
Annals of Operations Research
https://doi.org/10.1007/s10479-021-04474-6

ORIG INAL RESEARCH

On routing and scheduling a fleet of resource-constrained
vessels to provide ongoing continuous patrol coverage

Paul A. Chircop1 · Timothy J. Surendonk1 ·Menkes H. L. van den Briel2 ·
Toby Walsh3,4,5

Accepted: 29 November 2021
© Crown 2021

Abstract
The objective of the Patrol Boat Scheduling Problem with Complete Coverage (PBSPCC) is
to find a minimum size patrol boat fleet to provide continuous coverage at a set of maritime
patrol regions, ensuring that there is at least one vessel on station in each patrol region at
any given time. The requirement for continuous patrol coverage is complicated by the need
for vessels to be replenished on a regular basis. This combinatorial optimization problem
contains both routing and scheduling components and is known to be NP-hard. In this paper,
we show how recent theoretical insights can be used in conjunction with specially tailored
heuristics to accelerate a column generation solution approach over a resource-space-time
network construct. We show how the column generation approach can be used within a
branch-and-price framework and combined with various reduction techniques to find cyclic
and long-term scheduling solutions on a range of test problems.

Keywords Branch-and-price · Continuous coverage problem · Route planning ·
Surveillance scheduling

B Paul A. Chircop
paul.chircop@dst.defence.gov.au

Timothy J. Surendonk
timothy.surendonk@dst.defence.gov.au

Menkes H. L. van den Briel
menkes@hivery.com

Toby Walsh
tw@cse.unsw.edu.au

1 Defence Science and Technology Group, Sydney, NSW, Australia

2 HIVERY, Sydney, NSW, Australia

3 University of New South Wales, Sydney, NSW, Australia

4 Data61 CSIRO, Canberra, Australia

5 Technical University of Berlin, Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-021-04474-6&domain=pdf
http://orcid.org/0000-0001-8823-7966
https://orcid.org/0000-0003-0989-6168
https://orcid.org/0000-0003-2998-8668

Annals of Operations Research

1 Introduction and related literature

The Patrol Boat Scheduling Problem with Complete Coverage (PBSPCC) is a combinatorial
optimization problem of determining the minimum number of vessels to provide continuous
presence in a set of maritime patrol regions. The continuous presence requirement is com-
plicated by the resource limitations of the vessels, which consume resources at a constant
rate while on patrol or in transit. Hence, before a maximum endurance time has elapsed,
each vessel must return to a port (replenishment station) to refuel, re-stock and/or re-crew.
Once a vessel has been replenished, it is then available to resume its patrolling duties. The
PBSPCC was introduced by Chircop et al. (2013), who outlined a simple column generation
solution approach and performed a sensitivity analysis of fleet size to vessel endurance on a
specific problem instance. A pictorial illustration of the problem is provided in Fig. 1. While
the patrol regions are specified by spatial nodes, they may in fact represent more expansive
geographical areas. Note that Fig. 1 indicates that a patrol vessel may be in any one of four
mutually exclusive states: on patrol, in transit, undergoing replenishment, or idle in port (no
resource consumption in this state).

Routing and scheduling naval patrol vessels for military operations has received limited
coverage in the academic literature when compared to other problems of interest to decision-
makers in the commercial shipping industry. Moreover, there are a number of dissimilarities
between the types of objectives for which naval assets and merchant vessels are routinely
deployed. The main difference is that a certain level of effectiveness is usually required in
military operations planning, with theminimization of costs or themaximization of profit rel-
egated to lower levels of importance. In general, patrol planning problems in the military and
public sector domains place a greater emphasis on achieving certain operational outcomes.
Even though industrial and commercial applications of routing and scheduling have a certain
preeminence in the literature, there are a number of publications that have focused on tasking
requirements for naval patrol vessels and their crews.We begin with a brief overview of some
of these studies before narrowing our attention to the problem of routing and scheduling a
fleet of resource-constrained vessels to provide ongoing continuous patrol coverage.

The literature survey conducted by Christiansen et al. (2004) on the status of ship routing
and scheduling included a brief section on naval operations. Among the papers reviewed

Fig. 1 Illustration of the PBSPCC. Pink circles are indicative of maritime patrol regions, but a region itself
is represented by a blue circular node. Ports are displayed as green square nodes. A purple icon (R) indicates
a vessel is replenishing at port, a green icon (I) indicates that a vessel is idle in port, and a black icon (P)
represents a vessel on patrol. Directed edges are feasible transit lanes in the network, with a red icon (T) used
to designate a vessel in transit

123

Annals of Operations Research

by Christiansen et al. (2004) is the article by Nulty and Ratliff (1991), which considered
the problem of scheduling the U.S. Navy’s Atlantic Fleet in order to satisfy a number of
overseas deployments throughout a planning horizon. A study by Brown et al. (1996) was
also cited in the Christiansen et al. (2004) survey, which examined the operational scheduling
requirements for U.S. Coast Guard cutters in the Boston District. The problem considered by
Brown et al. (1996) was to schedule a fleet of sixteen Coast Guard vessels on aweekly basis to
ensure that patrol and search and rescue requirements were being satisfied. Darby-Dowman
et al. (1995) studied the same problem as Brown et al. (1996) and developed a software
system for the U.S. Coast Guard with the aid of a discrete optimization solver. A later study
of patrol boat resource allocation within the U.S. Coast Guard was undertaken by Wagner
and Radovilsky (2012). This study addressed the allocation of patrol boats across a large
variety of districts using an extensive integer programming model. In the Royal Australian
Navy context, Horn et al. (2006) considered the problem of simultaneously scheduling patrol
boats and crews for regular operations using a model called Crews Boats Missions (CBM).
The model used metaheuristic techniques to create schedules for a fleet of Armidale Class
Patrol Boats and their crews over a yearly planning horizon. This work was subsequently
complemented by Zadeh et al. (2009), who updated CBM into a more efficient software
package for military planners.

Over the last decade, a new research trend has emerged to address questions related to
routing and scheduling patrol assets to provide an on-station presence in a set of geographical
locations. The variety of applications has included studies of maritime and land surveillance
(Millar andRussell 2012;Kimet al. 2013; Fang et al. 2015),motor vehicle accident prevention
(Keskin et al. 2012; Çapar et al. 2015; Dewil et al. 2015; Chircop et al. 2021), security
beat planning (Hsieh et al. 2015) and critical infrastructure protection (Shieh et al. 2013).
Surendonk and Chircop (2020b) conducted a comprehensive literature survey of these and
other studies in order to properly situate thePBSPCCwithin the broader corpus of scholarship.
With applications tomaritimeborder protection, and having its origins in fleet sizing questions
raised by the Royal Australian Navy, the PBSPCC was found to possess a unique set of
characteristics that had not been considered by related studies. Subsequent work (Surendonk
and Chircop 2020a, b) provided detailed proofs that the PBSPCC belongs firmly within the
NP-hard computational complexity class via a reduction to the Hamiltonian Graph Decision
Problem.

With a pure integer programming approach to the PBSPCC, the optimality gaps are sim-
ply too large to solve even moderately sized instances in reasonable time frames (Chircop
2017). Indeed, similar experiences were reported by Keskin et al. (2012) with their inte-
ger programming model of the Maximum Covering and Patrol Routing Problem (MCPRP).
Implementation of the simple column generation solution approach proffered by Chircop
et al. (2013) has also highlighted the difficulty of obtaining optimal, or even good-quality,
solutions on large spatial networks.Moreover, this approach has been known to exhibit signif-
icant runtime degradation with longer planning horizons. However, recent work by Chircop
and Surendonk (2021) has suggested a column generation enhancement by establishing a set
of conditions under which an alternative objective function (minimize the total time not spent
on patrol) may be used to arrive at an optimal solution to the original problem (minimize
the fleet size). In the present paper, we adopt the alternative objective function approach in
concert with other column generation acceleration strategies to demonstrate computational
runtime improvements on a range of test problems. We then show how this enhanced column
generation approach can be used within a specially tailored branch-and-price framework to
find cyclic and long-term scheduling solutions.

123

Annals of Operations Research

The remainder of the paper is organized as follows. Section 2 covers some mathemat-
ical preliminaries and outlines the construction of a resource-space-time (RST) network.
In Sect. 3, an integer linear programming (ILP) model is formulated for the PBSPCC.
A column generation solution approach to the linear relaxation of the ILP model is then
presented. This includes deriving the reduced costs, defining the subproblem, generating
seed columns, specifying the pricing strategy and outlining a branch-and-price approach for
solving the ILP model. Reduction techniques to find cyclic and long-term scheduling solu-
tions are discussed in Sect. 4 and the computational results are presented and analyzed in
Sect. 5. The paper concludes with Sect. 6 in which a few suggestions are proffered for further
research.

2 Network construction

We begin with some notation. We use N to denote the natural numbers (starting at 1), Z
∗ to

denote the set of non-negative integers, Zn for the integers modulo n: Zn := {0, 1, ..., n−1},
andR for the continuumof real numbers. If X is a set, thenwe use |X | to denote its cardinality.

2.1 Patrol network setting

A patrol network is a directed graph G = (V,A), where the set of vertices V = {1, . . . , n}
represents the number of distinct spatial regions and A is the set of directed arcs, that is,
the set of feasible transitions (in space) between any two regions. The set of vertices is the
union of two mutually exclusive sets, the set of ports Vport = {1, . . . ,m} and the set of patrol
regions Vpat = {m + 1, . . . , n}. Hence, the number of ports is m ≥ 1, where m < n, and the
number of patrol regions is n − m. Associated with each arc (i, j) ∈ A is a non-negative
and integer-valued transit time, which we denote Ti j ∈ N. For each patrol boat, the transit
times on the network G must satisfy the triangle inequality. That is, for distinct i, j, k ∈ V ,
we have Tik ≤ Ti j + T jk .

The endurance of a patrol boat is TE ∈ N. This is the maximum time that can be spent on
patrol and in transit before being replenished at a port. On returning to a port, a patrol boat
undergoes a mandatory replenishment break of duration TR ∈ Z

∗. The planning horizon is
T ∈ N, where T ≥ TE + TR . The planning horizon is divided into discrete intervals of time,
indexed by t ∈ ZT . For a given patrol region i ∈ Vpat, there must be a patrol boat on station at
all time instances t ∈ ZT . We define a patrol period to be a pairing of a discrete time interval
and the index denoting a patrol region. The set of all patrol periods is denoted by L and is
given by L := {

(i, t) | i ∈ Vpat, t ∈ ZT
}
. Finally, we introduce a set of activities consisting

of all possible patrol boat states. As seen in Fig. 1, there exist four mutually exclusive states
for the patrol boats, namely, on patrol (P), in transit (T), replenishing at port (R), at idle in
port (I). The set of all activities is denoted by � := {I,P,R,T}.

Table 1 summarizes the preceding notation and definitions of the key sets and parameters
for the patrol network context of the PBSPCC.

2.2 Resource-space-time network construction

The PBSPCC is a resource-constrained optimization problem, and therefore, we require an
appropriate network structure that facilitates an efficient solution algorithm. The approach
taken in this paper is to transform the original patrol network G into an expanded directed

123

Annals of Operations Research

Table 1 Notation and definitions for the patrol network setting

Symbol Definition Units

n Number of spatial locations n ∈ N, n ≥ 2 –

m Number of ports m ∈ N, 1 ≤ m < n –

Vport Set of ports in a patrol
network

Vport = {1, . . . ,m} –

Vpat Set of patrol regions in a
patrol network

Vpat = {m + 1, . . . , n} –

V Set of spatial locations in a
patrol network

V = Vport ∪ Vpat –

i, j Indices for spatial locations i, j ∈ V –

A Set of directed arcs in a
patrol network

(i, j) ∈ A –

G A patrol network G = (V,A) –

Ti j Transit time from location i
to j

Ti j ∈ N [time]

TE Patrol boat endurance TE ∈ N [time]

TR Replenishment break
duration

TR ∈ Z
∗ [time]

T Planning horizon T ∈ N, T ≥ TE + TR [time]

t Time index t ∈ Z
∗ [time]

L Set of patrol periods L = {
(i, t) | i ∈ Vpat, t ∈ ZT

}
–

� Set of patrol boat activities � = {I(dle),P(atrol),
R(eplenish),T(ransit)}

–

acyclic graph G that implicitly accounts for the resource consumption and replenishment of
a patrol boat through space and time. We call such a directed acyclic graph a resource-space-
time (RST) network. In this section, we outline the construction and characteristics of an RST
network.

At any time within the planning horizon T , a patrol boat will be at some location with a
certain resource level and performing a specific activity. For example, a patrol boat may be
at a port region in a state of replenishment, or on patrol at a particular region with only a
few units of resource remaining. To account for all relevant cases, an RST network contains
a set of vertices V and a set of directed arcs A. The vertex set is used to label a patrol
boat’s location in space, the elapsed time, and the number of resource units consumed. The
directed arcs represent the set of patrol boat activities, that is, idle, on patrol, replenishing or
in transit. A patrol region is represented as a group of layered vertices. The layers are used
to track a boat’s resource consumption, while the horizontal position of a vertex is used to
mark the elapsed time. Ports are composed predominately of two vertex layers, one for the
un-replenished state and another for the replenished state. An illustrative example of an RST
network can be found in Fig. 2.

123

Annals of Operations Research

Fig. 2 An illustrative example of an RST network. (Color figure online)

As seen in Fig. 2, idle transitions (orange arcs) are permitted within a port region after
resource replenishment (blue arcs) has occurred. Transition from a port to a patrol region
(gray arcs) is only allowed after a patrol boat has been replenished. All transition arcs from a
patrol region to a port (green and pink arcs in Fig. 2) terminate at a vertex with an emanating
replenishment arc. If the resource break duration is greater than the time discretization,
additional vertices can be added at the beginning and end of the planning horizon to include
fractional replenishment periods (for example, see the top vertex layer of Fig. 2). The RST
network can account for multiple port regions, but a patrol boat is prohibited from making a
transition between any two distinct ports. The number of vertex layers representing a patrol
region is contingent on the maximum amount of time a boat may spend at that region before
undergoing replenishment. This is dependent on the patrol boat endurance and the distance
to the closest port. Transitions within a patrol region are represented by patrol arcs (black
arcs in Fig. 2) which denote one unit of resource consumed per unit time. A patrol period can
therefore be expressed as the set of patrol arcs that begin at the same time in a given patrol
region. To achieve complete patrol coverage over the entire planning horizon, each patrol
period must be covered by at least one patrol boat.

The mathematical notation used to describe the construction of an RST network is as
follows. Given a patrol network G = (V,A), endurance TE , replenishment time TR , and
planning horizon T , we construct an RST networkG = (V , A) according to a transformation
(G, TE , TR, T) �→ G. The vertex set V includes a source s and a sink τ . All other vertices
are divided between a patrol vertex set Vpat ⊂ V and a port vertex set Vport ⊂ V . Except
for dummy arcs, the directed arcs A in an RST network are grouped according to the set of
patrol boat activities. Thus, we have a patrol arc set AP ⊂ A, a transit arc set AT ⊂ A, a
replenishment arc set AR ⊂ A, and an idle arc set AI ⊂ A. The set of patrol arcs in patrol
region i ∈ Vpat (Vpat ⊂ V) is Ai

P ⊆ AP. The set of patrol arcs in patrol period � ∈ L is
AP(�) ⊂ Ai

P, where � = (i, t) for some t ∈ ZT . For each v ∈ V , let A+(v) be the set of all
arcs emanating from v, that is, the set of all (v,w) ∈ A for fixed v ∈ V . Similarly, let A−(v)

123

Annals of Operations Research

be the set of all arcs terminating at v, that is, the set of all (u, v) ∈ A for fixed v ∈ V . The
set A+(s) contains the dummy arcs emanating from the source vertex while the set A−(τ)

corresponds to the dummy arcs terminating at the sink vertex. The entire set of dummy arcs
is AD = A+(s) ∪ A−(τ), where AD ⊂ A. Let tuv ∈ Z

∗ be the transit time of traversing
arc (u, v) ∈ A. We have tuv = 0 for all (u, v) ∈ AD, tuv = 1 for all (u, v) ∈ AP ∪ AI,
and tuv ∈ {0, 1, . . . , TR} for all (u, v) ∈ AR. The procedure for constructing the set of
transit arcs AT is a major component of the transformation from a patrol network to an RST
network. Hence, we describe this procedure in detail and provide an illustrative example
before proceeding to the next section.

For a patrol region i ∈ Vpat, the proximity to the nearest port is used to calculate the
number of vertex layers, which we call the resource depth Ni . Let Ri

min ∈ N be the transit
time from patrol region i to the nearest port. The resource depth for patrol region i is given
by Ni := TE − 2Ri

min. The vertex layers for patrol region i are defined by the set Di :=
{0, 1, . . . , Ni }. Consider a boat patrolling in region i at some â ∈ Di and at time t ∈ ZT . Now
consider a transition to patrol region j ∈ Vpat, with required transit time Ti j ∈ N. Firstly, if
t + Ti j > T , then there is not enough time remaining in the planning horizon to undertake
this transition, and so it can be ruled out. However, if t + Ti j ≤ T , then we need to check if
the patrol boat is adequately resourced to undertake the transition from i to j . For â ∈ Di ,
let the resource level (that is, the amount of resource remaining) be given by Ri (â), where
Ri (â) ≥ Ri

min and Ri (â) := TE − Ri
min − â. Upon making the transition to region j , the boat

will arrive at some b̂ ∈ Dj , where the resource level must be given by R j (b̂) = Ri (â)−Ti j .

Using the fact that R j (b̂) = TE − R j
min − b̂, we have TE − R j

min − b̂ = TE − Ri
min − â−Ti j .

Solving for b̂ yields b̂ = â + Ri
min +Ti j − R j

min. If b̂ ≤ N j , where N j = TE − 2R j
min, then

the transition is feasible. Otherwise, the patrol boat is not adequately resourced to make the
transition from region i to j .

Table 2 summarizes the notation introduced for the construction of an RST network.
The example in Fig. 3 is provided to illustrate the construction of feasible transit arcs

between two patrol regions (labeled 01 and 02) in an RST network. The example assumes
that the patrol boat endurance is TE = 7 and the transit time between the two patrol
regions is T[01][02] = 2. The transit time to the nearest port is R01

min = 2 for Patrol
Region 01 and R02

min = 1 for Patrol Region 02. Hence, the resource depth for Region 01
is N01 = TE − 2R01

min = 7 − 2 × 2 = 3. Similarly, N02 = 5 for Region 02. This means that
the vertex layers for Region 01 are given by D01 = {0, 1, 2, 3}, and D02 = {0, 1, 2, 3, 4, 5}
for Region 02. Thus, the resource level corresponding to the bottom vertex layer of Region
01 is R01(N01) = TE − R01

min−N01 = 7−2−3 = 2, while the resource level of the top layer
is R01(0) = 5. Similarly, for Region 02 we have R02(N02) = 1 and R02(0) = 6. Figure 3
shows the feasible transit arcs in the RST network from Region 02 to Region 01 at time t = 1
(green arcs) and from Region 01 to Region 02 at time t = 4 (pink arcs). Clearly, a transition
from Region 02 to Region 01 cannot occur when the resource level is less than 4, nor can a
transition take place from Region 01 to Region 02 when the resource level is less than 3.

3 Problem formulation and solution approach

An RST network G = (V , A) can be used to formulate the PBSPCC as an integer linear
program (ILP), suitable for the application of a column generation approach. Let P be the
set of all feasible paths through an RST network G from the source s to the sink τ , where
a feasible path p ∈ P represents a patrol vessel’s trajectory through space and time. The

123

Annals of Operations Research

Table 2 Notation and definitions for the RST network setting

Symbol Definition Units

s Source vertex in an RST network –

τ Sink vertex in an RST network –

Vport Set of port vertices in an RST
network

–

Vpat Set of patrol vertices in an RST
network

–

V Set of vertices in an RST network V = {s, τ } ∪ Vport ∪ Vpat –

A+(v) Set of arcs emanating from v ∈ V –

A−(v) Set of arcs terminating at v ∈ V –

AI Set of idle arcs in an RST network –

AP Set of patrol arcs in an RST
network

–

Ai
P Set of patrol arcs in region i ∈ Vpat Ai

P ⊆ AP –

AP(�) Set of patrol arcs in patrol period
� ∈ L

AP(�) ⊂ Ai
P, � = (i, t), t ∈ ZT –

AR Set of replenishment arcs in an
RST network

–

AT Set of transit arcs in an RST
network

–

AD Set of dummy arcs in an RST
network

AD = A+(s) ∪ A−(τ) –

A Set of directed arcs in an RST
network

A = AI ∪ AP ∪ AR ∪ AT ∪ AD –

G An RST network G = (V , A) –

Ri
min Transit time from i ∈ Vpat to the

nearest port
Ri
min ∈ N [time]

Ni Resource depth for patrol region
i ∈ Vpat

Ni = TE − 2Ri
min –

Di Set of vertex layers for patrol
region i ∈ Vpat

Di = {0, 1, . . . , Ni } –

â Index for a vertex layer set â ∈ Di –

Ri (â) Resource level corresponding to
vertex layer â ∈ Di

Ri (â) = TE − Ri
min − â [time]

tuv Transit time for traversing arc
(u, v) ∈ A

tuv ∈ Z
∗ [time]

objective is to find a smallest subset of P such that each patrol period � ∈ L is covered by
at least one path. For each p ∈ P , let xuvp = 1 if path p ∈ P uses arc (u, v) ∈ A and
xuvp = 0 otherwise. As an RST network G contains no cycles, we can invoke the Flow

123

Annals of Operations Research

Fig. 3 Example of feasible transitions between two patrol regions in an RST network. (Color figure online)

Decomposition Theorem (Ahuja et al. 1993) to express the flow over an arc (u, v) ∈ A in
terms of path variables λp ∈ {0, 1} for all p ∈ P , where λp = 1 if path p is used and
λp = 0 otherwise. Let the aggregate path flow over an arc (u, v) ∈ A be given by xuv ∈ Z

∗,
where xuv = ∑

p∈P xuvpλp . To track the patrol periods covered by an individual path, we
introduce a binary parameter a�p , where a�p = 1 if p ∈ P patrols � ∈ L and a�p = 0
otherwise. Alternatively, this parameter can be expressed as a�p = ∑

(u,v)∈AP(�)
xuvp .

We denote c̄p = ∑
(u,v)∈AP

tuvxuvp to be the total time spent on patrol and cp = T − c̄p
to be the aggregate non-patrol time for any path p ∈ P . The maximum patrol time over
all paths is denoted by c̄max, where c̄max := max

{
c̄p | p ∈ P

}
. We can determine a value

for c̄max by applying costs μuv = −tuv to arcs (u, v) ∈ AP and costs μuv = 0 to all other
arcs in the network and then invoking a shortest path algorithm from s to τ . Given that G is
a directed acyclic graph, the shortest path can be extracted by performing a series of edge
relaxations over a topologically sorted list of the vertices V (Cormen et al. 2009). We denote
this procedure as DAG-SP(G, μ, s, τ), which outputs a shortest path p from s to τ (assuming
the cost structure μ) and the associated path cost δμ(s, τ). Thus, c̄max can be obtained by
negation of the shortest path cost from s to τ , that is, c̄max = −δμ(s, τ). We denote c̄i p to
be the total time spent on patrol in region i ∈ Vpat for path p ∈ P , and thus we can write
c̄i p = ∑

(u,v)∈Ai
P
tuvxuvp . A simple lower bound κmin on the number of paths in an optimal

solution is defined by κmin := � |L| / c̄max �, where �◦� is the ceiling function, which returns
the smallest integer greater than or equal to the argument. Finally, a further lower bound on
the aggregate non-patrol time is defined by εmin := κmin (T − c̄max).

Table 3 contains a summary of the notation used in the ILP model of the PBSPCC.

123

Annals of Operations Research

Table 3 Notation and definitions for the integer linear programming model

Sets

P Set of all feasible paths from s to τ in an RST network

Ordered sets

p A feasible path p ∈ P

An ordered set of arcs connecting s and τ

Parameters

c̄p The patrol time for path p ∈ P

c̄p = ∑
(u,v)∈AP

tuvxuvp

c̄max The maximum patrol time over all paths in P

c̄max = max
{
c̄p | p ∈ P

}

cp The non-patrol time for path p ∈ P

cp = T − c̄p

κmin Lower bound on the number of paths

κmin = � |L| / c̄max �
εmin Lower bound on the aggregate non-patrol time

εmin = κmin (T − c̄max)

xuvp Binary parameter for a path p ∈ P over an arc (u, v) ∈ A

xuvp = 1 if path p ∈ P uses arc (u, v) ∈ A and xuvp = 0 otherwise

a�p Binary parameter for a path p ∈ P over a patrol period � ∈ L
a�p = 1 if path p ∈ P covers � ∈ L and a�p = 0 otherwise

c̄i p The patrol time of path p ∈ P in region i ∈ Vpat

c̄i p = ∑
(u,v)∈Ai

P
tuvxuvp

μuv Cost applied to arc (u, v) ∈ A

μuv ∈ R

δμ(s, τ) Cost of shortest path from s to τ assuming cost structure μ

δμ(s, τ) ∈ R

Decision variables

λp Binary integer variable for a path p ∈ P

λp = 1 if path p ∈ P is used and λp = 0 otherwise

xuv Integer variable for the path flow over an arc (u, v) ∈ A

xuv = ∑
p∈P xuvpλp

3.1 Master problem

With the preceding definitions and notation, we can formulate an integer linear programming
master problem for the PBSPCC as follows (the dual variables of the linear programming
relaxation are listed down the right-hand side):

123

Annals of Operations Research

minimize
∑

p∈P

λp, (1)

subject to
∑

p∈P

a�pλp ≥ 1, ∀� ∈ L, [π�] (2)

∑

p∈P

c̄pλp ≥ |L|, [α] (3)

∑

p∈P

c̄ipλp ≥ T , ∀i ∈ Vpat, [βi] (4)

∑

p∈P

cpλp ≥ εmin, [γ] (5)

∑

p∈P

λp ≥ κmin, [ζ] (6)

λp ∈ {0, 1}, ∀p ∈ P. (7)

The objective function (1) seeks to minimize the number of patrol vessels. The objective
is followed by a series of covering constraints given through (2). There is a single covering
constraint for each patrol period � ∈ L, ensuring that each patrol period is patrolled by at least
one vessel. In addition to (7), which enforces a binary integrality condition on the decision
variables, we have a set of constraints (3)–(6) pertaining to various bounds which can be
inferred from the optimization problem. Constraint (3) ensures that the aggregate patrol time
is at least the number of patrol periods. The constraints given through (4) guarantee that
the aggregate patrol time allotted to each region i ∈ Vpat is bounded below by the planning
horizon T . A lower bound on the aggregate non-patrol time (εmin) can be found in (5), while
(6) gives a lower bound on the number of patrol boats (κmin) required to satisfy the complete
coverage requirements.

As noted in the introductory section, recent work by Chircop and Surendonk (2021) has
shown that under certain conditions, the objective (1) may be swapped out for one which
seeks tominimize the non-patrol time in order to accelerate a conventional column generation
approach. By adopting this alternative objective function, the goal is not necessarily to find a
set of paths through the RST network that minimize the non-patrol time, but rather, to obtain
an optimal solution to the original problem (1)–(7). The conditions under which such a swap
can be carried out are described below.

Consider the following reformulated integer linear programming master problem:

minimize
∑

p∈P

cpλp, (8)

subject to (2) − (7). (9)

Let z∗LP be the optimal objective value of the linear programming relaxation of (8)–(9), that is,
the objective obtained by relaxing the integrality requirement on the decision variables and
settingλp ≥ 0 for all p ∈ P . Supposewe have a set of paths Q ⊂ P which collectively satisfy

the constraints (2)–(7), with λ
Q
p = 1 if p ∈ Q and λ

Q
p = 0 otherwise, and let z′ := ∑

p∈P λ
Q
p .

Let z∗pat be the optimal objective value of (8)–(9) and suppose that
∑

p∈P cpλ
Q
p ≥ z∗pat. Finally,

assume that the set Q satisfies the following condition:

z′ <
|L| + z∗LP

T
+ 1. (10)

123

Annals of Operations Research

Then z′ = z∗size, where z∗size is the optimal objective value of (1)–(7). The condition specified
by (10) allows us to check if any feasible solution to (8)–(9) is an optimal solution to (1)–(7).
Due to the suggested column generation runtime enhancements with the alternative objective
function (Chircop and Surendonk 2021), we adopt it in the next section to derive the reduced
cost of a path through an RST network.

3.2 Column generation subproblem

Asapreliminary step to outlining the definition of the reduced costs and the columngeneration
subproblem, we introduce two useful surjective mappings that associate patrol arcs to their
respective patrol periods and patrol regions. These mappings are φ : AP → L′ and ψ :
AP → Vpat, where L′ := {1, . . . , |L|} is an index set of the patrol periods. As each v ∈ Vpat
can be represented by the triple (i, â, t), where i ∈ Vpat, â ∈ Di and t ∈ ZT , we can define
ψ as follows:

ψ(u, v) := i, ∀(u, v) ∈ AP, where v = (i, â, t), â ∈ Di , t ∈ ZT .

If (u, v) ∈ AP, with v = (i, â, t), then we define φ as:

φ(u, v) :=
{
t if i = m + 1,

(i − m − 1)T + t if i ∈ {m + 2, . . . , n}.
To deduce the nature of the column generation subproblem over an RST network, the

mathematical structure of the reduced cost of a path needs to be established. The reduced
cost r̄ p of a path p ∈ P through an RST network G is defined by r̄ p := cp −π tAp , where π t

is a row vector of the dual variables of the master problem, Ap is the column corresponding
to variable λp , and cp is the cost coefficient of λp in the objective function (8). In terms of the
underlying arc variables of the RST network, the reduced cost of path p ∈ P can be written
as follows:

r̄ p = cp − π tAp,

= cp −
∑

�∈L
π�a�p − αc̄p −

∑

i∈Vpat

βi c̄i p − γ cp − ζ,

=
(∑

(u,v)∈A\AP

tuvxuvp

)
−

(∑

(u,v)∈AP

πφ(u,v)xuvp

)
− α

(∑

(u,v)∈AP

tuvxuvp

)

−
(∑

(u,v)∈AP

βψ(u,v)tuvxuvp

)
− γ

(∑

(u,v)∈A\AP

tuvxuvp

)
− ζ

(∑

(s,v)∈A+(s)

xsvp

)
,

=
∑

(u,v)∈A\AP

[
(1 − γ)tuv

]
xuvp

−
∑

(u,v)∈AP

[
πφ(u,v) + (

α + βψ(u,v)

)
tuv

]
xuvp −

∑

(s,v)∈A+(s)

ζ xsvp.

If we define cost coefficients μuv as follows:

μuv :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − γ)tuv if (u, v) ∈ AI ∪ AR ∪ AT,

−πφ(u,v) − (
α + βψ(u,v)

)
tuv if (u, v) ∈ AP,

−ζ if (u, v) ∈ A+(s),

0 otherwise,

123

Annals of Operations Research

then the reduced cost of path p ∈ P can be expressed as r̄ p = ∑
(u,v)∈A μuvxuvp .

Having uncovered the mathematical form of the reduced cost of a path through an RST
network, we can determine the nature of the pricing subproblem. Assume that the set of paths
generated at a given iteration of the column generation routine is given by P ′ ⊂ P . Then the
pricing subproblem is to find a path p ∈ P\P ′ of minimum negative reduced cost. This can
be written as a combinatorial optimization problem as follows:

minimize
∑

(u,v)∈A

μuvxuv, (11)

subject to
∑

(s,v)∈A+(s)

xsv = 1, (12)

∑

(u,v)∈A−(v)

xuv =
∑

(v,w)∈A+(v)

xvw, ∀v ∈ V \{s, τ }, (13)

∑

(u,τ)∈A−(τ)

xuτ = 1, (14)

xuv ∈ {0, 1}, ∀(u, v) ∈ A. (15)

The structure of (11)–(15) reveals that finding a minimum reduced cost path is a pure shortest
path problem over an RST network.

3.3 Restrictedmaster problem

The column generation process is initialized by relaxing the integrality requirement on the
decision variables (setting λp ≥ 0) and selecting a set of paths P ′ ⊂ P satisfying the
constraints. This yields an initial restricted master problem (RMP) with an associated initial
primal basis (seed columns). The seed columns may be selected by any means, so long as the
set covering constraints corresponding to the coverage requirements of the patrol periods are
satisfied. (Seed column construction strategies are covered in the next section.) Therefore,
using primed notation to indicate a restriction to paths P ′ ⊂ P , we can express the RMP for
the minimum non-patrol time formulation of the PBSPCC as follows:

minimize
∑

p∈P ′
cpλp, (16)

subject to (2)′ − (6)′, (17)

λp ≥ 0, ∀p ∈ P ′. (18)

The column generation procedure takes a set of dual variables π from the RMP (16)–
(18) to construct a subproblem over an RST network G, which is a shortest path problem
over a directed acyclic graph (11)–(15). If the path returned from the subproblem has neg-
ative reduced cost, a new variable and the associated column defining the path are added to
the RMP. The process continues in a cyclical manner until no negative reduced cost path
can be returned by the subproblem. This framework corresponds to column generation at
the root node (Ford and Fulkerson 1958; Dantzig and Wolfe 1960; Gilmore and Gomory
1961). Recall that the RMP does not impose an integrality requirement on the decision
variables, only non-negativity. However, the goal is to obtain an optimal integer solution

123

Annals of Operations Research

to the master problem (1)–(7). If the variables λp are all integral once the column gener-
ation process has terminated, the problem is said to have been solved at the root node. If
not, the column generation procedure can be embedded in a branch-and-price algorithm
to arrive at an integer solution. The full branch-and-price procedure is described in a later
section.

3.4 Seed columns and pricing strategy

In order to start the column generation procedure, an initial feasible basis and associated
seed columns must be selected for the RMP. Although Chvatal (1983) originally outlined
a general first phase procedure for constructing an initial primal basis, Lübbecke (2001)
has noted that specially tailored construction techniques should be preferred, given that
the initialization of the RMP can influence the runtime efficiency of a column genera-
tion approach. Desaulniers et al. (2002) have observed that a good initial primal basis can
reduce the number of iterations between the RMP and the subproblem, thus improving
column generation efficiency. This is consistent with the following insight of Vanderbeck
(1994): “With an appropriate initial set of columns, one can get a good start in the col-
umn generation procedure." Lübbecke (2001) has stated that the negation of this assertion
also holds, that is, a poorly selected initial basis can result in degraded column generation
performance.

Given the set covering constraints (2), an initial basis must cover each patrol period
in the underlying RST network. In order to obtain a good start to the column generation
procedure, an initial set of high-quality covering paths should be obtained. In order to obtain
an initial basis of quality, we proffer a greedy shortest path heuristic (GSPH). The GSPH
first applies a cost μuv = −T to each patrol arc (u, v) ∈ AP and a cost μuv = 0 to each arc
(u, v) ∈ A\AP. A shortest path p is then found over the RST network with the applied cost
structure. By examining the arcs (w, x) ∈ p such that (w, x) ∈ AP, the arc costs of the RST
network are updated by setting μuv = 0 for all (u, v) ∈ AP such that φ(u, v) = φ(w, x),
and μwx = twx for all (w, x) ∈ p such that (w, x) ∈ A\AP. A new shortest path is
subsequently returned from the network with the updated cost structure and the procedure
cycles, terminating when a non-negative shortest path cost is found. This condition is usually
satisfied when all patrol periods have been covered by the set of generated paths. For cases
in which the GSPH fails to cover every patrol period, a Big-M method with a single artificial
variable may be added to the initial restricted master problem. The GSPH is summarized in
Algorithm 1.

123

Annals of Operations Research

A common strategy to accelerate column generation algorithms is to return multiple nega-
tive reduced cost columns at each call to the subproblem(s). Lübbecke and Desrosiers (2005)
havenoted that returningmultiple negative reduced cost columns is easily handled bydynamic
programming algorithms and that implementing such a strategy can decrease the number of
calls to the subproblem(s). Furthermore, Desaulniers et al. (2002) have stated that such a
strategy can be made even more efficient if the pool of columns returned from a single call to
the subproblem(s) closely resembles the structure of an optimal integer solution. The same
authors suggest that greedy heuristics may be employed profitably to price out a collection
of columns for problems in which an optimal integer solution is likely to be task-disjoint. By
considering the patrol periods as tasks, such a strategy can be carefully exploited to achieve
runtime efficiency gains for our column generation approach.

If theminimumnon-patrol time formulation of the PBSPCC is adopted, a planning horizon
T can be selected to arrive at solutions that are strongly task-disjoint. Since it is possible
for more than one vessel to be on station in a patrol region at any given time, a poorly
chosen planning horizon may result in a solution that minimizes the non-patrol time without
minimizing the number of patrol boats used. We refer to this phenomenon as over-searching
the patrol regions. (An example of over-searching is provided by Chircop and Surendonk
(2021).) In order to avoid over-searching and increase the likelihood that solutions consist
of columns that are strongly task-disjoint, the planning horizon should be set to an integer
multiple of the aggregate endurance and replenishment break, that is, T = J (TE + TR),

123

Annals of Operations Research

where J ∈ N. While we do not have a theoretical proof of this assertion, the computational
experiments conducted as part of this research show strong evidence for it. (Future work
could include a theoretical investigation as to whether this assertion is true or false.)

In line with the insights of Lübbecke and Desrosiers (2005) and Desaulniers et al. (2002),
we propose a greedy heuristic for the selection of multiple reduced cost paths with a planning
horizon of the form T = J (TE +TR). The procedure bears a close resemblance to the greedy
shortest path heuristic for the seed columns in Algorithm 1. The heuristic is executed when a
call to the subproblem is made in an iteration of the column generation procedure. After the
dual costs from the RMP have been applied to the RST network, the least negative reduced
cost path is returned via the application of a shortest path algorithm. Following a similar
pattern to Algorithm 1, the arc costs in the RST network are subsequently updated by their
respective transit times. The procedure cycles until the reduced cost of a returned path is
non-negative. The heuristic is outlined as a subroutine of the column generation algorithm
for the PBSPCC which can be found in Algorithm 2.

3.5 Branch-and-price

In this section, we outline an approach to obtain solutions to the integer linear program of the
PBSPCC (1)–(7). Columns generated at the root node are usually insufficient to obtain quality
integer solutions. This is because the pool of columns generated at the root node is usually not

123

Annals of Operations Research

large enough to close the integrality gap below 1% (Desaulniers et al. 2002). Indeed, even if
the root node column pool contains all the necessary information for an optimal solution, this
can still present difficulties for state-of-the-art integer programming solvers to obtain quality
solutions in a reasonable time frame. However, if the column generation process is embedded
in a branch-and-bound tree, integral solutions may be obtained. This paradigm is known by
the term branch-and-price (Barnhart et al. 1998). There are many ways to perform branch-
and-price when attempting to solve integer linear programs, spanning a range of exact and
heuristic strategies (Vanderbeck 2000). The branching rules and the manner in which they are
imposed are dependent on the structure and properties of the underlying subproblem(s). In
general, branching decisions are either (i) directly enforced on the subproblem (so long as the
structure is maintained) or they are (ii) incorporated as cuts in the master problem (Conforti
et al. 2014). In our branch-and-price approach to the PBSPCC, we adopt strategy (ii). (For
example, this branching strategy is used by Ben Amor and Valério de Carvalho (2005) for a
branch-and-price approach to the cutting stock problemwith an underlyingmulti-commodity
flow model.)

At a given node in the branch-and-bound tree, suppose we have a solution to the relaxed
problem (16)–(18) given by {λ̃p ∈ R≥0 | p ∈ P ′}, where the tilde indicates the presence
of fractional values. The corresponding flow over an arc (u, v) ∈ A in the underlying RST
network is given by x̃uv = ∑

p∈P ′ xuvpλ̃p . If all of the arc flows are integral, that is x̃uv ∈ Z
∗

for all (u, v) ∈ A, then the node can be pruned. (Note that we require integrality of the
path flow variables for a feasible integer solution, not just integrality of the underlying RST
network arc variables (Vanderbeck 2005).) Otherwise, we can select an arc (u, v) ∈ A with
fractional flow to branch on by creating two new nodes in the branch-and-bound tree as
follows:

∑

p∈P ′
xuvpλp ≤ �x̃uv� or

∑

p∈P ′
xuvpλp ≥ �x̃uv�.

A new node is instantiated by incorporating one of the above inequalities into the relaxed
problem (16)–(18) and executing the column generation procedure. In addition, the dual
variable associated with the new constraint is imposed as a cost on the relevant arc in the
subproblem (11)–(15).

Our branch-and-price approach essentially follows the paradigmoutlined above but is aug-
mented with heuristic rules for the selection of arcs (to branch on) and the determination of
candidate nodes to fathom. The arc selection heuristic is able to choose a combination of frac-
tional arcs for branching. Recall that the set of arcs A in an RST network can be disaggregated
according to the various patrol vessel activities � = {I(dle),P(atrol),R(eplenish),T(ransit)}
and the D(ummy) arcs AD. Once a subset �′ ⊆ � ∪ {D} of arc groups is selected, the most
fractional arc in each group can be determined. To determine the most fractional arc in the
set Aϕ ⊂ A, where ϕ ∈ �′, we first introduce the mapping:

F(u, v) :=
{

1
2 − (x̃uv − �x̃uv�) if x̃uv − �x̃uv� < 1

2 ,

1
2 − (�x̃uv� − x̃uv) otherwise.

The most fractional arc (u, v)∗ϕ ∈ Aϕ is defined by:

(u, v)∗ϕ := argmin
(u,v)∈Aϕ

F(u, v).

123

Annals of Operations Research

Once the most fractional arc has been found for each ϕ ∈ �′, two disjunctive branches from
the current node can be created. On the left branch, we impose:

∑

p∈P ′
x[(u,v)∗ϕ]pλp ≤ �x̃(u,v)∗ϕ �, ∀ϕ ∈ �′.

Similarly, on the right branch we enforce:
∑

p∈P ′
x[(u,v)∗ϕ]pλp ≥ �x̃(u,v)∗ϕ �, ∀ϕ ∈ �′.

The motivation for enforcing multiple inequalities within a single branching decision is to
arrive quickly at feasible integer solutions to the minimum non-patrol time formulation of the
PBSPCC. Once a feasible solution to the minimum non-patrol time formulation (8)–(9) has
been obtained, we can check if it is optimal with respect to theminimumfleet size formulation
(1)–(7) via condition (10).

Selection of a node for branching follows a type of depth-first search (Christiansen and
Nygreen 1998; Desaulniers et al. 2002) which is also designed to arrive at a feasible integer
solution quickly. For each unexplored candidate node, we form the sets:

X0 := {(u, v) ∈ A | 1R+(x̃uv) = 1},
X1 := X0 ∩ {(u, v) ∈ A | x̃uv − �x̃uv� = 0},

where 1R+ : R → {0, 1} is the indicator function with respect to the positive real numbers
R

+. The node with the greatest ratio |X1|/|X0| is selected for branching, with ties being
broken by the node with the least objective function value. If |X1|/|X0| = 1 at a given node,
all arc flows in the RST network are integral. However, integrality of the path flow variables
λ̃p must also be verified. Nodeswhich are arc integral but not path integral can be pruned from
the tree. Once a candidate integer solution has been found, it is checked against condition
(10) to verify that the solution is optimal for the minimum fleet size problem (1)–(7). If
the solution is not optimal, we have an upper bound which can be used for fathoming and
pruning other unexplored nodes. Alternatively, the integer solution may be checked against
the constraint (6) if a lower bound has been set.

4 Problem reduction techniques

The branch-and-price framework outlined in the previous section can be augmented with a
number of specially tailored problem reduction techniques for large-scale patrol networks
and/or instances with long planning horizons. The problem reduction techniques can be
applied at the geographical (spatial) and/or planning (temporal) levels. At the geographical
level, a patrol network may be clustered or partitioned into mutually exclusive subsets,
thus permitting each sub-network to be solved individually and then recombined to form
a single solution. In the temporal domain, a large planning horizon may be constructed from
smaller sub-blocks, with the terminal configuration of one planning blockmatching the initial
conditions of the subsequent one.

4.1 Cyclic schedules

The first problem reduction technique is designed to find a set of patrol vessel schedules
that permute with each other over a given planning block. Solutions of this type are cyclic

123

Annals of Operations Research

Fig. 4 Example RST network showing a cyclic scheduling solution. The schedule can be written in cyclic
permutation notation as (1, 7, 2, 4, 6, 3, 5). Qualitatively, this means that path 1 is continued by path 7, which
is continued by path 2,..., which is continued by path 5, which is continued by path 1,... The gray shading
denotes patrol arcs which cover a given patrol period. Note that some patrol periods are covered by more than
one path

and therefore have the advantage of providing complete patrol coverage indefinitely. In this
section, we propose a heuristic regime for finding cyclic scheduling solutions over an RST
network. An important design feature of the heuristic is that the structure of the column
generation subproblem is preserved.

We begin by defining a one-to-one correspondence between the sets A+(s) and A−(τ).
That is, to each element (s, v) ∈ A+(s) we associate a unique element (u, τ) ∈ A−(τ) such
that all the elements of A+(s) map to all the elements of A−(τ). We construct a bijection
f : A+(s) → A−(τ) such that f (s, v) = (u, τ) where v = (i, â, 0), u = (i, â, T),
i ∈ V , and â ∈ Di . (Note that for i ∈ Vport, Di = {0, 1, . . . , TR}, while for i ∈ Vpat,
Di = {0, 1, . . . , Ni }.) Let Q ⊂ P be a collection of paths through an RST network such
that each patrol period � ∈ L is covered, and let λ

Q
p = 1 if p ∈ Q and λ

Q
p = 0 otherwise.

Suppose that:
∑

p∈P

xsvpλ
Q
p =

∑

p∈P

x[f (s,v)]pλQ
p , ∀(s, v) ∈ A+(s).

Then the set of paths Q is called a cyclic scheduling solution. An illustrative example with
|Q| = 7 is provided in Fig. 4 for an RST network with one port and two patrol regions. The
transit time between any two distinct locations is one unit, with TE = 5, TR = 2 and T = 17.

The first stage of the heuristic is to construct a newRST network Ḡ = (V̄ , Ā) using the set
of paths Q over the original RST network G = (V , A). The new RST network has the same
properties as the original, although it may be constructed with a different planning horizon,
T̄ say. Denote the source and sink vertices in the new RST network as s̄ and τ̄ , respectively,
and let a feasible path be denoted by p̄ ∈ P̄ , where P̄ is the set of all feasible paths from s̄
to τ̄ in Ḡ. The set of source vertex arcs in the new RST network Ā+(s̄) is symmetrical to the
arcs used by Q in the original sink vertex set A−(τ). When forming the new RST network,
the sets Ā+(s̄) and Ā−(τ̄) are initialized by the empty set ∅. Then, for each (u, τ) ∈ A−(τ)

123

Annals of Operations Research

such that
∑

p∈Q xuτ pλ
Q
p = 1, we add an arc (s̄, v̄) to Ā+(s̄), where u = (i, â, T) ∈ V

and v̄ = (i, â, 0) ∈ V̄ . Then, for each (s̄, v̄) ∈ Ā+(s̄), we add (ū, τ̄) to Ā−(τ̄), where
v̄ = (i, â, 0) ∈ V̄ and ū = (i, â, T̄) ∈ V̄ . Moreover, the following constraints are added to
the initial restricted master problem pertaining to the new underlying RST network:

∑

p̄∈P̄ ′
xs̄v̄ p̄λ p̄ ≥ 1, ∀(s̄, v̄) ∈ Ā+(s̄), (19)

∑

p̄∈P̄ ′
xūτ̄ p̄λ p̄ ≥ 1, ∀(ū, τ̄) ∈ Ā−(τ̄). (20)

As before, the dual variables associated with these constraints are imposed as costs on the
relevant arcs in the column generation subproblem.

When a feasible collection of paths Q̄ ⊂ P̄ is obtained with constraints (19)–(20) satisfied
at unity, we have obtained a cyclic scheduling solution with |Q̄| = |Q|. However, there is
no guarantee that such a solution over the new RST network will be immediately found.
In such a case, the original RST network is re-visited to find a different solution from the
branch-and-price tree, and a new RST network can be constructed to find a cyclic collection
of the requisite size. This process can be reiterated until a cyclic scheduling solution is found,
or otherwise terminated with the best solution after a predetermined number of unsuccessful
attempts. Note that symmetries may exist in which the same unsuccessful configuration of
source and sink arcs is replicated by more than one collection of paths. Such a phenomenon
can be handled in a heuristic manner by creating a tabu list of collections of sink vertex arcs.
The tabu list can be further employed to prune unfeasible nodes in the branch-and-price tree.
In addition to the tabu list, a bounds constraint may be inferred. When a set of paths Q fails
to produce a cyclic scheduling solution in the new RST network, the following constraint
can added to the restricted master problem of the original RST network:

∑

p∈P ′

∑

(u,τ)∈A−(τ)

xuτ pλp ≤ |Q| − 1. (21)

The constraint (21) can be added to each unexplored node in the search tree to prevent the
unsuccessful path configuration from being regenerated.

It may be possible for two or more paths in the set Q to terminate at the same arc in the
sink vertex set A−(τ). In this case, the sets Ā+(s̄) and Ā−(τ̄) in the new RST network are
constructed in a slightly different manner to the process outlined above. Figure 5 provides
an example that illustrates the alternative arc construction on the source and sink vertices
in the new RST network. In the original RST network, one arc (u1, τ) in the sink vertex
set is used by paths p1, p2 and p3, while another (u2, τ) is shared by paths p4 and p5. In
the new RST network, we must construct the source and sink vertex sets so that | Ā+(s̄)| =
| Ā−(τ̄)| = |Q|, in accordance with the constraints (19)–(20) that are used to derive cyclic
scheduling solutions. To construct the set Ā+(s̄), new vertices v̄1,1, v̄1,2, v̄1,3 are required
for the arc shared by p1, p2 and p3, and vertices v̄2,1, v̄2,2 are introduced for the arc used
by p4 and p5. Similarly, mirror vertices ū1,1, ū1,2, ū1,3, ū2,1, ū2,2 are created to construct
the set Ā−(τ̄). Since p6 does not share arc (u3, τ) with another path, the construction of its
corresponding source and sink arcs in the new RST network follows the standard process
outlined previously.

123

Annals of Operations Research

Fig. 5 Construction of the source and sink vertex sets Ā+(s̄) and Ā−(τ̄), respectively, in the newRST network
from a set of paths Q in the original RST network. If any paths in Q terminate at the same sink arc in A−(τ),
then the introduction of additional vertices is required in the new RST network so that constraints (19)–(20)
remain valid for deriving cyclic scheduling solutions

4.2 Rolling horizon

Patrol boat schedules need not permute with each other in order to provide complete cov-
erage in the long term or indefinitely. For cases in which cyclic scheduling solutions are
difficult to find over a given planning block, alternative methods of extending the individual
patrol vessel schedules can be considered. Furthermore, there may be other factors which
render cyclic scheduling solutions undesirable, for example, in adversarial contexts where
it is advantageous for individual patrol vessel schedules to exhibit less predictable behavior.
Therefore, as an alternative to cyclic schedules, we also propose a rolling horizon approach
to finding long-term scheduling solutions.

The rolling horizon approach follows the same method which was outlined for cyclic
schedules, but with one crucial difference with respect to the construction of the sink vertex
set Ā−(τ̄). Once a solution over the original RST network has been found, the source vertex
set Ā+(s̄) for the new RST network is constructed in an identical manner to the process for
cyclic scheduling solutions, with flow constraints given by (19). The sink vertex set in the
new RST network, however, mirrors the original set, so that |A−(τ)| = | Ā−(τ̄)|. Thus, we
have:

Ā−(τ̄) = {(ū, τ̄) | ū = (i, â, T̄), i ∈ V, â ∈ Di }.
Therefore, in place of (20), the following constraints are activated in the restricted master
problem pertaining to the new RST network:

∑

p̄∈P̄ ′
xūτ̄ p̄λ p̄ ≥ 0, ∀(ū, τ̄) ∈ Ā−(τ̄).

Once a solution matching the desired number of paths has been found over the new RST
network, the terminal configuration can be used to initialize another planning block, and the
process may continue until a desired horizon length has been achieved. Each new planning
block may be of the same length, or differently sized blocks may be joined together. In the

123

Annals of Operations Research

event that an initial configuration for a new planning block produces an unsuccessful result,
it is added to a branch-and-price tabu list to prevent its regeneration.

In some instances, a terminal configuration may prove impossible to extend into a new
planning block using an equivalent number of paths if there exists a patrol boat with a low
resource level. In such cases, setting a limit on the amount of resource consumed at the final
time interval in each patrol region may render the solution extension process easier. The
terminal resource level restriction can be implemented by removing a given number of sink
arcs from the bottom layers of each patrol region in the RST network. To do this, we introduce
a terminal resource limit parameter N̂ ∈ Z

∗. For all i ∈ Vpat and l ∈ {1, . . . , N̂ +1}, the sink
arcs (ū, τ̄) are deleted from Ā−(τ̄), where ū = (i, Ni − l+1, T̄). For example, when N̂ = 0,
the arc (ū, τ̄) with ū = (i, Ni , T̄) is deleted from Ā−(τ̄) for each patrol region i ∈ Vpat.
When N̂ = 1, we delete the sink arcs with ū = (i, Ni , T̄) and ū = (i, Ni − 1, T̄) for each
patrol region i ∈ Vpat. The rolling horizon approach can dynamically update the value of N̂
as the number of failed attempts to extend a solution increases.

4.3 Clustering

Desaulniers et al. (2002) have suggested that problem partitioning can be used as a prepro-
cessing technique to decompose large-scale problems into smaller ones. Decomposition in
the temporal domain was considered in the previous sections, in which the cyclic schedule
and rolling horizon approaches were proffered to find solutions over long planning horizons.
In the spatial domain, a patrol networkmay be decomposed into smaller geographical subsets
to be solved separately and then recombined to form a solution over the entire patrol net-
work. This procedure is known as clustering, and is applicable to large-scale and symmetric
patrol networks. Examples of the application of clustering in concert with the aforemen-
tioned temporal decomposition techniques are provided in the next section on a range of test
problems.

5 Computational results

In this section, the branch-and-price framework described in Sect. 3 is combined with the
problem reduction techniques outlined in Sect. 4 and applied to a variety of test problem
instances. Problem instances are solved with the cyclic schedule method in most cases. For
the remaining problem instances, the rolling horizon approach is adopted. Clustering of
large-scale and symmetric patrol networks is also performed on select problems in concert
with the aforementioned temporal decomposition techniques. We begin by introducing the
patrol networks used for the test problem instances, followed by an analysis of the column
generation root node performance and a presentation of benchmark solutions obtained via
branch-and-price. (The computational results presented in this section were derived using
a 2.70 GHz dual-core processor on a 32-bit Operating System with 4.00 GB of RAM. All
primal and dual solutions to the linear programswere obtainedwithCPLEX12.6. The column
generation and shortest path algorithms, along with the required data structures for the master
problems and RST networks, were coded in the Java programming language and the Eclipse
integrated development environment.)

123

Annals of Operations Research

Fig. 6 Patrol Network 6,
containing four ports and eleven
patrol regions. Patrol regions are
represented by blue vertices
while the ports are given by green
vertices. Feasible bi-directional
connections between the spatial
locations are shown with
indicative transit times in red text

Fig. 7 Schedule notation key for
patrol vessels. This example
refers to Patrol Network 6 (see
Fig. 6) and assumes a
replenishment break duration
TR = 2

5.1 Patrol networks and schedule notation

A set of 20 patrol networks is used to generate test problem instances to benchmark our
solution approaches to the PBSPCC. These networks are intended to reflect a range of graph-
theoretic topologies, for example, minimally and maximally connected, multiple and single
port, symmetric and asymmetric. Some of the network designs are motivated by real-world
examples of patrol boat operations (Chircop 2017). The number of ports |Vport| and the
number of patrol regions |Vpat| in each patrol network G are given in Table 4. One of the
patrol networks (number 6) is shown in Fig. 6, where patrol regions are represented by blue
vertices, ports are given by green vertices, and two-way connecting edges define feasible
transitions between the spatial locations. For details on the topological features of all the
patrol networks, the reader is referred to Appendix D of the PhD thesis by Chircop (2017).

A notation key for patrol vessel schedules is shown in Fig. 7. This figure can be used as
an aid to interpreting the scheduling solutions presented in the following sections. Unit time
intervals are represented by dashed line segments (–), and these are punctuated by a reference
to a port, patrol region, transition (TR) or replenishment break (RE). The example provided
in Fig. 7 refers to a portion of a patrol vessel schedule operating within Patrol Network 6
(see Fig. 6) where TR = 2. The schedule segment describes a vessel patrolling in Region 07,
transiting to Port 02 for a replenishment break, then moving on to patrol Region 04.

123

Annals of Operations Research

Table 4 Summary of patrol networks used to generate test problem instances

G |Vport| |Vpat| G |Vport| |Vpat| G |Vport| |Vpat| G |Vport| |Vpat|
1 1 6 6 4 11 11 2 11 16 1 6

2 1 4 7 6 13 12 8 16 17 1 6

3 3 3 8 4 9 13 1 9 18 1 4

4 1 10 9 8 10 14 1 5 19 4 12

5 3 7 10 3 12 15 1 3 20 2 3

5.2 Problem instances, results and solutions

A list of 60 problem instances can be found in Table 5. The leading number of each problem
instance refers to the underlying patrol network from Table 4. An asterisk (*) is used to
indicate a problem instance towhich the rolling horizon solution approach is applied. For each
instance, Table 5 summarizes the key input parameters, namely, the patrol vessel endurance
TE , replenishment break duration TR , the planning horizon of the initial RST network T , and
the planning horizon of the new RST network(s) T̄ . When the rolling horizon approach is
applied to a problem instance, a solution is sought over a total horizon length of T + 10× T̄ .

Table 6 summarizes the column generation performance at the root node in terms of
‘Col.’—the number of columns generated, and ‘Ti.’—the CPU time in seconds. The column
generation schema pertains to the linear programmingRMP formulation (16)–(18) fromSect.
3.3, and the seed column construction heuristic and pricing strategy outlined in Sect. 3.4.
Table 6 contains a further column ‘Root?’, with a ‘Yes’ entry indicating instances that are
naturally integer at the root node (the so-called integrality property). From Table 6, it can
be seen that integral root node solutions were found for Instances 1a and 20c. Both of these
were found to possess cyclic block scheduling structures. For example, from Fig. 8 it can be
observed that the root node solution for Instance 1a is cyclic over a period of 22 time units.

For the remaining instances without the integrality property, the column generation pro-
cedure took less than 30sec to solve the RMP, with the exception of one (Instance 10c). For
most instances, the number of generated columns was of order 102, with only a few problems
requiring the generation of more than 103 columns. The worst performing case was Instance
10c, for which over 5000 columns were generated in approximately 11 minutes. We note that
Instance 10c is predicated on a large symmetric patrol network and a long planning horizon,
and hence, 10c is a good candidate for the application of temporal and spatial reduction
techniques. When compared to previous column generation approaches to the PBSPCC, the
results in Table 6 provide strong evidence for the superiority of the procedure adopted in
this paper. The improvements are particularly apparent on instances possessing large-scale
patrol networks and/or long planning horizons. For a detailed comparison with less sophis-
ticated column generation approaches, the reader is referred to Chapter 5 of the PhD thesis
by Chircop (2017).

In concert with the problem reduction techniques (Sect. 4), the branch-and-price approach
(Sect. 3.5) was applied to the problem instances that did not solve at the root node. Table 7
contains a summary of the solutions for all 60 problem instances. The relevant column
headings are to be interpreted as follows. ‘Ti.’ is the CPU time in seconds. ‘L.B.’ is a lower
bound on the number of vessels required, and is obtained from solving the linear programming
relaxation of (1)–(7). |Q| is the number of vessels used in a complete patrol coverage solution.

123

Annals of Operations Research

Table 5 Test problem instances

Inst. TE TR T T̄ Inst. TE TR T T̄ Inst. TE TR T T̄

1a 18 4 88 88 8a 12 0 12 24 15a 27 2 58 58

1b 16 0 16 48 8b 14 4 18 36 15b 37 0 74 74

1c 24 4 28 56 8c 20 2 22 44 16a 10 5 30 30

1d 28 0 28 56 8d 26 4 30 30 16b 16 0 16 16

2a 12 0 24 48 9a 15 0 15 30 16c 22 4 26 26

2b 30 0 30 30 9b 24 4 28 56 16d 27 0 27 27

3a 10 5 30 36 10a 19 0 19 38 17a 16 2 18 36

3b 18 0 18 36 10b 16 1 34 34 17b 26 4 30 30

4a 23 2 25 50 10c 16 4 60 60 17c 30 4 34 34

4a* 23 2 25 25 10d* 28 4 32 32 17d 42 0 42 42

4b* 40 4 44 44 11a 15 2 17 34 18a 14 2 48 48

5a 10 0 30 30 11b 16 0 16 32 18b 28 4 32 64

5b 28 0 28 56 12a 12 0 12 24 18c 36 0 72 72

6a 13 0 13 26 12a* 12 0 12 18 19a 16 3 19 38

6b 14 0 14 28 12b 14 0 14 28 19b 26 4 30 30

6c 16 1 17 34 12c 18 0 18 36 19c 20 2 44 44

6d 18 0 18 36 13a 21 4 25 25 19d* 18 1 19 19

7a 12 2 14 28 13b 24 4 28 28 20a 32 5 37 37

7b 14 2 16 32 14a 17 2 19 38 20b 40 0 40 40

7c 18 2 20 40 14b 26 4 30 30 20c 13 2 45 45

‘Test’ is a numerical value derived from the expression on the right-hand side of (10) and
is used to verify a solution’s optimality. The value of ‘Opt?’ is Boolean, equal to ‘Yes’ if
|Q| < Test and ‘No’ otherwise; a ‘Yes’ entry indicates that a solution is optimal, while a ‘No’
entry means that optimality has not been established. Finally, Tsol is the long-term planning
horizon for which a given solution is valid; an entry of ∞ indicates that a solution is cyclic,
which can therefore be extended indefinitely.

Of the 60 test problem instances, 42 were solved to optimality. For half of the optimal
solutions, it was found that |Q| = L.B., that is, there was no integrality gap between the
optimal solution to the linear programming relaxation and that of the integer program. For
the other half of optimal solutions except one, it was observed that |Q| = �L.B.�, indicating
only a fractional integrality gap. The largest integrality gap for all optimal solutions occurred
on Instance 17c, forwhich |Q| = 9 andL.B. = 8.0.As the solution to the linear programming
relaxation constitutes a lower bound on the optimal integer programming solution, the results
suggest that our modeling formulation of PBSPCC is strong. Of the 18 solutions that were not
provablyoptimal, 16of these canbe classified as goodquality solutions, that is, |Q|−�L.B.� =
1 for these solutions.

The cyclic scheduling heuristic was used on all but five problem instances to obtain
solutions over an infinite planning horizon. For the five instances solved with the rolling

123

Annals of Operations Research

Table 6 Column generation at the root node for test problem instances

Inst. Col. Ti. Root? Inst. Col. Ti. Root? Inst. Col. Ti. Root?

1a 452 8.4 Yes 8a 134 0.4 No 15a 227 1.2 No

1b 94 0.2 No 8b 159 0.7 No 15b 229 2.2 No

1c 141 0.6 No 8c 329 2.6 No 16a 585 2.0 No

1d 164 0.8 No 8d 216 2.7 No 16b 139 0.5 No

2a 119 0.2 No 9a 194 0.8 No 16c 430 2.9 No

2b 85 0.4 No 9b 339 4.9 No 16d 131 1.1 No

3a 70 0.1 No 10a 202 1.2 No 17a 1045 6.0 No

3b 56 0.2 No 10b 837 6.2 No 17b 1576 21.5 No

4a 252 1.8 No 10c 5179 696.6 No 17c 555 5.9 No

4a* – – – 10d* 642 8.9 No 17d 344 6.0 No

4b* 460 20.4 No 11a 375 1.5 No 18a 596 2.4 No

5a 558 2.9 No 11b 249 1.3 No 18b 695 7.4 No

5b 137 1.7 No 12a 155 0.7 No 18c 145 2.0 No

6a 180 0.7 No 12a* – – – 19a 379 1.7 No

6b 190 0.7 No 12b 237 1.5 No 19b 739 8.9 No

6c 308 1.6 No 12c 422 3.6 No 19c 1446 23.0 No

6d 247 1.5 No 13a 1060 7.6 No 19d* 241 1.1 No

7a 356 1.4 No 13b 1369 13.3 No 20a 62 0.3 No

7b 390 2.0 No 14a 281 0.7 No 20b 73 0.6 No

7c 473 4.0 No 14d 771 3.8 No 20c 101 0.1 Yes

Fig. 8 Scheduling solution for Instance 1a (TE = 18, TR = 4, T = 88), with Problem Network 1 shown on
the right-hand side. This solution is cyclic over a period of 22 time units, is naturally integer at the root node
and exhibits a block scheduling structure. A total of 12 vessels are required for complete patrol coverage, with
replenishment at port synchronized within the two equal groupings of the fleet. Exactly two vessels are needed
to cover each region, with one time unit of overlapping patrol incurred per handover

horizon heuristic, two (4b* and 10d*) were found to have optimal cyclic structures. The
rolling horizon approach was implemented by using the default lower bound κmin (6) on
the first planning block of length T (run 1). The lower bound imposed on the planning
blocks of length T̄ (runs 2–11) replaced κmin with |Q|, that is, the cardinality of the solution
over the planning block of length T . The transit arcs of the RST networks were selected

123

Annals of Operations Research

Ta
bl
e
7

Su
m
m
ar
y
of

so
lu
tio

ns
to

te
st
pr
ob
le
m

in
st
an
ce
s

In
st
.

T
i.

L
.B
.

|Q
|

Te
st

O
pt
?

T s
ol

In
st
.

T
i.

L
.B
.

|Q
|

Te
st

O
pt
?

T s
ol

1a
8.
4

12
.0

12
12

.4
5

Y
es

∞
11

a
13

9.
3

15
.3

16
16

.3
1

Y
es

∞
1b

21
7.
2

10
.0

10
10

.7
5

Y
es

∞
11

b
43

4.
3

13
.3

14
14

.1
8

Y
es

∞
1c

11
.3

10
.0

10
10

.5
7

Y
es

∞
12

a
19

7.
6

20
.0

21
20

.3
3

N
o

∞
1d

46
.3

8.
0

8
8.
71

Y
es

∞
12

a*
16

08
.1

20
.0

20
20

.3
3

Y
es

19
2

2a
2.
2

6.
0

6
7.
00

Y
es

∞
12

b
35

6.
3

19
.0

20
19

.7
1

N
o

∞
2b

1.
8

5.
0

5
5.
67

Y
es

∞
12

c
29

41
.9

18
.0

19
19

.0
0

N
o

∞
3a

1.
7

8.
0

8
8.
00

Y
es

∞
13

a
37

.3
13

.2
15

14
.1
9

N
o

∞
3b

0.
7

4.
0

4
4.
89

Y
es

∞
13

b
92

4.
6

13
.2

14
14

.0
4

Y
es

∞
4a

88
.5

17
.0

18
17

.8
0

N
o

∞
14

a
17

.6
9.
3

10
10

.0
7

Y
es

∞
4a
*

24
.2

17
.0

17
17

.8
0

Y
es

27
5

14
b

4.
4

7.
2

8
8.
15

Y
es

∞
4b

*
36

6.
1

14
.0

14
14

.8
2

Y
es

∞
15

a
10

.7
5.
0

5
5.
79

Y
es

∞
5a

67
.2

9.
6

10
10

.4
8

Y
es

∞
15

b
61

.4
4.
0

4
4.
92

Y
es

∞
5b

50
.1

8.
0

8
8.
71

Y
es

∞
16

a
74

.0
14

.4
15

15
.2
4

Y
es

∞
6a

44
.8

15
.0

16
15

.7
5

N
o

∞
16

b
10

9.
3

7.
4

8
8.
43

Y
es

∞
6b

30
.5

14
.6

16
15

.3
9

N
o

∞
16

c
20

7.
1

8.
2

9
9.
20

Y
es

∞
6c

54
.1

14
.9

16
15

.7
0

N
o

∞
16

d
16

1.
6

7.
0

7
7.
81

Y
es

∞
6d

46
6.
2

13
.6

15
14

.4
1

N
o

∞
17

a
17

1.
5

10
.4

11
11

.0
9

Y
es

∞
7a

22
1.
5

20
.6

23
21

.5
1

N
o

∞
17

b
39

.9
8.
3

9
9.
25

Y
es

∞
7b

27
0

19
.2

21
20

.1
1

N
o

∞
17

c
18

3.
5

8.
0

9
9.
14

Y
es

∞

123

Annals of Operations Research

Ta
bl
e
7

co
nt
in
ue
d

In
st
.

T
i.

L
.B
.

|Q
|

Te
st

O
pt
?

T s
ol

In
st
.

T
i.

L
.B
.

|Q
|

Te
st

O
pt
?

T s
ol

7c
43

6.
8

17
.5

19
18

.3
8

N
o

∞
17

d
46

.9
7.
0

7
7.
79

Y
es

∞
8a

79
.3

11
.0

12
11

.8
3

N
o

∞
18

a
13

.7
7.
6

8
8.
44

Y
es

∞
8b

48
.8

14
.0

14
14

.6
7

Y
es

∞
18

b
13

.8
5.
6

6
6.
55

Y
es

∞
8c

30
8.
4

11
.0

12
12

.0
0

N
o

∞
18

c
33

.5
5.
0

5
5.
61

Y
es

∞
8d

98
.5

12
.0

12
12

.4
0

Y
es

∞
19

a
13

1.
3

17
.2

18
18

.1
6

Y
es

∞
9a

22
.9

12
.9

15
13

.7
7

N
o

∞
19

b
12

.9
15

.3
16

16
.3
3

Y
es

∞
9b

17
4.
4

13
.5

15
14

.4
6

N
o

∞
19

c
26

.6
15

.3
16

16
.1
9

Y
es

∞
10

a
45

8.
5

16
.0

17
16

.8
8

N
o

∞
19

d*
10

4.
9

15
16

15
.9
3

N
o

20
9

10
b

10
.1

18
.2

19
19

.1
1

Y
es

∞
20

a
53

.1
5.
0

5
5.
76

Y
es

∞
10

c
20

.1
21

.3
22

22
.2
0

Y
es

∞
20

b
3.
4

4.
0

4
4.
80

Y
es

∞
10

d*
16

.5
16

.3
17

17
.3
3

Y
es

∞
20

c
0.
1

9.
0

9
10

.0
0

Y
es

∞

123

Annals of Operations Research

as the default for branching decisions on all problem instances where the branch-and-price
procedure was invoked. For select problems, branching on the transit arcs was augmented to
include combinations of replenishment and dummy arcs. There was no significant variance
observed between the results produced by the default and augmented branching strategies,
with respect to the number of nodes explored and the CPU time.

The cyclic scheduling heuristic performed effectively onmost problem instances,meaning
that the number of failed attempts to find a cyclic solution was bounded above by 20 on
all but three instances. The worst case performance with respect to the number of failed
attempts was on Instance 20a, where an optimal solution was found on attempt 44. However,
given that Instance 20a took under a minute to solve, the performance of the heuristic can be
described as effectivewith respect to theCPU time.On the other hand, the heuristic performed
extremely well (no failed attempts) on some problems, for example, Instance 12c. However,
this problem exhibited the worst runtime performance over all instances. This is likely due
to the large size of the RST network and the number of quality feasible paths through it.
Therefore, we conclude that it is possible for the cyclic scheduling heuristic to perform well
with slow runtime (Instance 12c) and it is also possible for it to perform poorly with fast
runtime (Instance 20a). The frequency of failed heuristic attempts on each problem instance
is summarized in Fig. 9, along with the number of nodes explored during the execution of
branch-and-price procedures.

The cyclic scheduling heuristic produced a number of solutionswith interesting structures.
Firstly, Instance 1d was the only solution obtained exhibiting total cyclicity, that is, the patrol
vessel schedules were found to form a complete cyclic permutation. The solution, depicted
in Fig. 10, is composed of 8 patrol vessel schedules and can be expressed in cycle notation as
(1, 2, 3, 4, 5, 6, 7, 8). As the solution constitutes an 8-cycle over a planning horizon of 56 time
units, this implies that self-cyclic schedules can be formed over a planning horizon of length
8× 56 = 448, that is, each vessel returns to its original state after a period of 448 time units.
As Problem Network 1 is symmetric (see the right-hand side of Fig. 8), it is not surprising
to observe a regular pattern of behavior for the patrol vessels, that is, a vessel leaves port,
patrols one region, returns to port, patrols one region, and so on. However, similar patterns of
patrol vessel behavior were not typically observed for the instances on asymmetric networks.
One such example is the optimal self-cyclic solution obtained for Instance 17a, which can be
found in Fig. 11. Patrol Network 17 is characterized by an asymmetric structure, as shown at
the top of Fig. 11, and hence, the solution to Instance 17a is dynamic with respect to vessel
transitions through the network. For example, Region 02 requires six separate patrols from
four different vessels over the planning horizon, and half of the patrols are of short duration.

The clustering technique was successfully applied in concert with the cyclic schedul-
ing approach to a number of problem instances with underlying large-scale and symmetric
network structures. In some cases, clustering was able to produce optimal solutions with
increased runtime efficiency. Consider Instance 19c with the large-scale symmetric network
depicted in Fig. 12. With the application of clustering to one half of the network, a cyclic
scheduling solution was found, and by symmetry, could be duplicated on the other half of
the network without having to run the algorithms again. By comparison with the value given
by ‘Test’ on the whole network structure, the solution’s optimality was established. The
duplication process can be found in the bottom portion of Fig. 12.

Asmentioned previously, theworst performing instancewith respect to column generation
at the root node was Instance 10c, and this was most likely due to the combination of a
large-scale symmetric network with a long planning horizon. Clustering proved to be quite
beneficial for this problem, with an optimal solution found in only 3% of the time taken to
solve the RMP relaxation for the whole network at the root node. The clustering technique

123

Annals of Operations Research

Fig. 9 Nodes explored and heuristic fails for test problem instances

Fig. 10 An optimal solution for Instance 1d, with TE = 28 and TR = 0. The solution is composed of 8 patrol
vessel schedules that form a cyclic permutation over a planning horizon T = 56. In cycle notation, the solution
can be expressed as (1, 2, 3, 4, 5, 6, 7, 8). This means that schedule 1 is continued by 2, etc., and schedule 8
is continued by 1

123

Annals of Operations Research

Fig. 11 An optimal solution for Instance 17a, with TE = 16 and TR = 2. The solution is composed of 11
self-cyclic patrol vessel schedules over a planning horizon T = 36. In cycle notation, the solution can be
expressed as (1)(2) · · · (11)

Fig. 12 An optimal solution for Instance 19c, with TE = 20 and TR = 2. The solution was obtained by
clustering one half of the network, then duplicating the solution for the other half. In this case, each patrol
vessel schedule is self-cyclic over a planning horizon T = 44

was applied to two portions of the patrol network, as shown in Fig. 13. The solution for cluster
(i) was able to be duplicated by symmetry for the port and five regions on the right-hand side
of the network, while cluster (ii), consisting of one port and two patrol regions, was very
easy to solve.

The clustering approach was not always able to deliver provably optimal solutions. One
problem which presented some difficulty was Instance 9b, a large-scale asymmetric network
which can be found in Fig. 14.While this solution is of good quality, it is not provably optimal
for the choice of patrol vessel endurance and replenishment break duration. However, an
interesting feature of the solution is that there exist a few periods of port idle time, occurring
for vessel schedules 3 and 15. This is noteworthy as the majority of solutions obtained for
the 60 test problems did not include any idle time. As can be inferred from Fig. 14, the idle
time is needed to allow the patrol vessel schedules to align in a manner that satisfies cyclicity
and the complete coverage requirements.

In addition to the problems that solved at the root node (Instances 1a and 20c), we observed
that the rolling horizon approach could exhibit the same effect, that is, branch-and-price was
not always required to extend a solution into a new planning block of length T̄ . This phe-

123

Annals of Operations Research

Fig. 13 An optimal solution for Instance 10c, with TE = 16 and TR = 4. The solution was obtained by
clustering two portions of the network, then duplicating the solution to (i) by symmetry. In this case, each
patrol vessel schedule is self-cyclic over a planning horizon T = 60

nomenon occurredwith regularitywhen the rolling horizon approachwas applied to Instances
4b* and 10d*.We surmise that this is due to a total unimodularity property of the final primal
linear programs upon termination of the column generation procedure. (Refer to Chapter III.1
of Nemhauser and Wolsey (1988) for a detailed treatment of total unimodularity.) Further

123

Annals of Operations Research

Fig. 14 A solution for Instance 9b, with TE = 24 and TR = 4. The solution is not provably optimal and was
obtained by partitioning the network into two clusters as shown. In this case, patrol vessel schedules 1–13 are
self-cyclic over a planning horizon T = 56, while there is a small sub-cycle on schedules 14 and 15 over the
same horizon

investigation is required to determine if (and how) this structure is induced from the underly-
ing network topology, planning horizon length, endurance and replenishment break duration.
On the other hand, there are cases like Instances 4a* and 19d* that delivered root node solu-
tions about half the time, while Instance 12a* did not exhibit the integrality property at all
(Fig. 15 shows the partial structure of the solution to Instance 12a*). On the occasions that
branch-and-price was invoked, the rolling horizon heuristic performed well in the majority
of cases. The worst result was run 6 of Instance 19d*, where 15 failed attempts to extend the
solution occurred.

123

Annals of Operations Research

Fig. 15 An optimal solution for Instance 12a* using 20 patrol boats, where TE = 12 and TR = 0. The problem
was solved with the rolling horizon approach over a period of 192 time units, but only the first 60 time units
are shown

The rolling horizon approach proved to be effective in establishing an optimal solution to
Instance 12a*. Note fromTable 5 that this problem shares the same inputs (TE = 12, TR = 0)
with Instance 12a, and from Table 7, that the cyclic scheduling solution obtained for Instance
12a using 21 vessels was not provably optimal. With the rolling horizon approach, it was
found that a fleet of size 20 could satisfy the complete coverage requirements in the long term
(Tsol = 192). A depiction of Patrol Network 12 and a portion of the solution to Instance 12a*
obtained with the rolling horizon approach can be found in Fig. 15. The solution structure is
interesting in that there is no discernible pattern to the patrol vessel movements throughout
the network. This raises the question of whether cyclic schedules will always exist for an

123

Annals of Operations Research

optimal fleet size, or if there exists a minimum planning horizon length over which an optimal
cyclic schedule can be found. A further noteworthy feature of the rolling horizon solution
to Instance 12a* is that patrol vessels sometimes return to port for replenishment at half
resource capacity. For example, by inspection of vessel schedule 17, Regions 20 and 15 are
each patrolled for 4 time units before the vessel undergoes replenishment at port. Given that
the solution contains a small amount of overlapping patrol, this feature is clearly necessary
to ensure complete coverage.

6 Concluding remarks

In this paper, we have presented new modeling and solution approaches to the Patrol
Boat Scheduling Problem with Complete Coverage (PBSPCC). Using a resource-space-time
(RST) network, we defined a path based linear program for the application of an enhanced
branch-and-price solution approach. Temporal and spatial reduction techniques were intro-
duced to alleviate the slower runtime performance of the branch-and-price approach on
large-scale problem instances of the PBSPCC. These techniques included cyclic scheduling
and rolling horizon approaches, alongwith spatial clustering. The full suite of techniques was
applied to a range of test problem instances to arrive at a set of 60 computational benchmarks.
Of the solutions obtained, 70% were provably optimal for either an indefinite or long-term
planning horizon. Of the remaining 30% that were not provably optimal, all but two solu-
tions used one surplus patrol vessel compared to the rounded-up lower bound derived from
the linear programming relaxation. There are multiple factors that influence the overall run-
time performance of the solution algorithms. However, the most decisive factors affecting
efficiency appear to be the planning horizon length and the number of patrol regions. This
observation, at the very least, highlights the utility of applying the problem reduction tech-
niques introduced in this paper. By scaling down the temporal and spatial dimensions, larger
problems can be solved to optimality in a piecemeal fashion much more efficiently. In the
temporal domain, the decomposition techniques deliver an additional feature which proves
to be quite useful, namely, the ability to find solutions which can be extended indefinitely or
satisfied in the long term.

6.1 Suggestions for future work

For future studies of the PBSPCC, alternative modeling and solution approaches could be
developed to improve the scaling performance of the column generation subproblem. Can-
didate modeling and algorithmic approaches include the resource-constrained shortest path
problem with replenishment examined by Smith et al. (2012), and the multi-trip elemen-
tary shortest path problem with resource constraints which has been studied by Akca et al.
(2010). (The resource-constrained shortest path problem was first proffered by Desrochers
(1986) for a column generation approach to bus driver scheduling. For a directed acyclic
graph with negative arc costs, the resource-constrained shortest path problem can be solved
using an extended label-correcting or label-setting algorithm (Desrochers and Soumis 1988).
See Irnich and Desaulniers (2005) for a comprehensive survey of solution approaches to
resource-constrained shortest path problems.) Another possibility for future work is to inves-
tigate the applicability of constraint programming (CP) for the subproblem solver, as this
paradigm has shown considerable promise on certain combinatorial problems (Easton et al.
2004; Gualandi and Malucelli 2009; He and Qu 2012).

123

Annals of Operations Research

A natural extension of the PBSPCC is to consider a heterogeneous fleet of patrol boats,
where each boat is a member of a vessel class, say k ∈ K. Under this schema, there are
|K| separate column generation subproblems to be solved, and we propose branching on the
patrol arcs of the underlying RST networks. If (u, v) ∈ Ak

P is fractional and selected for
branching, then branch (a) is enforced by removing (u, v) from the network and deleting
all path variables λkp from the master problem that use arc (u, v). For branch (b), all arcs
(x, y) such that φk(x, y) = φk(u, v) and (x, y) �= (u, v) are removed from the network,
along with all arcs in the sets Ak+(y) and Ak−(x). In addition, all path variables that do not
use (u, v) are removed from the master problem. Another natural extension of the PBSPCC
is the incorporation of a crew scheduling component. For example, this might be approached
in a similar manner to that of Fischetti et al. (2001), who examined crew scheduling in the
vehicle routing context. Furthermore, incorporating a regular maintenance cycle (Hahn and
Newman 2008) for the patrol boats would be an interesting research question to address in
the future.

On the problem of finding cyclic schedules, future work could consider the subproblem
pricing strategy introduced by Andersen et al. (2011) for service network design with asset
management. In this case, the pricing subproblem seeks path cycles over a time-space network
by implementing a label-correcting dynamic programming algorithm.The algorithmuses two
labels: the first label corresponds to the reduced cost of a path and the second ensures that
the first vertex visited along the path matches the final vertex visited. Such a method could
be implemented over the RST network design, where the labeling procedure ensures that
if v = (i, â, 0) is the first vertex visited along a path for some i ∈ Vpat and â ∈ Di , then
the last vertex must be u = (i, â, T), where f (s, v) = (u, τ). Implementing the labeling
algorithm of Andersen et al. (2011) would require an overhaul of the shortest path approach
that we have proffered for the pricing subproblem. It is important to note, however, that a
cyclic scheduling solution over a planning horizon does not necessarily imply that each path
has the same initial and termination conditions.

Acknowledgements Paul Chircop would like to acknowledge his co-authors for their expert supervision
of his doctoral studies from 2010–2016 at the University of New South Wales. Paul Chircop and Timothy
Surendonk wish to thank Dr Maria Athanassenas (Group Leader Maritime Mathematical Sciences, Joint and
Operations Analysis Division) of the Defence Science and Technology Group for her generous encouragement
and support. Toby Walsh was funded by the European Research Council under the Horizon 2020 Programme
via AMPLify 670077.

References

Ahuja, R., Magnanti, T., & Orlin, J. (1993). Network flows: Theory, algorithms, and applications. Prentice
Hall.

Akca, Z., Ralphs, T. K., & Berger, R. T. (2010). Solution methods for the multi-trip elementary shortest
path problem with resource constraints. Optimization Online. http://www.optimization-online.org/DB_
HTML/2011/03/2962.html.

Andersen, J., Christiansen, M., Crainic, T. G., & Grønhaug, R. (2011). Branch and price for service network
design with asset management constraints. Transportation Science, 45(1), 33–49.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Va, P. H. (1998). Branch-and-price:
Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.

Ben Amor, H., & Valério de Carvalho, J. (2005). Cutting stock problems. In G. Desaulniers, J. Desrosiers, &
M. M. Solomon (Eds.), Column generation (pp. 131–161). Springer.

Brown, G. G., Dell, R. F., & Farmer, R. A. (1996). Scheduling Coast Guard district cutters. Interfaces, 26(2),
59–72.

Çapar, İ., Keskin, B. B., & Rubin, P. A. (2015). An improved formulation for the maximum coverage patrol
routing problem. Computers & Operations Research, 59, 1–10.

123

http://www.optimization-online.org/DB_HTML/2011/03/2962.html
http://www.optimization-online.org/DB_HTML/2011/03/2962.html

Annals of Operations Research

Chircop, P. A. (2017). Column generation approaches to patrol asset scheduling with complete and maximum
coverage requirements (Doctoral dissertation, University of New South Wales). https://doi.org/1959.4/
57656

Chircop, P. A.,&Surendonk, T. J. (2021). On integer linear programming formulations of a patrol boat schedul-
ing problem with complete coverage requirements. The Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, 18(4), 429–439.

Chircop, P. A., Surendonk, T. J., van den Briel, M. H. L., & Walsh, T. (2013). A column generation approach
for the scheduling of patrol boats to provide complete patrol coverage. In J. Piantadosi, R. S. Anderssen,
& J. Boland (Eds.), Proceedings of the 20th international congress on modelling and simulation (pp.
1110–1116). Modelling and Simulation Society of Australia and New Zealand.

Chircop, P. A., Surendonk, T. J., van den Briel, M. H. L., & Walsh, T. (2021). A branch-and-price framework
for the maximum covering and patrol routing problem. In A. T. Ernst, S. Dunstall, R. García-Flores, M.
Grobler, & D. Marlow (Eds.), Data and decision sciences in action 2 (pp. 59–80). Springer.

Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and perspectives.
Transportation Science, 38(1), 1–18.

Christiansen,M.,&Nygreen,B. (1998).Amethod for solving ship routing problemswith inventory constraints.
Annals of Operations Research, 81, 357–378.

Chvatal, V. (1983). Linear programming. Macmillan.
Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer programming. Springer.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd edn.). The

MIT Press.
Dantzig, G. B., & Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research, 8(1),

101–111.
Darby-Dowman, K., Fink, R. K., Mitra, G., & Smith, J. W. (1995). An intelligent system for US Coast Guard

cutter scheduling. European Journal of Operational Research, 87(3), 574–585.
Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2002). Accelerating strategies in column generation

methods for vehicle routing and crew scheduling problems. In Essays and surveys in metaheuristics (pp.
309–324). Springer.

Desrochers, M. (1986). La fabrication d’horaires de travail pour les conducteurs d’autobus par une méthode
de génération de colonnes (Unpublished doctoral dissertation). Centre de Recherche sur les Transports,
Université de Montréal.

Desrochers,M.,&Soumis, F. (1988).Ageneralized permanent labeling algorithm for the shortest-path problem
with time windows. Information Systems and Operations Research, 26(3), 191–212.

Dewil, R., Vansteenwegen, P., Cattrysse, D., & Oudheusden, D. V. (2015). A minimum cost network flow
model for themaximumcovering and patrol routing problem.European Journal ofOperational Research,
247(1), 27–36.

Easton, K., Nemhauser, G., & Trick, M. (2004). CP based branch-and-price. In M. Milano (Ed.), Constraint
and integer programming (pp. 207–231). Springer.

Fang, F., Stone, P., & Tambe, M. (2015). When security games go green: Designing defender strategies to
prevent poaching and illegal fishing. InProceedings of the 24th international joint conference on artificial
intelligence (pp. 2589–2595). AAAI Press.

Fischetti, M., Lodi, A., Martello, S., & Toth, P. (2001). A polyhedral approach to simplified crew scheduling
and vehicle scheduling problems. Management Science, 47(6), 833–850.

Ford, L. R., & Fulkerson, D. R. (1958). A suggested computation for maximal multi-commodity network
flows. Management Science, 5(1), 97–101.

Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem.
Operations Research, 9(6), 849–859.

Gualandi, S., &Malucelli, F. (2009). Constraint programming-based column generation. 4OR, 7(2), 113–137.
Hahn, R. A., & Newman, A. M. (2008). Scheduling United States Coast Guard helicopter deployment and

maintenance at Clearwater Air Station, Florida. Computers & Operations Research, 35(6), 1829–1843.
He, F., & Qu, R. (2012). A constraint programming based column generation approach to nurse rostering

problems. Computers & Operations Research, 39(12), 3331–3343.
Horn, M. E. T., Jiang, H., & Kilby, P. (2006). Scheduling patrol boats and crews for the Royal Australian Navy.

Journal of the Operational Research Society, 58(10), 1284–1293.
Hsieh, Y. C., You, P. S., Lee, P. J., & Lee, Y. C. (2015). A novel encoding scheme based evolutionary approach

for the bi-objective grid patrol routing problem with multiple vehicles. Scientia Iranica. Transaction B,
Mechanical Engineering, 22(4), 1576–1585.

Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers, J.
Desrosiers, & M. M. Solomon (Eds.), Column generation (pp. 33–65). Springer.

123

https://doi.org/1959.4/57656
https://doi.org/1959.4/57656

Annals of Operations Research

Keskin, B. B., Li, S., Steil, D., & Spiller, S. (2012). Analysis of an integrated maximum covering and patrol
routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 215–232.

Kim, J., Song, B. D., &Morrison, J. R. (2013). On the scheduling of systems of UAVs and fuel service stations
for long-term mission fulfillment. Journal of Intelligent & Robotic Systems, 70(1–4), 347–359.

Lübbecke, M. E. (2001). Engine scheduling by column generation (Doctoral dissertation). Braunschweig
University of Technology. https://doi.org/10.24355/dbbs.084-200511080100-720

Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6),
1007–1023.

Millar, H. H., & Russell, S. N. (2012). A model for fisheries patrol dispatch in the Canadian Atlantic offshore
fishery. Ocean & Coastal Management, 60, 48–55.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. Wiley.
Nulty, W. G., & Ratliff, H. D. (1991). Interactive optimization methodology for fleet scheduling. Naval

Research Logistics, 38(5), 669–677.
Shieh, E., Jain, M., Jiang, A. X., & Tambe, M. (2013). Efficiently solving joint activity based security games.

In Proceedings of the 23rd international joint conference on artificial intelligence (pp. 346–352). AAAI
Press.

Smith, O. J., Boland, N., & Waterer, H. (2012). Solving shortest path problems with a weight constraint and
replenishment arcs. Computers & Operations Research, 39(5), 964–984.

Surendonk, T. J., & Chircop, P. A. (2020a). Detailed complexity proofs for the patrol boat scheduling prob-
lem with complete coverage (Technical note no. DST-Group-TN-2026). Canberra, Australian Capital
Territory: Joint and Operations Analysis Division, Defence Science and Technology Group.

Surendonk, T. J., & Chircop, P. A. (2020b). On the computational complexity of the patrol boat scheduling
problem with complete coverage. Naval Research Logistics, 67(4), 289–299.

Vanderbeck, F. (1994). Decomposition and column generation for integer programs (Doctoral dissertation).
Universite Catholique de Louvain. https://doi.org/2078.1/205381

Vanderbeck, F. (2000). OnDantzig–Wolfe decomposition in integer programming andways to performbranch-
ing in a branch-and-price algorithm. Operations Research, 48(1), 111–128.

Vanderbeck, F. (2005). Implementing mixed integer column generation. In G. Desaulniers, J. Desrosiers, &
M. M. Solomon (Eds.), Column generation (pp. 331–358). Springer.

Wagner, M. R., & Radovilsky, Z. (2012). Optimizing boat resources at the US Coast Guard: Deterministic and
stochastic models. Operations Research, 60(5), 1035–1049.

Zadeh, H. S., Storey, I., & Lenarcic, J. (2009). NaMOS; Scheduling patrol boats and crews for the Royal
Australian Navy. In 2009 IEEE aerospace conference (pp. 1–12).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.24355/dbbs.084-200511080100-720
https://doi.org/2078.1/205381

	On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage
	Abstract
	1 Introduction and related literature
	2 Network construction
	2.1 Patrol network setting
	2.2 Resource-space-time network construction

	3 Problem formulation and solution approach
	3.1 Master problem
	3.2 Column generation subproblem
	3.3 Restricted master problem
	3.4 Seed columns and pricing strategy
	3.5 Branch-and-price

	4 Problem reduction techniques
	4.1 Cyclic schedules
	4.2 Rolling horizon
	4.3 Clustering

	5 Computational results
	5.1 Patrol networks and schedule notation
	5.2 Problem instances, results and solutions

	6 Concluding remarks
	6.1 Suggestions for future work

	Acknowledgements
	References

