, we will also use ns-2 , a widely used network simulator for a few
labs. Ns-2 is installed on the CSE lab machines. The simulator is written in C++. However, it
uses OTcl as its command and configuration interface. In the lab exercises, we will use
scripts written in OTcl. We will provide the OTcl scripts for the lab exercises . You will
expected to run the scripts, make some minor changes in the scripts, and analyse certain
performance metrics. You will not be required to write C++ code. Detailed resources for all
tools used will be made available on the lab exercises page.

Programming assignments are expected to be developed in C, Java or Python. Students are
assumed to have sufficient expertise in one of these programming languages. Links to
network programming in C, Java and Python will be available under the assignments link of
the course webpage. Sample code demonstrating a simple client/server application will also
be supplied as a starting point for students.

http://www.isi.edu/nsnam/ns/
https://en.wikipedia.org/wiki/OTcl

82 | P a g e

COMP3311: Database Systems

Course Details

Course Code: COMP3311

Course Title: Database Systems

Units of
Credit:

6

Course
Website:

http://www.cse.unsw.edu.au/~cs3311

Handbook
Entry:

http://www.handbook.unsw.edu.au/undergraduate/courses/2016/COMP
3311.html

Course Aims

This course aims to explore in depth the practice of developing database applications and
the theory behind relational database management systems (RDBMSs). This course focuses
on Database Design. It will also give an overview of the technologies used in implementing
database management systems and the past, present and future of database systems and
database research.

Large data resources are critical to the functioning of just about every significant modern
computer application, and so knowledge of how to manage them is clearly important in
industry. In the context of further study, understanding how to use databases effectively is
essential for courses such as COMP9321 Web Applications Engineering and COMP9322
Service-Oriented Architectures. COMP3311 also provides a foundation for further study in
advanced database topics, such as COMP9315 Database Systems Implementation and
COMP9318 Data Mining. Database concepts are also relevant in courses such as COMP9319
Web Data Compression and Search and COMP6714 Information Retrieval and Web Search

Student Learning Outcomes

By the end of the course, you should be able to:

 develop accurate, non-redundant data models
 realise data models as relational database schemas
 formulate queries via the full range of SQL constructs
 use stored procedures and triggers to extend DBMS capabilities
 understand principles and techniques for administering RDBMSs
 understand performance issues in relational database applications
 understand the overall architecture of relational DBMSs
 understand the concepts behind transactions and concurrency control
 appreciate query and transaction processing techniques within RDBMSs

http://www.cse.unsw.edu.au/~cs3311
http://www.handbook.unsw.edu.au/undergraduate/courses/2016/COMP3311.html
http://www.handbook.unsw.edu.au/undergraduate/courses/2016/COMP3311.html

83 | P a g e

 appreciate the past, present and future of database technology

Glossary:

 DBMS: DataBase Management System ... software system to support database
manipulation

 RDBMS: Relational DBMS ... the most popular style of DBMS (refers to underlying
data model)

 SQL: Structured Query Language ... the ANSI standard language for manipulating
RDBMSs

Teaching Strategies

 Lectures : deliver the basic concepts and explain with detailed examples
 Lab Work : help students implement basic database components with real-life

database instance
 Consultation: weekly consultation to provide personalized advice to students on

their progress in the course.

Teaching Rationale

The learning focus in this course is primarily lectures (theoretical knowledge) and projects
(practical knowledge). The course will have an emphasis on problem solving for real
applications.

Assessments

Number Name Full Mark

1 * Assignment 1: Data Modeling 10

2 * Assignment 2: Relational Algebra + Normforms 20

3 * Assignment 3: DBMS 20

4 ** Project 1 25

5 ** Project 2 25

6 Final Exam 100

Later Submission Penalties:
* : zero marks
** : 10% reduction of your marks for the 1st day, 30% reduction/day for the following days

The final mark is calculated by the harmonic mean:
Final Mark= 2 * (ass1 + ass2 + ass3 + proj1 + proj2) * FinalExam / (ass1 + ass2 + ass3 + proj1
+ proj2 + FinalExam)

84 | P a g e

Course Staff

Name Office Phone E-mail Role

Xuemin Lin K17-503 56493* lxue@cse* lecturer in charge

Long Yuan K17-201 56206* longyuan@cse* course admin for even weeks

Xubo Wang K17-201 56206* xwang@cse* course admin for odd weeks

Note: You are invited to meet us in person during consultation time slots and during the lab
periods. You are also welcome to contact us via e-mail if something is urgent.

Lectures Time

This course has a 3-hour lecture per week, held on each Mon 09:00 - 12:00 at Mathews
Theatre B (K-D23-203).

Course Resources: Textbooks

Author(s) Title Edition Publisher/Year

Elmasri &
Navathe

Fundamentals of Database
Systems

6th
edition

Addison-Wesley,
2010

Course Resources: References

Author(s) Title Edition Publisher/Year

Jeffery D. Ullman,
Jennifer Widom

A First Course in
Database Systems

Recent
Edition

Prentice Hall

R. Ramakrishan
Database Management
Systems

3rd McGraw-Hill, 2003

D. Maier
The Theory of
Relational Databases

1st
Computer Science
Press, 1983

mailto:lxue@cse.unsw.edu.au
mailto:longyuan@cse.unsw.edu.au
mailto:xwang@cse.unsw.edu.au

85 | P a g e

COMP3511 Human Computer Interaction

Course Details

 6 units of credit (UoC)

 Pre-requisites
o 48 units of credit from any program (undergraduates)
o No pre-requisites for postgraduates

 This course is a pre-requisite for COMP4511 User Interface Design and Construction and

any HCI related thesis.

 The lectures (Tuesday 4-7pm, in CLB 6) are common for undergraduates and postgraduates.

 Each student should be enrolled in one of the designated 2 hour tutorial/laboratory time
slots

 Tutorial/laboratory will start in Week 2 and go through until Week 12.

 Tutorial/laboratory and assignment checkpoints will take place every week in G13-

K17 (Mac laboratory) also known as the “CHIL” (Computer Human Interaction

Laboratory)

 Postgraduates and undergraduates will have different assignment contexts.

Course Summary

 Lecture topics are summarised in the Course Schedule below.

 The course includes topics relating to Requirements, Design, Prototyping and Evaluation

within the User Centred Design process.

 You will also be given the skills to conduct a basic Usability Evaluation.

 Other topics covered within the course allow you to understand your users and their

needs. This includes an overview of basic Cognitive capacities, Designing for Accessibility,

Internationalisation, levels of Expertise, and Collaboration.

 You will also be looking at the differences between Scientific Data Gathering and User

Studies, with a consideration for Human Ethics.

 Other topics include Visual Design principles, and looking at different Input/Output

devices and their potential impact on Design.

Course Aims

 to develop your skills in the area of user-centred design

 to provide background knowledge about how people think and process information

 to demonstrate techniques/heuristics necessary to evaluate systems for their usability

 to give you the capability of executing a user-centred design process

 to give you experience in using paper-based design techniques

 to give you experience in the formal evaluation of user interfaces

 to give you exposure to developing electronic prototypes of user interfaces

 to ensure that your design work includes user needs analysis

 to give you an awareness of user centred design tools, methods, and techniques

 above all, maintain a real-world perspective to applying this knowledge in industry

86 | P a g e

Learning Outcomes

10 Core Learning Outcomes
 Be able to prepare a project plan that is based on user-centred design principles and then

carry out activities to design, evaluate and refine user interaction based on iteration.

 To develop the skills necessary to create a user interface evaluation report (written and

oral) that critiques a user interface.

 Understand the strengths and limitations of human cognition and memory and apply

these to the design of more usable interfaces that do not cognitively overload users.

 To develop design skills, primarily using paper for rapid solutions, and consolidate

individual designs in small groups to understand the importance of design decisions

and the selection process.

 Prepare and carry out usability walkthroughs to evaluate both paper and electronic based

designs for their usability, and then create structured reports that quantify the issues

discovered from evaluation activities.

 To ensure that your design work includes user needs analysis and is not just a reflection

of what you believe your users need.

 Construct questionnaires/surveys to obtain pre- and post-test information from users,

and to understand the importance of ethics and privacy in order be able to carry out

appropriate user- centred design activities.

 Understand the relationship between the scientific method and the user-centred design

approach and be aware of the scientific and research approaches used in user interface

design research.

 Understand how user centred design processes should be inclusive of all users, including

international audiences, those with special needs, such as disabilities, as well different

levels of user experience, and use this knowledge to design interfaces appropriate to a

particular group of users.

 To develop an awareness of user-centred design tools, methods, and techniques and

maintain a real-world perspective in order to be able to apply this knowledge in

industry.

Broader Learning outcomes
 Through the use of a design diary, develop an understanding of design

conceptualisation, technical and creative thinking

 Distinguish (user-centred) design from (code) implementation

 Design a project plan that includes the important role of the user in the software design
lifecycle

 Critique a user interface basing your evaluation on design principles, usability goals

and user experience goals

 Be able to use the heuristic evaluation technique for evaluating user interfaces

 Describe the characteristics of human cognitive and perceptual capacities and their

relationship to user interaction

 Understand the different methods people use to solve problems

 Describe the basic human cognitive architecture

 Be able to define and describe (with examples) cognitive load theory principles

including the redundancy effect, split attention effect, worked example effect and

modality effect

 Be able to apply cognitive load theory to the design of more usable interfaces that

do not cognitively overload users

 Develop an understanding of the nature of human expertise, including an

understanding of novices’ capabilities and needs

 Use the knowledge of experts and novices to be able to design interfaces

appropriate to a particular group of users

87 | P a g e

 Understand the difference between quantitative and qualitative research methodologies

 Understand the different phases of the user-centred design approach

 Be able to identify and distinguish users and stakeholders for a particular design situation

 Create scenarios and personas and apply them throughout the design and evaluation process

 Be able to deconstruct a system design into information, interaction and visual design
components

 Appreciate the complexities of visual design and the role of graphic and visual designers

 Apply data analysis techniques to understand and refine information architecture and

system requirements

 Carry out design activities to design, evaluate and refine user interaction
 Design and sketch primarily with paper to obtain rapid solutions to design questions

 Design on your own and in small groups, consolidating individual designs to

understand the importance of design decisions and the process by which selection is

made

 Understand the user interface design issues surrounding web design

 Develop an understanding of conventional and future input and output devices that

extend the user experience beyond the graphical user interface

 Understand how to construct non-functioning visual electronic prototypes based on

previous paper based design activities

 Appreciate the special needs of other people, being able to define the goals of Universal

Access and understand how user-centred design processes should also be inclusive of

special needs

 Understand the broader issues that technology and user interfaces play in the

area of occupational health and safety

 Become aware of the design issues for preparing user interfaces for international

audiences (those other than English speaking), and considerations that need to be

made in the implementation phase

 Understand the issues surrounding the design of social and collaborative software, and

the need for this type of software

 Be able to quantify user interaction in terms of low level interactions, and understand

some of the mathematical techniques used to measure that interaction

 Become aware of the scientific and research approaches used in user interface design
research

Assumed Knowledge

The assumed knowledge for this course is that you know how to write a report and/or essay

for your assignments, and that you are familiar with the technology in the Mac lab. Because

students come from a variety of backgrounds, with different knowledge bases, the

assumed knowledge is not extensive. The course does, however, involve extensive reading.

Teaching Rationale

Failing to take into consideration the needs of your software user audience will lead to costly

disaster. People will become frustrated because the application does not work the way that

they expect. You know it yourself – you have encountered web sites that are difficult and non-

intuitive to use. We aim to show you a design process that helps reduce such user interface

difficulties before users are unleashed on your software. This design process starts with

understanding people. The process involves an on-going working relationship with potential

users during the entire design of a system; not just in the software-testing phase.

Engineers have created many software applications without consultation with the immediate

user audience. They may have talked to the managers of the software (those that will pay the

88 | P a g e

development cost bills) but have not talked to the end users. The end users have valuable

insight into the workflow of organizations, and this is complimented with knowledge from

other stakeholders.

The intention is not for lectures to reiterate the text material but to re-activate it, re-represent

it, elaborate it, and demonstrate the application of it to design. This implies, and it will be

assumed, that you have done the reading prior to lecture. If you have questions about the

reading, the lectures, or the interrelation between the two, make sure that you ask in lectures

or via the various consultation methods described below.

Teaching strategies

Tuesday 4-7pm is a common lecture that will have lecture material, design diary exercises

and some small group activities. Given the later time slot we will endeavour to make this

more engaging than a typical lecture format. The lecture period will need your participation

to make this work successfully. You will need to bring your design diary. Your

participation in classes may count towards your participation component. For those

enrolled in the webstream and watching lectures online, you will be expected to have

listened to the relevant lecture in advance of tutorials and to come prepared to class. Failure

to do so may result is associated penalties.

Each week you will be required to participate in your timetabled tutorial/laboratory class.

This will be held in the CHIL (Computer Human Interaction Laboratory) G13-K17, ground

floor Mac lab. Bring your design diary to tutorial class and remember to date each page. It

will act as evidence of your original design and assignment work.

Regular progress on assignment 2 group work is required and will be checked with weekly or

fortnightly deliverables. This is designed to keep you working regularly on your assignments

so that you don’t leave things until the last minute. During some scheduled tutorial classes

(see web site and assignment pages for dates) there will be assessable in-class activities and

checkpoints (due at the beginning of the class) relating to assignment milestones. Late

penalties will be applied if you have not adequately prepared for these activities.

This will also be a time for you to ask questions of your tutor, and for your tutor to give you

some feedback on your work.

The practical periods in the tutorial/laboratory are intended to facilitate group discussion

and to give you the ability to work through practical examples.

Your design diary will be marked periodically in tutorials and will be collected at the end of

the semester for assessment and review. Your tutor will date stamp the diary in tutorial class.

You are encouraged to find your own design examples of bad user interaction experiences.

This may involve you taking a photograph, as an example, and gluing a print of that photo

into your diary and writing up your ideas as to why the interaction is poor and solutions to

improve.

This course appears to some as being “easy” but the reality is that it isn’t. (This comment comes

from student feedback). Many unfortunately don’t make this realisation until the final weeks.

 There is a lot more reading than other courses

 Unlike code, you cannot hack out a solution the night before

 Design takes a lot more thinking and conceptualisation to explore the problem space

 The process is iterative and you have to demonstrate improvements that evolve from
iteration

89 | P a g e

 Your design work involves discussing issues with potential users

 Your design work involves discussing and working with others in your group

Assignments

Assignment 2 context will differ between postgraduates and undergraduates to cater for the

different experiences and learning approaches. This strategy has been formulated based on our

own observations and feedback from students.

All students (COMP3511/COMP9511) will complete 2 assignments.

 Assignment 1 – Individual Website Design Critique

 Assignment 2 – Group User Interface Design

Assignment 1 focuses on heuristic evaluation, design principles and usability principles. For

Postgraduates and Undergraduates, you will apply your understanding of these concepts

when evaluating a series of websites.

Assignment 2 is a group design activity where the group will carry out a full user centred

design process to create a series of paper prototypes of a system. The process starts with

design conceptualisation, analysing user needs and goals, through a number of design

iterations, with on- going evaluation. You will discover through your testing that your first

design will have flaws and not work the way the user expects. Iteration becomes an essential

technique to improve the situation. Iteration is combined with an evaluation process to

formally analyse whether improvements are being made.

Assignment 2 is heavily focused on paper design and introduces the formal evaluation

process. The first phase will be based on individual design work, whilst the second phase will

be carried out with a team of 3-4 students to consolidate individual designs. Group members

must be from the same tutorial class because assessable exercises are carried out in tutorial

time – so all group members must be present.

In week 9, a formal usability evaluation will be run by your group and observed and

assessed. The outcomes of the evaluation and the subsequent design discussion will be

written up and added to the final group report. This provides an opportunity to incorporate

feedback from experienced tutors. In addition to the report, a final group presentation of the

design will be presented in tutorial class in week 12.

