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Abstract
Many problems in computational sustainability in-
volve constraints on connectivity. When designing
a new wildlife corridor, we need it to be geograph-
ically connected. When planning the harvest of a
forest, we need new areas to harvest to be con-
nected to areas that have already been harvested so
we can access them easily. And when town plan-
ning, we need to connect new homes to the existing
utility infrastructure. To reason about connectiv-
ity, we propose a new family of global connectivity
constraints. We identify when these constraints can
be propagated tractably, and give some efficient,
typically linear time propagators for when this is
the case. We report results on several benchmark
problems which demonstrate the efficiency of our
propagation algorithms and the promise offered by
reasoning globally about connectivity.

1 Introduction
Many problems involve seeking a subgraph of a larger graph
and connectivity is one of the most natural property to ask
for in such subgraphs. It is, in particular, an essential prop-
erty in several problems related to ecosystem design. For in-
stance, in the problem of selecting sites to be included in re-
serve networks, fragmented networks are undesirable [Briers,
2002], and many other problems, such as forest harvesting or
town planning involve this criterion. The problem of design-
ing connected wildlife corridors has received a lot of atten-
tion recently, with a multi-commodity flow encoding [Con-
rad et al., 2007; 2012], a subtour elimination scheme [Dilk-
ina and Gomes, 2010], and a hybrid local search method [Le-
Bras et al., 2013]. Whilst these methods are very efficient,
a constraint programming approach has a lot to offer in ad-
dition. In particular, it can very easily be extended to incor-
porate additional constraints. For instance, establishing pro-
tected areas while taking into account socio-economic con-
straints [Polasky et al., 2005], designing incentives for private
landowner to contribute to “ecosystem services” [Polasky et
al., 2014] both require connectivity in conjunction with other
constraints and criteria. However, standard constraint pro-
gramming toolkits do not support connectivity constraints,
and the alternative of using a decomposition is very unlikely

to be efficient. The flow decomposition proposed in [Conrad
et al., 2007] has a Ω(|E||V |) space complexity and hinders
propagation. Moreover such decompositions are not handled
efficiently by CP solvers [Bessiere et al., 2009]. A decompo-
sition enforcing domain consistency is even larger (Ω(|V |4))
and hence impractical. We therefore propose a global con-
straint to ensure that a subset of vertices induces a connected
subgraph in O(|E|) time and space complexity. Furthermore,
we also introduce efficient algorithms to compute minimal
explanations for these global constraints, thus making it pos-
sible to use this constraint in clause learning solvers.

In Section 3, we consider the constraint simply ensuring
that the subgraph is connected. We show that domain con-
sistency can be enforced on this constraint with a worst case
time complexity linear in the size of the graph and a mini-
mal explanation can be computed in the same worst case time
complexity. Next, in Section 4, we consider the case where
a cost function is associated to vertices and there is an upper
bound on the overall cost of the subgraph. This generaliza-
tion is NP-hard. However, we propose incomplete filtering
rules that are very efficient in practice. Then, in Section 5, we
consider the case where we need to find several subgraphs.
This case is also NP-hard in general, even for two shapes.
However, we propose implied constraints for the case of two
shapes in planar graphs. Finally, in Section 6, we test empiri-
cally the algorithms and implied constraints that we introduce
and show that they are efficient in practice.

2 Background
We denote by G = (V,E) a graph with vertices V and edges
E. G[S] is the subgraph induced by the set S ⊆ V . A con-
straint satisfaction problem (CSP) involves finding an assign-
ment of values to its variables such that all its constraints are
satisfied. Variables take values in a finite domain of values.
In the family of constraints that we consider, the subset of
vertices of a subgraph is represented as an array of Boolean
variables. For each vertex v ∈ V , we have a Boolean variable
that takes the value 1 if v is in the subgraph and the value 0
if it is not in the subgraph. To simplify the notations, how-
ever, we view this array as a set variable S, that is, a variable
whose values are sets that must be supersets of a lower bound

¯
S and subsets of an upper bound S̄. We say that a set s is a
support iff

¯
S ⊆ s ⊆ S̄ and G[s] is connected. We say that

S is domain consistent (DC) iff
¯
S is the intersection of all



supports and S̄ is the union of all supports s.
Several modern CP solvers employ clause learning, a tech-

nique that has had great success in SAT solvers [Marques-
Silva et al., 2009]. In order to be used with clause learning,
a propagator needs to label each pruned value by a clausal
explanation [Katsirelos and Bacchus, 2005]. Clauses can in-
clude literals corresponding to assigning a value, V = a, or
pruning a value V 6= a ≡ ¬(V = a) for finite domain vari-
ables and literals corresponding to including a value a ∈ S,
or excluding it a /∈ S ≡ ¬(a ∈ S) for set variables. A clausal
explanation is correct with respect to domain consistency on
a constraint c if making all its literals false makes c domain
inconsistent. It is minimal if no strict subset is correct.

3 Single Shape Connectivity
In this section, we consider the constraint that ensures that a
set of vertices is connected in the graph given as parameter.
Definition 1 (CONNECTIVITY) Let G be a graph and S a set
variable: CONNECTIVITY[G](S) ⇐⇒ G[S] is connected

3.1 Propagation
Algorithm 1 enforces domain consistency on the constraint
CONNECTIVITY. The algorithm works in two phases. In

Algorithm 1: DC on CONNECTIVITY (G,S)

if ∃v ∈ V such that v ∈
¯
S then

1 C ← ConnectedComponent(v,G[S̄]);
2 foreach v ∈ V \ C do S̄ ← S̄ \ {v} ;
3 G← G[S̄];
4 PG, AG, pred← Hopcroft Tarjan(G);

ET ← ∅; V T ← PG ∪ {{a} | a ∈ AG};
5 foreach v ∈ S̄ do

e← {v, pred[v]};
if e ∩AG 6= ∅ then

if ∃p ∈ PG s.t. e ⊆ p then
foreach a ∈ e ∩AG do add ({a}, p) to ET ;

else if e ⊆ AG then add ({v}, {pred[v]}) to ET ;

6 V T ← prune tree(V T , ET , G,
¯
S);

foreach v ∈ V T do
7 if v ∈ AG then

¯
S ←

¯
S ∪ {v};

the first, we simply remove the vertices that are not reach-
able from any vertex in

¯
S (Line 2). We compute a maximal

connected component C of G[S̄] including any one vertex v
in

¯
S and remove from S̄ any vertex that does not belong to

this connected component. After this phase, notice that S̄
is a support since G[S̄] is connected. Therefore this is suf-
ficient to detect disentailment. We can therefore set G to
G[S̄] (Line 3). In the second phase, we use the notions of bi-
connected component and articulation point. A biconnected
component of G is a set of vertices p such that for any vertex
v ∈ p, G[p \ {v}] is connected. A vertex is an articulation
point if and only if removing it increases the number of con-
nected components. Let p1 and p2 be two distinct maximal
biconnected components, it follows that |p1 ∩ p2| ≤ 1, other-
wise p1 ∪ p2 is biconnected and larger than p1 and p2.
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Figure 1: In all figures, black nodes are in
¯
S, white nodes

are not in S̄ and gray nodes are undecided. A graph (left).
Articulation points, delimiting biconnected components, are
doubly circled. The corresponding tree T (G) (right). Pruned
branches are grayed, elements in

¯
S are in bold face. All re-

maining articulation points (v1, v3, v4) must be in S.

Hopcroft and Tarjan’s algorithm [Hopcroft and Tarjan,
1973] computes all articulation points in O(|V | + |E|), that
is O(|E|) since G[S̄] is connected. It explores the graph
depth-first and maintains, for each vertex v, the lowest depth
of neighbors of all descendants of v in the depth-first-search
tree, called the lowpoint. A vertex v is an articulation point if
and only if it has a child u in the dfs such that lowpoint[u] ≥
depth[v]. Indeed, it means that the only path from u to ver-
tices with lower depth in the dfs goes through v hence re-
moving v would cut the graph. By very slightly modifying
Hopcroft and Tarjan’s algorithm to record for each vertex v
also the vertex whose depth is recorded as lowpoint[v], we
get the collection PG of G’s biconnected components.

A call to Hopcroft and Tarjan’s algorithm (Line 4) re-
turns the collection of sets PG, the set of articulation points
AG of G and a table of predecessors pred corresponding
to the depth-first-search tree. Next, in Loop 5, we build a
tree T (G) = (V T , ET ) whose vertices stand for articulation
points and biconnected components of G. (see Fig. 1):

• There is a vertex labeled p per biconnected component
p ∈ PG and one labeled {a} per articulation point a in
G, i.e., V T = (PG ∪ {{a} | a ∈ AG});

• There is an edge ({a}, p) if the articulation point a is in
the biconnected component p, and an edge ({a1}, {a2})
if the articulation points a1 and a2 share an edge but do
not belong to the same biconnected component.

Observe that in T (G) every edge involves at least an articula-
tion point of G and it is indeed a tree, otherwise removing an
articulation point in a cycle of T (G) would not disconnect G.

Lemma 1 Let x and y be two vertices of T (G) such that x∩

¯
S 6= ∅ and y ∩

¯
S 6= ∅, then every articulation point a of G

such that {a} is on a path from x to y in T (G) must be in S.

Proof: Suppose that there is an elementary path from x to y
in T (G) going through {a} where a is an articulation point
of G. By construction of T (G), there is no path in G from
any vertex in x to any vertex in y that does not go through



a. Therefore, if vertices of both x and y are in the connected
component, then a must also be in the component. �

A corollary of Lemma 1 is that once we have pruned T (G)
until every leaf x is such that x ∩

¯
S 6= ∅, we know that the

same applies to every node of the tree that corresponds to an
articulation point of G. It follows that for every articulation
point a such that {a} remains in T (G) after pruning, we can
set a ∈

¯
S. For reasons of space, we do not give the pseudo

code for the procedure prune tree. It iteratively removes
nodes of degree 1 whose label contains no vertex in

¯
S.

Theorem 1 Algorithm 1 achieves DC in O(|E|) time

Proof: The correctness of the pruning is straightforward for
vertices that are not connected to G[S̄] (Line 2), and proved
by Lemma 1 for articulation points (Line 7). It remains to
show completeness. We consider a vertex v ∈ S̄ \

¯
S and

show that there exists a solution where v ∈ S and another
where v 6∈ S. Since S̄ is a single connected component, it is
a solution and it accounts for the case v ∈ S. Now consider
first the case where v is not an articulation point. Then v be-
longs to a single biconnected component p of G[S̄]). We can
exclude v from S and by definition of a biconnected compo-
nent, connect all remaining vertices. Therefore S̄ \ {v} is a
solution. Lastly, suppose that v is an articulation point. Since
it has not been added to

¯
S in Line 7 then it must have been

removed from T (G). Moreover, the union of the vertices of
the residual tree is a superset of

¯
S that are connected in G.

Therefore it is a solution where v 6∈ S. �

3.2 Explanation
We need to explain two types of pruning: First, in Line 2
of Algorithm 1, when the current maximal subgraph is not
connected, we arbitrarily choose a node s from one connected
component and exclude the nodes of all other components
from S. Given a node t from another component, we compute
a set of nodes F such that F ∩ S̄ = ∅ and every path linking
s to t has a node in F . In order to do so, we do a breadth first
search from s stopping at nodes in V \ S̄. Let B denote the
set of leaves of this BFS. We then perform another BFS from
t until we reach a node in B. The set of leaves of this second
BFS is F . The explanation clause is then:

s 6∈ S ∨ t 6∈ S ∨
∨
u∈F

u ∈ S (1)

Second, in Line 7 of Algorithm 1, articulation points are
added to

¯
S. The explanation is similar, except that we start

from an articulation point v. We arbitrarily choose two nodes
s, t ∈

¯
S by exploring the tree T (G) breadth first from

{v}. Then the first BFS in G stops when exploring nodes
in (V \ S̄)∪ {v} to return a set of leaves B. The second BFS
is unchanged, and the explanation is :

s 6∈ S ∨ t 6∈ S ∨ v ∈ S ∨
∨
u∈F

u ∈ S (2)

Theorem 2 Explanations 1 and 2 are correct and minimal.

Proof: All paths from s to t go through a vertex in F , so
if these vertices are removed from G, then s and t are dis-
connected, hence explanation 1 is correct. The argument for

explanation 2 is nearly the same. By definition of articulation
points, any path from s to t in G goes through a node in F or
through v, hence removing F ∪{v} disconnects s and t in G.

Now consider any vertex u ∈ F , (resp. u ∈ F ∪ {v}). If
we remove from G all vertices in F (resp. F ∪{v}) except u,
there exists a path from s to t in G. This path is a support for
the constraint, hence explanations 1 and 2 are minimal. �

4 Weighted connectivity
We now consider the weighted version of the constraint:

Definition 2 (WEIGHTED-CONNECTIVITY) Let G be a
graph, S a set variable, W an integer variable and ω : V 7→
N a mapping from vertices to non-negative integers.

WEIGHTED-CONNECTIVITY[G,ω](S,W ) ⇐⇒
G[S] is connected ∧

∑
v∈S

ω(v) ≤W

Deciding the existence of a support in the constraint
WEIGHTED-CONNECTIVITY is NP-complete as it solves
the STEINER TREE problem. Hence, enforcing DC is NP-
hard, as NP-hardness of support implies NP-hardness of DC
[Bessiere et al., 2007]. Therefore, we do not try to achieve
DC, but propose an incomplete algorithm taking into account
the cost of the connected component.

4.1 Propagation
The main difference with Algorithm 1 lies in the first step
(Line 1). Instead of computing a connected component, we
compute the subset of vertices for which there exists a path to
every vertex in

¯
S that is short enough (see Fig. 2a and 2b).

Moreover, we bound the minimum value min(W ) by∑
v∈

¯
S ω(v). From now on, we consider the graph G[S̄].

The length of a path in this graph is defined as the sum of
the weights of the vertices in this path that are not in

¯
S. It

follows that if a vertex v is in the subgraph induced by S,
then the total weight of this subgraph is at least min(W ) (the
weights of vertices in

¯
S) plus the maximum over all mini-

mum lengths of paths between v and any element of
¯
S. We

run Dijkstra’s algorithm once for each vertex u ∈
¯
S to com-

pute the shortest path from u to all other vertices, which can
be done in O(|E|+ |V | log |V |).1 Let s(u→ v) be the length
of the shortest path to vertex v. For every vertex v such that
s(u→ v) + minW > max(W ), we remove v from S̄. This
step can thus be done in O(|V ||E|+ |V |2 log |V |) time.

4.2 Explanation
In order to explain this pruning, we use an algorithm similar
as in the unweighted case, however again using Dijkstra’s al-
gorithm instead of a simple BFS. Let u ∈

¯
S, v ∈ S̄ be two

vertices such that the length s(u → v) of the shortest path in
G w.r.t. the weight function ω is greater than max(W ).

We compute a cut F defined as follows: F ∩ S̄ = ∅ and
every path in G from u to v of length less than or equal to
max(W ) − min(W ) has a vertex in F . We first run Dijk-
stra’s algorithm on G[S̄ ∪B], where B is the set of vertices

1We used a binary heap hence a O(|E| log |V |) time complexity.
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(c) Explanation of v11 6∈ S.

Figure 2: An example of propagation & explication. 2a: Data, labels are costs. 2b: Trace of Dijkstra’s algorithm, labels
are shortest paths from v1 on G[S̄]. Since the shortest paths from v1 to v3, v7 and v11 are all longer than 11, these vertices
will be pruned from S̄. 2c: Explanation of the pruning v11 6∈ S. Dijkstra’s algorithm is run from v11 until going over
the maximum length, or reaching a vertex in {v5, v9, v12}. Only the path through v5 is short enough (s(v1 → v5) = 6,
s(v11 → v5)− ω(v5) = 5), so the explanation clause will be W > 11 ∨ v5 ∈ S ∨ v1 6∈ S ∨ v11 6∈ S.

in G\G[S̄] adjacent to vertices in G[S̄] to compute the short-
est paths from u to every node in B. Next, we run Dijkstra’s
algorithm again, however from v and on the graph G. In this
run, whenever we reach a node w ∈ B, we add it into the cut
F if s(u→ w) + s(v → w)−ω(w) + min(W ) ≤ max(W ).
When w is added to the cut we do not explore further through
that vertex. Moreover, since the reachability depends on the
maximum cost, we must add the literal “W > max(W )”.

The final explanation is W > max(W ) ∨ u 6∈ S ∨ v 6∈
S ∨

∨
w∈F w ∈ S (see Fig.2c). As in the unweighted case,

explaining the second type of pruning is done in the same
way: by adding the articulation point to the set B.

The amortized worst case time complexity to explain this
pruning is then O(|V ||E|+ |V |2 log |V |) down a branch.

5 Multiple Subgraphs
Finally we consider the case where we want to ensure that
several disjoint subgraphs are connected.

Definition 3 (MULTICONNECTIVITY) Let G = (V,E) be a
graph, {Xi | i ∈ V } a set of variables and R a set of integers.

MULTICONNECTIVITY[G,R](X1, . . . , Xn) ⇐⇒
∀j ∈ R, G[{i | Xi = j}] is connected

Clearly we can decompose MULTICONNECTIVITY using
CONNECTIVITY, but it hinders propagation since enforcing
DC on MULTICONNECTIVITY is NP-hard [Karp, 1975].

5.1 General graphs
We study the following problem, a special case of finding
disjoint paths which is not covered by the results in [Karp,
1975] or [Fortune et al., 1980].

NAME: TWO-SHAPE-CONNECTIVITY
INPUT: A connected graph G = 〈V,E〉 and a labeling

of the vertices m : V → {0, 1, U}
PROBLEM: Does there exist a labeling m′ : V →

{0, 1, U} of the vertices so that m′(v) = m(v)
if m(v) ∈ {0, 1} and the components C0, C1

with Ci = {v | m′(v) = i} are connected?
Let m[i] be the domain of a variable Xi, it can be modeled

as: MULTICONNECTIVITY[G, {0, 1}](Xi | i ∈ V )

Theorem 3 TWO-SHAPE-CONNECTIVITY is NP-hard.

Proof: We reduce from an instance of 3-SAT with n variables
and m clauses. We first introduce two gadgets, 6=(v1, v2)
and ∨(v1, v2, v3). The 6=(v1, v2) gadget is a complete bipar-
tite graph with partitions {l0, l1, r0, r1}, {v1, v2}. We have
m(l0) = m(r0) = 0, m(l1) = m(r1) = 1 and m(v1) =
m(v2) = U . This gadget ensures that m′(v1) 6= m′(v2).
Suppose wlog m′(v1) = m′(v2) = 1. Then l0 is discon-
nected from r0, which is not permitted. For the same reason,
vertices v1, v2 cannot be both labeled 0. In order to com-
bine many 6= gadgets in one graph, we need to make sure
that the resulting C0, C1 partitions are connected. To do this,
we introduce globally two distinguished vertices g0, g1 with
m(g0) = 0,m(g1) = 1 and connect g0 with the vertex l0 and
g1 with l1 in each 6= gadget. The ∨(v1, v2, v3) gadget ensures
that m(vi) = 1 for at least one of v1, v2, v3. It is a com-
plete bipartite graph with partitions {l, r} and {v1, v2, v3}
and m(l) = m(r) = 1. In order for l and r to be connected,
at least one of v1, v2, v3 must be in the component C1.

From the 3-SAT formula, we construct a graph with n in-
stances of the 6= gadget and m instances of the ∨ gadget. In
particular, for each variable xi, we have two vertices xi and xi

and the gadget 6=(xi, xi). For each clause (l1, l2, l3), we have
an instance of the gadget ∨(l1, l2, l3), where li is a literal, i.e.
either xi or xi. From a labeling m′ we construct a solution of
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Figure 3: Examples where disentailment is not found by a de-
composition into CONNECTIVITY. White vertices are labeled
0, black vertices are labeled 1 and gray vertices are unlabeled.

the 3-SAT formula with xi = 1 ⇐⇒ m′(xi) = 1. Because
of the ∨ gadgets, at least one of the literals of each clause will
be assigned 1, hence the formula will be satisfied. In the other
direction, we use the same rule to construct a labeling from
a solution of the 3-SAT formula. By construction, the ver-
tices in the 6= gadgets will be connected. Since each clause
is satisfied, one of the literal vertices of each ∨ gadget will
be labeled with 1. Hence, the vertices l and r of that gadget
will be connected to each other through that literal vertex and,
since that literal vertex appears in a 6= gadget, they are also
connected to the rest of the C1 partition. �

5.2 Two Shapes in Planar Graphs
The conjunction of an arbitrary number of CONNECTIVITY
constraints is known to be NP-hard even on planar graphs
[Lynch, 1975], but fixed parameter tractable on the number
of terminals [Reed et al., 1991]. It is not known whether this
remains the case for two constraints on a planar graph. We
show here that decomposition into two CONNECTIVITY con-
straints for the case of two shapes will hinder propagation.
Consider the graphs in figure 3. In both examples the connec-
tivity constraints are DC, but the conjunction is disentailed.
In the example on the left, the border is assigned with pattern
1/0/1/0. This means that traversing the border we see the label
1, then 0, then 1 and then 0 again, potentially with repetitions
or with unlabeled vertices in between. In the example on the
right, the same pattern appears in the cycle v9, vA, vB , vC .

In order to detect disentailment, one must forbid the pattern
1/0/1/0 in every face of a planar graph. This can be done, for
example, with a REGULAR constraint forbidding two alter-
nations between 1 and 0, which requires 8 states, hence can
be enforced in linear time in the size of the face. Since an
edge belongs to at most two faces, enforcing DC on all face
constraints can be done in time O(|E|). However, having the
face constraints is not sufficient for detecting disentailment.
We do not show counterexamples for lack of space.

6 Experimental Results
In this section we report the results of a series of experiments
on three benchmarks involving connectivity constraints.

Wildlife corridor First, we test a hybrid CP/SAT approach
using the constraint WEIGHTED-CONNECTIVITY for the
wildlife corridor problem described in [Conrad et al., 2012].

Table 1: Improvement w.r.t Gomes et al upper bound

size 5 terminals 7 terminals 10 terminals
imp opt time imp opt time imp opt time

8 7 100 0.10 10 100 0.20 16 100 0.49
9 7 100 0.44 9 100 1.00 16 100 4.32

10 8 100 3.63 7 100 9.46 16 100 39.17
11 8 95 4.56 14 90 33.29 17 75 75.33
12 5 95 7.64 14 85 36.70 8 30 53.88
13 4 75 19.42 6 50 66.53 6 25 138.66
14 9 75 57.71 4 25 57.50 2 10 139.73
15 5 65 26.50 1 20 20.99 2 0 -

We implemented all techniques with minicsp 2 and ran exper-
iments on a cluster of 48-core Opteron 6176 nodes at 2.3 GHz
with 378 GB RAM available. Given a graph representing a
region, where vertices stand for parcels, a subset of parcels
are wildlife reserves. The goal is to design a corridor so
that all reserves are connected while minimizing a (positive)
cost and/or maximizing a (positive) utility. In [Conrad et al.,
2012], the problem is solved in two phases. First, a Steiner
tree of minimal cost is obtained by computing all pairs short-
est paths and selecting those connecting each reserves to the
best “center point”. This method is very efficient, however it
is optimal only for three reserves or less. Second, the utility
maximization problem is solved with a MIP, using the Steiner
tree above to either guide search, or to fix the selected parcels
into the solution.

Let G = (V,E) be a graph describing the region with
|V | = n, {r1, . . . , rk} ⊆ V a set of reserves and ω a
cost function for parcels. We have a single set variable S
such that

¯
S = {r1, . . . , rk} and S̄ = V , an integer vari-

able W with domain [0, . . . ,
∑

v∈V ω(v)]. The first phase
corresponds to minimizing W subject to a single constraint:
WEIGHTED-CONNECTIVITY[G,ω](S,W ).

For the second phase, the same constraint can be used to
ensure that the corridor is connected and that its cost is be-
low a given budget (derived from the min cost solution by
adding a certain slack). The utility can be maximized with a
simple inequality constraint. However, this is not competitive
with Gomes et al. when the slack grows. Indeed, for a large
slack, the WEIGHTED-CONNECTIVITY is not so critical and
the communication with the inequality constraint taking care
of the utility is not as good as it is in MIP. However, our ap-
proach can be useful in the first phase when we have more
than three reserves. We used the generator of Gomes et al.
to create 20 random instances of 24 classes parameterized by
the order of the grid graph (in [8, 15]) and the number of re-
serves (in {5, 7, 10}). We report in Table 1, for each class of
20 instances, the improvement of the cost with respect to the
upper bound found by Gomes et al. (imp), the percentage of
instances for which optimality was proven (opt), and the av-
erage cpu time for computing the proofs when it was possible
within the cutoff of 300 seconds (time).

We can clearly see that the upper bound can be significantly
improved. However, the computational time grows both with

2http://www.inra.fr/mia/T/katsirelos/
minicsp.html

http://www.inra.fr/mia/T/katsirelos/minicsp.html
http://www.inra.fr/mia/T/katsirelos/minicsp.html


Table 2: Algorithms comparison on Ecosystem design. Best results in bold face

n
connect connect∗ weighted weighted∗ connect+face connect+face∗ weighted+face weighted+face∗

opt obj. time opt obj. time opt obj. time opt obj. time opt obj. time opt obj. time opt obj. time opt obj. time

10
re

s.
,5

fa
rm

s 8 100 1104 0.9 20 1104 131.1 100 1104 0.8 65 1104 89.5 100 1104 1.0 0 1104 - 100 1104 0.7 20 1112 10.5
9 100 1228 54.6 0 1229 - 100 1228 15.8 20 1231 74.4 100 1228 50.6 0 1265 - 100 1228 14.9 5 1252 22.8

10 30 1368 59.9 0 1390 - 70 1370 86.1 0 1386 - 30 1378 74.7 0 1411 - 75 1362 96.8 0 1413 -
11 5 1489 291.2 0 1528 - 35 1506 153.2 0 3376 - 0 1475 - 0 1540 - 20 1562 214.9 0 1470 -
12 5 1707 11.6 0 1668 - 15 1897 94.2 0 5037 - 5 1639 23.5 0 1655 - 10 1911 18.7 5 1686 94.1
13 0 2289 - 0 3516 - 0 2815 - 0 7888 - 0 2255 - 0 2200 - 0 2878 - 0 2242 -

5
re

s.
,1

0
fa

rm
s 8 100 901 0.6 35 901 105.7 100 901 0.3 85 901 26.3 100 901 0.5 10 931 100.0 100 901 0.3 70 903 9.7

9 100 990 6.5 0 1002 - 100 990 5.3 75 990 65.7 100 990 6.8 0 1014 - 100 990 2.7 45 1000 46.2
10 70 1092 39.5 0 1091 - 100 1037 37.2 30 1077 104.6 80 1038 86.0 0 1126 - 100 1037 31.5 20 1055 68.2
11 10 1222 60.3 0 1205 - 60 1188 83.8 20 1438 55.3 10 1242 109.0 0 1300 - 65 1199 112.5 5 1218 283.2
12 10 1484 152.0 0 1382 - 20 1584 119.6 10 4052 15.5 0 1496 - 0 1439 - 30 1576 63.0 20 1330 170.4
13 0 1713 - 0 3034 - 5 2128 135.8 0 7934 - 0 1687 - 0 1595 - 5 2082 288.3 0 2010 -

the number of terminals and with the size of the graph.

Ecosystem design. In order to compare the various algo-
rithms that we have introduced, we use a problem similar to
wildlife corridor design. However, besides reserves, we also
have parcels that correspond to agricultural activities (farms).
We want to compute a minimum cost connected wildlife cor-
ridor, but also to make sure that farms can be connected by
roads. We therefore have two set variables S and T standing
respectively for the set of parcels that are in the corridor, or
witness of a connection between farms. We first ensure that
a parcel can only account for one of these two cases, then we
post the following constraints: CONNECTIVITY[G](T ) and
WEIGHTED-CONNECTIVITY[G,ω](S,W ). The former en-
sures that the farms can be connected whilst the latter ensures
that the corridor is connected and links its cost with W . The
objective is to minimize the total cost of the corridor W .

We use 20 random instances of 12 classes, parameterized
by number of reserves and farms (10/5 and 5/10), and by the
order of the grid in [8, 13]. We compare four models. The
connectivity and cost minimization of the corridor is either
decomposed with a CONNECTIVITY and a linear inequal-
ity (connect) or modeled directly with the weighted version
(weighted). Then, in both cases, we try with or without face
constraints (denoted “+face”). We also report results with-
out clause learning (denoted by “∗”). We omit comparison
against a decompositon as it was several orders of magnitude
slower even in very small instances. We report the same data
in Table 2 as in Table 1, except for the objective value (obj.).
The first observation is that learning has a large positive im-
pact. In terms of number of instances solved to (proven) opti-
mality, the strongest propagation method (weighted+face) is
the best. However, when the size of the instances grows and
finding the optimal solution within the time cutoff becomes
difficult, the lower time complexity of the non-weighted vari-
ant can be more beneficial than the extra pruning of the
weighted variant. The face constraints, however, are cheap
and nearly always beneficial.

Clueless Puzzles Clueless Puzzles were proposed by But-
ters, Henle, Henle, & McGaughey as a mathematical chal-

lenge.3 The goal is to design Sudoku-like puzzles without nu-
merical clues. The answer must be a latin square. However,
there are no pre-filled cells and no extra ALLDIFFERENT con-
straints. Instead, the grid is partitioned into regions of equal
sum (see examples in Figure 4). Since the solution must form
a latin square, we can deduce that, for a puzzle of order n the
sum in each of the m regions equals n2(n + 1)/(2m). We
model the problem of generating puzzles as follows:

To ensure that the puzzle has a solution we use n2 integer
variables with domain {1, . . . , n}, and 2n ALLDIFFERENT
constraints to ensure we have a latin square. Next, to obtain a
partition into regions, we use m set variables whose elements
are the cells of the grid. We post that the scalar product of
the characteristic function of each set variable with the latin
square is equal to n2(n + 1)/(2m). Moreover, they must be
disjoint, their union must cover the whole grid, and of course
they must be connected. Notice that this model does not guar-
antee that the puzzle will have a single solution, which is a
necessary feature. Indeed, this problem is not in NP, and thus
is unlikely to be formulated as a simple CSP. We therefore
check this property once a feasible puzzle is generated (by at-
tempting to find a different solution), and continue searching
when this does not hold. Using this simple program we were

Figure 4: Examples of new puzzles found by the CP model.

able to generate several new instances, for classes (〈n,m〉)
of puzzles for which known solutions already exist (such as
〈4, 2〉, 〈5, 2〉, 〈5, 5〉, 〈6, 9〉 and 〈6, 14〉), but also for entirely
new classes: 〈6, 6〉, 〈6, 7〉 and 〈7, 7〉 (see examples in Fig. 4).

3http://www.math.smith.edu/˜jhenle/clueless

http://www.math.smith.edu/~jhenle/clueless


7 Conclusions
We have studied a family of constraints to reason about con-
nectivity that are useful in a range of problems in compu-
tational sustainability. First, we showed that one can en-
force domain consistency and compute a minimal explana-
tion for the pruning in O(|E|) time for a basic connectiv-
ity constraint. Second, we proposed an incomplete algorithm
to take weights into account since enforcing DC in this case
is NP-hard. Third, we showed that partitioning into several
connected subgraphs is intractable, but proposed efficient im-
plied constraints for the case of two subgraphs of a planar
graph. Finally, we empirically tested our algorithms on sev-
eral benchmarks and showed that they can be practical and
have promise for a wide range of problems.
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