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Abstract. Phase transitions in constraint satisfaction problems (CSP’s)
are the subject of intense study. We identify a control parameter for ran-
dom binary CSP’s. There is a rapid transition in the probability of a CSP
having a solution at a critical value of this parameter. This parameter
allows different phase transition behaviour to be compared in an uniform
manner, for example CSP’s generated under different regimes. We then
show that within classes, the scaling of behaviour can be modelled by a
technique called “finite size scaling”. This applies not only to probability
of solubility, as has been observed before in other NP-problems, but also
to search cost. Furthermore, the technique applies with equal validity to
several different methods of varying problem size. As well as contribut-
ing to the understanding of phase transitions, we contribute by allowing
much finer grained comparison of algorithms, and for accurate empirical
extrapolations of behaviour.

1 Introduction

A phase transition in random CSP problems has recently been the subject of in-
tensive theoretical and empirical study [30, 13, 26, 27, 21, 22, 5]. Theory predicts
approximately where the phase transition can be expected, but otherwise very
little information is available as to what behaviour can be expected at different
problem sizes and at different points with respect to the phase transition.

Compared to SAT, the model for generation of random CSP problems is
complicated, and no control parameter is used in presenting data. Yet the iden-
tification of a control parameter for random SAT problems [2, 19] is fundamental
to current research on phase transitions in SAT. In this paper we introduce a
control parameter for CSP. The phase transition is always expected at the same
value of this parameter. Using extant data, we show that it can be much more
easily understood by plotting with respect to this parameter than by raw plots
as previously presented.

In the rest of the paper, we show that the control parameter can be used to
direct detailed and meaningful comparisons of significantly different methods of
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generating random binary CSP’s. We show that our proposed parameter gives
meaningful results as we change the number of variables in our problems, change
the number of values in the domain of variables, or vary both simultaneously.
In each case the phase transition in probability seems to occur at similar values
of the parameter with changing problem size. Furthermore, median search cost
seems to peak over the same range of the parameter.

Using our results on these problems, we are able to show that the technique
of “finite size scaling” can be applied to problems in CSP phase transitions.
The result is an empirical prediction of how probability of solubility varies with
problem size, and this prediction might be used to help derive experimental
parameters for future experiments. We show this for each different method of
varying problem size that we investigate. This is the first time finite size scaling
has been applied to a computational phase transition on changing domain size.

The interest in how the probability of solubility varies with problem size is
largely due to the correlation with peak in search cost at that phase transition.
We show how remarkable a correlation this is by demonstrating that finite size
scaling, applied with parameters derived only from examination of probability
data, seems to apply to search cost also. The implications for the experimental
analysis of algorithms are very significant.

2 Binary Constraint Satisfaction Problems

In the binary constraint satisfaction problem (CSP) we have a set of variables,
where each variable has a domain of values, and a set of constraints acting
between pairs of variables. The problem is then to assign values to variables, from
their respective domains, such that the constraints are satisfied [3, 17, 28]. One
way of addressing this problem is via systematic search using backtracking, the
objectives being to find a solution, or determine that none exists, with minimal
search effort, where effort is measured as the number of compatibility checks
performed between pairs of variables. Given a CSP with n variables with uniform
domain size of m, there will be m”™ possible assignments of variables to values.
The best known complete algorithms for CSP’sare exponential in the worst case.

Numerous studies have been performed on random CSP’s, in order to mea-
sure the performance of algorithms [4, 24, 29] and to investigate the nature of
problems [21, 26]. Random CSP’sare typically categorised using four parame-
ters, namely (n,m, p1, p2), where n is the number of variables, m is the uniform
domain size, p; is the proportion of edges in the constraint graph (ie. the density
of the constraint graph), and py is the proportion of pairs of instantiations over
a constraint that are disallowed (ie. the tightness of the constraints) [21, 26, 5]
It has been observed that if n, m, and p; are held constant, there is a small

® That is, in a random CSP (r,m,p1,p2) as defined in [21, 26] there will be exactly
p1.n.(n — 1)/2 constraints, and each constraint will have exactly p2.m? conflicts.
Lisp and Scheme versions of such a problem generator, and supporting search algo-
rithms etc., are available via anonymous FTP at site ftp.cs.strath.ac.uk in directories
local/pat/csp-lab/ for Lisp and local/pat/csp-lab.scm/ for Scheme.



range of values of ps where average search effort rapidly increases to a peak and
then falls away, while at the same time the proportion of soluble problems drops
to zero. That is, there is a phase transition [26, 21, 5].
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Fig. 1. Gaschnig’s experiments on random 10-queens, and ours on (10,10, 1.0)

Probably the earliest report of the complexity peak in CSP’sis by Gaschnig
[7]. One of the studies in his thesis was on random 10-queens. In the n-queens
problem n non-attacking queens have to be placed on an n x n chess board,
and in the random 10-queens problem a solution (or proof that none exists)
has to be found for (10, 10, 1.0, po}. Figure 1(a) shows a plot of the results from
Gaschnig’s experiments for random 10-queens. Constraint tightness ps is varied
in steps of 0.1 (with the exception of the point pa = 0.35) and 150 problems
are generated at each point. Three curves are plotted, one for chronological
backtracking (BT), one for backjumping (BJ), and one for backmarking (BM)
[11, 7, 6].* The y-axis is the average number of consistency checks and the x-axis
is pa. Figure 1(a) clearly shows a peak in average search effort at pa = 0.4 for the
three algorithms. 3 In Figure 1(b) the experiments are repeated, but ps is varied
in steps of 0.01, and this confirms that the peak in average search effort does
indeed occur at ps = 0.4. Furthermore, 52% of the (10, 10, 1.0,0.4) problems are
soluble. It appears that Gaschnig failed to notice this phenomenon.

3 A Control Parameter for Binary CSP’s

Given the random CSP (n, m, p1, p2) the expected number of solutions is given

by (1)

n pin(n=1)
E(N)=m"(1—ps)" > (D)
In [26] it is conjectured that average search effort will be greatest when an
ensemble of problems have on average one solution, ie. EF(N) = 1, and this

* Note that no variable or value ordering heuristics were used.

® Gaschnig referred to the CSP as a SAP (satisficing assignment problem) and L as
the degree of a constraint (the fraction of distinct pair tests that have the value true,
ie. L =1 — p2). The plot of 1(a) uses the data in Figure 4.4.3-1, page 301 of [T7].
Gaschnig noted the existence of a sharp peak at L =~ 0.6, pages 179 and 180.



will correspond to the crossover point where half the problems are soluble. An
equivalent theory was independently developed by Williams and Hogg [30]. For
given values of n, m, and p; the critical value of constraint tightness ps.p;¢, where
average search effort will be a maximum, may be predicted via (2)

P2erit = 1- m—Z/((n—l)pl) (2)
For example, using (2) we can predict the critical value of constraint tightness for

(10,10, 1.0), ie. Gaschnig’s random 10-queens experiments, and that is pacrie =
0.400, in full agreement with his observations.
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Fig.2. (20,10, p1) (a) Median search effort against po, and (b) Percentage solubility
against ps

Figure 2 shows the median search effort for the CSP’s(20, 10, p1, p2) (ie. 20
variables, uniform domain size of 10, p; varying from 0.1 to 1.0 in steps of 0.1,
pa2 varying from 0.01 to 0.99 in steps of 0.01). In Figure 2(a) 10 contours are
given, the leftmost is for p; = 1.0 and the rightmost for p; = 0.1. The x-axis
is constraint tightness, ps, varying in steps of 0.01, and the y-axis is the log of
the median search effort. At each value of p; and py one hundred problems were
sampled using the algorithm forward checking with conflict-directed backjump-
ing (FC-CBJ) [20] allied to the fail first heuristic (FF) [23, 12]. What we see is
that as the density of the constraint graph increases (ie. p; increases) the crit-
ical value of constraint tightness falls (ie. p2 falls). Figure 2(b) shows how the
solubility of problems varies with p; and ps. Again 10 contours are given, the
leftmost for p; = 1.0 and the rightmost for p; = 0.1.

In some respects Figure 2 suggests that it might be difficult to compare
CSP’sof different size (ie. varying n and m) or structure (ie. varying p; and
p2) because their graphs translate along the x-axis, changing shape as they go.°
What we would like to find is some parameter that characterises CSP regardless
of size or structure, ie. a control parameter. Control parameters have been iden-
tified for 3-SAT, namely -24¥s¢5_and in 3-COL the average degree v [2]. We

variables?

® Although all the curves in Figure 2(a) have the same signature, at high values of p;
they are more defined.



can derive a control parameter 7 for CSP’sas follows. First, we rearrange (2) to
get
n—1 1
prlog,, (—) =1 3

2 m(l_pZCrit) ( )
This gives us a prediction for the location of the crossover point expressed by a
function of the random generation parameters taking a certain constant value,
and that function no longer has a first order dependency on n, ie. it does not
have the exponential behaviour of (1). This immediately suggests that the LHS
of (3), may be a suitable control parameter for CSP’s. Accordingly, we define

the parameter, which we call 7, by

n—1 1 ( 1
O
9 p110g,, 1_p2

)

T =def

Note that we define 7 in terms of ps instead of pacriz in (3). This means that
7 18 defined for all values of n, m, p1, and ps, and so can be used to compare
CSP’sgenerated with different parameters. If the theory of equation (2) were
exactly correct, then values of 7 less than 1 would lead to soluble problems,
while values more than 1 would give insoluble problems. We will see in the rest
of this paper that this is a reasonable but not completely accurate prediction.
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Fig.3. (20,10,p1) (a) Median search effort against the control parameter 7, and (b)
Percentage solubility against 7.

Figure 3 shows the same data as in Figure 2 but with 7 on the x-axis. In
Figure 3(a) the contours of median search effort peak when 0.75 < 7 < 1.0,
close to the expected value of the control parameter. However, for increasing py
the phase transition occurs more sharply and at values of 7 nearer 1. That 1s,
for denser constraint graphs, the prediction of Smith, Williams and Hogg for the
location of the phase transition becomes more accurate.” Finally, it is clear that
as py increases towards 1, so the peak mean search effort increases considerably.
Only the last of these points could have been seen clearly from the graphs as
presented in Figure 2, even though in this case we have presented less data — we

" This change appears to be related to a decreasing variance in the number of solutions
at the phase transition [27].



cut off values of ps where 7 > 2.0. These points were made in [21], but this had
to be done by further analysis, and could not be read off directly from a simple
plot as we did by looking at Figure 3.

We hope that our graphs argue for us the case that data should be presented
with respect to the proposed parameter, 7. We show in the rest of the paper
that there are further advantages in studying this parameter. Indeed we will be
able to make detailed numerical predictions based on it.

4 Changing Number of Variables
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Fig.4. (n,3,p1, %) plotted using p;

A set of experiments was carried out to investigate the effect of increasing
the number of variables, ie. n, on the parameter 7. In these experiments we vary
the number of variables and the density of the constraint graph, while holding
the domain size and tightness of constraints constant. We chose a domain size
m = 3 and tightness of constraint p, = %, corresponding to the set of experiments
reported in [5], and we will refer to them as (n, 3, p1, %).8 The search algorithm
used for this set of experiments, and all subsequent experiments reported here,
was FC-CBJ-FF, ie. forward checking with conflict-directed backjumping using
the fail-first heuristic. A report on the implementation of this procedure is given
in [18]. For each n from 10 to 110 in steps of 10 we tested problems from p; = ﬁ
to p1 = % in steps of ﬁ (An exception is n = 10 where the maximum
value of py is nng) These parameters are equivalent to varying the average
degree of nodes in the constraint graph from 1 to 10 in steps of 0.2. For each n
from 10 to 70 inclusive we tested 10,000 randomly generated problems at each

value of p1, while for n from 80 to 110 we tested 1,000 problems for each p;.

& This corresponds to the experiments by Frost and Dechter with N and C varying,
K =3,and T = %. See Figure 1. in [5]. A problem with N variables and C con-
straints is exactly equivalent to a problem generated using our model and parameters

(N,3,2C/N(N — 1), 2).
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Fig.5. (n,3,p1, %) plotted using control parameter 7

In Figure 4(a) we show how probability of solubility varies as n changes.
Because the parameter that varies for each n is py, we plot probability of solu-
bility (y-axis) against p; (x-axis). With increasing n, the phase transition occurs
at smaller values of p;, ie. the left most contour is for n = 110 and the right
most contour is for n = 10. In Figure 4(b) we show how the median search cost
changes with increasing n, on a logarithmic scale. As n increases the peak in
median cost increases greatly and occurs at smaller values of p; and appears to
coincide approximately with the transition in probability of solubility.

Just as we saw in §3, our data is much more easily understood in terms of
the parameter 7 than in terms of the raw parameter p;. In Figure 5(a) we show
the probability of solubility for each problem size tested, plotted against 7 (x-
axis). Our data covers the range of 7 from 0.115 to 1.15. The phase transition
in probability always starts at a value of 7 slightly larger than 0.5. Comparison
with equation (3) shows that this is considerably smaller than the value of 1
predicted by the theory of Smith, Williams and Hogg. Nevertheless, using their
theory we have derived a parameter at a fixed value of which the phase transition
seems to cluster. It i1s also clear that the sharpness of the phase transition tends
to increase with increasing n. We show in §5 that this increasing sharpness can
be characterised precisely.

Figure 5(b) plots median search cost against 7 for each value of n tested. The
peak in cost covers a similar range to the phase transition in solubility. However,
as n increases, the peaks in median search cost become more sharply defined
and appear at smaller values of 7.

5 Scaling of Probability

In this section we show that the probability of solubility for a given problem
class scales in an astonishingly simple way. The same technique that we use
has been used in other NP complete problem classes and so seems to be of
very general validity. However, since the technique is borrowed from statistical
physics we briefly review some analogies between phase transitions in physical



and computational problems.

Similar phase transition phenomena occur in many physical systems [31]. For
example, in a ferromagnet (a permanent magnet) a phase transition occurs at
a critical temperature, the Curie temperature. Above this temperature, and in
the absence of an external magnetic field, the ferromagnet has no magnetization.
If, however, the ferromagnet is cooled then it becomes abruptly magnetized at
the Curie temperature. Several other macroscopic properties like the magnetic
susceptibility (the change in magnetization induced by an external field) also
undergo a phase transition at the Curie temperature.

A simple model of a ferromagnet is the Ising model. This has N atoms ar-
ranged on a regular lattice. Each atom has a magnetic spin which can be either
“up” or “down”. The ferromagnet can therefore be in one of oN possible states.
Magnetism is a short-range force promoting neighbouring spins to line up to-
gether. Correlations can, however, occur between more distant spins. At a high
temperature, thermal fluctuations are large and spins are independent of each
other. The ferromagnet therefore has no net magnetization. As the temperature
is lowered towards the Curie temperature, spins become correlated over increas-
ingly large distances. At the Curie temperature, spins are totally correlated —
changing the spin of a single atom changes all other spins.

Several analogies can be made with binary CSP’s. A CSP has n variables
taking one of m values, so there are m™ possible variable-value pairs. Although
interactions between variables are restricted to binary constraints, correlations
can occur between the values of variables not directly connected via a binary
constraint. Qur control parameter, which is related to the expected number of
solutions to the CSP, serves as a proxy for the temperature. If this parameter
is small then, as there are many models, variables can take values largely inde-
pendently of each other. As this parameter is increased, the values of variables
become increasingly correlated. If there is only one expected model at the phase
transition, the values of variables are totally correlated with each other.

Statistical mechanics describes the behaviour of a ferromagnet in the thermo-
dynamic limit when the volume and number of atoms goes to infinity. For finite
systems,; a heuristical technique called “finite-size” scaling have been developed
to model phase transition phenomena [1]. Finite-size scaling also appears to be
useful for modelling the behaviour of the phase transition in a variety of com-
binatorial problems including propositional satisfiability [15, 16, 8, 9], and the
traveling salesman problem [10]. Around the phase transition, finite-size scaling
predicts that problems of all sizes are indistinguishable except for a change of
scale. This would suggest that,

T— T,

Prob(solution) = f(——. Nl/”) (4)

Te

where f is some fundamental function, 7 is the control parameter, 7. is the
critical value of this parameter at the phase transition, and N1/¥ provides the
change of scale. T;CTC plays an analogous role to the reduced temperature, T;CT“
in physical systems.




If the prediction of (4) holds then there must be a “fixed point”, a single
value, 7, of the control parameter at which all different problem sizes give the
same percentage solubility, f(0). This may appear not to be the case in Figure
5, except of course at 0 and 100% solubility. However, examining our data more
closely in the region of high percentage solubility and interpolating between
points on the plot where necessary, we did observe a fixed point.” We found
very similar behaviour at 7 = 0.625, where all n gave probabilities in the range
(0.974,0.982) except for n = 10 which gave 0.991. Taking sample sizes into
account, all probabilities were within two standard deviations of an estimate for
probability of solublility of 0.976 except for n = 10 and n = 20. We take 0.625
for the fixed point and thus for the critical value 7.. It is interesting to note that
this is considerably smaller than the value 1 predicted by (3). This is however
consistent with observations in [21, 22, 27] that the prediction of theory seems
to be less accurate in the case of sparse constraint graphs, such as these graphs
are for n > 20 at the critical value.
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Having chosen 7., if (4) holds then there will be a single value v to provide
a fit to (4). Another way of seeing this is to rescale our data so that instead of
plotting the control parameter 7, we define a rescaled parameter which depends
on the control parameter and the problem size, N. We call this 7y and in line
with (4), using n for the problem size, define it by

™ =def T—T . nl/y (5)
c

If the conjecture of (4) holds for the correct value of the exponent v, we expect
to see the probability curves for each n very closely aligned if we plot them
against 7. If so, then the resulting curve gives us an empirical prediction of the
function f. Having chosen 7., one can estimate v empirically by assuming that

® Although the probability plots are clearly curved, locally straight line interpolation
seems to be acceptable.



(5) holds. Then for a given probability of solubility, we can observe the values
of 7 that give that probability for different values of n. Say that for n; and n,
we observe the same probability at 71 and 72. Then from (5) we expect that

T1L — T¢ T2 — T¢
7.77,11/1/ = 7.77,21/1/
Te Te

Rearrangement gives us

L, log(na/n1)
= Tog((r1 — 7o)/ (r2 —72) (6)

We first estimated v using this formula and the 50% solubility points, again
using linear interpolation where necessary. The choice of 50% is because it is
significantly different from the probability of 0.976 at the fixed point, giving
sufficient range for the scaling to take effect. Using (6) for each of the 55 pairs
of 10 < n; < np < 110, gave a median estimate for v of 2.32 with a lower
quartile estimate of 2.16 and an upper quartile of 2.51. Rescaling based on 25%
solubility gives a very similar result, with a median estimate of 2.33. We thus
choose v = 2.3. The fact that this choice gives a good fit to (4) is confirmed
dramatically in Figure 6(a). (The vertical line represents 7v = 0.) Under this
scaling all probability curves are almost identical, except the curve for n = 10
which rests slightly above the rest. This suggests that probability of solubility
in this model can be described by finite size scaling with parameters 7. = 0.625,
v =2.3, and [ as seen in Figure 6(a).

The implications of this result are significant. First, in this particular model it
should help design future experiments. For example, should we wish a probability

of solubility of 0.5, then we can interpolate the empirically predicted value of
the rescaled parameter, which in this case occurs at 7 =& 1.45, this being the
median value interpolated from the 11 values of n. We can rearrange (5) to find
what value of 7 gives a given value of the 7y parameter for a given n. This is
given by

N
TITC.(l—I——nl/V)

This suggests that in an (n, 3, p1, %) problem, 50% solubility occurs when 7 =
0.625.(1+ 1.45/71%). We can unpack the definition of the control parameter to

give the raw parameter p;. In this problem class p1 = 27/(n — 1)log3(%). We
thus expect to see 50% solubility at

p1 A~ (5.46+7.92/n73)/(n — 1)

Fortunately we are able to test this prediction with published data, as Frost
and Dechter [5] report the number of constraints observed at 50% solubility for
this model. The number of constraints C' is pyn(n — 1)/2, so we predict that for
50% solubility,

Cr =(5.46 4 7.92/n73) (7)

nN| 3



At n = 275, the largest value of n reported in [5], 50% solubility occurs at 845
constraints. Equation (7) predicts 846 constraints. The largest n used to make
the extrapolation was 110 variables. For smaller n, our prediction is not quite as
accurate, but it is never more than 9 constraints out, which occurs at n = 150
with a prediction of 477 constraints compared to an observation of 468. Unlike
data reported by [5], our data can also be used to interpolate for any other value
of percentage solubility, and to extrapolate to any problem size.

More significant still is the likelihood that we will see similar kinds of finite
scaling in other randomly generated CSP’s. This is likely because once similar
kinds of scaling were observed in SAT problems [15] they were observed in many
different classes of SAT problems [16, 8]. We expect that similar kinds of pre-
dictions made from examining only small problems should be available for large
problems in many different classes of CSP’s.

6 Finite Size Scaling of Search Cost

The main feature of CSP problems that interests us is how hard it is to solve
these problems. It is natural therefore to ask if changes in behaviour of search
cost can be similarly corrected using finite size scaling? The remarkable answer
is that this seems to be achievable using the identical rescaled parameter 7.
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In Figure 6(b) we show what happens if we plot the same data previously
plotted in Figure 5(b) against 7. Instead of the peaks in search cost occurring
at different values of the parameter as seen previously, the peak appears to
be at very similar values for each different n. This strongly suggests that the
same finite size scaling that is effective for probability of solubility also models
accurately the behaviour of search cost. Selman and Kirkpatrick have also shown
that finite size scaling can be applied to search cost, in satisfiability problems
[25]. Tt seems likely that it can be applied more generally.

It seems that not only median, but other measures of search cost scale in
exactly the same way. Figure 7(a) shows how the 99 percentile behaves against



7~. That is, the graph plots at each point the cost that was exceeded by only 1%
of problems. Just as with median behaviour, these contours line up very closely.
Of course the 99 percentile i1s considerably worse than median behaviour, but
we also note that the peaks in these curves occur at smaller values, peaking at
™ & 0.8 compared with 7v & 1.6 for median. Figure 7(b) shows behaviour of
the 10 percentile, i.e. the cost exceeded by all but 10% of problems. Yet again
the contours line up closely. This time the peaks are at a larger value, v & 2.

It is particularly significant that we were able to use exactly the rescaled
parameter 7y with the same parameters 7, and v as used in §5. The values
T. = 0.625 and v = 2.3 were chosen to model scaling of probability of solubility,
and this i1s an entirely algorithm independent feature of a problem. Yet the same
parameters also accurately describe the scaling of search cost in a particular
algorithm, FC-CBJ-FF. This would suggest that the finite size scaling of search
cost behaviour that we have observed may be algorithm independent. While the
details of contours seen with different algorithms will vary, the scaling parameters
may be identical in each case. Of course at this stage this is only speculation
since we have only observed scaling with a single algorithm, but the implications
for understanding the scaling of search cost are enormous.

7 Changing Domain Size

To test our conjecture that very similar kinds of scaling would be seen with dif-
ferent random CSP classes, we tested a completely different model by generating
problems with parameters (10, m, 1.0, ps). Notice that in §4 we fixed m and p;
while varying n and p;: we now fix n and p; while varying m and p». Since
we have fixed n = 10 and p; = 1, all constraint graphs we consider are simply
10-cliques, while before we typically looked at sparse constraint graphs.

From this problem class, we tested problems for m = 5, 10, 15, 20, 30, 40,
and 50. Except for m = 5, where ps can only vary in steps of 1/m? = 0.04 we
varied ps in steps of at most 0.01, covering at least a region of 7 from 0.5 to 2.
We tested 1000 problems at each value of ps. Figure 8 shows how probability of
solubility and median search effort varies with m. We give one contour in each
figure for each m, plotted against ps. As m increases, the phase transition occurs
at larger values of ps, and the peak in problem difficulty grows.

In §3 we proposed a control parameter 7 for binary CSP’s. If it is to be
useful, it should aid comparison of our data for this problem class both with
changing m and with our earlier data for (n, 3, p1, %) This is confirmed by Figure
9 which shows our data replotted against the parameter 7. It can be seen that
the probability phase transition and worst case median behaviour always occurs
at similar values of 7. We observed a fixed point in probability of solubility at
T = 1.02 where solubility was always 0.30 & 0.01. This 1s much closer to the
expected critical value of 7 = 1 than we saw in the previous problem class. Both
the location of the fixed point 7. and the probability of solubility at that point
are significantly different from the values 7, & 0.625 and 0.976 solubility that we
saw in (n, 3, p1, %) However, just as in that class, both the probability transition
and the peaks in median behaviour become sharper with increasing m.
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Finite size scaling may seem to be an inappropriate techique, because we are
no longer changing the number of variables, n. However, we are certainly varying
the problem size N by changing the number of values each variable takes, m. It is
important to take account of m when considering the problem size. For example,
to specify a solution to a binary CSP requires nlog,(m) bits, as the value each
variable takes can be specified in log,(m) bits. So, properly, this is the measure
we should have used in §5 when considering finite size scaling. However, m was
constant at 3 and so does not affect the parameter v that we derived there. Here,
we are varying m, so we redefine the rescaled control parameter as

- (nlogy(m))*/” (8)

T— T,

TN =def
c

Having done this we can proceed as before, equation (6) becoming

_ log(ns logy(ms)/ny log,y(m1))
YT Tlog((r — 7o) /(12— 72) )

We estimated v from equation (9) using the 50% probability point. We simply
chose this as it 1s significantly different from the probability of 0.3 at the fixed
point. The median estimate for v was 0.63 with lower and upper quartiles of 0.55
and 0.68 respectively. These estimates of 7. & 1.02, v & 0.63 give an very good
fit to a prediction of finite size scaling. This is seen in Figure 10 (a) which shows
our data for probability of solubility plotted against the rescaled parameter 7.

Exactly as we saw in §6, we can use the identical parameters 7. and v to
rescale contours of median cost. This is seen in Figure 10(b). As before the
contours line up very closely, suggesting that finite size scaling can be applied
to search cost in this problem class.

8 Changing Number of Variables and Domain Size

We have established that nlog,(m) provides a good measure of problem size
when varying m. Finally, we ask if it also provides a good measure of problem
size when varying n and m together? To test this, we return to our starting
point in this paper, namely Gaschnig’s random n-queens model. In the terms
of §2 these are {(n,n,1.0,ps). Thus we vary both the number of variables and
domain size, in this case keeping them identical. In our experiments we tested
n =6, 8, 10, 12, 14, and 15. We varied ps in steps depending on n, and tested
1000 problems at each value of ps. Figure 11 shows probability of solubility and
median search cost against ps, one contour being given for each n. As n increases
the phase transition occurs at smaller values of ps, and search cost increases.

Once again, the use of our control parameter enables us to compare our
data as n increases, and to contrast our data for this problem class with data
from previous problem classes. Figure 12 shows the same data replotted against
the parameter 7. As in previous cases, we see the probability phase transition
occurring over a similar range of 7, as do the peaks in median search cost. The
curves become sharper with increasing n.
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The fixed point in probability can be seen particularly clearly in Figure 12(a)
at 7 & 1. Examining this data more closely we observed a fixed point in prob-
ability of solubility at 7, = 0.99 where it was always 0.51 £ 0.03. Note that
the standard deviation at probability 0.5 in a sample of 1000 is 0.015, so all
results were within 2 standard deviations of 0.51. As in §7, this is very close to
the predicted critical value of 7 = 1, and again we note that we are looking at
constraint graphs which are cliques. The critical value 7. and the fixed point in
probability of solubility are different to the previous two cases.

As in §7 we define the rescaled parameter 7y by equation (8), using (9) to
estimate v. In this case we could not estimate v using the 50% solubility point
as 1t is too close to the fixed point probability of 0.51. Using 90% probability
for estimation we obtained a median estimate of 1.02 with upper and lower
quartiles of 0.78 and 1.09, while using 10% probability for estimation these values
were 1.09, 1.03 and 1.45 respectively. Estimates of 7, &~ 0.99, v &~ 1.0 give an
extremely good fit to a prediction of finite size scaling. This is seen in Figure 13
which shows our data for probability of solubility and median search cost plotted
against the rescaled parameter 7y. Again we point out the remarkable fact that
finite size scaling can be applied to search cost using parameters derived solely
from examination of probability data.

One of the standard becnchmark for CSP algorithms has been the n-queens,
classified by Smith and Dyer as the problem class (n,n, 1.0, (7n—2)/3n?). Using
the rescaled control parameter above Ty for the n-queens problem, we see that as
n increases TN decreases; for 10-queens 7 = 0.5 and v = —32.3, for 100-queens
7 = 0.25 and v = —989, and for 1000-queens 7 = 0.17 and v = —16,500.
Therefore, as n increases the n-queens problem should become an easier instance
of the class of problems (n, n,1.0}. This is in full agreement with [27].

It is quite remarkable that the same kind of finite size scaling should be so
accurate for three entirely different methods of varying problem size considered
in this paper. We have varied n only in (n, 3, p1, %), we have varied m only
(10,m, 1.0, p2), and we have varied n and m together in (n,n, 1.0, p2). In each
case, the same equation (4) has been shown to be directly applicable, with only
the parameters 7. and v and the function f varying between problem classes.

9 Conclusions

When presenting the results of experiments on random CSP’sgenerated from
the model (n,m, p1, pa) graphs have typically been plotted with either p; or ps
on one axis. This tends to give a distorted view of the data, as contours rarely
line up. We have proposed a control parameter 7 for randomly generated CSP’s,
where 7 characterises CSP’sregardless of size. The parameter 7 is derived from
a theory that predicts that on average the hardest problems will occur when the
expected number of solutions EF(N) = 1.

Analysing the empirical data for experiments with number of variables n
varying, we observed a single value of 7 where problems of different sizes have
the same percentage solubility, ie. a fixed point 7.. Finite-sized scaling was then



applied to give a rescaled parameter my. Replotting the data with respect to ™y
brought the picture into sharp focus; the solubility contours lie one on top of
the other, and the peaks in median search effort coincide. Furthermore, we were
able to use the rescaled parameter to estimate the critical number of constraints
at the crossover point, ie. 50% solubility, for larger values of n, and these were
in close agreements with results reported elsewhere; ie. we have given some
evidence of the predictive power of my. The same rescaling technique was then
applied to data from experiments with domain size m varying, and experiments
with domain size m and number of variables n varying together. In both cases
problem size was taken as N = nlog,(m), and in both cases the data was again
brought into sharp focus. This suggests that the technique may be quite general.

One of the surprises of this investigation is that a finite scaling of the control
parameter based on the solubility of problems has carried over to a scaling of
search cost. The rescaled parameter 7y models the solubility of the problem (a
problem-dependent property) and the behaviour of search cost (something that
we might expect to be an algorithm-dependent property). The other surprise has
been that finite size scaling has been so accurate for three very different classes
of problems (ie. n varying, m varying, n and m varying together).

Obviously this work represents a starting point. In the future, we would like
to know the detailed scaling parameters as problems are varied in more ways
than we could consider in this paper. It would be very valuable if we could size
problems with respect to graph density p; in order to rescale the data in §3.
Finally, we note that the techniques applied in this paper effectively repair a
theory which we showed to be inaccurate to a slight degree. However this repair
is empirical. If our results could be used to help develop a more refined and
accurate theory, it would be a pleasing validation of the empirical science of
algorithms, as called for by Hooker [14].
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