
Reformulating global constraints:
the Slide and Regular constraints

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich3, Zeynep Kiziltan4,
Claude-Guy Quimper5, and Toby Walsh6

1 LIRMM, University of Montpellier, France. bessiere@lirmm.fr
2 Emmanuel Hebrard, 4C, University College Cork, Ireland. ehebrard@4c.ucc.ie

3 Brahim Hnich, Faculty of Computer Science, Izmir University of Economics,
Turkey. brahim.hnich@ieu.edu.tr

4 Zeynep Kiziltan, Department of Computer Science, University of Bologna, Italy.
zeynep@cs.unibo.it

5 Claude-Guy Quimper, Omega Optimisation, Canada.
quimper@alumni.uwaterloo.ca

6 Toby Walsh NICTA and University of New South Wales, Sydney, Australia.
tw@cse.unsw.edu.au

Abstract. Global constraints are useful for modelling and reasoning
about real-world combinatorial problems. Unfortunately, developing prop-
agation algorithms to reason about global constraints efficiently and ef-
fectively is usually a difficult and complex process. In this paper, we
show that reformulation may be helpful in building such propagators.
We consider both hard and soft forms of two powerful global constraints,
Slide and Regular. These global constraints are useful to represent a
wide range of problems like rostering and scheduling where we have a
sequence of decision variables and some constraint that holds along the
sequence. We show that the different forms of Slide and Regular can
all be reformulated as each other. We also show that reformulation is an
effective method to incorporate such global constraints within an exist-
ing constraint toolkit. Finally, this study provides insight into the close
relationship between these two important global constraints.

1 Introduction

Global constraints are one of the most important features of constraint pro-
gramming. Global constraints capture common patterns occurring in models of
complex, real-life combinatorial problems. For instance, a common pattern in
rostering problems is that sequences of night shifts must be followed by several
days off, and that no one is allowed to work more than a certain number of
consecutive night shifts. Such patterns can be modelled using a Regular con-
straint [6]. More recently, we have proposed the global Slide to model a wide
range of patterns appearing in sequencing and other problems [3]. In this paper,
we explore the relationship between these two global constraints in depth. We
show that the Slide constraint can be efficiently reformulated as the Regular
constraint and vice versa.

In many real-world problems, it is not possible to find a feasible solution that
satisfies all the constraints and preferences of the user. Consider the problem of
allocating reviewers for papers submitted to a conference. Typically, a paper
must be reviewed by a certain number of reviewers and each reviewer must
have a certain number of papers. Reviewers also indicate preferences over the
papers that they would be happy to review. Finding an allocation that satisfies
the assignment constraints as well as all the reviewer preferences may not be
possible. We may however give an additional paper to some reviewers and may
assign a paper to a reviewer even if she is not enthusiastic about it, as long as
she did not indicate a “conflict of interest”. Soft versions of global constraints
are useful to model and solve such over-constrained problems.

A recent direction is to convert over-constrained problems into constraint op-
timization problems by treating constraint violations as costs. To reason about
such problems, we can design specific cost-based propagators. Several such soft
global constraints have been proposed to model and solve over-constrained prob-
lems effectively and efficiently (e.g., [7, 9, 10, 12]). Whilst efficient propagators
have been developed for both the Slide and Regular constraint and are avail-
able in a number of solvers, there has been less work about soft versions of these
constraints. For example, no GAC propagators have yet been developed for soft
versions of the Slide constraint. One of our contributions in this paper is to
propose the first such propagators. We show that reformulation is an attractive
mechanism also to implement soft versions of the Slide and Regular global
constraints.

This rest of this paper is structured as follows. After giving the necessary
formal background in Section 2, we explain in detail in Section 3 the Slide and
Regular constraints. Then we show in Section 4 how Slide can be efficiently
reformulated as the Regular constraint and vice versa. In Section 5, we focus
on the soft versions of these global constraints and in Section 6 demonstrate that
the different types of SoftSlide constraints can be reformulated as hard forms
of the Slide or soft form of the Regular constraints. We provide experimental
proof in Section 7 that reformulating global constraints could be useful. We
report related work in Section 8 and conclude in Section 9.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for some subset of variables. We consider finite domain integer variables,
and use capital letters for variables (e.g. X) and lower case for values (e.g. d). We
write D(X) for the domain of a variable X. A constraint C defined on variables
[Xi, . . . , Xj] is indicated as C(Xi, . . . , Xj).

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialised or general purpose algorithms. A con-
straint C is generalised arc consistent (GAC) iff when a variable is assigned any
of the values in its domain, there exist compatible values in the domains of all the

other variables of C. For binary constraints, generalised arc consistency is often
called simply arc consistency (AC). A constraint C is bound consistent (BC)
iff when a variable is assigned the maximum (or minimum) value in its domain,
there exist compatible values between the maximum and minimum domain value
for all the other variables of C.

A deterministic finite automaton (DFA) is described by a 5-tuple A =
〈Q,QF , q0, δ, Σ〉 where Σ is an alphabet, Q is a set of states, q0 ∈ Q is the
initial state, QF ⊆ Q is a set of final states, and δ ⊆ Q×Σ ×Q is a transition
table. A sequence s1, . . . , sn is accepted by the automaton A if there exists a
sequence of states t0, . . . , tn such that t0 = q0 is the initial state, tn ∈ QF is a
final state, and 〈ti−1, si, ti〉 ∈ δ is a transition in the transition table. A language
L ⊆ Σ∗ is a (possibly infinite) set of sequences taken from an alphabet Σ. A
regular language is the set of sequences accepted by a DFA.

The Hamming distance between two strings s1 and s2 of the same length is
the number of positions in which they differ. The Hamming distance is denoted
by H(s1, s2). For example, the Hamming distance between the strings abc and
adc is 1 as they differ only on the second position. The Hamming distance
between a string s and a language L is min{H(s, t) | t ∈ L}. If L does not
contain any string of the same length as s, the distance between s and L is
undefined. The edit distance between two strings s1 and s2 is the minimum
number of character insertions, deletions, and replacements to string s1 in order
to obtain s2. The edit distance is denoted by E(s1, s2). For example, the edit
distance between the strings abc and aadc is 2 as we can replace the character b
of the string abc by a and insert a d before c to obtain aadc. The edit distance
between a string s and a language L is min{E(s, t) | t ∈ L}. If L is empty, the
distance between s and L is undefined.

3 Slide and Regular constraints

The global Regular constraint was introduced by Pesant to model problems
in scheduling and rostering [6]. The constraint is specified in terms of a finite
automaton which accepts the string of values spelled out by the sequence of vari-
ables. More precisely, Regular(A, [X1, . . . , Xn]) holds iff X1 to Xn form a string
accepted by the DFA A. Such a global constraint can be used to ensure certain
patterns do (or do not) occur over time. For example, in shift rostering, we might
have that we cannot work more than three night shifts in a row and once a se-
quence of night shifts ends, we must have at least two days off. This can easily be
specified using a finite automaton. We have a finite automaton A with the states
n1, n2, n3, o1 and any. The transition table is: 〈any, day, any〉, 〈any, night, n1〉,
〈any, off, any〉, 〈ni, night, ni+1〉, 〈ni, off, o1〉, and 〈o1, off, any〉. For instance,
if we are in state any, we go to state n1 with input night. Pesant gives a propaga-
tor for the Regular constraint based on dynamic programming which achieves
GAC in O(nd|Q|) time where |Q| is the number of states of the automaton [6].

More recently, we introduced the global Slide constraint [3]. We begin with
its simplest form. If C is a constraint of arity k then Slide(C, [X1, . . . , Xn]) holds

iff C(Xi, . . . , Xi+k−1) itself holds for 1 ≤ i ≤ n − k + 1. That is, we slide the
constraint C down the sequence of variables, X1 to Xn. For example, consider
the car sequencing problem (prob001 in CSPLib) where we need to decide the
order in which to build cars on an assembly line. We might want to ensure that
no more than one out of every two cars has the sun roof option as it takes extra
time to fit a sun roof. This can easily be specified with a Slide constraint. We
slide a binary constraint down a sequence of decision variables representing the
order in which cars will be produced. This binary constraint ensures that one of
or both of the variables within its scope does not represent a car with the sun
roof option. A variation of the dual encoding can be used to maintain GAC on
such a Slide constraint in O(nkdk) time [3].

A more complex form of the Slide constraint permits us to slide down two or
more sequences of variables at the same time. For instance, if C is a constraint of
arity 2k then Slide(C, [X1, . . . , Xn], [Y1, . . . , Yn]) holds iff C(Xi, . . . , Xi+k−1, Yi,
. . . , Yi+k−1,) itself holds for 1 ≤ i ≤ n−k +1. That is, we slide the constraint C
down the two sequences of variables. Consider, for example, the global contiguity
constraint [5]. This ensures that within a sequence of 0/1 variables, X1 to Xn, the
1’s occur in a continuous block. We can model this by a Slide constraint down
two sequences of 0/1 variables, X1 to Xn and Y1 to Yn. The second sequence
of variables, Y1 to Yn record if we have met the block of 1’s yet or not. The
constraint being slid, C(Xi, Xi+1, Yi, Yi+1) holds iff (Yi = 0, Xi = 0, Xi+1 =
Yi+1) or (Yi = Yi+1 = 1 and Xi ≥ Xi+1). Such more complex forms of Slide can
be reformulated as the simple form of Slide down a single sequence. We merely
need to interleave the different sequences and then slide a suitably modified
constraint over these interleaved sequences. (See [3] for details.)

4 Reformulating Slide and Regular

We first show that Slide and Regular can be reformulated as each other. As
well as providing insight into the relationship between the two global constraints,
these reformulations will be useful in providing propagators for soft versions of
these global constraints.

4.1 Regular as Slide

In [8], we give a simple reformulation of the Regular constraint in terms of
a Slide constraint. In addition to the sequence of variables along which the
Regular constraint is defined, we introduce a sequence of variables for the
state of the automaton. We then slide the transition relation down the two
sequences of variables. For instance, consider again the shift rostering prob-
lem from the last section. We can reformulate Regular(A, [X1, . . . , Xn]) as
Slide(C, [X1, . . . , Xn+1], [Q1, . . . , Qn]) where Xn+1 is a dummy variable, Qi are
variables representing the state of the automaton, and C(Xi, Xi+1, Qi, Qi+1)
holds iff we move from state Qi to Qi+1 on seeing Xi. Observe that Xi+1 is
not used in the definition of C. We let it in its scope just to be consistent with

the simplified presentation of Slide on multiple sequences that we presented in
Section 3.

Enforcing GAC on this reformulation achieves GAC on the original Regular
constraint. Hence, reformulation does not hinder propagation. This reformula-
tion is also optimal in the sense that, we can enforce GAC on either the Regular
constraint or its reformulation into Slide in O(nd|Q|) time. This complexity is
lower than the complexity of Slide in general because of the characteristics of
the constraint being slid (see [3] for details). As we show in the experimental
section, this reformulation is also a practical means to propagate the Regular
constraint. By reformulating Regular as a Slide constraint, we get an effi-
cient and incremental propagator that can outperform Pesant’s propagator for
Regular based on dynamic programming.

4.2 Slide as Regular

The reverse is also possible. That is, we can reformulate any instance of the
Slide constraint using a Regular constraint. Again this is optimal in the sense
that we can enforce GAC on either the Slide constraint or the reformulation
into Regular in O(nkdk) time. We prove this claim by constructing a DFA A
recognizing the language accepted by a Slide constraint.

Let Σ =
⋃n

i=1 D(Xi) be the alphabet and k be the arity of the constraint
C. The states of A are given by the set of sequences Q =

⋃k−1
i=0 Σi. The empty

sequence ε ∈ Q is the initial state. Any sequence of length k − 1 is a final state.
Let T = {[s1, . . . , sk] | C([s1, . . . , sk])} be the set of sequences accepted by the
constraint C. We construct the transition table δ of A as follows. Let w be a
sequence of length strictly smaller than k− 1 and c ∈ Σ be a character from the
alphabet. Let wc be the concatenation of the sequence w and the character c.
We have a transition 〈w, c, wc〉 ∈ δ if there exists a sequence in T starting with
wc. Let a, b ∈ Σ be two characters and w ∈ Σk−2 be a sequence of length k − 2
such that awb is a sequence in T . Then we have the transition 〈aw, b, wb〉 ∈ δ.
Notice that a state w can only be visited after parsing the sub-sequence w.

Example 1. Consider the alphabet Σ = {a, b} and the constraint C that accepts
any sequence of length three but the sequences aaa and bbb. We obtain the DFA
depicted in Figure 1.

The DFA A constructed in this way represents the Slide constraint.

Theorem 1. If n is greater than or equal to the arity of C, then the lan-
guage {X1 . . . Xn | Slide(C, [X1, . . . , Xn])} formed by the sequences satisfying
the Slide constraint is equal to the set of sequences of length n recognized by the
DFA A.

Proof. We first prove that every sequence s of length n accepted by A is also
accepted by the Slide constraint. Let w be the first k − 1 characters in s. By
construction of A after reading these k−1 characters, the current state is w and
there exists a sequence in T starting with w. Assume that the k − 1 characters

bb

ab

ba

a

b

ε

aa
a

a

b

b

b

b

b

a

a

a

b
a

Fig. 1. DFA corresponding to Example 1.

following a position i in s are given by aw where a is a character and w is a
sequence of length k− 2. Also assume that there exists a sequence in T starting
with aw and that after reading aw, A is in state aw. By construction of A when
reading the character b at position i, the state of A changes from aw to wb. The
transition guarantees that the sequence awb belongs to T and that the constraint
C is satisfied at position i. By inductively repeating the argument, we conclude
that the constraint C is satisfied at every position and that consequently, the
Slide constraint is satisfied.

We now prove that if the sequence s satisfies the Slide constraint, then it
is accepted by A. Let awb be the first k characters of s where a and b are two
characters and w is a sequence of k − 2 characters. Since the Slide constraint
is satisfied, the sequence awb satisfies the constraint C and belongs to the set
T . Therefore, there is a series of states q0, . . . , qk−1 that parses the sequence aw
where state qi is the first i characters of aw. Suppose that the ith character to be
parsed is b, that the last k−1 parsed characters are the character a followed by the
sequence w, and that A is in state aw. Since the Slide constraint is satisfied, the
sequence awb satisfies C. Therefore, there exists a transition 〈aw, b, wb〉 ∈ δ that
parses the character b and leads to the state wb. Notice that wb are the last k−1
parsed characters. By inductively repeating the argument, we conclude that there
exists a parsing for any sequence satisfying the slide constraint. Consequently,
the sequence s is accepted by A. ut

5 Softening Slide and Regular

As we discussed in the introduction, real world problems are often over-constrained.
One mechanism to deal with such over-constrained problems is to introduce a
cost function, and find a solution of minimal cost from a feasible solution. We will
formalize this process as follows. Let C(X1, . . . , Xn) be a hard global constraint
like Slide or Regular. Given a distance function d between strings, the soft
constraint Csoft(X1, . . . , Xn, Z) holds iff Z = min{d(a1, . . . , an, b1, . . . , bm) | ai ∈
D(Xi) ∀i ∈ 1..n & C(b1, . . . , bm)}. Distance might, for instance, be Hamming
(in which case n = m) or edit distance. As stated in Section 2, d is not defined
if the set of strings satisfying C is empty.

As an example, the constraint SoftSlideH(C, [X1, . . . , Xn], D) holds iff D
is the Hamming-distance between the sequence [X1, . . . , Xn] and the language
accepted by the Slide constraint. Similarly, the constraint SoftSlideE(C, [X1,
. . . , Xn], D) holds iff D is the edit-distance between the sequence [X1, . . . , Xn]
and the language accepted by the Slide constraint. Similarly, SoftRegularH

and SoftRegularE are soft forms of Regular obtained by applying Hamming
and edit distance based violations to Regular respectively [10]. For example,
SoftRegularE(A, [X1, . . . , Xn], D) is satisfied iff D is the edit-distance be-
tween the sequence [X1, . . . , Xn] and the language accepted by A. In [10], the
propagation algorithm for Regular based on dynamic programming is modified
in two different ways to maintain GAC on SoftRegularH and SoftRegularE ,
respectively.

6 SoftSlide constraint

We will show that the different types of SoftSlide constraints can be refor-
mulated as hard forms of the Slide or soft form of the Regular constraints.
Reformulation thus provides a simple mechanism to propagate the soft forms of
these global constraints.

6.1 SoftSlideH as Slide

Let us consider a SoftSlideH(C, [X1, . . . , Xn], D) where the arity of constraint
C is k and where n ≥ k. In order to reformulate this SoftSlide constraint as a
Slide constraint, we introduce two sequences of extra variables.

The first sequence contains n+k−1 variables [S1, . . . , Sn+k−1] that we build in
such a way that S1, . . . , Sn can be any string accepted by Slide(C, [S1, . . . , Sn]).
The domain of each Si contains all the values that appear in at least one tuple
belonging to C. The variables Sn+1 to Sn+k−1 must not be forced to satisfy the
constraint being slid. Hence, a dummy value ’∗’ is added to the domain of every
Si, i > n. Furthermore, C ′ is defined as a relaxation of C that contains a tuple t
iff t belongs to C or t contains at least one dummy value ’∗’. For instance, if C is a
ternary constraint allowing the following set of tuples {〈a, b, a〉, 〈b, c, a〉, 〈a, b, c〉},

then the domain of each Si, i ≤ n, is {a, b, c}, the domain of each Si, i > n, is
{a, b, c, ∗}, and C ′ = C ∪ {〈d1, d2, d3〉 | ∃i ∈ 1..3, di = ∗}.

The second sequence of variables contains n + 1 variables [D1, . . . , Dn+1]
which provide the cumulative count of the number of discrepancies with respect
to the previous sequence. Then we introduce the following k + 3-ary constraint:

CH(Xi, Si, . . . , Si+k−1, Di, Di+1) ⇔ C ′(Si, . . . , Si+k−1) ∧ Di+1 = Di + (Si 6= Xi)

This constraint ensures that C ′ is satisfied by the sequence [Si, . . . , Si+k−1] (that
is, [Si, . . . , Si+k−1] satisfies C if i + k − 1 ≤ n), and Di+1 = Di if Si = Xi,
otherwise Di+1 = Di + 1. Using the more complex form of Slide over multiple
sequences, we can thus reformulate the SoftSlideH constraint by sliding CH

over the three sequences [S1, . . . , Sn+k−1], [X1, . . . , Xn], and [D1, . . . , Dn+1] and
by constraining D1 to be 0 and Dn+1 to be equal to D. That is, we have:

SoftSlideH(C, [X1, . . . , Xn], D)

⇔

Slide(CH , [S1, . . . , Sn+k−1], [X1, . . . , Xn], [0, D2 . . . , Dn, D])

Enforcing GAC on Slide is in O(nkdk), where n is the length of the sequence
and k the arity of the constraint being slid. In the case of the reformulation of
SoftSlideH as Slide, the constraint to be slid has arity k + 3. Thus, the time
complexity of enforcing GAC on SoftSlideH using this reformulation is in
O(nkdk+3) where d is the number of values that are used in tuples allowed by
the constraint C.

Note that for this encoding to work correctly, the variables [S1, . . . , Sn+k−1]
should not be constrained by other constraints, so that GAC on Slide(C, [S1,
. . . , Sn+k−1]) guarantees a solution. Since such variables are introduced during
the reformulation, they will be invisible to the users of the SoftSlideH con-
straint, hence such an assumption is reasonable.

6.2 SoftSlideE as SoftRegularE

By using the same reformulation we proposed of Slide as Regular, we can
reformulate SoftSlideE as SoftRegularE . The set of strings accepted by
the hard version of the SoftSlideE constraint must not be empty because
the propagator of SoftRegularE described in [10] is defined for automata
accepting a non empty language. This propagator achieves GAC on the vari-
ables Xi for 1 ≤ i ≤ n and BC on D in O(n|δ| + n|Q| log(n|Q|)) steps. The
DFA A has O(|Σ|i) states labelled with a sequence of length i for a total of
|Q| =

∑k−1
i=0 O(|Σ|i) = O(|Σ|k) states. The outgoing degree of every state

is bounded by |Σ|. We therefore have |δ| = O(|Σ|k+1) transitions. Filtering
the SoftSlideE constraint therefore requires O(n|Σ|k+1 + n|Σ|k log(n|Σ|k)) =
O(n|Σ|k+1 + nk|Σ|k log(n|Σ|)) time.

7 Experimental analysis

We now show that reformulation is an effective mechanism to provide propaga-
tors for Slide and Regular constraints. First, we compare reasoning about a
Regular constraint encoded as Slide, with reasoning about it directly using
Pesant’s GAC propagator [6]. Then, we analyse the reverse reformulation and
compare reasoning a Slide constraint reformulated as a Regular, with rea-
soning about it directly using the GAC propagator given in [3]. Pesant presents
two propagators. We implemented the one that keeps track of all supports for
each value in the domain of every variable. Whilst the first set of experiments
are done using ILOG Solver 6.1 on a 900 MHz Pentium running Linux Debian,
the second set is done using ILOG Solver 6.2 on a 2.8GHz Intel Xeon computer
running Linux FC2.

7.1 Regular as Slide

As in [6], we generated random automata with |Q| states and an alphabet of
size |Σ|. We selected 30% of all possible tuples (c, qi) ∈ Σ × Q and randomly
chose a state qj ∈ Q to form the transition T (c, qi) = qj . We obtained the
set of final states F by randomly selecting 50% of the states in Q. Following
Pesant, we used a random variable ordering and random value selection. All
experiments are averaged over 30 runs. Table 1 shows the results. We observe
that the reformulation of Regular constraints in terms of Slide is as efficient
as and most of the times slightly more efficient than propagating directly the
Regular constraints. The propagator for Slide uses a sequence of built-in
Table constraints. We conjecture that these are highly optimized and contribute
to the performance offered by Slide.

We also ran experiments on a model for the Mystery Shopper problem due
to Helmut Simonis that appears in CSPLib (prob004). This model contains a
large number of Among constraints. We represented these Among constraints
using Regular constraints, and again either reasoned with these Regular
constraints directly using Pesant’s propagator or reformulated them using Slide
constraints.

Results are given in Table 2. All instances solved in the experiments use a
time limit of 5 minutes. Both methods achieve GAC on the Among constraint, so
the search trees are identical and it is only the efficiency of the propagator which
differ. Again, reformulation of Regular using Slide is slightly more efficient.

7.2 Slide as Regular

We consider a variant of the Nurse Scheduling Problem [4] that consists of gen-
erating a schedule for each nurse of shifts duties and days off within a short-term
planning period. There are three types of shifts (day, evening, and night). We
ensure that (1) each nurse should take a day off or be assigned to an available
shift; (2) each shift has a minimum required number of nurses; (3) each nurse
work load should be between specific lower and upper bounds; (4) each nurse

n |Σ| |Q| Regular Regular as Slide

25 5 10 0.0032 0.0031
20 0.0029 0.0025
40 0.0052 0.0046
80 0.0079 0.0041

25 10 10 0.0053 0.0038
20 0.0099 0.0063
40 0.0165 0.0087
80 0.0284 0.0136

25 20 10 0.0113 0.0057
20 0.0195 0.0083
40 0.0399 0.0140
80 0.0812 0.0226

n |Σ| |Q| Regular Regular as Slide

50 5 10 0.0047 0.0051
20 0.0047 0.0037
40 0.0101 0.0086
80 0.0168 0.0087

50 10 10 0.0105 0.0071
20 0.0207 0.0129
40 0.0359 0.0185
80 0.0631 0.0301

50 20 10 0.0232 0.0119
20 0.0396 0.0177
40 0.0814 0.0289
80 0.1655 0.0457

Table 1. Time in seconds to find a sequence satisfying a randomly generated automa-
ton either using Pesant’s propagator for the Regular constraint or reformulating it
as a Slide constraint

can work at most 5 consecutive days; (5) each nurse must have at least 12 hours
of break between two shifts; (6) the shift assigned to a nurse cannot change more
than once every three days. We develop two models to solve this problem. In
both, we introduce one variable for each nurse and each day, indicating to what
type of shift, if any, this nurse is affected on this day. The constraints (1)-(3)
are enforced using a set of global cardinality constraints. The constraints (4),
(5) and (6) form sequences of respectively 6-ary, binary and ternary constraints.
Notice that (4) is monotone, hence we simply post these constraints in both
models. The conjunction of constraints (5) and (6) is slid using the tuple encod-
ing of Slide in the first model, and an encoding of Slide using Regular in the
second model.

We test the models by using the instances available at http://www.projectman-
agement.ugent.be/nsp.php in which nurses have no maximum workload, but a set
of preferences is to be optimised. We ignore these preferences and post a con-
straint for bounding the maximum workload to at most 5 day shifts, 4 evening
shifts and 2 night shifts per nurses and per week. Similarly, each nurse must have

Regular Regular as Slide

Size #fails cpu time #solved #fails cpu time #solved

10 6 0.01022 9/10 6 0.00755 9/10
15 8342 1.19897 32/52 8342 1.15954 32/52
20 12960 5.63347 21/35 12960 3.40063 21/35
25 6186 1.41279 4/20 6186 0.87862 4/20
30 1438 0.72189 3/10 1438 0.47626 3/10
35 6297 3.73623 20/56 6297 2.36849 20/56

Table 2. Mystery Shopper problem, Regular v. Regular as Slide. #fails and cpu
time are only averaged on instances solved by both methods.

Slide Slide as Regular

instances solved 56/99 56/99
time 3.77 4.39
backtracks 4761 4761

Table 3. Nurse scheduling problem (30 nurses, 28 days), Slide v. Slide as Regular.
#fails and cpu time are only averaged on instances solved by both methods.

at least 2 rest days per week. We solve a sample of 99 instances involving a crew
of 30 nurses to schedule over 28 days. We use the same static variable ordering
for both models. The days are scheduled in chronological order, and within each
day, we allocate a shift to every nurse in lex order. Initial experiments show that
this simple heuristic is more efficient than dynamic minimum domain heuristic.

In Table 3, we report the mean fails and cpu time required to solve the
instances. We observe that the first model is about 15% faster than the second
model.

8 Related Work

Reformulating new global constraints in terms of those that already available
within the constraint toolkit has started to gain attention within the constraint
programming community. For instance, in [11], the AmongSeq constraint used
in car sequencing on a production line is studied and alternative propagation
methods are discussed. One approach reformulates AmongSeq as a Regular
constraint. This reformulation is shown to be the most efficient in practice com-
pared to the other proposed propagators.

Given the large number of global constraints that have been identified, an-
other direction of study is “general-purpose” global constraints. Such constraints
can be used in conjunction with the primitive constraints to reformulate a wide
range of global constraints without the need to extend the constraint toolkits.
This is especially useful if a constraint toolkit does not provide a propagator for
the global constraint or if the constraint is difficult to propagate. Slide is such
a general constraint because it helps encode and propagate many sequencing

SoftRegular

Regular

Slide

SoftSlide

Fig. 2. The relationship between Slide, SoftSlide, Regular, and SoftRegular
constraints.

constraints [3]. Other examples of general constraints are Range and Roots
[2]. They are shown to be very useful for reformulating diverse global constraints
appearing in counting and occurrence problems.

One of the simplest ways to soften the Slide constraint is to relax the number
of times the slid constraint holds on the sequence. This gives the CardPath
constraint. CardPath(C, [X1, . . . , Xn], N) holds iff C holds N times on the
sequence [X1, . . . , Xn] [1]. Interestingly, the CardPath constraint can itself be
reformulated as a Slide constraint [3]. We can therefore use the propagator for
Slide to propagate the CardPath constraint. In fact, this reformulation is the
first and only method proposed so far in the literature for enforcing GAC on
CardPath.

9 Conclusions

To model real-world constraint problems and to solve them efficiently, many
global constraints have been proposed in recent years. In this paper, we have
focused on two important global constraints, Slide and Regular which are
useful for encoding and propagating a wide range of rostering and sequencing
problems. Since problems are often over-constrained, we have also studied soft
forms of these global constraints. We showed that the different forms of Slide
and Regular can all be reformulated as each other. We also showed that re-
formulation is an effective method to incorporate such global constraints within
an existing constraint toolkit. This study has provided insight into the close
relationship between these two important global constraints.

The relationships depicted in Figure 2 demonstrate the close links between
the hard and soft versions of the Slide and Regular constraints. An arrow
from a constraint Ci to a constraint Cj indicates in the figure that Ci can be
reformulated as Cj . A thick arrow is either due to findings in this paper or due to
the fact that a soft form of a constraint can be used to propagate its hard form
by not allowing any violation. The dashed arrows can be obtained by transitivity

from the thick arrows. For instance, given that Regular can be reformulated
as Slide which can itself be reformulated as SoftSlide, we can derive that
Regular can be reformulated as SoftSlide.

References

1. N. Beldiceanu and M. Carlsson. Revisiting the cardinality operator and introducing
cardinality-path constraint family. In Proc. of ICLP’01, LNCS 2237,pp. 59–73.
Springer, 2001.

2. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The range and roots
constraints: Specifying counting and occurrence problems. In Proc. of IJCAI’05,
pp. 60–65. Professional Book Center, 2005.

3. C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Slide Meta-
Constraint. Comic technical report, 2006 (available at http://homes.ieu.edu.tr/ bh-
nich/comic/).

4. Burke, E. K., Causmaecker, P. D., Berghe, G. V., and Landeghem, H. V. The state
of the art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004.

5. M. Maher. Analysis of a global contiguity constraint. In Proc. of the CP’02
Workshop on Rule Based Constraint Reasoning and Programming, 2002.

6. G. Pesant. A regular language membership constraint for finite sequences of vari-
ables. In Proc. of CP’04, LNCS 3258, pp. 482–295. Springer, 2004.

7. T. Petit, J-C. Régin, and C. Bessière. Specific filtering algorithms for over-
constrained problems. In Proc. of CP’01, LNCS 2236, pp. 451–463. Springer,
2001.

8. C.-G. Quimper and T. Walsh. Global grammar constraints. In Proc. of CP’06,
LNCS 4204, pp. 751–755. Springer, 2006.

9. W-J. van Hoeve. A hyper-arc consistency algorithm for the soft alldifferent con-
straint. In Proc. of CP’04, LNCS LNCS 3258, pp. 679–689. Springer, 2004.

10. W-J. van Hoeve, G. Pesant, and L-M. Rousseau. On global warming : Flow-based
soft global constaints. Journal of Heuristics, 12(4-5):347–373, 2006.

11. W-J. van Hoeve, G. Pesant, L-M. Rousseau, and A. Sabharwal. Revisiting the
sequence constraint. In Proc. of CP’06, LNCS 42024, pp. 620–634. Springer, 2006.

12. A. Zanarini, M. Milano, and G. Pesant. Improved algorithm for the soft global car-
dinality constraint. In Proc. of CP-AI-OR’06, LNCS 3990, pp. 288–299. Springer,
2006.

