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generating random binary CSP's. We show that our proposed parameter givesmeaningful results as we change the number of variables in our problems, changethe number of values in the domain of variables, or vary both simultaneously.In each case the phase transition in probability seems to occur at similar valuesof the parameter with changing problem size. Furthermore, median search costseems to peak over the same range of the parameter.Using our results on these problems, we are able to show that the techniqueof \�nite size scaling" can be applied to problems in CSP phase transitions.The result is an empirical prediction of how probability of solubility varies withproblem size, and this prediction might be used to help derive experimentalparameters for future experiments. We show this for each di�erent method ofvarying problem size that we investigate. This is the �rst time �nite size scalinghas been applied to a computational phase transition on changing domain size.The interest in how the probability of solubility varies with problem size islargely due to the correlation with peak in search cost at that phase transition.We show how remarkable a correlation this is by demonstrating that �nite sizescaling, applied with parameters derived only from examination of probabilitydata, seems to apply to search cost also. The implications for the experimentalanalysis of algorithms are very signi�cant.2 Binary Constraint Satisfaction ProblemsIn the binary constraint satisfaction problem (CSP) we have a set of variables,where each variable has a domain of values, and a set of constraints actingbetween pairs of variables. The problem is then to assign values to variables, fromtheir respective domains, such that the constraints are satis�ed [3, 17, 28]. Oneway of addressing this problem is via systematic search using backtracking, theobjectives being to �nd a solution, or determine that none exists, with minimalsearch e�ort, where e�ort is measured as the number of compatibility checksperformed between pairs of variables. Given a CSP with n variables with uniformdomain size of m, there will be mn possible assignments of variables to values.The best known complete algorithms for CSP'sare exponential in the worst case.Numerous studies have been performed on random CSP's, in order to mea-sure the performance of algorithms [4, 24, 29] and to investigate the nature ofproblems [21, 26]. Random CSP'sare typically categorised using four parame-ters, namely hn;m; p1; p2i, where n is the number of variables, m is the uniformdomain size, p1 is the proportion of edges in the constraint graph (ie. the densityof the constraint graph), and p2 is the proportion of pairs of instantiations overa constraint that are disallowed (ie. the tightness of the constraints) [21, 26, 5]3It has been observed that if n, m, and p1 are held constant, there is a small3 That is, in a random CSP hn;m;p1; p2i as de�ned in [21, 26] there will be exactlyp1:n:(n � 1)=2 constraints, and each constraint will have exactly p2:m2 con
icts.Lisp and Scheme versions of such a problem generator, and supporting search algo-rithms etc., are available via anonymous FTP at site ftp.cs.strath.ac.uk in directorieslocal/pat/csp-lab/ for Lisp and local/pat/csp-lab.scm/ for Scheme.



range of values of p2 where average search e�ort rapidly increases to a peak andthen falls away, while at the same time the proportion of soluble problems dropsto zero. That is, there is a phase transition [26, 21, 5].
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BM(b)Fig. 1. Gaschnig's experiments on random 10-queens, and ours on h10; 10; 1:0iProbably the earliest report of the complexity peak in CSP'sis by Gaschnig[7]. One of the studies in his thesis was on random 10-queens. In the n-queensproblem n non-attacking queens have to be placed on an n � n chess board,and in the random 10-queens problem a solution (or proof that none exists)has to be found for h10; 10; 1:0; p2i. Figure 1(a) shows a plot of the results fromGaschnig's experiments for random 10-queens. Constraint tightness p2 is variedin steps of 0.1 (with the exception of the point p2 = 0:35) and 150 problemsare generated at each point. Three curves are plotted, one for chronologicalbacktracking (BT), one for backjumping (BJ), and one for backmarking (BM)[11, 7, 6].4 The y-axis is the average number of consistency checks and the x-axisis p2. Figure 1(a) clearly shows a peak in average search e�ort at p2 = 0:4 for thethree algorithms. 5 In Figure 1(b) the experiments are repeated, but p2 is variedin steps of 0.01, and this con�rms that the peak in average search e�ort doesindeed occur at p2 = 0:4. Furthermore, 52% of the h10; 10; 1:0;0:4i problems aresoluble. It appears that Gaschnig failed to notice this phenomenon.3 A Control Parameter for Binary CSP'sGiven the random CSP hn;m; p1; p2i the expected number of solutions is givenby (1) E(N ) = mn(1� p2) p1n(n�1)2 (1)In [26] it is conjectured that average search e�ort will be greatest when anensemble of problems have on average one solution, ie. E(N ) = 1, and this4 Note that no variable or value ordering heuristics were used.5 Gaschnig referred to the CSP as a SAP (satis�cing assignment problem) and L asthe degree of a constraint (the fraction of distinct pair tests that have the value true,ie. L = 1 � p2). The plot of 1(a) uses the data in Figure 4.4.3-1, page 301 of [7].Gaschnig noted the existence of a sharp peak at L � 0:6, pages 179 and 180.



will correspond to the crossover point where half the problems are soluble. Anequivalent theory was independently developed by Williams and Hogg [30]. Forgiven values of n,m, and p1 the critical value of constraint tightness p2crit, whereaverage search e�ort will be a maximum, may be predicted via (2)p2crit = 1�m�2=((n�1)p1) (2)For example, using (2) we can predict the critical value of constraint tightness forh10; 10; 1:0i, ie. Gaschnig's random 10-queens experiments, and that is p2crit =0:400, in full agreement with his observations.
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p2(b)Fig. 2. h20; 10; p1i (a) Median search e�ort against p2, and (b) Percentage solubilityagainst p2Figure 2 shows the median search e�ort for the CSP'sh20; 10; p1; p2i (ie. 20variables, uniform domain size of 10, p1 varying from 0.1 to 1.0 in steps of 0.1,p2 varying from 0.01 to 0.99 in steps of 0.01). In Figure 2(a) 10 contours aregiven, the leftmost is for p1 = 1:0 and the rightmost for p1 = 0:1. The x-axisis constraint tightness, p2, varying in steps of 0.01, and the y-axis is the log ofthe median search e�ort. At each value of p1 and p2 one hundred problems weresampled using the algorithm forward checking with con
ict-directed backjump-ing (FC-CBJ) [20] allied to the fail �rst heuristic (FF) [23, 12]. What we see isthat as the density of the constraint graph increases (ie. p1 increases) the crit-ical value of constraint tightness falls (ie. p2 falls). Figure 2(b) shows how thesolubility of problems varies with p1 and p2. Again 10 contours are given, theleftmost for p1 = 1:0 and the rightmost for p1 = 0:1.In some respects Figure 2 suggests that it might be di�cult to compareCSP'sof di�erent size (ie. varying n and m) or structure (ie. varying p1 andp2) because their graphs translate along the x-axis, changing shape as they go.6What we would like to �nd is some parameter that characterises CSP regardlessof size or structure, ie. a control parameter. Control parameters have been iden-ti�ed for 3-SAT, namely clausesvariables , and in 3-COL the average degree 
 [2]. We6 Although all the curves in Figure 2(a) have the same signature, at high values of p1they are more de�ned.



can derive a control parameter � for CSP'sas follows. First, we rearrange (2) toget n� 12 p1 logm( 11� p2crit ) = 1 (3)This gives us a prediction for the location of the crossover point expressed by afunction of the random generation parameters taking a certain constant value,and that function no longer has a �rst order dependency on n, ie. it does nothave the exponential behaviour of (1). This immediately suggests that the LHSof (3), may be a suitable control parameter for CSP's. Accordingly, we de�nethe parameter, which we call � , by� =def n� 12 p1 logm( 11� p2 )Note that we de�ne � in terms of p2 instead of p2crit in (3). This means that� is de�ned for all values of n, m, p1, and p2, and so can be used to compareCSP'sgenerated with di�erent parameters. If the theory of equation (2) wereexactly correct, then values of � less than 1 would lead to soluble problems,while values more than 1 would give insoluble problems. We will see in the restof this paper that this is a reasonable but not completely accurate prediction.
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ty (b)Fig. 3. h20; 10; p1i (a) Median search e�ort against the control parameter � , and (b)Percentage solubility against � .Figure 3 shows the same data as in Figure 2 but with � on the x-axis. InFigure 3(a) the contours of median search e�ort peak when 0:75 � � � 1:0,close to the expected value of the control parameter. However, for increasing p1the phase transition occurs more sharply and at values of � nearer 1. That is,for denser constraint graphs, the prediction of Smith, Williams and Hogg for thelocation of the phase transition becomes more accurate.7 Finally, it is clear thatas p1 increases towards 1, so the peak mean search e�ort increases considerably.Only the last of these points could have been seen clearly from the graphs aspresented in Figure 2, even though in this case we have presented less data { we7 This change appears to be related to a decreasing variance in the number of solutionsat the phase transition [27].



cut o� values of p2 where � > 2:0. These points were made in [21], but this hadto be done by further analysis, and could not be read o� directly from a simpleplot as we did by looking at Figure 3.We hope that our graphs argue for us the case that data should be presentedwith respect to the proposed parameter, � . We show in the rest of the paperthat there are further advantages in studying this parameter. Indeed we will beable to make detailed numerical predictions based on it.4 Changing Number of Variables
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p1(b) Median ChecksFig. 4. hn; 3; p1; 29 i plotted using p1A set of experiments was carried out to investigate the e�ect of increasingthe number of variables, ie. n, on the parameter � . In these experiments we varythe number of variables and the density of the constraint graph, while holdingthe domain size and tightness of constraints constant. We chose a domain sizem = 3 and tightness of constraint p2 = 29 , corresponding to the set of experimentsreported in [5], and we will refer to them as hn; 3; p1; 29i.8 The search algorithmused for this set of experiments, and all subsequent experiments reported here,was FC-CBJ-FF, ie. forward checking with con
ict-directed backjumping usingthe fail-�rst heuristic. A report on the implementation of this procedure is givenin [18]. For each n from 10 to 110 in steps of 10 we tested problems from p1 = 1n�1to p1 = 10n�1 in steps of 15(n�1). (An exception is n = 10 where the maximumvalue of p1 is 9n�1 .) These parameters are equivalent to varying the averagedegree of nodes in the constraint graph from 1 to 10 in steps of 0.2. For each nfrom 10 to 70 inclusive we tested 10,000 randomly generated problems at eachvalue of p1, while for n from 80 to 110 we tested 1,000 problems for each p1.8 This corresponds to the experiments by Frost and Dechter with N and C varying,K = 3, and T = 29 . See Figure 1. in [5]. A problem with N variables and C con-straints is exactly equivalent to a problem generated using our model and parametershN; 3; 2C=N(N� 1); 29 i.



0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25

Pr
ob

ab
ili

ty
 s

ol
ub

le

n = 10
n = 20
n = 30
n = 40
n = 50
n = 60
n = 70
n = 80
n = 90

n = 100
n = 110(a) Probability of solubility 10

100

1000

10000

100000

0 0.25 0.5 0.75 1 1.25

C
he

ck
s (b) Median ChecksFig. 5. hn; 3; p1; 29 i plotted using control parameter �In Figure 4(a) we show how probability of solubility varies as n changes.Because the parameter that varies for each n is p1, we plot probability of solu-bility (y-axis) against p1 (x-axis). With increasing n, the phase transition occursat smaller values of p1, ie. the left most contour is for n = 110 and the rightmost contour is for n = 10. In Figure 4(b) we show how the median search costchanges with increasing n, on a logarithmic scale. As n increases the peak inmedian cost increases greatly and occurs at smaller values of p1 and appears tocoincide approximately with the transition in probability of solubility.Just as we saw in x3, our data is much more easily understood in terms ofthe parameter � than in terms of the raw parameter p1. In Figure 5(a) we showthe probability of solubility for each problem size tested, plotted against � (x-axis). Our data covers the range of � from 0.115 to 1.15. The phase transitionin probability always starts at a value of � slightly larger than 0.5. Comparisonwith equation (3) shows that this is considerably smaller than the value of 1predicted by the theory of Smith, Williams and Hogg. Nevertheless, using theirtheory we have derived a parameter at a �xed value of which the phase transitionseems to cluster. It is also clear that the sharpness of the phase transition tendsto increase with increasing n. We show in x5 that this increasing sharpness canbe characterised precisely.Figure 5(b) plots median search cost against � for each value of n tested. Thepeak in cost covers a similar range to the phase transition in solubility. However,as n increases, the peaks in median search cost become more sharply de�nedand appear at smaller values of � .5 Scaling of ProbabilityIn this section we show that the probability of solubility for a given problemclass scales in an astonishingly simple way. The same technique that we usehas been used in other NP complete problem classes and so seems to be ofvery general validity. However, since the technique is borrowed from statisticalphysics we brie
y review some analogies between phase transitions in physical



and computational problems.Similar phase transition phenomena occur in many physical systems [31]. Forexample, in a ferromagnet (a permanent magnet) a phase transition occurs ata critical temperature, the Curie temperature. Above this temperature, and inthe absence of an external magnetic �eld, the ferromagnet has no magnetization.If, however, the ferromagnet is cooled then it becomes abruptly magnetized atthe Curie temperature. Several other macroscopic properties like the magneticsusceptibility (the change in magnetization induced by an external �eld) alsoundergo a phase transition at the Curie temperature.A simple model of a ferromagnet is the Ising model. This has N atoms ar-ranged on a regular lattice. Each atom has a magnetic spin which can be either\up" or \down". The ferromagnet can therefore be in one of 2N possible states.Magnetism is a short-range force promoting neighbouring spins to line up to-gether. Correlations can, however, occur between more distant spins. At a hightemperature, thermal 
uctuations are large and spins are independent of eachother. The ferromagnet therefore has no net magnetization. As the temperatureis lowered towards the Curie temperature, spins become correlated over increas-ingly large distances. At the Curie temperature, spins are totally correlated {changing the spin of a single atom changes all other spins.Several analogies can be made with binary CSP's. A CSP has n variablestaking one of m values, so there are mn possible variable-value pairs. Althoughinteractions between variables are restricted to binary constraints, correlationscan occur between the values of variables not directly connected via a binaryconstraint. Our control parameter, which is related to the expected number ofsolutions to the CSP, serves as a proxy for the temperature. If this parameteris small then, as there are many models, variables can take values largely inde-pendently of each other. As this parameter is increased, the values of variablesbecome increasingly correlated. If there is only one expected model at the phasetransition, the values of variables are totally correlated with each other.Statistical mechanics describes the behaviour of a ferromagnet in the thermo-dynamic limit when the volume and number of atoms goes to in�nity. For �nitesystems, a heuristical technique called \�nite-size" scaling have been developedto model phase transition phenomena [1]. Finite-size scaling also appears to beuseful for modelling the behaviour of the phase transition in a variety of com-binatorial problems including propositional satis�ability [15, 16, 8, 9], and thetraveling salesman problem [10]. Around the phase transition, �nite-size scalingpredicts that problems of all sizes are indistinguishable except for a change ofscale. This would suggest that,Prob(solution) = f(� � �c�c : N1=�) (4)where f is some fundamental function, � is the control parameter, �c is thecritical value of this parameter at the phase transition, and N1=� provides thechange of scale. ���c�c plays an analogous rôle to the reduced temperature, T�TcTcin physical systems.



If the prediction of (4) holds then there must be a \�xed point", a singlevalue, �c of the control parameter at which all di�erent problem sizes give thesame percentage solubility, f(0). This may appear not to be the case in Figure5, except of course at 0 and 100% solubility. However, examining our data moreclosely in the region of high percentage solubility and interpolating betweenpoints on the plot where necessary, we did observe a �xed point.9 We foundvery similar behaviour at � = 0:625, where all n gave probabilities in the range(0.974,0.982) except for n = 10 which gave 0.991. Taking sample sizes intoaccount, all probabilities were within two standard deviations of an estimate forprobability of solublility of 0.976 except for n = 10 and n = 20. We take 0.625for the �xed point and thus for the critical value �c. It is interesting to note thatthis is considerably smaller than the value 1 predicted by (3). This is howeverconsistent with observations in [21, 22, 27] that the prediction of theory seemsto be less accurate in the case of sparse constraint graphs, such as these graphsare for n > 20 at the critical value.
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Rescaled parameter(b) Median ChecksFig. 6. hn; 3; p1; 29 i Plotted with rescaled parameter �nHaving chosen �c, if (4) holds then there will be a single value � to providea �t to (4). Another way of seeing this is to rescale our data so that instead ofplotting the control parameter � , we de�ne a rescaled parameter which dependson the control parameter and the problem size, N. We call this �n and in linewith (4), using n for the problem size, de�ne it by�n =def � � �c�c : n1=� (5)If the conjecture of (4) holds for the correct value of the exponent �, we expectto see the probability curves for each n very closely aligned if we plot themagainst �n. If so, then the resulting curve gives us an empirical prediction of thefunction f . Having chosen �c, one can estimate � empirically by assuming that9 Although the probability plots are clearly curved, locally straight line interpolationseems to be acceptable.



(5) holds. Then for a given probability of solubility, we can observe the valuesof � that give that probability for di�erent values of n. Say that for n1 and n2we observe the same probability at �1 and �2. Then from (5) we expect that�1 � �c�c : n11=� = �2 � �c�c : n21=�Rearrangement gives us � = log(n2=n1)log((�1 � � c)=(�2 � � c)) (6)We �rst estimated � using this formula and the 50% solubility points, againusing linear interpolation where necessary. The choice of 50% is because it issigni�cantly di�erent from the probability of 0.976 at the �xed point, givingsu�cient range for the scaling to take e�ect. Using (6) for each of the 55 pairsof 10 � n1 < n2 � 110, gave a median estimate for � of 2:32 with a lowerquartile estimate of 2:16 and an upper quartile of 2:51. Rescaling based on 25%solubility gives a very similar result, with a median estimate of 2.33. We thuschoose � = 2:3. The fact that this choice gives a good �t to (4) is con�rmeddramatically in Figure 6(a). (The vertical line represents �n = 0.) Under thisscaling all probability curves are almost identical, except the curve for n = 10which rests slightly above the rest. This suggests that probability of solubilityin this model can be described by �nite size scaling with parameters �c = 0:625,� = 2:3, and f as seen in Figure 6(a).The implications of this result are signi�cant. First, in this particular model itshould help design future experiments. For example, should we wish a probabilityof solubility of 0.5, then we can interpolate the empirically predicted value ofthe rescaled parameter, which in this case occurs at �n � 1:45, this being themedian value interpolated from the 11 values of n. We can rearrange (5) to �ndwhat value of � gives a given value of the �n parameter for a given n. This isgiven by � = �c : (1 + �nn1=� )This suggests that in an hn; 3; p1; 29 i problem, 50% solubility occurs when � �0:625 : (1+ 1:45=n 12:3 ). We can unpack the de�nition of the control parameter togive the raw parameter p1. In this problem class p1 = 2�=(n � 1) log3(97 ). Wethus expect to see 50% solubility atp1 � (5:46 + 7:92=n 12:3 )=(n� 1)Fortunately we are able to test this prediction with published data, as Frostand Dechter [5] report the number of constraints observed at 50% solubility forthis model. The number of constraints C is p1n(n� 1)=2, so we predict that for50% solubility, C � n2 (5:46 + 7:92=n 12:3 ) (7)



At n = 275, the largest value of n reported in [5], 50% solubility occurs at 845constraints. Equation (7) predicts 846 constraints. The largest n used to makethe extrapolation was 110 variables. For smaller n, our prediction is not quite asaccurate, but it is never more than 9 constraints out, which occurs at n = 150with a prediction of 477 constraints compared to an observation of 468. Unlikedata reported by [5], our data can also be used to interpolate for any other valueof percentage solubility, and to extrapolate to any problem size.More signi�cant still is the likelihood that we will see similar kinds of �nitescaling in other randomly generated CSP's. This is likely because once similarkinds of scaling were observed in SAT problems [15] they were observed in manydi�erent classes of SAT problems [16, 8]. We expect that similar kinds of pre-dictions made from examining only small problems should be available for largeproblems in many di�erent classes of CSP's.6 Finite Size Scaling of Search CostThe main feature of CSP problems that interests us is how hard it is to solvethese problems. It is natural therefore to ask if changes in behaviour of searchcost can be similarly corrected using �nite size scaling? The remarkable answeris that this seems to be achievable using the identical rescaled parameter �n.
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Rescaled parameter(b) 10% of cost behaviourFig. 7. hn; 3; p1; 29 i plotted using rescaled parameter �nIn Figure 6(b) we show what happens if we plot the same data previouslyplotted in Figure 5(b) against �n. Instead of the peaks in search cost occurringat di�erent values of the parameter as seen previously, the peak appears tobe at very similar values for each di�erent n. This strongly suggests that thesame �nite size scaling that is e�ective for probability of solubility also modelsaccurately the behaviour of search cost. Selman and Kirkpatrick have also shownthat �nite size scaling can be applied to search cost, in satis�ability problems[25]. It seems likely that it can be applied more generally.It seems that not only median, but other measures of search cost scale inexactly the same way. Figure 7(a) shows how the 99 percentile behaves against



�n. That is, the graph plots at each point the cost that was exceeded by only 1%of problems. Just as with median behaviour, these contours line up very closely.Of course the 99 percentile is considerably worse than median behaviour, butwe also note that the peaks in these curves occur at smaller values, peaking at�n � 0:8 compared with �n � 1:6 for median. Figure 7(b) shows behaviour ofthe 10 percentile, i.e. the cost exceeded by all but 10% of problems. Yet againthe contours line up closely. This time the peaks are at a larger value, �n � 2.It is particularly signi�cant that we were able to use exactly the rescaledparameter �n with the same parameters �c and � as used in x5. The values�c = 0:625 and � = 2:3 were chosen to model scaling of probability of solubility,and this is an entirely algorithm independent feature of a problem. Yet the sameparameters also accurately describe the scaling of search cost in a particularalgorithm, FC-CBJ-FF. This would suggest that the �nite size scaling of searchcost behaviour that we have observed may be algorithm independent. While thedetails of contours seen with di�erent algorithmswill vary, the scaling parametersmay be identical in each case. Of course at this stage this is only speculationsince we have only observed scaling with a single algorithm, but the implicationsfor understanding the scaling of search cost are enormous.7 Changing Domain SizeTo test our conjecture that very similar kinds of scaling would be seen with dif-ferent random CSP classes, we tested a completely di�erent model by generatingproblems with parameters h10;m; 1:0; p2i. Notice that in x4 we �xed m and p2while varying n and p1: we now �x n and p1 while varying m and p2. Sincewe have �xed n = 10 and p1 = 1, all constraint graphs we consider are simply10-cliques, while before we typically looked at sparse constraint graphs.From this problem class, we tested problems for m = 5, 10, 15, 20, 30, 40,and 50. Except for m = 5, where p2 can only vary in steps of 1=m2 = 0:04 wevaried p2 in steps of at most 0.01, covering at least a region of � from 0.5 to 2.We tested 1000 problems at each value of p2. Figure 8 shows how probability ofsolubility and median search e�ort varies with m. We give one contour in each�gure for each m, plotted against p2. As m increases, the phase transition occursat larger values of p2, and the peak in problem di�culty grows.In x3 we proposed a control parameter � for binary CSP's. If it is to beuseful, it should aid comparison of our data for this problem class both withchangingm and with our earlier data for hn; 3; p1; 29 i. This is con�rmed by Figure9 which shows our data replotted against the parameter � . It can be seen thatthe probability phase transition and worst case median behaviour always occursat similar values of � . We observed a �xed point in probability of solubility at�c = 1:02 where solubility was always 0:30 � 0:01. This is much closer to theexpected critical value of � = 1 than we saw in the previous problem class. Boththe location of the �xed point �c and the probability of solubility at that pointare signi�cantly di�erent from the values �c � 0:625 and 0.976 solubility that wesaw in hn; 3; p1; 29i. However, just as in that class, both the probability transitionand the peaks in median behaviour become sharper with increasing m.
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Finite size scaling may seem to be an inappropriate techique, because we areno longer changing the number of variables, n. However, we are certainly varyingthe problem size N by changing the number of values each variable takes,m. It isimportant to take account ofm when considering the problem size. For example,to specify a solution to a binary CSP requires n log2(m) bits, as the value eachvariable takes can be speci�ed in log2(m) bits. So, properly, this is the measurewe should have used in x5 when considering �nite size scaling. However, m wasconstant at 3 and so does not a�ect the parameter � that we derived there. Here,we are varying m, so we rede�ne the rescaled control parameter as�n =def � � �c�c : (n log2(m))1=� (8)Having done this we can proceed as before, equation (6) becoming� = log(n2 log2(m2)=n1 log2(m1))log((�1 � � c)=(�2 � � c)) (9)We estimated � from equation (9) using the 50% probability point. We simplychose this as it is signi�cantly di�erent from the probability of 0.3 at the �xedpoint. The median estimate for � was 0.63 with lower and upper quartiles of 0.55and 0.68 respectively. These estimates of �c � 1:02, � � 0:63 give an very good�t to a prediction of �nite size scaling. This is seen in Figure 10 (a) which showsour data for probability of solubility plotted against the rescaled parameter �n.Exactly as we saw in x6, we can use the identical parameters �c and � torescale contours of median cost. This is seen in Figure 10(b). As before thecontours line up very closely, suggesting that �nite size scaling can be appliedto search cost in this problem class.8 Changing Number of Variables and Domain SizeWe have established that n log2(m) provides a good measure of problem sizewhen varying m. Finally, we ask if it also provides a good measure of problemsize when varying n and m together? To test this, we return to our startingpoint in this paper, namely Gaschnig's random n-queens model. In the termsof x2 these are hn; n; 1:0; p2i. Thus we vary both the number of variables anddomain size, in this case keeping them identical. In our experiments we testedn = 6, 8, 10, 12, 14, and 15. We varied p2 in steps depending on n, and tested1000 problems at each value of p2. Figure 11 shows probability of solubility andmedian search cost against p2, one contour being given for each n. As n increasesthe phase transition occurs at smaller values of p2, and search cost increases.Once again, the use of our control parameter enables us to compare ourdata as n increases, and to contrast our data for this problem class with datafrom previous problem classes. Figure 12 shows the same data replotted againstthe parameter � . As in previous cases, we see the probability phase transitionoccurring over a similar range of � , as do the peaks in median search cost. Thecurves become sharper with increasing n.
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The �xed point in probability can be seen particularly clearly in Figure 12(a)at � � 1. Examining this data more closely we observed a �xed point in prob-ability of solubility at �c = 0:99 where it was always 0:51 � 0:03. Note thatthe standard deviation at probability 0.5 in a sample of 1000 is 0.015, so allresults were within 2 standard deviations of 0.51. As in x7, this is very close tothe predicted critical value of � = 1, and again we note that we are looking atconstraint graphs which are cliques. The critical value �c and the �xed point inprobability of solubility are di�erent to the previous two cases.As in x7 we de�ne the rescaled parameter �n by equation (8), using (9) toestimate �. In this case we could not estimate � using the 50% solubility pointas it is too close to the �xed point probability of 0.51. Using 90% probabilityfor estimation we obtained a median estimate of 1.02 with upper and lowerquartiles of 0.78 and 1.09, while using 10% probability for estimation these valueswere 1.09, 1.03 and 1.45 respectively. Estimates of �c � 0:99, � � 1:0 give anextremely good �t to a prediction of �nite size scaling. This is seen in Figure 13which shows our data for probability of solubility and median search cost plottedagainst the rescaled parameter �n. Again we point out the remarkable fact that�nite size scaling can be applied to search cost using parameters derived solelyfrom examination of probability data.One of the standard becnchmark for CSP algorithms has been the n-queens,classi�ed by Smith and Dyer as the problem class hn; n; 1:0; (7n�2)=3n2i. Usingthe rescaled control parameter above �n for the n-queens problem, we see that asn increases �n decreases; for 10-queens � = 0:5 and �n = �32:3, for 100-queens� = 0:25 and �n = �989, and for 1000-queens � = 0:17 and �n = �16; 500.Therefore, as n increases the n-queens problem should become an easier instanceof the class of problems hn; n; 1:0i. This is in full agreement with [27].It is quite remarkable that the same kind of �nite size scaling should be soaccurate for three entirely di�erent methods of varying problem size consideredin this paper. We have varied n only in hn; 3; p1; 29 i, we have varied m onlyh10;m; 1:0; p2i, and we have varied n and m together in hn; n; 1:0; p2i. In eachcase, the same equation (4) has been shown to be directly applicable, with onlythe parameters �c and � and the function f varying between problem classes.9 ConclusionsWhen presenting the results of experiments on random CSP'sgenerated fromthe model hn;m; p1; p2i graphs have typically been plotted with either p1 or p2on one axis. This tends to give a distorted view of the data, as contours rarelyline up. We have proposed a control parameter � for randomly generated CSP's,where � characterises CSP'sregardless of size. The parameter � is derived froma theory that predicts that on average the hardest problems will occur when theexpected number of solutions E(N ) = 1.Analysing the empirical data for experiments with number of variables nvarying, we observed a single value of � where problems of di�erent sizes havethe same percentage solubility, ie. a �xed point �c. Finite-sized scaling was then



applied to give a rescaled parameter �n. Replotting the data with respect to �nbrought the picture into sharp focus; the solubility contours lie one on top ofthe other, and the peaks in median search e�ort coincide. Furthermore, we wereable to use the rescaled parameter to estimate the critical number of constraintsat the crossover point, ie. 50% solubility, for larger values of n, and these werein close agreements with results reported elsewhere; ie. we have given someevidence of the predictive power of �n. The same rescaling technique was thenapplied to data from experiments with domain size m varying, and experimentswith domain size m and number of variables n varying together. In both casesproblem size was taken as N = n log2(m), and in both cases the data was againbrought into sharp focus. This suggests that the technique may be quite general.One of the surprises of this investigation is that a �nite scaling of the controlparameter based on the solubility of problems has carried over to a scaling ofsearch cost. The rescaled parameter �n models the solubility of the problem (aproblem-dependent property) and the behaviour of search cost (something thatwe might expect to be an algorithm-dependent property). The other surprise hasbeen that �nite size scaling has been so accurate for three very di�erent classesof problems (ie. n varying, m varying, n and m varying together).Obviously this work represents a starting point. In the future, we would liketo know the detailed scaling parameters as problems are varied in more waysthan we could consider in this paper. It would be very valuable if we could sizeproblems with respect to graph density p1 in order to rescale the data in x3.Finally, we note that the techniques applied in this paper e�ectively repair atheory which we showed to be inaccurate to a slight degree. However this repairis empirical. If our results could be used to help develop a more re�ned andaccurate theory, it would be a pleasing validation of the empirical science ofalgorithms, as called for by Hooker [14].References1. M.N. Barber. Finite-size scaling. In Phase Transitions and Critical Phenomena,Volume 8, pages 145{266. Academic Press, 1983.2. P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problemsare. In Proceedings of the 12th IJCAI, pages 331{337. International Joint Confer-ence on Arti�cial Intelligence, 1991.3. R. Dechter, Constraint Networks, in Encyclopedia of Arti�cial Intelligence, Wiley,New York, 2nd ed., 276-286, 1992.4. R. Dechter and I. Meiri, Experimental evaluation of preprocessing algorithms forconstraint satisfaction problems, Artif. Intell. 68(2) (1994) 211-242.5. D. Frost and R. Dechter, In search of the best search: an empirical evaluation,Proceedings AAAI-94, Seattle, WA (1994) 301-306.6. J. Gaschnig, A general backtracking algorithm that eliminates most redundanttests, Proceedings IJCAI-77, Cambridge, MA (1977) 457.7. J. Gaschnig, Performance measurement and analysis of certain search algorithms,Tech. Rept. CMU-CS-79-124, Carnegie-Mellon University, Pittsburgh, PA (1979).8. I. P. Gent and T. Walsh. The SAT phase transition. In Proceedings of ECAI-94,pages 105{109, 1994.
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