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Abstract. In this chapter we present the recent results on constraint acquisition
obtained by the Coconut team and their collaborators. In a first part we show how
to learn constraint networks by asking the user partial queries. That is, we ask
the user to classify assignments to subsets of the variables as positive or negative.
We provide an algorithm, called QUACQ, that, given a negative example, finds a
constraint of the target network in a number of queries logarithmic in the size of
the example. In a second part, we show that using some background knowledge
may improve the acquisition process a lot. We introduce the concept of gener-
alization query based on an aggregation of variables into types. We propose a
generalization algorithm together with several strategies that we incorporate in
QUACQ. Finally we evaluate our algorithms on some benchmarks.

1 Introduction

A major bottleneck in the use of constraint solvers is modelling. How does the user write
down the constraints of a problem? Several techniques have been proposed to tackle
this bottleneck. For example, the matchmaker agent [13] interactively asks the user to
provide one of the constraints of the target problem each time the system proposes an
incorrect solution. In Conacq.1 [4, 5], the user provides examples of solutions and non-
solutions. Based on these examples, the system learns a set of constraints that correctly
classifies all examples given so far. This is a form of passive learning. In [16], a system
based on inductive logic programming uses background knowledge on the structure of
the problem to learn a representation of the problem correctly classifying the examples.
A last passive learner is ModelSeeker [3]. Positive examples are provided by the user
to the system, which arranges each of them as a matrix and identifies constraints in the
global constraints catalog ([2]) that are satisfied by particular subsets of variables in all
the examples. Such particular subsets are for instance rows, columns, diagonals, etc.
? Sections 3 and 4 of this paper describe material published in [9], Section 5 describes material
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An efficient ranking technique combined with a representation of solutions as matrices
allows ModelSeeker to find quickly a good model when a problem has an underlying
matrix structure.

By contrast, in an active learner like Conacq.2 [6], the system proposes examples to
the user to classify as solutions or non solutions. Such questions are called membership
queries [1]. Such active learning has several advantages. It can decrease the number of
examples necessary to converge to the target set of constraints. Another advantage is
that the user needs not be a human. It might be a previous system developed to solve
the problem. For instance, the Normind company has hired a constraint programming
specialist to transform their expert system for detecting failures in electric circuits in
Airbus airplanes into a constraint model in order to make it more efficient and easier
to maintain. As another example, active learning is used to build a constraint model
that encodes non-atomic actions of a robot (e.g., catch a ball) by asking queries of
the simulator of the robot in [18]. Such active learning introduces two computational
challenges. First, how does the system generate a useful query? Second, how many
queries are needed for the system to converge to the target set of constraints? It has
been shown that the number of membership queries required to converge to the target
set of constraints can be exponentially large [7].

In this chapter, we propose QUACQ (for QuickAcquisition), an active learner that
asks the user to classify partial queries. Given a negative example, QUACQ is able to
learn a constraint of the target constraint network in a number of queries logarithmic
in the number of variables. In fact, we identify information theoretic lower bounds on
the complexity of learning constraint networks which show that QUACQ is optimal on
some simple languages. However, even that good theoretical bounds can be hard to put
in practice. For instance, QUACQ requires the user to classify more than 8000 examples
to get the complete Sudoku model. We then propose a new technique to make constraint
acquisition more efficient in practice by using variable types. In real problems, variables
often represent components of the problem that can be classified in various types. For
instance, in a school time-tabling problem, variables can represent teachers, students,
rooms, courses, or time-slots. Such types are often known by the user. To deal with types
of variables, we introduce a new kind of query, namely, generalization query. We expect
the user to be able to decide if a learned constraint can be generalized to other scopes
of variables of the same type as those in the learned constraint. We propose an algo-
rithm, GENACQ for generalized acquisition, that asks such generalization queries each
time a new constraint is learned. We propose several strategies and heuristics to select
the good candidate generalization query. We plugged our generalization functionality
into the QUACQ constraint acquisition system, leading to the G-QUACQ algorithm. We
experimentally evaluate the benefits of our algorithms on several benchmark problems.
The results show the polynomial behavior of QUACQ. They also show that G-QUACQ
dramatically improves the basic QUACQ algorithm in terms of number of queries.

One application for QUACQ and G-QUACQ would be to learn a general purpose
model. In constraint programming, a distinction is made between model and data. For
example, in a sudoku puzzle, the model contains generic constraints like each subsquare
contains a permutation of the numbers. The data, on the other hand, gives the pre-filled
squares for a specific puzzle. As a second example, in a time-tabling problem, the model
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specifies generic constraints like no teacher can teach multiple classes at the same time.
The data, on the other hand, specifies particular room sizes, and teacher availability for
a particular time-tabling problem instance. The cost of learning the model can then be
amortized over the lifetime of the model. Another advantage of this approach is that
it provides less of a burden on the user. First, it often converges quicker than other
methods. Second, partial queries will be easier to answer than complete queries. Third,
as opposed to existing techniques, the user does not need to give positive examples.
This might be useful if the problem has not yet been solved, so there are no examples
of past solutions.

The rest of the paper is organized as follows. Section 2 gives the necessary defi-
nitions to understand the technical presentation. Section 3 presents QUACQ, the algo-
rithm that learns constraint networks by asking partial queries. In Section 4, we show
how QUACQ behaves on some simple languages. Section 5 describes the generaliza-
tion algorithm G-QUACQ. In Section 5.5, several strategies are presented to make G-
QUACQ more efficient. Section 6 presents the experimental results we obtained when
comparing G-QUACQ to the basic QUACQ and when comparing the different strate-
gies in G-QUACQ. Section 7 concludes the paper and gives some directions for future
research.

2 Background

The learner and the user need to share some common knowledge to communicate. We
suppose this common knowledge, called the vocabulary, is a (finite) set of n variables
X and a domain D = {D(X1), . . . , D(Xn)}, where D(Xi) ⊂ Z is the finite set of
values for Xi. Given a sequence of variables S ⊆ X , a constraint is a pair (c, S) (also
written cS), where c is a relation over Z specifying which sequences of |S| values are
allowed for the variables S. S is called the scope of cS . A constraint network is a set
C of constraints on the vocabulary (X,D). An assignment eY on a set of variables
Y ⊆ X is rejected by a constraint cS if S ⊆ Y and the projection eY [S] of e on the
variables in S is not in c. An assignment on X is a solution of C iff it is not rejected by
any constraint in C. We write sol(C) for the set of solutions of C, and C[Y ] for the set
of constraints from C whose scope is included in Y .

In addition to the vocabulary, the learner owns a language Γ of bounded arity
relations from which it can build constraints on specified sets of variables. To sim-
plify the descriptions, we only consider languages closed by conjunction, that is, lan-
guages Γ such that if relations c1 and c2 belong to Γ , then relation c1 ∩ c2 also
belongs to Γ . Adapting terms from machine learning, the constraint basis, denoted
by B, is a set of constraints built from the constraint language Γ on the vocabu-
lary (X,D) from which the learner builds the constraint network. Formally speaking,
B = {cS | (S ⊆ X) ∧ (c ∈ Γ ) ∧ arity(c) = |S|)}.

A concept is a Boolean function over DX = ΠXi∈XD(Xi), that is, a map that
assigns to each e ∈ DX a value in {0, 1}. A target concept is a concept fT that returns
1 for e if and only if e is a solution of the problem the user has in mind. e is called
a positive or negative example depending on whether fT (e) = 1 or fT (e) = 0. A
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membership query ASK(e) takes as input a complete assignment e in DX and asks the
user to classify it. The answer to ASK(e) is “yes” if and only if fT (e) = 1.

To be able to use partial queries, we have an extra condition on the capabilities of
the user. Even if she is not able to articulate the constraints of her problem, she is able to
decide if partial assignments of X violate some requirements or not. More formally, we
consider that the user has in mind her problem in the form of a target constraint network.
A target constraint network is a network CT such that sol(CT ) = {e ∈ DX | fT (e) =
1}. A partial query ASK(eY ), with Y ⊆ X , is a classification question asked of the
user, where eY is a partial assignment in DY = ΠXi∈YD(Xi). A set of constraints
C accepts a partial query eY if and only if there does not exist any constraint cS in
C rejecting eY [S]. The answer to ASK(eY ) is “yes” if and only if CT accepts eY . It
is important to observe that ”ASK(eY ) = yes” does not mean that eY extends to a
solution of CT , which would put an NP-complete problem on the shoulders of the user.
For any assignment eY on Y , κB(eY ) denotes the set of all constraints in B rejecting
eY . A classified assignment eY is called positive or negative example depending on
whether ASK(eY ) is “yes” or “no”.

We now define convergence, which is the constraint acquisition problem we are
interested in. We are given a set E of (partial) examples labelled by the user 0 or 1.
We say that a constraint network C agrees with E if C accepts all examples labelled 1
in E and does not accept those labelled 0. The learning process has converged on the
network CL ⊆ B if CL agrees with E and for every other network C ′ ⊆ B agreeing
with E, we have sol(C ′) = sol(CL). If there does not exist any CL ⊆ B such that CL

agrees with E, we say that we have collapsed. This happens when CT 6⊆ B.
Finally, we define types of variables to be used to generalize constraints. A type Ti

is a subset of variables defined by the user as having a common property. A variable Xi

is of type Ti iffXi ∈ Ti. A scope S = (X1, . . . , Xk) of variables belongs to a sequence
of types T = (T1, . . . , Tk) (denoted by S ∈ T ) if and only if Xi ∈ Ti for all i ∈ 1..k.
Consider T = (T1, . . . , Tk) and T ′ = (T ′1, . . . , T

′
k) two sequences of types. We say

that T ′ covers T (denoted by T v T ′) iff Ti ⊆ T ′i for all i ∈ 1..k. A relation c holds on
a sequence of types T if and only if cS ∈ CT for all S ∈ T . A sequence of types T is
maximal with respect to a relation c if and only if c holds on T and there does not exist
T ′ covering T on which c holds.

3 Constraint Acquisition with Partial Queries

We propose QUACQ, a novel active learning algorithm. QUACQ takes as input a basis
B on a vocabulary (X,D). It asks partial queries of the user until it has converged
on a constraint network CL equivalent to the target network CT , or collapses. When a
query is answered yes, constraints rejecting it are removed from B. When a query is
answered no, QUACQ enters a loop (functions FindScope and FindC) that will end
by the addition of a constraint to CL.

3.1 Description of QUACQ

QUACQ (see Algorithm 1) initializes the network CL it will learn to the empty set
(line 1). If CL is unsatisfiable (line 3), the space of possible networks collapses because
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Algorithm 1: QUACQ: Acquiring a constraint network CT with partial queries
1 CL ← ∅;
2 while true do
3 if sol(CL) = ∅ then return “collapse”;
4 choose e in DX accepted by CL and rejected by B ;
5 if e = nil then return “convergence on CL”;
6 if ASK(e) = yes then B ← B \ κB(e) ;
7 else
8 S ← FindScope(e,∅, X, false);
9 cS ← FindC(S);

10 if cS = nil then return “collapse”;
11 else CL ← CL ∪ {cS};

there does not exist any subset of the given basis B that is able to correctly classify the
examples the user has already been asked. In line 4, QUACQ computes a complete as-
signment e satisfying CL but violating at least one constraint from B. (Observe that for
this task, the constraint solver needs to be able to express the negation of the constraints
in B. This is not a problem as we have only bounded arity constraints in B.) If such
an example does not exist (line 5), then all constraints in B are implied by CL, and we
have converged. If we have not converged, we propose the example e to the user, who
will answer by yes or no. If the answer is yes, we can remove from B the set κB(e) of
all constraints in B that reject e (line 6). If the answer is no, we are sure that e violates
at least one constraint of the target network CT . We then call the function FindScope
to discover the scope S of one of these violated constraints (line 8). FindC will return
a constraint of CT whose scope is in S (line 9). If no constraint is returned (line 10),
this is again a condition for collapsing as we could not find in B a constraint rejecting
one of the negative examples. Otherwise, the constraint returned by FindC is added to
the learned network CL (line 11).

The recursive function FindScope (see Algorithm 2) takes as parameters an ex-
ample e, two sets R and Y of variables, and a Boolean ask query. An invariant of
FindScope is that e violates at least one constraint whose scope is a subset of R∪Y .
A second invariant is that FindScope always returns a subset of Y that is also the
subset of the scope of a constraint violated by e. When FindScope is called with
ask query = false, we already know that R does not contain the scope of a constraint
that rejects e (line 3). If ask qery = true we ask the user whether e[R] is positive or
not (line 4). If yes, we can remove all the constraints that reject e[R] from the basis,
otherwise we return the empty set because we have no guarantee that any variable of Y
belongs to a scope (line 5). We reach line 6 only in case e[R] does not violate any con-
straint. We know that e[R ∪ Y ] violates a constraint. Hence, if Y is a singleton, the vari-
able it contains necessarily belongs to the scope of a constraint that violates e[R ∪ Y ].
The function returns Y . If none of the return conditions are satisfied, the set Y is split in
two balanced parts (line 7) and we apply a technique similar to QUICKXPLAIN ([15])
to elucidate the variables of a constraint violating e[R ∪ Y ] in a logarithmic number of
steps (lines 8–10). The rationale of lines 8 and 9 is to quickly find sets R and Y so that
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Algorithm 2: Function FindScope: returns the scope of a constraint in CT

1 function FindScope(in e: example, R, Y : scopes, ask query: Boolean): scope;
2 begin
3 if ask query then
4 if ASK(e[R]) = yes then B ← B \ κB(e[R]) ;
5 else return ∅;

6 if |Y | = 1 then return Y;
7 split Y into < Y1, Y2 > such that |Y1| = d|Y |/2e ;
8 S1 ← FindScope(e,R ∪ Y1, Y2, true);
9 S2 ← FindScope(e,R ∪ S1, Y1, (S1 6= ∅));

10 return S1 ∪ S2;

e[R] is positive and e[R∪Y ] is negative. If Y is a singleton this ensures that the variable
in Y belongs to the scope of a constraint we are looking for. This variable is returned
and forced to be in R in all subsequent calls to FindScope.

The function FindC (see Algorithm 3) takes as parameter Y , the scope on which
FindScope has found that there is a constraint from the target network CT . FindC
first removes from B all constraints with scope Y that are implied by CL because there
is no need to learn them (line 3).1 The set ∆ is initialized to all candidate constraints
(line 4). In line 6, an example e is chosen in such a way that∆ contains both constraints
rejecting e and constraints satisfying e. If no such example exists (line 7), this means
that all constraints in ∆ are equivalent wrt CL[Y ]. Any of them is returned except if
∆ is empty (lines 8-9). If a suitable example was found, it is proposed to the user for
classification (line 10). If classified positive, all constraints rejecting it are removed from
B and∆ (line 11). Otherwise we test whether the example e does not violate constraints
with scope strictly included in Y (line 13). If yes, we recursively call FindScope and
FindC to find that smaller arity constraint before the one having scope Y (line 14).
If no, we remove from ∆ all constraints accepting that example e (line 15) and we
continue the loop of line 5.

3.2 Example

We illustrate the behavior of QUACQ on a simple example. Consider the set of variables
X1, . . . , X5 with domains {1..5}, a language Γ = {=, 6=}, a basis B = {=ij , 6=ij |
i, j ∈ 1..5, i < j}, and a target network CT = {=15, 6=34}. Suppose the first example
generated in line 4 of QUACQ is e1 = (1, 1, 1, 1, 1). The trace of the execution of
FindScope(e1,∅, X1 . . . X5, false) is in Table 1. Each line corresponds to a call to
FindScope. Queries are always on the variables inR. ’×’ in the columnASK means
that the previous call returned ∅, so the question is skipped. The initial call (call-0
in Table 1) does not ask the question because the initial call to FindScope has the
Boolean ask query set to false. Y is split in two sets Y1 = {X1, X2, X3} and Y2 =

1 This operation could proactively be done in QUACQ, just after line 11, but we preferred the
lazy mode as this is a computationally expensive operation.
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Algorithm 3: Function FindC: returns a constraint of CT with scope Y
1 function FindC(in Y : scope): constraints;
2 begin
3 B ← B \ {cY | CL |= cY };
4 ∆← {cY | (cY ∈ B[Y ]);
5 while true do
6 choose e in sol(CL[Y ]) such that ∃cY , c′Y ∈ ∆, e |= cY and e 6|= c′Y ;
7 if e = nil then
8 if ∆ = ∅ then return nil;
9 else pick cY in ∆; return c;

10 if ASK(e) = yes then
11 B ← B \ κB(e); ∆← ∆ \ κB(e);
12 else
13 if ∃cS ∈ κB(e) | S ( Y then
14 return FindC(FindScope(e,∅, S, false));
15 else ∆← ∆ ∩ κB(e) ;

{X4, X5} and the recursive call-1 is performed with R = Y1 and Y = Y2. As e1[R]
is classified as positive, line 4 of FindScope removes the constraints 6=12, 6=13 and
6=23 from B. A new split of Y leads to the call-1.1 with R = {X1, X2, X3, X4} and
Y = {X5}. As e1[R] is negative, the empty set is returned in line 5. Call-1.2 (line 9)
is performed with R = {X1, X2, X3}, Y = {X4} and ask query = true. It merely
detects that Y is a singleton and thus returns {X4}. Call-1 finishes by returning {X4}
one level above in the recursivity (line 10). Call-2 classifies e1[X4] as positive and goes
down to call-2.1 withR = {X4, X1, X2} and Y = {X3}. In call-2.1, e1[R] is classified
positive. FindScope thus removes constraints 6=14 and 6=24 from B and returns the
singleton {X3}. In call-2.2, e1[R] is classified as negative with R = {X4, X3} and
Y = {X1, X2}. This proves that {X3, X4} is the scope of a constraint rejecting e1.
Empty set is returned by call-2.2. As a result, call-2 returns {X3}, and call-0 returns
{X3, X4}. Once the scope (X3, X4) is returned, FindC requires a single example to
return 6=34 and prune =34 from B. Suppose the next example generated by QUACQ is

Table 1. The example

call R Y ASK return
0 ∅ X1, X2, X3, X4, X5 × X3, X4

1 X1, X2, X3 X4, X5 yes X4

1.1 X1, X2, X3, X4 X5 no ∅
1.2 X1, X2, X3 X4 × X4

2 X4 X1, X2, X3 yes X3

2.1 X4, X1, X2 X3 yes X3

2.2 X4, X3 X1, X2 no ∅
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e2 = (1, 2, 3, 4, 5). FindScope will find the scope (X1, X5) and FindC will return
=15 in a way similar to the processing of e1. The constraints =12,=13,=14,=23,=24

are removed from B by a partial positive query on X1, . . . , X4 and 6=15 by FindC.
Finally, examples e3 = (1, 1, 1, 2, 1) and e4 = (3, 2, 2, 3, 3), both positive, will prune
6=25, 6=35,=45 and =25,=35, 6=45 from B respectively, leading to convergence.

3.3 Analysis

We analyse the complexity of QUACQ in terms of the number of queries it can ask of
the user. Queries are proposed to the user in lines 6 of QUACQ, 4 of FindScope and
10 of FindC.

Proposition 1. Given a basis B built from a language Γ , a target network CT , a scope
Y , FindC uses O(|Γ |) queries to return a constraint cY from CT if it exists.

Proof. Each time FindC asks a query, whatever the answer of the user, the size of ∆
strictly decreases. Thus the total number of queries asked in FindC is bounded above
by |∆|, which itself, by construction in line 4, is bounded above by the number of
constraints from Γ of arity |Y |.

Proposition 2. Given a basis B, a target network CT , an example e ∈ DX \ sol(CT ),
FindScope usesO(|S|·log |X|) queries to return the scope S of one of the constraints
of CT violated by e.

Proof. FindScope is a recursive algorithm that asks at most one query per call (line
4). Hence, the number of queries is bounded above by the number of nodes of the tree
of recursive calls to FindScope. We will show that a leaf node is either on a branch
that leads to the elucidation of a variable in the scope S that will be returned, or is a
child of a node of such a branch. When a branch does not lead to the elucidation of a
variable in the scope S that will be returned, that branch necessarily only leads to leaves
that correspond to calls to FindScope that returned the empty set. The only way for
a leaf call to FindScope to return the empty set is to have received a no answer to its
query (line 5). Let Rchild, Ychild be the values of the parameters R and Y for a leaf call
with a no answer, and Rparent, Yparent be the values of the parameters R and Y for
its parent call in the recursive tree. From the no answer to the query ASK(e[Rchild]),
we know that S ⊆ Rchild but S * Rparent because the parent call received a yes
answer. Consider first the case where the leaf is the left child of the parent node. By
construction, Rparent ( Rchild ( Rparent ∪ Yparent. As a result, Yparent intersects
S, and the parent node is on a branch that leads to the elucidation of a variable in S.
Consider now the case where the leaf is the right child of the parent node. As we are on
a leaf, if the ask query Boolean is false, we have necessarily exited from FindScope
through line 6, which means that this node is the end of a branch leading to a variable in
S. Thus, we are guaranteed that the ask query Boolean is true, which means that the
left child of the parent node returned a non empty set and that the parent node is on a
branch to a leaf that elucidates a variable in S.

We have proved that every leaf is either on a branch that elucidates a variable in S
or is a child of a node on such a branch. Hence the number of nodes in the tree is at
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most twice the number of nodes in branches that lead to the elucidation of a variable
from S. Branches can be at most log |X| long. Therefore the total number of queries
FindScope asks is at most 2 · |S| · log |X|, which is in O(|S| · log |X|).

Theorem 1. Given a basis B built from a language Γ of bounded arity constraints,
and a target network CT , QUACQ uses O(|CT | · (log |X| + |Γ |)) queries to find the
target network or to collapse and O(|B|) queries to prove convergence.

Proof. Each time line 6 of QUACQ classifies an example as negative, the scope of a
constraint cS from CT is found in at most |S| · log |X| queries (Proposition 2). As
Γ only contains constraints of bounded arity, either |S| is bounded and cS is found
in O(|Γ |) or we collapse (Proposition 1). Hence, the number of queries necessary for
finding CT or collapsing is in O(|CT | · (log |X|+ |Γ |)). Convergence is obtained once
B is wiped out thanks to the examples that are classified positive in line 6 of QUACQ.
Each of these examples necessarily leads to at least one constraint removal from B
because of the way the example is built in line 4. This gives a total in O(|B|).

4 Learning Simple Languages

In order to gain a theoretical insight into the “efficiency” of QUACQ, we look at some
simple languages, and analyze the number of queries required to learn networks on
these languages. In some cases, we show that QUACQ will learn problems of a given
language with an asymptotically optimal number of queries. However, for some other
languages, a suboptimal number of queries can be necessary in the worst case. Our
analysis assumes that when generating a complete example in line 4 of QUACQ, the
solution of CL maximizing the number of violated constraints in the basis B is chosen.

4.1 Languages for which QUACQ is optimal

Theorem 2. QUACQ learns Boolean networks on the language {=, 6=} in an asymp-
totically optimal number of queries.

Proof. (Sketch.) First, we give a lower bound on the number of queries required to learn
a constraint network in this language. Consider the restriction to equalities only. In an
instance of this language, all variables of a connected component must be equal. This is
isomorphic to the set of partitions of n objects, whose size is given by Bell’s Number:

C(n+ 1) =

{
1 if n = 0∑n

i=1

(
n
i

)
C(n− i) if n > 0

(1)

By an information theoretic argument, at least logC(n) queries are required to learn
such a problem. This entails a lower bound of Ω(n log n) since logC(n) ∈ Ω(n log n)
(see [12] for the proof). The language {=, 6=} is richer and thus requires at least as
many queries.

Second, we consider the query submitted to the user in line 6 of QUACQ and count
how many times it can receive the answer yes and no. The key observation is that an
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instance of this language contains at mostO(n) non-redundant constraints. For each no
answer in line 6 of QUACQ, a new constraint will eventually be added to CL. Only non-
redundant constraints are discovered in this way because the query must satisfy CL. It
follows that at most O(n) such queries are answered no, each one entailing O(log n)
more queries through the procedure FindScope.

Now we bound the number of yes answers in line 6 of QUACQ. The same observa-
tion on the structure of this language is useful here as well. We show in the complete
proof that a query maximizing the number of violations of constraints in the basis B
while satisfying the constraints in CL violates at least d|B|/2e constraints in B. Thus,
each query answered yes at least halves the number of constraints in B. It follows
that the query submitted in line 6 of QUACQ cannot receive more than O(log n) yes
answers. The total number of queries is therefore bounded by O(n log n).

The same argument holds for simpler languages ({=} and {6=} on Boolean do-
mains). Moreover, this is still true for {=} on arbitrary domains.

Corollary 1. QUACQ can learn constraint networks with unbounded domains on the
language {=} in an asymptotically optimal number of queries.

4.2 Languages for which QUACQ is not optimal

First, we show that a Boolean constraint network on the language {<} can be learnt
with O(n) queries. Then, we show that QUACQ requires Ω(n log n) queries.

Theorem 3. Boolean constraint networks on the language {<} can be learned inO(n)
queries.

Proof. Observe that in order to describe such a problem, the variables can be partionned
into three sets, one for variables that must take the value 0 (i.e., on the left side of a <
constraint), a second for variables that must take the value 1 (i.e., on the right side of a
< constraint), and the third for unconstrained variables. In the first phase, we greedily
partition variables into three sets, L,R,U initially empty and standing respectively for
Left, Right and Unknown. During this phase, we have three invariants:

1. There is no x, y ∈ U such that x < y belongs to the target network
2. x ∈ L iff there exists y ∈ U and a constraint x < y in the target network
3. x ∈ R iff there exists y ∈ U and a constraint y < x in the target network

We go through all variables of the problem, one at a time. Let x be the last variable
picked. We query the user with an assignment where x, as well as all variables in U are
set to 0, and all variables in R are set to 1 (variables in L are left unassigned). If the
answer is yes, then there is no constraints between x and any variable in y ∈ U , hence
we add x to the set of undecided variables U without breaking any invariant. Otherwise
we know that x is either involved in a constraint y < x with y ∈ U , or a constraint
x < y with y ∈ U . In order to decide which way is correct, we make a second query,
where the value of x is flipped to 1 and all other variables are left unchanged. If this
second query receives a yes answer, then the former hypothesis is true and we add x to
R, otherwise, we add it to L. Here again, the invariants still hold.



New Approaches to Constraint Acquisition 11

At the end of the first phase, we therefore know that variables in U have no con-
straints between them. However, they might be involved in constraints with variables in
L or in R. In the second phase, we go over each undecided variable x ∈ U , and query
the user with an assignment where all variables in L are set to 0, all variables in R are
set to 1 and x is set to 0. If the answer is no, we conclude that there is a constraint y < x
with y ∈ L and therefore x is added to R (and removed from U ). Otherwise, we ask the
same query, but with the value of x flipped to 1. If the answer is no, there must exists
y ∈ R such that x < y belongs to the network, hence x is added to R (and removed
from U ). Last, if both queries get the answer yes, we conclude that x is not constrained.
When every variable has been examined in this way, variables remaining in U are not
constrained.

Theorem 4. QUACQ does not learn Boolean networks on the language {<} with a
minimal number of queries.

Proof. By Theorem 3, we know that these networks can be learned in O(n) queries.
Such networks can contain up to n− 1 non redundant constraints. QUACQ learns con-
straints one at a time, and each call to FindScope takes Ω(log n) queries. Therefore,
QUACQ requires Ω(n log n) queries.

5 Constraint Acquisition with Generalization Queries

In this section we present GENACQ, a generalized acquisition algorithm, The idea be-
hind this algorithm is, given a constraint cS learned on S, to generalize this constraint
to sequences of types T covering S by asking generalization queries AskGen(T, c). A
generalization query AskGen(T, c) is answered yes by the user if and only if for every
sequence S of variables covered by T the relation c holds on S in the target constraint
network CT .

5.1 Description of GENACQ

The algorithm GENACQ (see Algorithm 4) takes as input a target constraint cS that
has already been learned and a set NonTarget of constraints that are known not to
belong to the target network. GENACQ returns the set of all sequences of scopes that
are maximal with respect to the relation c. GENACQ uses the global data structure
NegativeQ, which is a set of pairs (T, c) for which we know that c does not hold on all
sequences of variables covered by T . cS andNonTarget can come from any constraint
acquisition mechanism or as background knowledge.NegativeQ is built incrementally
by each call to GENACQ. GENACQ also uses the set Table as local data structure. Table
will contain all sequences of types that are candidates for generalizing cS .

In line 2, GENACQ initializes the set Table to all possible sequences T of types
that contain the scope S of the constraint cS . In line 3, GENACQ initializes the set G
to the sequence S. G will contain the output of GENACQ, that is, the set of maximal
sequences from Table on which c holds. The counter #NoAnswers counts the number
of consecutive times generalization queries have been classified negative by the user. It
is initialized to zero (line 4). #NoAnswers is not used in the basic version of GENACQ
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Algorithm 4: GENACQ: returns the maximum generalizations of a constraint cS
1 function GENACQ(in cS : constraint, NonTarget: set): Generalizations;
2 Table← {T | S ∈ T} \ {S};
3 G← {S} ;
4 #NoAnswers← 0 ;
5 foreach T ∈ Table do
6 if ∃(T ′, c′) ∈ NegativeQ | c ⊆ c′ ∧ T ′ v T then Table← Table \ {T} ;
7 if ∃cS′ ∈ NonTarget | S′ ∈ T then Table← Table \ {T} ;

8 while Table 6= ∅ ∧ #NoAnswers < cutoffNo do
9 pick T in Table ;

10 if AskGen(T, c) = yes then
11 G← G ∪ {T} \ {T ′ ∈ G | T ′ v T};
12 Table← Table \ {T ′ ∈ Table | T ′ v T};
13 #NoAnswers← 0;
14 else
15 Table← Table \ {T ′ ∈ Table | T v T ′} ;
16 NegativeQ← NegativeQ ∪ {(T, c)} ;
17 #NoAnswers++;

18 return G;

but it will be used in the version with cutoffs. (In other words, the basic version uses
cutoffNo = +∞ in line 8).

The first loop in GENACQ (line 5) eliminates from Table all sequences T for which
we already know the answer to the queryAskGen(T, c). In line 6, GENACQ eliminates
from Table all sequences T such that a relation c′ entailed by c is already known not
to hold on a sequence T ′ covered by T (i.e., (T ′, c′) is in NegativeQ). We can remove
such sequences because the absence of c′ on some scope in T ′ implies the absence of
c on some scope in T (see Lemma 1). In line 7, GENACQ eliminates from Table all
sequences T such that we know fromNonTarget that there exists a scope S′ in T such
that cS′ does not belong to CT .

In the main loop of GENACQ (line 8), we pick a sequence T from Table at each
iteration and we ask a generalization query to the user (line 10). If the user says yes, T is
a sequence on which c holds. We put T in G and remove from G all sequences covered
by T , so as to keep only the maximal ones (line 11). We also remove from Table all
sequences T ′ covered by T (line 12) to avoid asking redundant questions later. If the
user says no, we remove from Table all sequences T ′ that cover T (line 15) because we
know they are no longer candidate for generalization of c and we store in NegativeQ
the fact that (T, c) has been answered no. The loop finishes when Table is empty and
we return G (line 18).

5.2 Completeness and Complexity

We analyze the completeness and complexity of GENACQ in terms of number of gen-
eralization queries it ask of the user.
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Lemma 1. If AskGen(T, c) = no then for any (T ′, c′) such that T v T ′ and c′ ⊆ c,
we have AskGen(T ′, c′) = no.

Proof. Assume that AskGen(T, c) = no. Hence, there exists a sequence S ∈ T such
that cS /∈ CT . As T v T ′ we have S ∈ T ′ and then we know that cS /∈ CT . As c′ ⊆ c,
we also have c′S /∈ CT . As a result, AskGen(T ′, c′) = no.

Lemma 2. If AskGen(T, c) = yes then for any T ′ such that T ′ v T , we have
AskGen(T ′, c) = yes.

Proof. Assume that AskGen(T, c) = yes. As T ′ v T , for all S ∈ T ′ we have S ∈ T
and then we know that cS ∈ CT . As a result, AskGen(T ′, c) = yes.

Proposition 3 (Completeness). When called with constraint cS as input, the algorithm
GENACQ returns all maximal sequences of types covering S on which the relation c
holds.

Proof. All sequences covering S are put in Table. A sequence in Table is either asked
for generalization or removed from Table in lines 6, 7, 12, or 15. We know from Lemma
1 that a sequence removed in line 6, 7, or 15 would necessarily lead to a no answer. We
know from Lemma 2 that a sequence removed in line 12 is subsumed and less general
than another one just added to G.

Proposition 4. Given a learned constraint cS and its associated Table, GENACQ uses
O(|Table|) generalization queries to return all maximal sequences of types covering S
on which the relation c holds.

Proof. For each query on T ∈ Table asked by GENACQ, the size of Table strictly
decreases regardless of the answer. As a result, the total number of queries is bounded
above by |Table|.

5.3 Illustrative Example

Let us take the Lewis Carroll’s Zebra problem to illustrate our generalization approach.
The problem is to find where the zebra lives, given five houses of five different colors,
owned by five men of five different nationalities, having five different drinks, cigarets,
and pets. (See for instance [10] for a complete description of the Zebra problem.) The
Zebra problem has a single solution. The target network is formulated using 25 vari-
ables, partitioned in 5 types of 5 variables each. The ith variable of a given type repre-
sents the number of the house where the ith element of the given type is located. The
types are color, nationality, drink, cigaret, pet, and the trivial type X of all variables.
There is a clique of 6= constraints on all pairs of variables of the same non trivial type
and 14 additional constraints given in the description of the problem.

Figure 1 shows the variables of the Zebra problem and their types. In this example,
the constraint X2 6= X5 has been learned between the two color variables X2 and X5.
This constraint is given as input of the GENACQ algorithm. GENACQ computes the
Table of all sequences of types covering the scope (X2, X5). Table = {(X2, color),
(X2, X), (color,X5), (color, color), (color,X), (X,X5), (X, color), (X,X)}. Suppose
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Fig. 1. Variables and types for the Zebra problem.

we pick T = (X,X5) at line 9 of GENACQ. According to the user’s answer (no in this
case), the Table is reduced to Table = {(X2, color), (X2, X), (color,X5), (color, color),
(color,X)}. As next iteration, let us pick T = (color, color). The user will answer yes
because there is indeed a clique of 6= on the color variables. Hence, (color, color) is
added to G and the Table is reduced to Table = {(X2, X), (color,X)}. If we pick
(X2, X), the user answers no and we reduce the Table to the empty set and return
G = {(color, color)}, which means that the constraint X2 6= X5 can be generalized to
all pairs of variables in the sequence (color, color), that is, (Xi 6= Xj) ∈ CT for all
(Xi, Xj) ∈ (color, color).

5.4 Using Generalization in QUACQ

GENACQ is a generic technique that can be plugged into any constraint acquisition sys-
tem. In this section we present G-QUACQ, a constraint acquisition algorithm obtained
by plugging GENACQ into QUACQ, G-QUACQ is presented in Algorithm 5.

G-QUACQ has a structure very similar to QUACQ. It initializes the set NonTarget
and the network CL it will learn to the empty set (line 1). If CL is unsatisfiable (line
3), the space of possible networks collapses because there does not exist any subset of
the given basis B that is able to correctly classify the examples the user has already
been asked. In line 4, QUACQ computes a complete assignment e satisfying CL but
violating at least one constraint from B. If such an example does not exist (line 5),
then all constraints in B are implied by CL, and we have converged. If we have not
converged, we propose the example e to the user, who will answer by yes or no (line
6). If the answer is yes, we can remove from B the set κB(e) of all constraints in B
that reject e (line 7) and we add all these ruled out constraints to the set NonTarget
to be used in GENACQ (line 8). If the answer is no, we are sure that e violates at least
one constraint of the target network CT . We then call the function FindScope to
discover the scope of one of these violated constraints. FindC will select which one
with the given scope is violated by e (line 10). If no constraint is returned (line 11),
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Algorithm 5: G-QUACQ = QUACQ + GENACQ

1 CL ← ∅, NonTarget← ∅;
2 while true do
3 if sol(CL) = ∅ then return”collapse”;
4 choose e in DX accepted by CL and rejected by B;
5 if e = nil then return “convergence on CL”;
6 if Ask(e) = yes then
7 B ← B \ κB(e);
8 NonTarget← NonTarget ∪ κB(e);
9 else

10 cS ← FindC(e,FindScope(e,∅, X, false));
11 if cS = nil then return “collapse”;
12 else
13 G← GENACQ(cS , NonTarget);
14 foreach T ∈ G do CL ← CL ∪ {cS′ | S′ ∈ T} ;

this is again a condition for collapsing as we could not find in B a constraint rejecting
one of the negative examples. Otherwise, we know that the constraint cS returned by
FindC belongs to the target network CT . This is here that the algorithm differs from
QUACQ as we call GENACQ to find all the maximal sequences of types covering S on
which c holds. They are returned in G (line 13). Then, for every sequence of variables
S′ belonging to one of these sequences in G, we add the constraint cS′ to the learned
network CL (line 14).

5.5 Strategies

GENACQ learns the maximal sequences of types on which a constraint can be general-
ized. The order in which sequences are picked from Table in line 9 of Algorithm 4 is
not specified by the algorithm. As shown on the following example, different orderings
can lead more or less quickly to the good (maximal) sequences on which a relation c
holds. Let us come back to our example on the Zebra problem (Section 5.3). In the way
we developed the example, we needed only 3 generalization queries to empty the set
Table and converge on the maximal sequence (color, color) on which 6= holds:

1. AskGen((X,X5), 6=) = no
2. AskGen((color, color), 6=) = yes
3. AskGen((X2, X), 6=) = no

Using another ordering, GENACQ needs 8 generalization queries:
1. AskGen((X,X), 6=) = no
2. AskGen((X, color), 6=) = no
3. AskGen((color,X), 6=) = no
4. AskGen((X,X5), 6=) = no
5. AskGen((X2, X), 6=) = no
6. AskGen((X2, color), 6=) = yes
7. AskGen((color,X5), 6=) = yes
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8. AskGen((color, color), 6=) = yes
If we want to reduce the number of generalization queries, we may wonder which

strategy to use. In this section we propose two techniques. The first idea is to pick se-
quences in the set Table following an order given by a heuristic that will try to minimize
the number of queries. The second idea is to put a cutoff on the number of consecutive
negative queries we accept to face, leading to a non complete generalization startegy:
the output of GENACQ will no longer be guaranteed to be the maximal sequences.

Query Selection Heuristics We propose some query selection heuristics to decide
which sequence to pick next from Table. We first propose optimistic heuristics, which
try to take the best from positive answers:

– max CST: This heuristic selects a sequence T maximizing the number of possible
constraints cS in the basis such that S is in T and c is the relation we try to general-
ize. The intuition is that if the user answers yes, the generalization will be maximal
in terms of number of constraints.

– max VAR: This heuristic selects a sequence T involving a maximum number of
variables, that is, maximizing |

⋃
S∈T S|. The intuition is that if the user answers

yes, the generalization will involve many variables.

Dually, we propose pessimistic heuristics, which try to take the best from negative
answers:

– min CST: This heuristic selects a sequence T minimizing the number of possible
constraints cS in the basis such that S is in T and c is the relation we try to gener-
alize. The intuition is to maximize the chances to receive a yes answer. If, despite
this, the user answers no, a great number of sequences are removed from Table
(see Lemma 1).

– min VAR: This heuristic selects a sequence T involving a minimum number of
variables, that is, minimizing |

⋃
S∈T S|. The intuition is to maximize the chances

of a yes answer while focusing on smaller sets of variables than min CST. Again,
a no answer leads to a great number of sequences removed from Table.

As a baseline for comparison, we define a random selector.

– random: It picks randomly a sequence T in Table.

Using Cutoffs The idea here is to exit GENACQ before having proved the maximality
of the sequences returned. We put a threshold cutoffNo on the number of consecutive
negative answers to avoid using queries to check unpromising sequences. The hope is
that GENACQ will return near-maximal sequences of types despite not proving maxi-
mality. This cutoff strategy is implemented by setting the variable cutoffNo to a prede-
fined value. In lines 13 and 17 of GENACQ, a counter of consecutive negative answers
is respectively reset and incremented depending on the answer from the user. In line 8,
that counter is compared to cutoffNo to decide to exit or not.
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6 Experimental Evaluation

We made some experiments to evaluate the behavior of active learning with partial
queries (QUACQ) and to test the impact of using generalization (GENACQ). GENACQ
was plugged in QUACQ, leading to G-QUACQ. All the experiments were done on an
Intel Xeon E5462 @ 2.80GHz with 16 Gb of RAM.

We first present the benchmark problems we used for our experiments. Then, we
report the results of several experiments. The first experiment presents the performance
of QUACQ to learn our benchmark problems. The second one compares the perfor-
mance of G-QUACQ to the basic QUACQ. The third reports experiments evaluating the
different strategies we proposed (query selection heuristics and cutoffs) on G-QUACQ.
Finally, we evaluate the performance of G-QUACQ when our knowledge of the types of
variables is incomplete.

6.1 Benchmark Problems

Problems without types

Random. We generated binary random target networks with 50 variables, domains of
size 10, and m binary constraints. The binary constraints are selected from the lan-
guage Γ = {≥,≤, <,>, 6=,=}. QUACQ is initialized with the basis B containing the
complete graph of 7350 binary constraints taken from Γ . For densities m = 12 (under-
constrained) and m = 122 (phase transition) we launched QUACQ on 100 instances
and report averages.

Golomb rulers. (prob006 in [14]) A Golomb ruler is a set of m marks to put on a
ruler so that the distances between marks are all distinct. This is encoded as a target
network with m variables corresponding to the m marks, and constraints of varying
arity. We learned the target network encoding the 8 mark ruler. We initialized QUACQ
and G-QUACQ with a basis of 55,484 constraints taken from a language with 24 basic
arithmetic and distance constraints with unary, binary, ternary and quaternary scopes.

Problems with types

Zebra problem. Lewis Carroll’s zebra problem has a single solution. The target network
is formulated using 25 variables of domain size of 5 with 5 cliques of 6= constraints and
11 additional constraints given in the description of the problem. We initialized QUACQ
and G-QUACQ with a basis of 6,850 constraints taken from a language with 24 basic
arithmetic and distance constraints with unary, binary, ternary and quaternary scopes.
In G-QUACQ, the variables are given as the 5 types of 5 variables that naturally occur
from the problem description (color, nationality, pet, cigaret, drink).
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Sudoku. The Sudoku logic puzzle is a 9 × 9 grid pre-filled with some numbers. It
must be completed in such a way that all the rows, all the columns and the 9 non
overlapping 3×3 squares contain the numbers 1 to 9. The target network of the Sudoku
has 81 variables with domains of size 9 and 810 binary 6= constraints on rows, columns
and squares. QUACQ and G-QUACQ are initialized with a basis B of 6,480 binary
constraints from the language Γ = {=, 6=}. In this problem, the types are the 9 rows, 9
columns and 9 squares, of 9 variables each.

Latin Square. The Latin square problem consists of an n × n table in which each
element occurs once in every row and column. For this problem, we use 25 variables
with domains of size 5 and 100 binary 6= constraints on rows and columns. Rows and
columns are the types of variables (10 types). QUACQ and G-QUACQ are initialized
with a basis of constraints based on the language Γ = {=, 6=}.

Radio Link Frequency Assignment Problem. The RLFAP problem is to provide com-
munication channels from limited spectral resources [11]. The constraint model of the
instance we selected has 25 variables with domains of size 25 and 125 binary con-
straints. We have five stations of five terminals (transmitters/receivers), which form five
types. We initialized QUACQ and G-QUACQ with a basis of 1,800 binary constraints
taken from a language of 6 arithmetic and distance constraints

Purdey [17]. Like Zebra, this problem has a single solution. Four families have stopped
by Purdeys general store, each to buy a different item and paying differently. Under a
set of additional constraints given in the description, the problem is how can we match
family with the item they bought and how they paid for it. The target network of Purdey
has 12 variables with domains of size 4 and 30 binary constraints. Here we have three
types of variables, which are family, bought and paid, each of them contains four vari-
ables. We initialized QUACQ and G-QUACQ with a basis of constraints based on the
language Γ = {=, 6=}.

6.2 QUACQ evaluation

To ensure rapid converge, we want a query answered yes to prune B as much as pos-
sible. This is best achieved when the query generated in line 4 of QUACQ is an assign-
ment violating a large number of constraints in B. We implemented the max heuristic
to generate a solution of CL that violates a maximum number of constraints from B.
However, this heuristic can be time consuming as it solves an optimization problem.
We then added a cutoff of 1 or 10 seconds to the solver using max, which gives the
two heuristics max-1 and max-10 respectively. We also implemented a cheaper heuris-
tic that we call sol. It simply solves CL and stops at its first solution violating at least
one constraint from B.

Our first experiment was to compare max-1 and max-10 on large problems. We
observed that the performance when using max-1 is not significantly worse in number of
queries than when using max-10. For instance, on the rand 50 10 122, #Ask = 1074
for max-1 and #Ask = 1005 for max-10. The average time for generating a query
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Table 2. Results of QUACQ learning until convergence.

|CL| #Ask #Askc Ask time

rand 50 10 12
max-1 12 196 34 24.04 0.23
sol 12 286 133 33.22 0.09

rand 50 10 122
max-1 86 1074 94 13.90 0.14
sol 83 1062 120 15.64 0.06

Golomb-8
max-1 83 438 83 5.12 0.85
sol 127 645 132 5.34 0.46

Zebra
max-1 60 764 61 10.99 0.29
sol 60 752 61 11.17 0.06

Sudoku 9× 9
max-1 810 8645 821 20.58 0.16
sol 810 9593 815 20.84 0.06

is 0.14 seconds for max-1 and 0.86 seconds for max-10 with a maximum of 1 and 10
seconds respectively. We then chose not to report results for max-10.

Table 2 reports the results obtained with QUACQ to reach convergence using the
heuristics max-1 and sol. We report the size |CL| of the learned network (which can be
smaller than the target network due to redundant constraints), the total number #Ask
of queries, the number #Askc of complete queries (i.e., generated in line 6 of QUACQ),
the average size Ask of all queries, and the average time needed to compute a query
(in seconds). A first observation is that max-1 generally requires less queries than sol
to reach convergence. This is especially true for rand 50 10 12, which is very sparse,
and Golomb-8, which contains many redundant constraints. If we have a closer look,
these differences are mainly explained by the fact that max-1 requires significantly less
complete positive queries than sol to totally prune B and prove convergence (22 com-
plete positive queries for max-1 and 121 for sol on rand 50 10 12). But in general, sol
is not as bad as we could have expected. The reason is that, except on very sparse net-
works, the number of constraints from B violated ’by chance’ with sol is large enough.
The second observation is that when the network contains a lot of redundancies, max-
1 converges on a smaller network than sol. We observed this on Golomb-8, and other
problems not reported here. The third observation is that the average size of queries is
always significantly smaller than the number of variables in the problem. A last obser-
vation is that sol is very fast for all its queries (see the time column). We can expect it
to be usable on even larger problems.

As a second experiment we evaluated the effect of the size of the basis on the num-
ber of queries. On the zebra problem we initialized QUACQ with bases of different sizes
and stored the number of queries for each run. Figure 2 shows that when |B| grows, the
number of queries follows a logarithmic scale. This is very good news as it means that
learning problems with expressive bases will scale well.

QUACQ has two main advantages over learning with membership queries, as in
CONACQ. One is the small average size of queries Ask, which are probably easier to
answer by the user. The second advantage is the time to generate queries. Conacq.2
needs to find examples that violate exactly one constraint of the basis to make progress
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Fig. 2. QUACQ behavior on different basis sizes for Zebra

towards convergence. This can be expensive to compute, preventing the use of Conacq.2
on large problems. QUACQ, on the other hand, can use cheap heuristics like max-1 and
sol to generate queries.

6.3 Using Generalization Queries

For all our experiments we report, the total number #Ask of standard queries asked
by the basic QUACQ, the total number #AskGen of generalization queries, and the
numbers #no and #yes of negative and positive generalization queries, respectively,
where #AskGen = #no +#yes. The time overhead of using G-QUACQ rather than
QUACQ is not reported. Computing a generalization query takes a few milliseconds.

Table 3. QUACQ vs G-QUACQ.

QUACQ G-QUACQ +random
#Ask #Ask #AskGen

Zebra 764 257 67
Sudoku 8645 260 166

Latin square 1129 117 60
RFLAP 1653 151 37
Purdey 173 82 31
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Our first experiment compares QUACQ and G-QUACQ in its baseline version, G-
QUACQ + random, on our benchmark problems. Table 3 reports the results. We ob-
serve that the number of queries asked by G-QUACQ is dramatically reduced compared
to QUACQ. This is especially true on problems with many types involving many vari-
ables, such as Sudoku or Latin square. G-QUACQ acquires the Sudoku with 260 stan-
dard queries plus 166 generalization queries, when QUACQ acquires it in 8645 standard
queries.

Table 4. G-QUACQ with heuristics and cutoff strategy on Sudoku.

cutoff #Ask #AskGen #yes #no

random

+∞ 260

166 42 124
min VAR 90 21 69
min CST 132 63 69
max VAR 263 63 200
max CST 247 21 226

min VAR

3
260

75 21 54
2 57 21 36
1 39 21 18

min CST

3 626 238 112 126
2 679 231 132 99
1 837 213 153 60

Let us now focus on the behavior of our different heuristics in G-QUACQ. The upper
part of Table 4 reports the results obtained with G-QUACQ using min VAR, min CST,
max VAR, and max CST to acquire the Sudoku model. (Other problems showed similar
trends.) The results clearly show that max VAR, and max CST are very bad heuristics.
They are worse than the baseline random. On the contrary, min VAR and min CST
significantly outperform random. They respectively require 90 and 132 generalization
queries instead of 166 for random. Notice that they all ask the same number of standard
queries (260) as they all find the same maximal sets of sequences for each learned
constraint.

The lower part of Table 4 we compare the behavior of our two best heuristics
(min VAR and min CST) when combined with the cutoff strategy. We tried all values
of the cutoff from 1 to 3. A first observation is that min VAR remains the best whatever
the value of the cutoff is. Interestingly, even with a cutoff equal to 1, min VAR requires
the same number of standard queries as the versions of G-QUACQ without cutoff. This
means that using min VAR as selection heuristic in Table, G-QUACQ is able to re-
turn the maximal sequences despite being stopped after the first negative generalization
answer. We also observe that the number of generalization queries with min VAR de-
creases when the cutoff becomes smaller (from 90 to 39 when the cutoff goes from +∞
to 1). By looking at the last two columns we see that this is the number #no of negative
answers which decreases. The good performance of min VAR + cutoff=1 can thus be
explained by the fact that min VAR selects first queries that cover a minimum number
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of variables, which increases the chances to have a yes answer. Finally, we observe that
the heuristic min CST does not have the same nice characteristics as min VAR. The
smaller the cutoff, the more standard queries are needed, not compensating for the sav-
ing in number of generalization queries (from 260 to 837 standard queries for min CST
when the cutoff goes from +∞ to 1). This means that with min CST, when the cutoff
becomes too small, GENACQ does not return the maximal sequences of types where
the learned constraint holds.

Table 5. G-QUACQ with random, min VAR, and cutoff=1 on Zebra, Latin square, RLFAP, and
Purdey.

#Ask #AskGen #yes #no

Z
eb

ra Random
257

67 10 57
min VAR 48 5 43

min VAR +cutoff=1 23 5 18

L
.S

qu
ar

e Random
117

60 16 44
min VAR 34 10 24

min VAR +cutoff=1 20 10 10

R
L

FA
P Random

151
37 16 21

min VAR 41 14 27
min VAR +cutoff=1 22 14 8

Pu
rd

ey Random
82

31 5 26
min VAR 24 3 21

min VAR +cutoff=1 12 3 9

In Table 5, we report the performance of G-QUACQ with random, min VAR and
min VAR +cutoff=1 on all the other problems. We see that min VAR +cutoff=1 signif-
icantly improve the performance of G-QUACQ on all problems. As in the case of Su-
doku, we observe that min VAR +cutoff=1 does not lead to an increase in the number
of standard queries. This means that on all these problems min VAR +cutoff=1 always
returns the maximal sequences while asking less generalization queries with negative
answers.

From these experiments we see that G-QUACQ with min VAR +cutoff=1 leads to
tremendous savings in number of queries compared to QUACQ: 257+23 instead of 764
on Zebra, 260+39 instead of 8645 on Sudoku, 117+20 instead of 1129 on Latin square,
151+22 instead of 1653 on RLFAP, 82+12 instead of 173 on Purdey.

In our last experiment, we show the effect on the performance of G-QUACQ of a
lack of knowledge on some variable types. We took again our 5 benchmark problems
in which we have varied the amount of types known by the algorithm. This simulates
a situation where the user does not know that some variables are from the same type.
For instance, in Sudoku, the user could not have noticed that variables are arranged
in columns. Figure 3 shows the number of standard queries and generalization queries
asked by G-QUACQ with min VAR +cutoff=1 to learn the RLFAP model when fed
with an increasingly more accurate knowledge of types. We observe that as soon as a
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Fig. 3. G-QUACQ on RLFAP when the percentage of provided types increases.

small percentage of types is known (20%), G-QUACQ reduces drastically its number of
queries. Table 6 gives the same information for all other problems.

7 Conclusion

We have proposed QUACQ, an algorithm that learns constraint networks by asking the
user to classify partial assignments as positive or negative. Each time it receives a neg-
ative example, the algorithm converges on a constraint of the target network in a loga-
rithmic number of queries. We have shown that QUACQ is optimal on certain constraint
languages. Asking the user to classify partial assignments allows to converge on the
target constraint network in a polynomial number of queries. Furthermore, as opposed
to existing techniques, the user does not need to provide positive examples to con-
verge. This last feature can be very useful when the problem has not been previously
solved. We have also proposed GENACQ, a technique to make constraint acquisition
more efficient in practice by using information on the types of components the vari-
ables in the problem represent. We have introduced generalization queries. They are
asked to the user to generalize a constraint to other scopes of variables of the same type
where this constraint possibly applies. GENACQ can be called to generalize each new
constraint that is learned. We have proposed several heuristics and strategies to select
the good candidate generalization query. We have plugged GENACQ into the QUACQ
constraint acquisition system, leading to the G-QUACQ version. Our experimental eval-
uation shows that generating good queries in QUACQ is not computationally difficult
and that when the basis increases in size, the increase in number of queries follows
a logarithmic shape. These results are promising for the use of QUACQ on real prob-
lems. However, problems with dense constraint networks require a number of queries
that could be too large for a human user. We have then evaluated the benefit of gen-
eralization queries, with and without complete knowledge on the types of variables.
The results show that G-QUACQ dramatically improves the basic QUACQ algorithm in
terms of number of queries.
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Table 6. G-QUACQ when the percentage of provided types increases.

% of types #Ask #AskGen

Zebra

0 764 0
20 619 12
40 529 20
60 417 27
80 332 40

100 257 48

Sudoku 9× 9

0 8645 0
33 3583 232
66 610 60

100 260 39

Latin Square
0 1129 0
50 469 49

100 117 20

Purdey

0 173 0
33 111 8
66 100 10

100 82 12
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