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Abstract

We consider Max-min Share (MmS) fair allocations of indi-
visible chores (items with negative utilities). We show that
allocation of chores and classical allocation of goods (items
with positive utilities) have some fundamental connections
but also differences which prevent a straightforward applica-
tion of algorithms for goods in the chores setting and vice-
versa. We prove that an MmS allocation does not need to
exist for chores and computing an MmS allocation - if it ex-
ists - is strongly NP-hard. In view of these non-existence
and complexity results, we present a polynomial-time 2-
approximation algorithm for MmS fairness for chores. We
then introduce a new fairness concept called optimal MmS
that represents the best possible allocation in terms of MmS
that is guaranteed to exist. We use connections to parallel
machine scheduling to give (1) a polynomial-time approx-
imation scheme for computing an optimal MmS allocation
when the number of agents is fixed and (2) an effective and
efficient heuristic with an ex-post worst-case analysis.

Introduction
Fair allocation of indivisible items is a central problem in
economics, computer science, and operations research (Aziz
et al. 2015; Brams and Taylor 1996; Bouveret, Chevaleyre,
and Maudet 2015; Lipton et al. 2004). We focus on the set-
ting in which we have a set of N agents and a set of items
with each agent expressing utilities over the items. The goal
is to allocate the items among the agents in a fair manner
without allowing transfer of money. If all agents have pos-
itive utilities for the items, we can view the items as goods.
On the other hand, if all agents have negative utilities for
the items, we can view the items as chores. In this paper
we focus on fair allocation of indivisible chores. Although
multi-agent resource allocation has been extensively stud-
ied, mostly the resources considered are goods, i.e., they
yield positive utility. On the other hand, several important
problems require the items to be allocated to yield negative
utility. This is particularly so when the items in question are
project tasks, house-hold chores, or climate change actions
to be handled by different countries.

In order to identify fair allocations, one needs to formalize
what fairness means. A compelling fairness concept called
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Max-min Share (MmS) was recently introduced which holds
more often than traditional fairness concepts such as envy-
freeness and proportionality (Bouveret and Lemaı̂tre 2016;
Budish 2011). An agent’s MmS is the “most preferred bun-
dle he could guarantee himself as a divider in divide-and-
choose against adversarial opponents” (Budish 2011). The
main idea is that an agent partitions the items into N sets
in a way that maximizes the utility of the least preferred
set in the partition. The utility of the least preferred set is
called the MmS guarantee of the agent. An allocation satis-
fies MmS fairness if each agent gets at least as much utility
as her MmS guarantee. We refer to such an allocation as
MmS allocation.1

Although MmS is a highly attractive fairness con-
cept and a natural relaxation of proportionality and envy-
freeness (Bouveret and Lemaı̂tre 2016), Procaccia and
Wang (2014) showed that an MmS allocation of goods does
not exist in general. This fact initiated research on approx-
imate MmS allocations of goods in which each agent gets
some fraction of her MmS guarantee. On the positive side,
MmS allocations of goods often exist (Kurokawa, Procaccia,
and Wang 2016) and there also exists a polynomial-time al-
gorithm that returns 2/3-approximate MmS allocations (Pro-
caccia and Wang 2014; Amanatidis et al. 2015). Algorithms
for computing approximate MmS allocations of goods are
being used in practice for fair division in real-world prob-
lems (Goldman and Procaccia 2014).

In this paper, we turn to MmS allocations of chores, a
subject which has not been studied previously. Even in
the more general domain of fair allocation, there has been
less research on chore allocation compared to goods de-
spite there being many settings where we have chores but
not goods (Brams and Taylor 1996). However, the problem
of allocation of chores cannot in general be simply trans-
formed into a problem of allocation of goods (Caragiannis
et al. 2012). The difference in the two settings can also
be judged from the fact that for divisible goods, utilities
achieved under competitive equilibrium are unique but for
divisible chores, utilities achieved under competitive equi-
librium are not unique (Bogomolnaia and Moulin 2016).

1Bouveret and Lemaı̂tre (2016) and Budish (2011) also formal-
ized a fairness concept called min-Max fairness that is stronger than
Max-min fairness.



Contributions We consider MmS allocation of chores
for the first time and present fundamental connections be-
tween allocation of chores and goods when the negative util-
ities of the agents in the case of chores are negated to obtain
a goods setting and vice-versa. We also show that there are
fundamental differences between the two settings with no
known simple reductions between them. In particular, re-
ductions such as negating the utility values and applying an
algorithm for one setting does not give an algorithm for the
other setting. We show that an MmS allocation does not
need to exist for chores and that calculating an MmS alloca-
tion for chores is NP-hard in the strong sense.

In view of the non-existence result, we introduce a new
concept called optimal MmS for chores. An allocation is an
optimal MmS allocation if it represents the best possible ap-
proximation of the MmS guarantee. An optimal MmS allo-
cation has two desirable properties: (1) it always exists and
(2) it satisfies MmS fairness whenever an MmS allocation
exists. Consequently, optimal MmS is a compelling fair-
ness concept and a conceptual contribution of the paper. We
present bounds to quantify the gap between optimal MmS
fairness and MmS fairness. We present a polynomial-time
greedy round-robin algorithm for this purpose that provides
a 2-approximation of the MmS guarantee for chores.

In view of the computational hardness result, we use
connections to parallel machine scheduling to develop an
algorithm that gives an approximation for optimal MmS
fairness for an arbitrary ex-ante error tolerance. Using
well-established polynomial-time approximation schemes
(PTAS) for the involved parallel machine scheduling prob-
lems, we show that this algorithm gives a PTAS for optimal
MmS when the number of agents is fixed. In addition to this
theoretical result, we develop an efficient and effective so-
lution heuristic (called SCHED). The main difference of the
PTAS and the SCHED heuristic is that the former solves the
underlying scheduling problems within an ex-ante error tol-
erance while the latter uses fast heuristics (or a time limit) to
solve the underlying scheduling problems.

Not allowing for an ex-ante worst-case analysis anymore,
we give an ex-post worst-case analysis to benchmark the
SCHED heuristic and test its performance in computational
experiments. We show that SCHED is capable of deriving
near-optimal solutions within a few minutes in our compu-
tational experiments for instances with up to 128 agents and
3,200 chores. We also prove that SCHED greatly outper-
forms the simpler greedy round-robin 2-approximation al-
gorithm.

Related Work
Fair allocation has been extensively studied for allocation of
divisible goods such as cake (Brams and Taylor 1996). How-
ever when items are divisible, MmS fairness coincides with
the classic fairness notion of proportionality in which each
agent’s utility must be at least 1/n of the maximum possible
value. Therefore, MmS fairness only becomes meaningful
when items are indivisible.

There is a natural connection between MmS allocations
and parallel machine scheduling, which we outline later.

This connection turns out to be very fruitful for comput-
ing (approximate) optimal MmS allocations. In the follow-
ing, we briefly introduce the concept of parallel machine
scheduling in general and its necessary specifications for our
work.

We have a set M of jobs and a set [N ] of N machines.
Each of the jobs has to be processed exactly once on exactly
one machine without preemption. Furthermore, we have a
processing time matrix P = (pij)i,j where pij ≥ 0 indi-
cates how long machine i requires to finish job j. If there
are no further restrictions on the values of P , we deal with
unrelated parallel machines. If pij = pi′j for all i, i′ ∈ [N ]
and j ∈M then machines are considered identical.

The goal of each machine scheduling problem is to find a
schedule (i.e., an allocation) that optimizes a certain objec-
tive function. The problem type we are focusing on in this
paper minimizes the time where the latest machine finishes
(makespan minimization) and is related to MmS allocation
of chores. An extensive overview on all important machine
scheduling problems is provided by Pinedo (2012).

Graham et al. (1979) established a notation for machine
scheduling problems where P stands for identical machines,
R for unrelated machines, and Cmax for minimizing the
makespan. According to this notation, we will use the prob-
lems P/Cmax and R/Cmax in this paper. Both problems
are NP-hard in the strong sense but they are well investi-
gated and plenty of research has been conducted on approx-
imation and heuristic algorithms which we will take advan-
tage of (Graham 1969; Haouari, Gharbi, and Jemmali 2006;
Hochbaum and Shmoys 1987; Lenstra, Shmoys, and Tardos
1990).

Definitions and Basic Properties of MmS
We introduce the basic notation and definitions for our ap-
proach in this section. For a set of itemsM and a number
N ∈ N of agents, let ΠN (M) be the set of all N -partitions
ofM (i.e., item allocations) and letP(M) denote the power
set ofM.

Definition 1. An instance I = (M, [N ], (vi)i∈[N ]) is de-
fined as a tuple consisting of a setM of items, a set [N ] of
N agents, and a family (vi : P(M) → R)i∈[N ] of additive
utility functions. The corresponding instance to I is defined
as −I := (M, [N ], (−vi)i∈[N ]).

1. I is a goods instance iff vi(j) ≥ 0 for all i ∈ [N ] and
j ∈M and vi 6≡ 0 for all i ∈ [N ].

2. I is a chores instance iff vi(j) ≤ 0 for all i ∈ [N ] and
j ∈M and vi 6≡ 0 for all i ∈ [N ].

The set of all goods instances is denoted by G and the set of
all chores instances is denoted by C.

Definition 2. Let I = (M, [N ], (vi)i∈[N ]) be an instance
and i ∈ [N ] be an agent.

1. Agent i’s Max-min Share (MmS) guarantee for I is de-
fined as

MmSN
vi (M) := max

(S1,...,SN )∈ΠN (M)
min
j∈[N ]

vi(Sj).



2. Agent i’s min-Max Share (mMS) guarantee for I is de-
fined as

mMSN
vi (M) := min

(S1,...,SN )∈ΠN (M)
max
j∈[N ]

vi(Sj).

Definition 3. Let I = (M, [N ], (vi)i∈[N ]) be an instance
and S = (S1, . . . , SN ) ∈ ΠN (M) be an allocation.

1. S is called an MmS allocation for I iff vi(Si) ≥
MmSN

vi (M) for all agents i ∈ [N ].
2. S is called a perverse mMS allocation for I iff vi(Si) ≤
mMSN

vi
(M) for all agents i ∈ [N ].

The concept of a perverse mMS allocation seems counter-
intuitive but turns out to be helpful to obtain results on MmS
allocations for corresponding instances. We can also relax
the MmS and perverse mMS allocation concepts as follows.

Definition 4. Given an instance I = (M, [N ], (vi)i∈[N ])
and a constant λ ≥ 0.

1. The λ-max-min problem for I is about finding an al-
location (S1, . . . , SN ) ∈ ΠN (M) with vi(Si) ≥ λ ·
MmSN

vi (M) for all i ∈ [N ].
2. The perverse λ-min-max problem for I is about finding

an allocation (S1, . . . , SN ) ∈ ΠN (M) with vi(Si) ≤
λ ·mMSN

vi (M) for all i ∈ [N ].

If we have an instance I = (M, [N ], (vi)i∈[N ]) then we
have −MmSN

vi (M) = mMSN
−vi(M) for all agents i ∈

[N ], which leads us to the following result.

Proposition 5. Let S = (S1, . . . , SN ) ∈ ΠN (M) be an
allocation and λ ≥ 0 be arbitrary. Then S is a solution of
the λ-max-min problem for I if and only if S is a solution
of the perverse λ-min-max problem for the corresponding
instance −I .

In particular, there is an MmS allocation for I if and only
if there is a perverse mMS allocation for its corresponding
instance −I . This result shows an interesting connection
between MmS and mMS when changing signs in all utility
functions - but also a fundamental difference between the
allocation of chores and goods since finding MmS alloca-
tions and finding perverse mMS allocations involve differ-
ent objectives. This shows that an MmS algorithm for goods
cannot simply be used for the chores setting (after changing
signs in the utility functions) and vice-versa.

Non-Existence and Complexity of MmS
In this section, we discuss existence and non-existence ex-
amples for MmS allocations as well as complexity results
for the computation of MmS allocations. We show another
fundamental difference between the goods and chores set-
ting by showing that existence and non-existence examples
do not transfer straightforwardly from goods to chores and
vice-versa by simply changing signs in the utility functions.

Consider a set [3] = {1, 2, 3} of three agents and a set of
twelve items (represented by pairs)

M = {(j, k)|j = 1, 2, 3; k = 1, 2, 3, 4}.

We define matrices

B =

(
1 1 1 1
1 1 1 1
1 1 1 1

)
, O =

(
17 25 12 1
2 22 3 28
11 0 21 23

)
,

E1 =

(−3 1 1 1
0 0 0 0
0 0 0 0

)
, E2 =

(−3 1 0 0
1 0 0 0
1 0 0 0

)
,

E3 =

(−3 0 1 0
0 0 1 0
0 0 0 1

)
.

For each agent i ∈ [3], we define her utility function by

ui :M→ R≥0, (j, k) 7→ 106 ·Bjk + 103 ·Ojk + Ei
jk.

Using the instance I = (M, [3], (ui)i∈[3]) ∈ G, we obtain
the following non-existence result for MmS allocations of
chores.

Proposition 6. There is no MmS allocation for −I . In par-
ticular, an MmS allocation for chores may not exist.

The instance −I we use is inspired by a clever instance
constructed by Procaccia and Wang (2014) to show that an
MmS allocation for goods does not necessarily exist. If we
denote their instance by J = (M, [3], (wi)i∈[3]) ∈ G, then
we get the following interesting result showing that exis-
tence and non-existence examples for MmS allocations can-
not be simply converted into each other by changing signs
in the utility functions.

Remark 7. There is an MmS allocation for I but no MmS
allocation for −I . There is no MmS allocation for J but an
MmS allocation for −J .

This is another fundamental difference between MmS for
goods and chores. Furthermore, not only do MmS alloca-
tions not exist in general, but computing an MmS alloca-
tion is also strongly NP-hard if it exists. The reduction is
straightforward from Integer Partition to an allocation in-
stance in which each agent has the same utility function.2

Proposition 8. Computing an MmS allocation for chores -
if it exists - is strongly NP-hard. The problem is weakly NP-
hard even for two agents.

Due to the intractability in general of computing MmS
allocations for chores, in the following sections, we will de-
velop different approximation and heuristic algorithms.

2-MmS-Approximation for Chores
The purpose of this section is to present a polynomial-time
2-MmS-approximation algorithm (Algorithm 1) for chores,
i.e., where each agent is guaranteed a utility of at least twice
her (negative) max-min share guarantee.

We obtain the following theorem, which shows that Al-
gorithm 1 gives us a 2-MmS-approximation algorithm for
chores.

2The corresponding complexity result for goods has already
been proved by Bouveret and Lemaı̂tre (2016).



Algorithm 1 Greedy round-robin protocol
1: Given an arbitrary instance, agents pick in round-robin

manner and are given the item with the highest utility
among all remaining items at each pick.

Theorem 9. Let I = (M, [N ], (di)i∈[N ]) ∈ C be a chores
instance and denote the allocation obtained from Algorithm
1 by (S1, . . . , SN ) ∈ ΠN (M). Then we have

di(Si) ≥
(

2− 1

N

)
·MmSN

di
(M)

for all i ∈ [N ] and the inequality cannot be improved for
general instances.

Proof. Define dmin
i = minj∈M di(j). As the first step, we

show
di(Si) ≥ di(Si′) + dmin

i (1)

for all i, i′ ∈ [N ]. This is obvious for i ≤ i′ (picking rule
and non-positivity of utilities) and therefore, we can assume
i > i′ (i.e., i′ picks before i in each round). LetK be the par-
ticular round where agent i′ picks her final item and denote
the pick of agent i (i′ resp.) in round k = 1, . . . ,K by rki
(rki′ resp.). Please note that the last pick rKi of agent imay be
empty resulting in di(rKi ) = 0. We have di(rki ) ≥ di(rk+1

i′ )
for all k = 1, . . . ,K − 1 and therefore

di(Si)− di(Si′) =

K∑
k=1

di(r
k
i )− di(rki′)

= di(r
K
i )− di(rKi′ ) + di(r

K−1
i )− di(rK−1

i′ ) + . . .

. . .+ di(r
2
i )− di(r2

i′) + di(r
1
i )− di(r1

i′)

≥ di(rKi )− di(r1
i′) ≥ dmin

i

with the last inequality being a consequence of having a
chores instance.

By applying
∑

i′∈[N ] to both sides of equation (1), we
obtain3

di(Si) ≥
1

N
· di(M) +

(
1− 1

N

)
· dmin

i

for all i ∈ [N ]. This finally transforms to the theorem’s
inequality because we have 1

N · di(M) ≥MmSN
di

(M) and
dmin
i ≥MmSN

di
(M) in every chores setting.

To verify that the bound cannot be improved in general,
consider a setM = (t1, t2, . . . , t(N−1)·N+1) of (N − 1) ·
N + 1 items and let the utility function d be the same for all
agents with d(tj) = − 1

N for all j = 1, . . . , (N − 1) ·N and
d(t(N−1)·N+1) = −1.

Amanatidis et al. (2015) used a similar round robin sub-
routine to obtain a 2-MmS-approximation for goods but only
after they allocate the most valuable goods.

3The summand dmin
i can be omitted for i′ = i.

Optimal MmS Fairness for Chores
In this section, we introduce the new concept of optimal
MmS fairness as a natural relaxation of MmS fairness.

Definition 10. For a chores instance I ∈ C, the optimal
MmS ratio λI is defined as the minimal λ ∈ [0,∞) for
which the λ-max-min-problem for I has a solution.

Note that the minimum exists in this definition since for a
fixed instance I , there is only a finite number of possible al-
locations. Based on this notation, we define the new optimal
Mms fairness concept.

Definition 11. For a chores instance I =
(M, [N ], (di)i∈[N ]) ∈ C, an optimal MmS alloca-
tion is an allocation (S1, . . . , SN ) ∈ ΠN (M) with
di(Si) ≥ λI ·MmSN

di
(M) for all i ∈ [N ].

Optimal MmS is equivalent to maximizing the egalitarian
welfare of agents when the utilities of each agent are nor-
malized by the agent’s MmS guarantee. Although optimal
MmS can be viewed as combining two natural ideas from
egalitarian welfare and MmS fairness, there are two main
advantages to the introduced concept. First, for each spe-
cific chore instance, we can guarantee the existence of an
optimal MmS allocation. Second, an optimal Mms alloca-
tion is always an MmS allocation if the latter exists. Both
observations follow immediately from the definitions. We
will give an introductory example for an optimal MmS allo-
cation.

Example 12. Define a chores instance I =
(M, [2], (di)i∈[2]) ∈ C with a set [2] = {1, 2} of two agents
and a set of two itemsM = {a, b}. We define d1(a) = −r,
d1(b) = −1, d2(a) = −1, and d2(b) = −r for some r > 1.
Then we have MmS2

d1
(M) = MmS2

d2
(M) = −r which

means that S1 = {a} and S2 = {b} is an MmS allocation
for I where each agent gets a total utility of−r. The optimal
MmS allocation for I , however, is S1 = {b} and S2 = {a}
giving each agent a total utility of −1. In particular, we
have λI = 1

r .

This example shows that each agent’s ratio of the utility
in an optimal MmS allocation to the utility in an arbitrary
MmS allocation can be arbitrarily small as r > 1 can be
any real number. A natural complementary question is the
worst-case for the utility in an optimal MmS allocation in
comparison to the MmS guarantee. This is addressed by the
following definition.

Definition 13. The universal MmS ratio for chores is de-
fined as λ− := supI∈C λ

I .

We give bounds for and a connection between the
instance-dependent optimal and the instance-independent
universal MmS ratio in the following. Note that we do not
claim the upper bounds to be tight.

Lemma 14. Let I = (M, [N ], (di)i∈[N ]) ∈ C be a chores
instance. Then we have 0 ≤ λI ≤ 2, λI ≤ λ−, and 1 <
λ− ≤ 2.

Proof. The inequalities 0 ≤ λI and λI ≤ λ− hold per def-
inition. λI ≤ 2 follows from Theorem 9 and also implies



λ− ≤ 2 by definition. Finally, 1 < λ− follows from Propo-
sition 6.

However, as we have seen in Proposition 8, the complex-
ity of computing an MmS allocation - if it exists - is strongly
NP-hard and hence the same holds true for the computation
of an optimal MmS allocation. Therefore, we show in the
next sections that there is a PTAS for the computation of
such an allocation as long as the number of agents is fixed.
Furthermore, we provide an efficient and effective solution
heuristic.

Remark 15. The concepts of this section can be formulated
for goods in a similar way. For a goods instance I ∈ G,
the optimal MmS ratio λI can be defined as the maximal
λ ∈ [0,∞] for which the λ-max-min-problem for I has a
solution. The universal MmS ratio for goods can be defined
as λ+ := infI∈G λ

I and fulfills 2
3 ≤ λ+ < 1. The in-

equalities follow from approximation and non-existence re-
sults for MmS allocation of goods proven by Procaccia and
Wang (2014).

Algorithms for Optimal MmS Fairness
In this section, we present an approximation algorithm for
finding an optimal MmS allocation for chores (Algorithm 2)
and show that the algorithm gives a PTAS when the number
of agents is fixed. Finally, we develop an efficient and effec-
tive solution heuristic (Algorithm 3), which we will evaluate
in computational experiments in the next section.

For a given goods instance (M, [N ], (ui)i∈[N ]) ∈ G, the
computation of mMSN

ui
(M) for an agent i ∈ [N ] is equiv-

alent to the computation of a job partition that minimizes
the makespan on N identical parallel machines (P/Cmax)
where the processing time of a job j ∈ M is defined as
pj := ui(j) on any machine. Let now a chores instance
I = (M, [N ], (di)i∈[N ]) ∈ C and ε ≥ 0 be given. With this
notation, we can formulate the following algorithm.

Algorithm 2 PTAS for optimal MmS
1: Select α, β ≥ 0 with (1 + α) · (1 + β) ≤ 1 + ε.
2: Define ui := −di for all i ∈ [N ].
3: Compute ci with mMSN

ui
(M) ≤ ci ≤ (1 + α) ·

mMSN
ui

(M) for each i ∈ [N ] via the corresponding
P/Cmax problem.

4: Define new additive utility functions u′i : M → R≥0

for all i ∈ [N ] by u′i(j) := 1
ci
· ui(j) ∀j ∈M.

5: Consider the corresponding R/Cmax problem where
the processing times are defined as pij := u′i(j) for
all i ∈ [N ] and j ∈ M. Denote the optimal ob-
jective function value by λ∗. Compute an approxi-
mate solution Sε = (Sε

1 , . . . , S
ε
N ) ∈ ΠN (M) with

u′i(S
ε
i ) ≤ (1 + β) · λ∗ for all i ∈ [N ].

Theorem 16. If we apply Algorithm 2 to the pair (I, ε), then
Sε is a solution of the (1 + ε) · λI -max-min problem for I .

Proof. Since a solution of the λI -max-min problem for I
exists per definition, we can conclude by Proposition 5 that

a solution of the perverse λI -min-max problem for −I ex-
ists. This implies the existence of (S1, . . . , SN ) ∈ ΠN (M)
with ui(Si) ≤ λI ·mMSN

ui
(M) ≤ λI · ci for all i ∈ [N ].

From this we have u′i(Si) ≤ λI for all i ∈ [N ] and we can
conclude λ∗ ≤ λI .

This gives us

max
i∈[N ]

ui(S
ε
i )

ci
= max

i∈[N ]
u′i(S

ε
i ) ≤ (1 + β) · λ∗ ≤ (1 + β) · λI

and since ci ≤ (1 + α) ·mMSN
ui

(M), this leads us to

max
i∈[N ]

ui(S
ε
i )

mMSN
ui

(M)
≤ (1 + α) · (1 + β) · λI ≤ (1 + ε) · λI

which is equivalent to

ui(S
ε
i ) ≤ (1 + ε) · λI ·mMSN

ui
(M)

for all i ∈ [N ].
This proves that Sε is a solution of the perverse (1 + ε) ·

λI -min-max problem for −I . The result follows now by
Proposition 5.

Remark 17. Executing Algorithm 2 for ε = 0 leads to an
exact algorithm for finding an optimal MmS allocation for
chores.

Hochbaum and Shmoys (1987) present a PTAS for
P/Cmax and Lenstra, Shmoys, and Tardos (1990) present
a PTAS for RN/Cmax (which means that the number of
agents is fixed to N ). This implies that we can run Algo-
rithm 2 in polynomial time for each ε > 0 when the number
of agents is fixed and therefore gives us (in combination with
Theorem 16) immediately the following important corollary.

Corollary 18. Let the number of agents be fixed toN and let
I ∈ C be a chores instance with N agents. Then Algorithm
2 provides a PTAS for the computation of an optimal MmS
allocation for I .

This is a strong result since it gives a PTAS for the com-
putation of an optimal MmS allocation of a given chores
instance, no matter if an MmS allocation exists or not (for a
fixed number of agents).

Since the PTAS is only of theoretical interest due to large
hidden constants, we formulate an efficient and effective so-
lution heuristic, which we call SCHED, in the following.
For a P/Cmax instance, we can calculate a feasible solution
by the simple and well-known longest processing time first
(LPT) rule - see Graham (1969) for details. Furthermore,
an R/Cmax instance can be solved to optimality using an
integer linear program (Lenstra, Shmoys, and Tardos 1990).
This allows us to formulate Algorithm 3 for a given chores
instance I = (M, [N ], (di)i∈[N ]) ∈ C.

This algorithm differs from Algorithm 2 in two ways.
First, the calculation of upper bounds in step 2 is fast (be-
low 0.25s in our experiments - see the following section -
with up to 128 agents and 3, 200 items) but has only a worst-
case guarantee of 1 + α = 4

3 for general instances (Graham
1969). Second, the termination criterion in step 4 is a time
limit instead of an ex-ante worst-case guarantee β.



Figure 1: Gaps obtained in computational results

Algorithm 3 SCHED heuristic for optimal MmS
1: Define ui := −di for all i ∈ [N ].
2: Calculate an upper bound ci on mMSN

ui
(M) for each

i ∈ [N ] by applying LPT to the corresponding P/Cmax

instance.
3: Define new additive utility functions u′i : M → R≥0

for all i ∈ [N ] by u′i(j) := 1
ci
· ui(j) ∀j ∈M.

4: Consider the corresponding R/Cmax problem where
the processing times are defined as pij := u′i(j) for all
i ∈ [N ] and j ∈ M. Solve the instance to optimal-
ity with an integer programming solver and abort cal-
culations after a pre-set time limit Tmax. Denote the
best incumbent solution found within the time limit by
S̃ = (S̃1, . . . , S̃N ) ∈ ΠN (M).

Although not having an ex-ante worst-case guarantee for
SCHED, we can give an ex-post worst-case analysis in the
following way. In addition to an upper bound (step 2), we
can calculate a lower bound on mMSN

ui
(M) via the corre-

sponding P/Cmax instance - see Haouari, Gharbi, and Jem-
mali (2006) for details. We denote the maximum relative gap
between upper and lower bounds among all agents by α and
the relative gap between the current best incumbent solution
and the current best lower bound of the R/Cmax problem
in step 4 (reported after Tmax by the integer programming
solver) by β. From Theorem 16, we get the following result.

Remark 19. Apply Algorithm 3 to a chores instance I ∈ C
and set ε = (1 + α) · (1 + β) − 1. Then S̃ is a solution of
the (1 + ε) · λI -max-min problem for I .

Computational Experiments
In this section, we report the results of our computational
study where we tested the performance of our SCHED
heuristic (Algorithm 3). We show that SCHED returns
near-optimal solutions and greatly outperforms the simpler
greedy round-robin protocol (Algorithm 1).

We coded all algorithms in C++ on a Linux Cen-
tOS 7 based 12-core processor with a clock speed of

3.07 GHz and 24 GiB memory. Integer linear pro-
grams were solved via the Gurobi 6 C++ API. We
tested different instance sizes with a varying number of
agents N ∈ {2, 4, 8, 16, 32, 64, 128} and items M ∈
{N, 2N, 3N, 4N, 6N, 8N, 10N, 15N, 20N, 25N} by gen-
erating 10 instances per instance size and averaging the
results. The time limit in step 4 of SCHED was set to
Tmax = 300s. Utilities were drawn from a uniform distri-
bution ui(j) ∼ U(0, 100) (and negated for obtaining chores
instances) as it is common in the literature for fair division of
goods (Amanatidis et al. 2015; Bouveret and Lemaı̂tre 2016;
Kurokawa, Procaccia, and Wang 2016).

We were able to calculate optimal MmS ratios for instance
sizes with N ∈ {2, 4, 8} using Algorithm 2 (see Remark
17). We find that the optimal MmS ratios are decreasing
with both an increasing number of agents and an increasing
ratio of items to agents and they are varying between 0.82
and 0.67 for 2 agents, between 0.54 and 0.40 for 4 agents,
and between 0.34 and 0.23 for 8 agents. In particular, an
MmS allocation exists in all of these instances.

For these instance sizes with N ∈ {2, 4, 8}, Figure 1
reports the relative gaps of the achieved MmS ratio from
the optimal MmS ratio4 using the SCHED heuristic and the
greedy round-robin protocol. Note that these gaps are only
available when optimal MmS ratios are available. We ob-
tain that the SCHED heuristic performs very close to the
optimum with a maximum average deviation of 1.64% (ob-
served for 8 agents and 24 items). The observed gaps for the
greedy round-robin protocol, however, are much higher.

The worst-case gaps for our SCHED heuristic are rep-
resented by the Epsilon lines and can be calculated with-
out knowing the optimal MmS ratios (see Remark 19). We
find that the observed gaps for SCHED are clearly below the
worst-case gaps for SCHED and that these worst-case gaps
for SCHED are in turn much smaller than the observed gaps
for the greedy round-robin protocol.

We were not able to calculate optimal MmS ratios for in-
stance sizes with N ≥ 16. Therefore, the only value we

4For example, if the optimal MmS ratio is 0.5 and the achieved
MmS ratio is 0.6, then the relative gap is 0.6−0.5

0.5
= 0.2 = 20%.



can benchmark our SCHED heuristic with is the worst-case
gap. Our experiments show that the maximum worst-case
gap (which always occurs for M = 3N ) stays almost con-
stant when N is further increased - the value is 11.28% for
N = 8 and 11.92% for N = 128. Therefore, good solutions
are also guaranteed for instance sizes with N ≥ 16.

We can conclude that our SCHED heuristic clearly out-
performs the greedy round-robin protocol,5 returns solutions
which are very close to the optimal MmS ratio for instances
with a small number of agents, and has a good worst-case
performance for all remaining test instances. Based on re-
sults for N ≤ 8, we can also expect the SCHED solutions to
clearly beat these worst-case guarantees for higher N .

Conclusions
We initiated work on MmS allocation of chores and pre-
sented interesting connections and differences between fair
allocation of goods and chores. We showed that an MmS
allocation for chores does not need to exist and that com-
puting an MmS allocation is NP-hard in the strong sense
if it exists. Consequently, we developed a polynomial-time
greedy round-robin 2-MmS-approximation algorithm and a
new fairness concept called optimal MmS. For a fixed num-
ber of agents, we proposed a PTAS for finding optimal MmS
allocations. We developed an efficient and effective solu-
tion heuristic (with an ex-post worst-case analysis) which
finds near-optimal solutions within short time in our compu-
tational experiments for up to 128 agents and 3,200 chores
and greatly outperforms the simpler greedy round-robin 2-
approximation algorithm.
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