
Two Algorithms for Additive and Fair
Division of Mixed Manna

Martin Aleksandrov(B) and Toby Walsh

Technical University Berlin, Berlin, Germany
{martin.aleksandrov,toby.walsh}@tu-berlin.de

Abstract. We consider a fair division model in which agents have posi-
tive, zero and negative utilities for items. For this model, we analyse one
existing fairness property (EFX) and three new and related properties
(EFX0, EFX3 and EF13) in combination with Pareto-optimality. With
general utilities, we give a modified version of an existing algorithm for
computing an EF13 allocation. With −α/0/α utilities, this algorithm
returns an EFX3 and PO allocation. With absolute identical utilities,
we give a new algorithm for an EFX and PO allocation. With −α/0/β
utilities, this algorithm also returns such an allocation. We report some
new impossibility results as well.

Keywords: Additive fair division · Envy-freeness · Pareto-optimality

1 Introduction

Fair division of indivisible items lies on the intersection of fields such as social
choice, computer science and algorithmic economics [15]. Though a large body
of work is devoted to the case when the items are goods (e.g. [11,19,22,26]),
there is a rapidly growing interest in the case of mixed manna (e.g. [5,13,25]).
In a mixed manna, each item can be classified as mixed (i.e. some agents strictly
like it and other agents strictly dislike it), good (i.e. all agents weakly like it and
some agents strictly like it), bad (i.e. all agents weakly dislike it and some agents
strictly dislike it) or dummy (i.e. all agents are indifferent to it).

An active line of fair division research currently focuses on approximations of
envy-freeness (i.e. no agent envies another one) [18]. For example, Aziz et al. [4]
proposed two such approximations for mixed manna: EF1 and EFX. EF1 requires
that an agent’s envy for another agent’s bundle is eliminated by removing one
particular item from these agents’ bundles. EFX strengthens EF1 to any non-
zero valued item in these bundles, increasing the agent’s utility or decreasing the
other agent’s utility. However, they study only EF1 and identify improving our
understanding of EFX as an important open problem for mixed manna:

“Our work paves the way for detailed examination of allocation of
goods/chores, and opens up an interesting line of research, with many
problems left open to explore. In particular, there are further fairness con-
cepts that could be studied from both existence and complexity issues, most
notably envy-freeness up to the least valued item (EFX) [14].”

c© Springer Nature Switzerland AG 2020
U. Schmid et al. (Eds.): KI 2020, LNAI 12325, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-58285-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58285-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-58285-2_1

4 M. Aleksandrov and T. Walsh

We make in this paper a step forward in this direction. In particular, we study
not only EFX but also new properties, all stronger than EF1. For example, one
such property is envy-freeness by parts up to some item: EF13. This ensures EF1
independently for the set of all items, the set of goods and the set of bads (i.e.
the different parts). Another such property is envy-freeness by parts up to any
item: EFX3. This requires EFX for each of the different parts of the set of items.
Yet a third such property is EFX0. This one extends the existing envy-freeness
up to any (possibly zero valued) good from [24] to any (possibly zero valued)
bad by relaxing the non-zero marginal requirements in the definition of EFX.
We will shortly observe the following relations between these properties.

EFX0 ⇒ EFX EFX3 ⇒ EFX EF13 ⇒ EF1 EFX3 ⇒ EF13

We analyse these properties in isolation and also in combination with an
efficiency criterion such as Pareto-optimality (PO). PO ensures that we cannot
make an agent happier without making another one unhappier. More precisely,
we ask in our work whether combinations of these properties can be guaranteed,
and also how to do this when it is possible. Our analysis covers three common
domains for additive (i.e. an agent’s utility for a set of items is the sum of their
utilities for the items in the set) utility functions: general (i.e. each utility is real-
valued), absolute identical (i.e. for each item, the agents’ utilities have identical
magnitudes but may have different signs) as well as ternary (i.e. each utility is
−α, 0 or β for some α, β ∈ R>0).

Each of these domains can be observed in practice. For instance, if a machine
can perform a certain task faster than some pre-specified amount of time, then
its utility for the task is positive and, otherwise, it is negative. Thus, multiple
machines can have mixed utilities for tasks. Further, consider a market where
items have prices and agents sell or buy items. In this context, the agents’ utilities
for an item have identical magnitudes but different signs. Finally, a special case
of ternary utilities is when each agent have utility −1, 0, or 1 for every item.
This is practical because we need simply to elicit whether agents like, dislike or
are indifferent to each item. A real-world setting with such utilities is the food
bank problem studied in [1].

We give some related work, formal preliminaries and motivation in Sects. 2, 3
and 4, respectively. In Sect. 5, we give a polynomial-time algorithm (i.e.
Algorithm 1) for computing an EF13 allocation with general utilities. We also
prove that an EFX3 allocation, or an EFX0 allocation might not exist even
with ternary identical utilities. In Sect. 6, we give a polynomial-time algorithm
(i.e. Algorithm 2) for computing an EFX and PO allocation with absolute
identical utilities, and show that Algorithm 1 returns an EF13 and PO allo-
cation. In Sect. 7, we show that Algorithm 1 returns an EF13 and PO allocation
with ternary utilities, whereas Algorithm 2 returns an EFX and PO allocation.
Finally, we give a summary in Sect. 8.

Two Algorithms for Additive and Fair Division of Mixed Manna 5

2 Related Work

For indivisible goods, EF1 was defined by Budish [12]. Caragiannis et al. [14]
proposed EFX. It remains an open question whether EFX allocations exist in
problems with general utilities. Recently, Amanatidis et al. [2] proved that EFX
allocations exist in 2-value (i.e. each utility takes one of two values) problems. In
contrast, we show that EFX and PO allocations exist in problems with ternary
(i.e. −α/0/β) utilities, which are special cases of 3-value problems. Barman,
Murthy and Vaish [7] presented a pseudo-polynomial time algorithm for EF1
and PO allocations. Barman et al. [8] gave an algorithm for EFX and PO allo-
cations in problems with identical utilities. Plaut and Roughgarden [24] proved
that the leximin solution from [17] is also EFX and PO in this domain. Although
this solution maximizes the minimum agent’s utility (i.e. the egalitarian welfare),
it is intractable to find in general [16]. In our work, we give a polynomial-time
algorithm for EFX and PO allocations in problems with absolute identical util-
ities, and show that this welfare and EFX3 are incompatible.

For mixed manna, Aziz et al. [4] proposed EF1 and EFX. They gave the dou-
ble round-robin algorithm that returns EF1 allocations. Unfortunately, these are
not guaranteed to satisfy PO. They also gave a polynomial-time algorithm that
returns allocations which are EF1 and PO in the case of 2 agents. Aziz and
Rey [6] gave a “ternary flow” algorithm for leximin, EFX and PO allocations
with −α/0/α utilities. With −α/0/β utilities, we discuss that these might sadly
violate EFX3 even when α = 1, β = 1, or EFX when α = 2, β = 1. By compari-
son, we give a modified version of the double round-robin algorithm that returns
EF13 allocations in problems with general utilities, EF13 and PO allocations
in problems with absolute identical utilities and EFX3 and PO allocations in
problems with −α/0/α utilities. Other works of divisible manna are [9,10], and
approximations of envy-freeness for indivisible goods are [3,14,21]. In contrast,
we study some new approximations and the case of indivisible manna.

3 Formal Preliminaries

We consider a set [n] = {1, . . . , n} of n ∈ N≥2 agents and a set [m] = {1, . . . , m}
of m ∈ N≥1 indivisible items. We assume that each agent a ∈ [n] have some
utility function ua : 2[m] → R. Thus, they assign some utility ua(M) to each
bundle M ⊆ [m]. We write ua(o) for ua({o}). We say that ua is additive if, for
each M ⊆ [m], ua(M) =

∑
o∈M ua(o). We also write u(M) if, for each other

agent b ∈ [n], ua(M) = ub(M).
With additive utility functions, the set of items [m] can be partitioned into

mixed items, goods, bads and dummies. Respectively, we write [m]± = {o ∈
[m]|∃a ∈ [n] : ua(o) > 0,∃b ∈ [n] : ub(o) < 0}, [m]+ = {o ∈ [m]|∀a ∈ [n] :
ua(o) ≥ 0,∃b ∈ [n] : ub(o) > 0}, [m]− = {o ∈ [m]|∀a ∈ [n] : ua(o) ≤ 0,∃b ∈ [n] :
ub(o) < 0} and [m]0 = {o ∈ [m]|∀a ∈ [n] : ua(o) = 0} for the sets of these items.
We refer to an item o from [m]+ as a pure good if ∀a ∈ [n] : ua(o) > 0. Also, we
refer to an item o from [m]− as a pure bad if ∀a ∈ [n] : ua(o) < 0.

6 M. Aleksandrov and T. Walsh

We say that agents have general additive utilities if, for each a ∈ [n] and
each o ∈ [m], ua(o) could be any number from R. Further, we say that they have
absolute identical additive utilities if, for each o ∈ [m], |ua(o)| = |ub(o)| where
a, b ∈ [n], or identical additive utilities if, for each o ∈ [m], ua(o) = ub(o) where
a, b ∈ [n]. Finally, we say that agents have ternary additive utilities if, for each
a ∈ [n] and each o ∈ [m], ua(o) ∈ {−α, 0, β} for some α, β ∈ R>0.

An (complete) allocation A = (A1, . . . , An) is such that (1) Aa is the set of
items allocated to agent a ∈ [n], (2)

⋃
a∈[n] Aa = [m] and (3) Aa ∩ Ab = ∅ for

each a, b ∈ [n] with a �= b. We consider several properties for allocations.

Envy-Freeness Up to One Item. Envy-freeness up to one item requires that
an agent’s envy for another’s bundle is eliminated by removing an item from the
bundles of these agents. Two notions for our model that are based on this idea
are EF1 and EFX [4].

Definition 1 (EF1). An allocation A is envy-free up to some item if, for each
a, b ∈ [n], ua(Aa) ≥ ua(Ab) or ∃o ∈ Aa∪Ab such that ua(Aa\{o}) ≥ ua(Ab\{o}).

Definition 2 (EFX). An allocation A is envy-free up to any non-zero valued
item if, for each a, b ∈ [n], (1) ∀o ∈ Aa such that ua(Aa) < ua(Aa \ {o}):
ua(Aa \ {o}) ≥ ua(Ab) and (2) ∀o ∈ Ab such that ua(Ab) > ua(Ab \ {o}):
ua(Aa) ≥ ua(Ab \ {o}).

Plaut and Roughgarden [24] considered a variant of EFX for goods where,
for any given pair of agents, the removed item may be valued with zero utility
by the envious agent. Kyropoulou et al. [20] referred to this one as EFX0. We
adapt this property to our model.

Definition 3 (EFX0). An allocation A is envy-free up to any item if, for each
a, b ∈ [n], (1) ∀o ∈ Aa such that ua(Aa) ≤ ua(Aa \ {o}): ua(Aa \ {o}) ≥ ua(Ab)
and (2) ∀o ∈ Ab such that ua(Ab) ≥ ua(Ab \ {o}): ua(Aa) ≥ ua(Ab \ {o}).

An allocation that is EFX0 further satisfies EFX. Also, EFX is stronger than
EF1. It is well-known that the opposite relations might not hold.

Envy-Freeness by Parts. Let A = (A1, . . . , An) be a given allocation. We let
A+

a = {o ∈ Aa|ua(o) > 0} and A−
a = {o ∈ Aa|ua(o) < 0} for each a ∈ [n].

Envy-freeness by parts up to one item ensures that EF1 (or EFX) is satisfied in
each of the allocations A, A+ = (A+

1 , . . . , A+
n) and A− = (A−

1 , . . . , A−
n).

Definition 4 (EF13). An allocation A is envy-free by parts up to some item
(EF1-EF1-EF1 or EF13) if the following conditions hold: (1) A is EF1, (2) A+

is EF1 and (3) A− is EF1.

Definition 5 (EFX3). An allocation A is envy-free by parts up to any item
(EFX-EFX-EFX or EFX3) if the following conditions hold: (1) A is EFX, (2)
A+ is EFX and (3) A− is EFX.

Two Algorithms for Additive and Fair Division of Mixed Manna 7

With just goods (bads), EF13 (EFX3) is EF1 (EFX). With mixed manna, an
allocation that is EF13 also satisfies EF1, one that is EFX3 satisfies EFX, and
one that is EFX3 satisfies EF13. The reverse implications might not be true.

Pareto-Optimality. We also study each of these fairness properties in combi-
nation with an efficiency criterion such as Pareto-optimality (PO), proposed a
long time ago by Vilfredo Pareto [23].

Definition 6 (PO). An allocation A is Pareto-optimal if there is no alloca-
tion B that Pareto-improves A, i.e. ∀a ∈ [n]: ua(Ba) ≥ ua(Aa) and ∃b ∈ [n]:
ub(Bb) > ub(Ab).

4 Further Motivation

We next further motivate the new properties EF13 and EFX3 by means of a
simple example. Consider a birthday party where Bob invites his new friends
Alice and Mary. Bob has 3 pieces of his favourite strawberry cake (value is 1)
and 2 pieces of the less favorable to him chocolate cake (value is 0). Bob also
hopes that some of his guests would be willing to help him washing up the
dishes and throwing away the garbage after the party. Alice and Mary arrive and
it turns out that both like only chocolate cake (value is 1), and dislike any of the
household chores (value is −1) as does Bob. How shall we allocate the 5 goods
(i.e. all pieces of cake) and the 2 chores?

For EF1 (EFX) and PO, we shall give the
strawberry cake to Bob and one piece of the
chocolate cake to each of Alice and Mary.
As a result, Bob gets utility 3 whereas Alice
and Mary get each utility 1. If we want to
maximize the egalitarian welfare, we should
assign both chores to Bob. Doing so preserves
EF1 (EFX) and PO for all items. However, it
violates EF13 (EFX3). Indeed, Bob might be
unhappy simply because they have to do both
chores instead of sharing them with Alice and
Mary. This means that an EF1 (EFX) allocation might not satisfy EF13 (EFX3).
In contrast, achieving EF13 (EFX3) avoids assigning both chores to Bob. For
example, asking Bob to wash up the dishes and Alice to throw away the garbage,
or vice versa is EF13 (EFX3). Other such options share the chores between Bob
and Mary, and Alice and Mary. However, none of these maximizes the egali-
tarian welfare. This means that EF11 (EFX3) might be incompatible with this
objective.

8 M. Aleksandrov and T. Walsh

5 General Additive Utilities

We begin with general utilities. An EF1 allocation in this domain can be com-
puted in O(max{m2,mn}) time. For this purpose, we can use the existing double
round-robin algorithm from [4]. However, this algorithm may fail to guarantee
PO because an agent might pick a bad for which some other agent have zero
utility.

Example 1. Consider 2 agents and 2 items, say a and b. Define the utilities as
follows: u1(a) = −1, u1(b) = −1 and u2(a) = −1, u2(b) = 0. In this problem,
the double round-robin algorithm is simply a round-robin rule with some strict
priority ordering of the agents. Wlog, let agent 1 pick before agent 2. Wlog, let
agent 1 pick b. Now, agent 2 can only pick a. The returned allocation gives utility
−1 to agent 1 and utility −1 to agent 2. By swapping these items, agent 1 receive
utility −1 and agent 2 receive utility 0. Clearly, this is a Pareto-improvement. ��

In response, we modify slightly the double round-robin algorithm by adding
an extra preliminary phase where each dummy item/non-pure bad is allocated
to an agent who has zero utility for it: Algorithm 1. As we show, this modified
version gives us an EF13 allocation that is PO not only with −1/0/1 utilities
but also with any ternary utilities, as well as with absolute identical utilities.

Theorem 1. With general utilities, Algorithm 1 returns an EF13 allocation in
O(max{m2,mn}) time.

Algorithm 1. An EF13 allocation (see the Appendix for a complete version).
1: procedure Modified Double Round-Robin([n], [m], (u1, . . . , un))
2: M0 ← {o ∈ [m]|∀b ∈ [n] : ub(t) ≤ 0, ∃c ∈ [n] : uc(t) = 0}
3: ∀a ∈ [n] : Aa ← ∅
4: for t ∈ M0 do � allocate all dummies/non-pure bads
5: pick a ∈ {b ∈ [n]|ub(t) = 0}
6: Aa ← Aa ∪ {t}
7: B ←Double Round-Robin([n], [m] \ M0, (u1, . . . , un))
8: return (A1 ∪ B1, . . . , An ∪ Bn)

Proof. The double round-robin algorithm returns an EF1 allocation, and so B
is EF1. Consider B+ and B−. Let there be qn − p pure bads for some q, p ∈ N

with p < n. The algorithm creates p “fake” dummy items for which each agent
has utility 0, and adds them to the set of pure bads. Hence, the number of
items in this set becomes qn. Thus, the agents come in a round-robin fashion
according to some ordering of the agents, say (1, . . . , n − 1, n), and pick their
most preferred item in this set (i.e. all pure bads and “fake” dummies) until all
of them are allocated. This is EF1 for the pure bads. Hence, B− is EF1.

Two Algorithms for Additive and Fair Division of Mixed Manna 9

Further, the agents come in a round-robin fashion by following the reversed
ordering, i.e. (n, n−1, . . . , 1), and pick their most preferred good until all mixed
items and goods are allocated. If an agent has no available item which gives
them strictly positive utility, they pretend to pick a new “fake” dummy item for
which they have utility 0. This is EF1 for the mixed items and goods. Hence,
B+ is also EF1 which implies that B is EF13. Finally, extending B to all items,
by allocating each dummy item/non-pure bad to someone who holds zero utility,
preserves EF13. This means that the returned allocation is EF13. ��

We move to stronger properties. For example, EFX3 allocations in our setting
might not exist. The rationale behind this is that an agent may get their least
valued bad in an attempt of achieving EFX for the bads. As a result, removing
this bad from their bundle might not be sufficient to eliminate their envy of some
other agent who receive positive utility for a good and a bad.

Proposition 1. There are problems with 2 agents and ternary identical utilities
for 1 pure goods and 2 pure bads, in which no allocation is EFX3.

Proof. Suppose that there are 2 agents and 3 items. We define the utilities as
follows: u(a) = −1, u(b) = −1, u(c) = 2. We note that one EFX allocation
gives items a, b and c to agent 1 and no items to agent 2. However, there is no
allocation that satisfies EFX3.

We observe that there are two EFX allocations of the pure bads, i.e. A =
({a}, {b}) and B = ({b}, {a}). Further, we observe that there are two EFX
allocations of the pure good, i.e. C = ({c}, ∅) and D = (∅, {c}). By the symmetry
of the utilities, we consider only A, C and D.

If we unite (“agent-wise”) A and C, then u(A2 ∪ C2 \ {b}) = 0 < 1 =
u(A1 ∪ C1). Therefore, the union of A and C is not EFX and, therefore, EFX3.
If we unite A and D, then u(A1 ∪ D1 \ {a}) = 0 < 1 = u(A2 ∪ D2). Again, the
union of A and D violates EFX3. Similarly, for B, C and D. ��

By comparison, EFX allocations exist in 2-value problems with goods [2].
It follows immediately that EFX3 allocations exist in such problems. From this
perspective, we feel that our impossibility result compares favorably to this pos-
sibility result because such allocations may not exist in 2-value problems with
goods and bads.

Even more, this result also implies that no EFX allocation satisfies EF13 and
no EF13 allocation satisfies EFX in some problems with identical and ternary
utilities. As a consequence, any allocation that could be returned by Algorithm 1
might violate EFX. These implications are also true for the stronger version
EFX0 in problems where such allocations exist.

However, EFX0 allocations might also not always exist. The reason for this
might be the presence of dummies. One may argue that such items could be
removed. However, some web-applications on Spliddit for example ask agents to
announce items (e.g. inherited items) and utilities but the system has no access
to the actual items and, therefore, cannot remove the dummies [14].

10 M. Aleksandrov and T. Walsh

Proposition 2. There are problems with 2 agents and ternary identical utilities
for 1 pure good and 1 dummy, in which no allocation is EFX0.

Proof. Suppose that there are 2 agents and 2 items, say a and b. We define
the utilities as follows: u(a) = 1 and u(b) = 0. We argue that there is no EFX0

allocation in this problem. To see this, we make two observations. Firstly, with
the given set of items, it is impossible that both agents obtain the same utility,
as the individual utilities are integers and their sum is odd. Secondly, EFX0 for
the agents in this problem where a dummy item is present requires that both
agents have the same utility. This follows by the definition of EFX0. ��

In contrast, a natural restriction of EFX0 to goods is achievable in problems
with 2 agents and general utilities [24], or any number of agents and 0/1 utilities
[2]. By Propositions 1 and 2, it follows that neither EFX3 nor EFX0 can be
achieved in combination with PO, or even a weaker efficiency notion such as
completeness (i.e. all items are allocated), in general.

6 Absolute Identical Additive Utilities

We continue with absolute identical utilities. Requiring such utilities is not as
strong as requiring just identical utilities. To see this, consider agents 1, 2 and
items a, b. Define the utilities as u1(a) = 3, u1(b) = 2 and u2(a) = 3, u2(b) = −2.
The absolute values of these utilities are identical but their cardinal values are
not, e.g. |u1(b)| = |u2(b)| = 2 but u1(b) = 2, u2(b) = −2.

By Proposition 1, EF13 and EFX are incompatible in this domain. Neverthe-
less, we can combine each of them with PO. For example, Algorithm 1 returns
an allocation that satisfies PO besides EF13. The key reason for this result is
that in such problems there are no items that are bads (goods) for some agents
and dummy for other agents.

Theorem 2. With absolute identical utilities, Algorithm 1 returns an EF13 and
PO allocation.

Proof. EF13 follows by Theorem 1. We note that each allocation that gives
at least one mixed item to an agent who values it strictly negatively can be
Pareto-improved by moving this item to an agent who values it strictly posi-
tively. Therefore, such an allocation is not Pareto-optimal. We also note that
each other allocation, including the returned one, maximizes the sum of agents’
utilities because it achieves the maximum utility for each individual item. Such
an allocation is always Pareto-optimal. ��

At the same time, we can compute an EFX and PO allocation in polynomial
time. For this task, we propose a new algorithm: Algorithm 2. We let M(o) =
maxa∈[n] ua(o) denote the maximum utility that an agent derives from item o.
Further, let us arrange the items in non-increasing absolute maximum utility
order by using the following tie-breaking rule.

Two Algorithms for Additive and Fair Division of Mixed Manna 11

Ordering σm: Wlog, |M(1)| ≥ . . . ≥ |M(m)|. Initialize σm to (1, . . . , m).
While there are two items s and t from [m] such that |M(s)| = |M(t)|, M(s) > 0,
M(t) < 0 and t is right before s in σm, do move s right before t in σm. Thus,
within items with the same absolute maximum utilities, σm gives higher priority
to the mixed items/goods than to the pure bads.

Algorithm 2 allocates the items one-by-one in such an ordering σm. If the
current item t is mixed or pure good, then Algorithm 2 gives it to an agent
who has currently the minimum utility among the agents who like the item. If
item t is pure bad, then Algorithm 2 gives it to an agent who has currently the
maximum utility. Otherwise, it gives item t to an agent with zero utility.

Theorem 3. With absolute identical utilities, Algorithm 2 returns an EFX and
PO allocation in O(max{m log m,mn}) time.

Algorithm 2. An EFX and PO allocation.
1: procedure Minimax([n], [m], (u1, . . . , un))
2: ∀a ∈ [n] : Aa ← ∅
3: σm ← (1, . . . , m), where |M(1)| ≥ . . . ≥ |M(m)| and, within items with tied

absolute maximum utilities, mixed items/goods come before pure bads
4: for t ∈ σm do
5: if t is mixed item or good then
6: N ← {b ∈ [n]|ub(t) > 0}
7: MinUtil(A) ← {b ∈ N |ub(Ab) = minc∈N uc(Ac)}
8: pick a ∈ MinUtil(A)
9: else if t is pure bad then

10: MaxUtil(A) ← {b ∈ [n]|ub(Ab) = maxc∈[n] uc(Ac)}
11: pick a ∈ MaxUtil(A)
12: else � t is dummy item or non-pure bad
13: pick a ∈ {b ∈ [n]|ub(t) = 0}
14: Aa ← Aa ∪ {t}
15: return (A1, . . . , An)

Proof. For t ∈ [m], we let At denote the partially constructed allocation of items
1 to t. Pareto-optimality of At follows by the same arguments as in Theorem 2,
but now applied to the sub-problem of the first t items. We next prove that At

is EFX by induction on t. This will imply the result for EFX and PO of Am (i.e.
the returned allocation).

In the base case, let t be 1. The allocation of item 1 is trivially EFX. In the
hypothesis, let t > 1 and assume that the allocation At−1 is EFX. In the step
case, let us consider round t. Wlog, let the algorithm give item t to agent 1. That
is, At

1 = At−1
1 ∪{t} and At

a = At−1
a for each a ∈ [n] \ {1}. It follows immediately

by the hypothesis that each pair of different agents from [n]\{1} is EFX of each
other in At. We note that t gives positive, negative or zero utility to agent 1.
For this reason, we consider three cases for agent a ∈ [n] \ {1} and agent 1.

12 M. Aleksandrov and T. Walsh

Case 1 : Let u1(t) > 0. In this case, t is mixed item or pure good (good) and
u1(At

1) > u1(At−1
1) holds. Hence, agent 1 remain EFX of agent a by the hypoth-

esis. For this reason, we next show that agent a is EFX of agent 1. We consider
two sub-cases depending on whether agent a belong to N = {b ∈ [n]|ub(t) > 0}
or not. We note that 1 ∈ N holds because of u1(t) > 0.

Sub-case 1 for a → 1: Let a �∈ N . Hence, ua(t) ≤ 0. As a result, ua(At−1
1) ≥

ua(At
1) holds. Thus, as At−1 is EFX, we derive that ua(At

a) = ua(At−1
a) ≥

ua(At−1
1 \ {o}) ≥ ua(At

1 \ {o}) holds for each o ∈ At−1
1 with ua(o) > 0. We also

derive ua(At
a \ {o}) = ua(At−1

a \ {o}) ≥ ua(At−1
1) ≥ ua(At

1) for each o ∈ At
a with

ua(o) < 0. Hence, agent a is EFX of agent 1.

Sub-case 2 for a → 1: Let a ∈ N . Hence, ua(t) > 0. Moreover, ua(At−1
a) ≥

u1(At−1
1) by the selection rule of the algorithm. For each item o ∈ At−1

1 , we have
u1(o) = ua(o) if o is pure good, pure bad or dummy item, and u1(o) ≥ ua(o) if o
is mixed item. Therefore, u1(At−1

1) ≥ ua(At−1
1) or agent a is envy-free of agent

1 in At−1.
We derive ua(At

a) = ua(At−1
a) ≥ ua(At−1

1) = ua(At
1\{t}) because At

a = At−1
a

and At
1 = At−1

1 ∪{t}. Furthermore, ua(At
1\{t}) ≥ ua(At

1\{o}) for each o ∈ At−1
1

with ua(o) > 0 because ua(o) ≥ ua(t) holds due to the ordering of items used
by the algorithm.

We now show EFX of the bads. We have ua(At
a \ {o}) = ua(At−1

a \ {o}) ≥
ua(At−1

1) + ua(t) = ua(At
1) for each o ∈ At−1

a with ua(o) < 0 because |ua(o)| ≥
ua(t) holds due to the ordering of items used by the algorithm. Hence, agent a
is EFX of agent 1.

Case 2 : Let u1(t) < 0. In this case, t is pure bad and ua(At
1) < ua(At−1

1) holds.
That is, agent 1’s utility decreases. By the hypothesis, it follows that agent a
remain EFX of agent 1 in At. For this reason, we only show that agent 1 remain
EFX of agent a.

1 → a: We have u1(At−1
1) ≥ ua(At−1

a) by the selection rule of the algorithm. For
each item o ∈ At−1

a , we have ua(o) = u1(o) if o is pure good, pure bad or dummy
item, and ua(o) ≥ u1(o) if o is mixed item. We conclude ua(At−1

a) ≥ u1(At−1
a)

and, therefore, u1(At−1
1) ≥ u1(At−1

a). Hence, agent 1 is envy-free of agent a in
At−1.

Additionally, it follows that u1(At
1 \ {t}) ≥ u1(At

a) holds because At
1 \ {t} =

At−1
1 and At

a = At−1
a . Due to the order of the items, we have |u1(b)| ≥ |u1(t)|

for each b ∈ At
1 with u1(b) < 0. Hence, u1(At

1 \ {b}) ≥ u1(At
1 \ {t}) ≥ u1(At

a) for
each b ∈ At

1 with u1(b) < 0.
At the same time, u1(At−1

1) ≥ u1(At−1
a \{g}) for each g ∈ At−1

a with u1(g) >
0. Again, due to the order of the items, u1(g) ≥ |u1(t)|. Therefore, u1(At

a \
{g}) ≤ u1(At

a) − |u1(t)| = u1(At−1
a) − |u1(t)| ≤ u1(At−1

1) − |u1(t)| = u1(At
1).

Consequently, u1(At
1) ≥ u1(At

a \ {g}) for each g ∈ At
a with u1(g) > 0.

Case 3 : Let u1(t) = 0. In this case, t is dummy item or non-pure bad. Hence,
ua(At−1

1) ≥ ua(At
1) and u1(At

1) = u1(At−1
1) hold. That is, agent 1’s utility does

not change. By the hypothesis, this means that they remain EFX of each agent
a and also each agent a remains EFX of them in At.

Two Algorithms for Additive and Fair Division of Mixed Manna 13

Finally, computing maximum values takes O(mn) time and sorting items
takes O(m log m) time. The loop of the algorithm takes O(mn) time. ��

For problems with identical utilities, Aziz and Ray [6] proposed the “egal-
sequential” algorithm for computing EFX and PO allocations. By Theorem 3,
Algorithm 2 also does that. However, we feel that such problems are very restric-
tive as they do not have mixed items unlike many practical problems.

Corollary 1. With identical utilities, Algorithm 2 returns an EFX and PO allo-
cation.

Algorithm 2 allocates each mixed item/good to an agent who likes it, and each
dummy item/non-pure bad to an agent who is indifferent to it. As a consequence,
the result in Theorem 3 extends to problems where, for each mixed item/good,
the likes are identical and, for each pure bad, the dislikes are identical.

Corollary 2. With identical likes (i.e. strictly positive utilities) for each mixed
item, identical likes for each good and identical dislikes (i.e. strictly negative
utilities) for each pure bad, Algorithm 2 returns an EFX and PO allocation.

7 Ternary Additive Utilities

We end with ternary utilities. That is, each agent’s utility for each item is from
{−α, 0, β} where α, β ∈ R>0. We consider two cases for such utilities.

7.1 Case for Any α, β

By Proposition 1, it follows that an EFX3 allocation might not exist in some
problems even when α = 1 and β = 2. However, we can compute an EF13

(notably, also EF1-EFX-EFX) and PO allocation with Algorithm 1.

Theorem 4. With ternary utilities from {−α, 0, β} where α, β ∈ R>0, Algo-
rithm 1 returns an EF13 and PO allocation.

Proof. The returned allocation is EF13 by Theorem 1. This one achieves the
maximum utility for each individual item. Hence, the sum of agents’ utilities
in it is maximized and equal to β multiplied by the number of goods plus β
multiplied by the number of mixed items minus α multiplied by the number of
pure bads. In fact, this holds for each allocation that gives each mixed item/good
to an agent who has utility β, and each dummy/non-pure bad to an agent who
has utility 0. Each other allocation is not PO and does not Pareto-dominate the
returned allocation. Hence, the returned one is PO. ��

14 M. Aleksandrov and T. Walsh

One the other hand, we already mentioned after Proposition 1 that each
allocation returned by Algorithm 1 in such problems may violate EFX. However,
Algorithm 2 returns an EFX and PO allocation in this case.

Theorem 5. With ternary utilities from {−α, 0, β} where α, β ∈ R>0, Algo-
rithm 2 returns an EFX and PO allocation.

Proof. This is where the ordering used by the algorithm plays a crucial role.
If β ≥ α, we note that all mixed items and goods are allocated before all pure
bads and all of these are allocated before the remaining items (i.e. dummy items
and non-pure bads). If β < α, we note that all pure bads are allocated before all
mixed items and goods and all of these are allocated before the remaining items.
Further, we observe that agents have identical likes for each mixed item or each
good (i.e. β), and identical dislikes for each pure bad (i.e. −α). Therefore, the
result follows by Corollary 2. ��

By comparison, the “ternary flow” algorithm of Aziz and Rey [6] may fail to
return an EFX allocation even with −2/1 utilities. To see this, simply negate
the utilities in the problem from Proposition 1. This algorithm allocates firstly
one good to each agent and secondly the bad to one of the agents. This outcome
violates EFX.

7.2 Case for α = β

In this case, we can compute an EFX3 and PO allocation with Algorithm 1.
Although we consider this a minor result, we find it important because it is the
only one in our analysis when EFX3 and PO allocations exist.

Theorem 6. With ternary utilities from {−α, 0, α} where α ∈ R>0, Algorithm 1
returns an EFX3 and PO allocation.

Proof. The returned allocation is EF11 and PO by Theorem 4. With general
(and, therefore, ternary) utilities, an allocation that is EFX3 also satisfies EF13

because EFX is a stronger property than EF1, but the opposite implication might
not be true. In fact, with utilities from {−α, 0, α}, the opposite implication also
holds. Indeed, if an allocation is EF1 for a given pair of agents, then removing
some good from the envied agent’s bundle or removing some bad from the envy
agent’s bundle eliminates the envy of the envy agent. But, the envious agent likes
each such good with α and each such bad with −α. Hence, such an allocation is
EFX. This implies that an EF13 allocation is also EFX3 in this domain. ��

Two Algorithms for Additive and Fair Division of Mixed Manna 15

By Theorem 5, Algorithm 2 returns an EFX and PO allocation in this case.
However, this one might falsify EFX3 even when α = 1 (see motivating example).
The same holds for the “ternary flow” algorithm of Aziz and Rey [6] because it
maximizes the egalitarian welfare when α = 1 (see motivating example).

8 Conclusions

We considered additive and fair division of mixed manna. For this model, we
analysed axiomatic properties of allocations such as EFX0, EFX3, EFX, EF13,
EF1 and PO in three utility domains. With general utilities, we showed that an
EF13 allocation exists and gave Algorithm 1 for computing such an allocation
(Theorem 1). With absolute identical or −α/0/β utilities, this algorithm returns
an EF13 and PO allocation (Theorems 2 and 4). With −α/0/α utilities, it returns
an EFX3 and PO allocation (Theorem 6).

With absolute identical utilities, we gave Algorithm 2 for computing an
EFX and PO allocation (Theorem 3). With ternary utilities, this algorithm also
returns such an allocation (Theorem 5). We further proved two impossibilities
results (Propositions 1 and 2). In particular, with ternary identical utilities, an
EFX0 allocation, or an EFX3 allocation might not exist. We leave for future
work two very interesting open questions with general utilities. Table 1 contains
our results.

Table 1. Key: �-possible, ×-not possible, P-polynomial time, α, β ∈ R>0 : α
= β.

Property General Ident. & abs. −α/0/β −α/0/α

utilities utilities utilities utilities

EF13 �, P (Theorem 1)

EF13 & PO open �, P (Theorem 2) �, P (Theorem 4)

EFX & PO open �, P (Theorem 3) �, P (Theorem 5)

EFX3 × (Proposition 1)

EFX3 & PO �, P (Theorem 6)

EFX0 × (Proposition 2)

A A Complete Version of Algorithm 1

For reasons of space, we presented a short version of Algorithm 1 in the main
text. We present in here a complete version of it.

16 M. Aleksandrov and T. Walsh

Algorithm 1. An EF13 allocation.
1: procedure Modified Double Round-Robin([n], [m], (u1, . . . , un))
2: M0 ← {o ∈ [m]|∀b ∈ [n] : ub(t) ≤ 0, ∃c ∈ [n] : uc(t) = 0}
3: Allocate each item from M0 to an agent who has utility 0 for it. We let A

denote this allocation.
4: M− ← {o ∈ [m] \ M0|∀a ∈ [n] : ua(o) < 0}
5: Suppose |M−| = qn − p for some q, p ∈ N with p < n. Create p “fake” dummy

items for which each agent has utility 0, and add them to M−. Hence, |M−| = qn.
6: Let the agents come in some round-robin sequence, say (1, . . . , n − 1, n), and

pick their most preferred item in M− until all items in it are allocated.
7: M+ ← {o ∈ [m] \ M0|∃a ∈ [n] : ua(o) > 0}
8: Let the agents come in the round-robin sequence (n, n−1, . . . , 1) and pick their

most preferred item in M+ until all items in it are allocated. If an agent has no
available item which gives them strictly positive utility, they pretend to pick a
“fake” dummy item for which they have utility 0.

9: Remove the “fake” dummy items from the current allocation and return the
resulting allocation. We let B denote this allocation.

10: return (A1 ∪ B1, . . . , An ∪ Bn)

References

1. Aleksandrov, M., Aziz, H., Gaspers, S., Walsh, T.: Online fair division: analysing
a food bank problem. In: Proceedings of the Twenty-Fourth IJCAI 2015, Buenos
Aires, Argentina, July 25–31, 2015, pp. 2540–2546 (2015)

2. Amanatidis, G., Birmpas, G., Filos-Ratsikas, A., Hollender, A., Voudouris, A.A.:
Maximum Nash welfare and other stories about EFX. CoRR abs/2001.09838 (2020)

3. Amanatidis, G., Birmpas, G., Markakis, V.: Comparing approximate relaxations of
envy-freeness. In: Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, July 13–19, 2018,
pp. 42–48 (2018)

4. Aziz, H., Caragiannis, I., Igarashi, A., Walsh, T.: Fair allocation of indivisible goods
and chores. In: Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19, pp. 53–59. International Joint Conferences on
Artificial Intelligence Organization, July 7 2019

5. Aziz, H., Moulin, H., Sandomirskiy, F.: A polynomial-time algorithm for computing
a Pareto optimal and almost proportional allocation. CoRR abs/1909.00740 (2019)

6. Aziz, H., Rey, S.: Almost group envy-free allocation of indivisible goods and chores.
In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-20, pp. 39–45. International Joint Conferences
on Artificial Intelligence Organization, July 2020. main track

7. Barman, S., Krishnamurthy, S.K., Vaish, R.: Finding fair and efficient allocations.
In: Proceedings of the 2018 ACM Conference on EC 2018, pp. 557–574. ACM, New
York (2018)

8. Barman, S., Krishnamurthy, S.K., Vaish, R.: Greedy algorithms for maximiz-
ing Nash social welfare. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden,
July 10–15, 2018, pp. 7–13 (2018)

Two Algorithms for Additive and Fair Division of Mixed Manna 17

9. Bogomolnaia, A., Moulin, H., Sandomirskiy, F., Yanovskaia, E.: Dividing BADS
under additive utilities. Soc. Choice Welfare 52(3), 395–417 (2018)

10. Bogomolnaia, A., Moulin, H., Sandomirskiy, F., Yanovskaya, E.: Competitive divi-
sion of a mixed manna. Econometrica 85(6), 1847–1871 (2017)

11. Brams, S.J., Taylor, A.D.: Fair Division - From Cake-Cutting to Dispute Resolu-
tion. Cambridge University Press, Cambridge (1996)

12. Budish, E.: The combinatorial assignment problem: approximate competitive equi-
librium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

13. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency
of fair division. Theory Comput. Syst. 50(4), 589–610 (2012)

14. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.:
The unreasonable fairness of maximum Nash welfare. In: Proceedings of ACM
Conference on EC 2016, Maastricht, The Netherlands, July 24–28, 2016, pp. 305–
322 (2016)

15. Chevaleyre, Y., Dunne, P., Endriss, U., Lang, J., Lemaitre, M., Maudet, N., Pad-
get, J., Phelps, S., Rodrguez-Aguilar, J., Sousa, P.: Issues in multiagent resource
allocation. Informatica 30, 3–31 (2006)

16. Dobzinski, S., Vondrák, J.: Communication complexity of combinatorial auctions
with submodular valuations. In: Proceedings of the Twenty-fourth Annual ACM-
SIAM Symposium on Discrete Algorithms. SODA 2013, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, pp. 1205–1215 (2013)

17. Dubins, L.E., Spanier, E.H.: How to cut a cake fairly. Am. Math. Monthly 68(11),
1–17 (1961)

18. Foley, D.K.: Resource allocation and the public sector. Yale Econ. Essays 7(1),
45–98 (1967)

19. Hugo, S.: The problem of fair division. Econometrica 16, 101–104 (1948)
20. Kyropoulou, M., Suksompong, W., Voudouris, A.: Almost envy-freeness in group

resource allocation. In: Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, IJCAI 2019, pp. 400–406. International Joint Con-
ferences on Artificial Intelligence Organization, August 2019

21. Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations
of indivisible goods. In: Proceedings of the 5th ACM Conference on EC, New York,
NY, USA, May 17–20, 2004, pp. 125–131 (2004)

22. Moulin, H.: Fair Division and Collective Welfare. MIT Press, Cambridge (2003)
23. Pareto, V.: Cours d’Économie politique. Professeur á l’Université de Lausanne. vol.

I. pp. 430 1896. vol. II. pp. 426. F. Rouge, Lausanne (1897)
24. Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. In:

Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7–10, 2018, pp. 2584–2603 (2018)

25. Sandomirskiy, F., Segal-Halevi, E.: Fair division with minimal sharing. CoRR
abs/1908.01669 (2019)

26. Young, H.P.: Equity - In Theory and Practice. Princeton University Press, Prince-
ton (1995)

	Two Algorithms for Additive and Fair Division of Mixed Manna
	1 Introduction
	2 Related Work
	3 Formal Preliminaries
	4 Further Motivation
	5 General Additive Utilities
	6 Absolute Identical Additive Utilities
	7 Ternary Additive Utilities
	7.1 Case for Any ,
	7.2 Case for =

	8 Conclusions
	A A Complete Version of Algorithm 1
	References

