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Abstract

We report on the application of the HR program (Colton,
Bundy, & Walsh 1999) to the problem of automatically in-
venting integer sequences. Seventeen sequences invented by
HR are interesting enough to have been accepted into the En-
cyclopedia of Integer Sequences (Sloane 2000) and all were
supplied with interesting conjectures about their nature, also
discovered by HR. By extending HR, we have enabled it to
perform a two stage process of invention and investigation.
This involves generating both the definition and terms of a
new sequence, relating it to sequences already in the Encyc-
lopedia and pruning the output to help identify the most sur-
prising and interesting results.

I ntroduction

An integer sequence is an ordered set of integers such as the
square numbers: 1,4,9,16, ... Integer sequences arise in
many area of mathematics, and comprise an important sub-
ject area. The Encyclopedia of Integer Sequences (Sloane
2000) is an on-line repository of around 54,000 sequences
collected over 35 years by Neil Sloane, with contributions
from many mathematicians. To allow a sequence into the
Encyclopedia, Sloane stipulates that it must be an infinite
sequence of positive integers which is well defined and in-
teresting. This rules out any randomly generated sequences
which have no formula and many dull sequences which
have no interesting features. Each sequence is given an ‘A’-
number which uniquely identifies it within the Encyclope-
dia, for instance the square numbers have number A000290.

We have used the HR program (Colton, Bundy, & Walsh
1999) to invent new integer sequences worthy of the Encyc-
lopedia. HR performs theory formation in domains such as
number theory, graph theory and group theory by inventing
concepts and making and settling conjectures. We present
here extensions to HR’s abilities in number theory. Firstly,
number theory concepts are presented as integer sequences,
eg. the concept of an integer being prime is converted into
the sequence of prime numbers. Next, taking advantage
of the natural ordering of integers, we have given HR new
ways to produce number theory concepts. Finally, we have
enabled HR to provide justification why a new sequence
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is worthy of the Encyclopedia by relating it to sequences
already in the Encyclopedia. Sometimes the relationships
found are surprising and non-trivial to prove which adds to
the interestingness of the new sequence. HR therefore em-
ploys a two step process to find new sequences:

e A sequence is invented by generating a definition and de-
termining the first terms of the sequence.

e The sequence is investigated by relating it to ones already
appearing in the Encyclopedia.

I nvention of Sequences
TheHR Program

HR is named after mathematicians Hardy (1877-1947) and
Ramanujan (1887-1920). It is designed to model how math-
ematical theories can be formed from only the most funda-
mental concepts of a domain, such as addition and multiplic-
ation in number theory. HR is supplied with (a) some ob-
jects of interest such as groups, graphs or integers (b) some
ways to decompose these into sub-objects, such as graphs
into nodes, and (c) some relations between the sub-objects,
such as nodes being adjacent.

Each initial concept is supplied with a data table of rows
which satisfy a predicate, and a definition for the predic-
ate. The first column of every data table contains objects of
interest, the other columns contain sub-objects or integers
calculated using the objects of interest and their sub-objects.
For example, the concept of divisors of integers is supplied
with the first data table in figure 1, where each row is an in-
teger and a divisor. The definition supplied is: [n,a] : a|n,
read “a divides n”, which is used when generating a defini-
tion for any concept based on divisors.

Given the initial concepts, HR uses general production
rules to turn one (or two) old concepts into a new one. For
instance, the “forall’ production rule finds objects where a
particular relation between its sub-objects is true in every
case, eg. if the relation is adjacency of nodes in graphs, the
concept of complete graphs is produced: every node is ad-
jacent to every other node. Each production rule generates
both a data table and a definition for the new concept, based
on the data tables and definitions of the old concepts. HR
uses seven production rules, each given in table 1 with a
brief description of the types of concepts they produce.
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Figure 1: re-invention of prime numbers

Figure 1 shows how the production rules can generate new
concepts: prime numbers are constructed using just two pro-
duction rules. Each production rule step is accompanied by
a parameterisation detailing exactly how the step is to oc-
cur. For example, parameters (2) for the size production
rule stipulate that for every object of interest, the number
of sub-objects in column 2 is to be counted. The paramet-
ers (2 = 2) for the split production rule tell it to keep rows
where column 2 contains value 2. Each production rule gen-
erates the set of all possible parameters for a given concept.

HR forms a theory using a heuristic search which builds
new concepts from the best old ones. To decide which con-
cepts are most worthy of development, HR has eight meas-
ures which calculate values based on the data table and con-
struction history of the concepts. A weighted sum of the
measures for each concept is used to order the concepts.
One measure is the complexity of the concept, which de-
termines how many concepts in total have been built upon
to produce the new concept. Concepts with high complexity
are often difficult to understand, so low complexity is usu-
ally favoured in the weighted sum. Often we impose a com-
plexity limit of around 10 to improve the comprehensibility
of the theory. The novelty measure of a concept calculates
how many times the categorisation produced by the concept
has been seen. For example, square numbers categorise in-
tegers into two sets: [1,4,9,...] and [2,3,5,...,]. If this
categorisation had been seen often, square numbers would
score poorly for novelty, and vice-versa.

To complete a cycle of mathematical activity, while
searching for concepts, HR also checks for empirically true
conjectures. For example, if a newly formed concept had
exactly the same data table as a previous one, HR would
make the conjecture that the definition for the old and new
concepts were equivalent. Furthermore, when working in
finite algebras, HR employs the Otter theorem prover (Mc-
Cune 1990) to attempt to prove the conjectures it makes. HR
then uses information from these proof attempts to re-assess
the concepts in its theory - if a concept is involved in many
interesting theorems, the interestingness of the concept is in-
creased. For a more detailed discussion of the HR program,
please see (Colton, Bundy, & Walsh 1999).

Extra Functionality for Integer Sequences

In number theory, we often start HR with only 3 concepts:
integers - the objects of interest, divisors of integers - the
sub-objects, and multiplication - relating two divisors if they
multiply to give the integer. We can also supply other fun-
damental concepts, such as digits of integers and addition.

Name Type of Concept Produced
Compose identifying objects or sub-objects
with properties from 2 concepts

Exists identifying objects which have at least
one sub-object with a particular property

Forall identifying objects for which all
sub-objects have a particular property

Match identifying objects with equal sub-objects

satisfying a relation.

Negate identifying objects or sub-objects which
do not have a particular property.

Size counts the number of sub-objects which
have a particular property.

Split identifying objects with a given number of

sub-objects with a particular property.

Table 1: the seven production rules used by HR

There is also a choice of which integers to supply as the ob-
jects of interest - using too many will slow down the theory
formation, but if we choose too few, many sequences which
are different will appear the same. For instance, if we use
the integers 1 to 5, the prime numbers, 2, 3, 5 will appear
the same as the non-squares, which are also 2, 3 and 5. In
practice, we use the numbers between 1 and around 15, de-
pending on the initial concepts chosen.

We have enabled HR to present concepts in number the-
ory as integer sequences. If the concept is a type of number,
for example square numbers, HR just outputs the integers of
that type in order. We call such sequences number type se-
guences. For concepts produced by the size production rule,
eg. the 7-function, which counts the number of divisors of
an integer, the sequence is formed from the values calculated
by the function for the integers 1, 2, 3, etc. in order. We call
these coefficient sequences. Other concepts may be special
types of sub-objects, for instance prime divisors. To present
these as sequences, HR takes each integer in turn and writes
down the sub-objects in numerical order. We call such se-
guences sub-object sequences.

We have also added 3 production rules which take advant-
age of the natural ordering of integers, but which can work in
any domain with a well defined ordering, eg. polynomials.
These were inspired by the transformations used to identify
sequences in the Encyclopedia (Bernstein & Sloane 1995)
and we hope to implement more such rules. The first new
production rule takes a coefficient sequence and finds those
integers setting the ‘record’ for it. For example, highly com-
posite numbers (sequence A002182) are those which set the
record for the 7-function - they have more divisors than any
smaller integer. The second production rule starts with a
number type sequence and takes the difference between suc-
cessive terms to produce a new sequence, a common way
of producing new sequences. The third production rule spe-
cialises the ‘extreme’ production rule introduced in (Steel
1999). It looks at the sub-objects for each integer and finds
either the largest or the smallest. This produces concepts
such as the greatest prime divisor.

When using HR to invent sequences, we turn off the em-



pirical conjecture making and proving abilities, because, as
discussed later, HR uses other methods to find conjectures.
As long as the user supplies correct definitions for the ini-
tial concepts, HR will generate definitions consistent with
the data for each concept. This therefore satisfies the cri-
teria that sequences submitted to the Encyclopedia be well
defined. HR can produce thousands of sequences, so there
is the possibility that some simple sequences missing from
the Encyclopedia can be identified and investigated.

I nvestigation of Sequences

When using HR to invent integer sequences, we set some
parameters for the search and construct a fixed number of
sequences, say 500. HR uses a local copy of the Encyc-
lopedia to identify which of its inventions are missing, and
orders them in terms of our complexity measure, so we can
investigate the least complex ones first. We then examine
the definitions of the sequences to choose a candidate for in-
vestigation and begin by using HR to calculate the terms up
to 1000. Then HR compares the sequence to those already
in the Encyclopedia and identifies any sequences which are
related (as described below) with our new sequence. If HR
finds such a relationship and we can prove it, we feel that
the criteria for interestingness has been satisfied and we will
probably submit the sequence to the Encyclopedia.

Unfortunately, the relationships identified can often be
based on only little empirical evidence and may not be true
in the general case. Also in many cases, there will be far
too many sequences to which our sequence is related. For
these reasons, we employ methods to prune the output, in an
attempt to increase the yield of correct, interesting results.
We first discuss the relationships that can be discovered,
and then the pruning methods employed. As an example
throughout, we use sequence A036436 which HR invented:
integers with a square number of divisors. There are 62
terms for this stored in the Encyclopedia thus:

[4036436] 1,6,8,10,14,15,21,22,26,27, ...,183

We first introduce some definitions. Note that these and
all further definitions refer not to the idealised sequence
(with an infinite number of terms), but rather to the se-
quences as they appear in the Encyclopedia, with a finite
number of terms.

e The nth term of sequence S is written .S,,, and we say that
a € Sifaisatermof S. The number of termsof S is
written |S].

e The range of a sequence, written range(.S), is the set of
integers between the smallest term in the sequence and the
largest term, inclusive.

For example, if .S is sequence A036436 above, then |S| =
62 and range(S) = {1,2,3,4,...,183}.
Relationships Between Sequences

The following are three ways in which two sequences, S and
T, can be related:

e SandT are digoint if no term of S isaterm of T'.

e S'is a subsequence of T if all the terms of S which are
in range(T') are also terms of T'. Similarly, S is a super-
sequence of 7' if T' is a subsequence of S.

o Letting &k be the smaller of |S| and |T'|, we say that S is
lessthan T'if, fori = 1,...,k,S; < T;. Similarly, S is
greater than 7' if T'is less than S.

Once a relationship has been noted, the user must inter-
pret the result as a mathematical conjecture. This is rarely
difficult to do because of the simple nature of the relation-
ships found. For example, HR notes that sequence A006881,
integers of the form pq for distinct primes p and ¢, is a sub-
sequence of A036436 above. This is interpreted as the fol-
lowing easy to prove fact: Any integer of the form pq has a
square number of divisors. Similarly, HR notes that prime
numbers are disjoint with A036436, which is interpreted as:
no prime has a square number of divisors, also easy to prove.

Pruning Methods

When investigating sequence A036436 above, HR returns
3605 sequences from the Encyclopedia which are sub-
sequences using the above definition. HR has many ways
to prune the output, which are either constraints on the out-
put sequence or constraints on both the sequence of interest
and the output sequence. Firstly, we would like to discard
sequences such as 1,1, 1,1, ... which appear in the Encyc-
lopedia for completeness, but are not particularly interesting.
To do this, we can measure the number of distinct terms and
discard any sequence with less than, say, 5 different terms.

If two sequences exist on different parts of the number
line, it is uncertain whether one is a subsequence of the other.
Our definition for subsequences admits those for which the
range is disjoint with the range of the sequence being in-
vestigated. For example, HR notes that sequence A030091
(prime numbers, p, for which p and p? have the same digits)
is a subsequence of A036436. This incorrect result occurs
because the range of A030091 is {94583, ...,1029647}
which is disjoint with the range of A036436. We may want
to discard sequences like this, which share no terms with
our sequence. In general, we may wish to discard sequences
which share only 1, 2, etc. terms with the new sequence. To
do this, HR measures the number of shared terms:

e The number of shared termsof S and T is calculated as:
{a:a€e S &acT}.

As an example, sequence A036436 has terms 1, 36 and
100 stored in the Encyclopedia. These are the only square
numbers in A036436, so the term overlap for this sequence
with the sequence of square numbers is 3. This measure
is very effective for pruning, eg. if we prune subsequences
which share less than 3 terms with A036436, this reduces
the number of results from 3605 to a more manageable 390.
This measure is easier to use and as effective as a similar
measure which determines the proportion, rather than the
number of terms from one sequence that appear in another.

When looking for supersequences of a given sequence
the, non-negative numbers: 0, 1,2, 3,4, ... are always a su-
persequence. Therefore, we may want supersequences to be
less dense on the number line than this, and HR uses the
following measure for the density of a sequence:



e The density of S is calculated as:
S|
[range(S)|

For example, there are 62 terms of A036436, distributed
over the range of the first 183 integers. Therefore the dens-
ity is 62/183 ~ 0.34. Often we choose a limit which is only
slightly larger than the density of the new sequence, as this
can produce interesting results.

When looking for sequences which are disjoint with the
sequence of interest, we want to avoid sequences where the
ranges are disjoint, as the sequences are bound to be disjoint.
Ideally the sequences should occupy roughly the same space
on the number line (but without any overlapping terms). HR
uses this measure for pruning trivially disjoint sequences:

e The rangeoverlap of S and T is calculated as:
|range(S) N range(T)|
|range(S) U range(T)|

For example, in the Encyclopedia, the prime numbers have
range {2,3,4,...,271} whereas sequence A036436 has

range {1,2,...,183}. The range overlap of these sequences
is therefore M = % ~ 0.67. If the minimum

range overlap is set to close to 1, then the range of one se-
quence must be nearly contained in the range of the other.
If this is true, yet the sequences are still disjoint, the result
may be interesting.

When looking for a sequence which is less than our
chosen sequence, it is desirable to look for sequences for
which the terms are similar. HR calculates the average dif-
ference of the terms in the sequence thus:

e Letting & be the smaller of | S| and |T'|, the difference of
S and T is calculated as:

1 k
EZ |Si = Ti
i=1

If the maximum difference limit is set to 1, on average the
nth terms of S and T will differ by only 1. Sequences so
close to the new sequence may be interesting.

The final way to prune sequences is to use semantic in-
formation from the Encyclopedia. Firstly, HR can discard
sequences with (or without) particular words in their defin-
ition. For example, when looking for subsequences of the
prime numbers, it is desirable to discard any sequence with
the word ‘prime’ in its definition, as these are usually ob-
vious specialisations of primes, such as odd primes. Also,
each sequence in the Encyclopedia has an associated set
of keywords, such as ‘core’ - which are considered fun-
damental, and ‘nice’ - which have some appealing quality.
HR can prune sequences if they have (or don’t have) par-
ticular keywords associated. For example, when we ask for
subsequences of sequence A036436 which are described as
‘nice’ in the Encyclopedia, the output is reduced from 3605
sequences to just 34, one of which is A007422: integers n,
where the product of the divisors of n is equal to n2. Like
many of the results HR finds for A036436, a little investiga-
tion shows that this is true in the general case.

Results

Although we mainly use HR to invent new integer se-
guences, we would hope that it also re-invents many clas-
sically interesting sequences. We ran HR for 10 minutes,
starting with the concepts of integers, divisors and multi-
plication. The search was depth limited to a complexity of
12, and we used the integers from 1 to 17. HR produced
233 sequences, of which 51 (22%) were sequences already
in the Encyclopedia. This included 14 of the Encyclopedia’s
120 “core’ sequences with fundamental notions such as odd,
even, square, cube and prime numbers being re-invented.

More complicated, non-core concepts were also re-
invented, such as A000961: prime powers and A005117:
square free numbers. Of the 51 re-invented sequences, 40
were found during the first minute, and so were less com-
plex than the remaining 11 found in the final 9 minutes.
This shows that less complex concepts are often more in-
teresting, which is why we use a depth limited search. It
also suggest more shallow searches using a variety of initial
concepts rather than deep searches, where the complexity of
the sequences makes them difficult to understand.

From all the number theory sessions so far, the total num-
ber of re-invented sequences is over 120. Certain sequences
are re-invented with non-standard definitions, such as the se-
quence of powers of 2, which HR defines as: integers with
only one odd divisor (eg. 1 is the only odd divisor of 1, 2,
4, 8, 16, etc. and all other integers have more odd divisors).
A tactic which can increase the yield of classically interest-
ing concepts is to identify the initial concepts and production
rules required to re-invent a well known concept, and restrict
the search to using only these. For example, the concept of
the sum of divisors is reached using the concept of divisors
and the “less than or equal to” concept. It is defined in this
way, using only the size and compose production rules:

f(n)=1{(d,a) : dIn & a < d}|.

Restricting theory formation to using only the concepts and
production rules necessary for this construction, the first 14
sequences HR found were in the Encyclopedia. They in-
cluded well known concepts such as the r-function, square
numbers, triangle numbers and the 72-function.

HR re-invents many well known concepts because the
production rules, while general in nature, were derived by
studying the types of concepts found in mathematics. The
compose rule is essential as it combines 2 concepts - without
this, theory formation comes to a halt fairly quickly. Each
re-invented concept required either the exists, split or size
rule. These rules produce concepts identifying objects with
certain sub-objects or a fixed number of sub-objects which
are common constructions in number theory, eg. prime num-
bers, with 2 distinct divisors. The negate rule was also useful
for constructing compliments of concepts, eg. odd numbers
from even numbers. The number theory specific rules in-
creased the yield of potentially interesting concepts with the
‘difference’ and ‘record’ rules effectively trebling the yield
of sequences, as each new sequence was transformed by
them into another one. The match and forall rules were less
instrumental in this session, although both were required for
at least one re-invented concept.



Of the 182 new sequences generated in the above 10
minute session, we assessed that 45 (25%) were unsuitable
for investigation because either: (i) they were finite (eg. in-
tegers, n, where 7(n) = n, the only examples being 1 and 2)
or (ii) they were too specialised which made them dull (eg.
the function f(n) = |{a : a|n & n = 2 x 2}| produces a
sequence of zeros except the fourth term which is 3). The re-
maining 137 sequences were worthy of investigation, and in
fact 4 of them were sequences that HR previously invented
which are now in the Encyclopedia (as discussed below).
Judging from the 22% of sequences produced which were
already in the Encyclopedia, HR is certainly generating the
kinds of concepts which interest mathematicians, and that
while some new sequences were not worthy of the Encyclo-
pedia, 3/4 of those produced were candidates for investiga-
tion, which we feel is acceptable.

[llustrative Examples

To date, 17 sequences invented by HR have been added
to the Encyclopedia. While HR invents hundreds of well
defined sequences not present in the Encyclopedia, we have
only submitted sequences for which HR has also found in-
teresting conjectures. Every sequence we have submitted
has been accepted, including:

[A036438] 1,4,6,10,12,14,22,24,26,27,32,34, ...
(integers expressible as m.7(m) for some m), and:
[A036433] 1,2, 14, 23,29, 34, 46,63, 68, 74, 76,78 . . .

(integers for which the number of divisors is a digit).
The first of HR’s sequences we submitted to the Encyclo-
pedia was the refactorable numbers:

[4033950] 1,2, 8,9,12,18, 24, 36,40, 56, 60,72, . ..

which are those integers where the number of divisors is it-
self a divisor. We were informed later that these had been de-
veloped as recently as 1990 (Kennedy & Cooper 1990). On
investigation, HR found 3 conjectures about refactorables
which we have subsequently proved:

e Looking for disjoint sequences, and pruning with
keywords, HR conjectured that perfect numbers [see
(Sloane 2000)] are not refactorable.

e Looking for supersequences, HR conjectured that refact-
orables are only congruent to 0, 1,2 or 4 mod 8.

e Looking for supersequences, HR conjectured that refact-
orables are of the form lcm(a, 7(a)) for some a.

These, and more results found by us, were presented in a
journal paper on refactorables (Colton 1999).

Investigation of sequences can be performed for any
sequence, not just those invented by HR. For example,
when looking for supersequences of fortunate numbers [see
(Sloane 2000)], HR conjectured that they are all prime, a
result known as Fortune’s conjecture (Golomb 1981). We
also used HR to look for supersequences of perfect num-
bers, and found that they are of the form lcm(n,o(n)) for
some n [where o(n) is the sum of the divisors of n]. This
highlighted an appealing parallel between perfect numbers

and refactorables, which HR discovered were of the form
lem(n, 7(n)), for some n.
When HR invented this sequence:

[A046952] 1,4, 16,36, 144, 576, 1296, 2304, 3600, . . .
which sets the record for this function:
f(n) =H{(a,;b) :axb=n & alb}|, @

it also made the conjecture that these are always square num-
bers. We went on to prove that the sequence was in fact the
squares of the highly composite numbers.

Perhaps the most aesthetic result arose when HR inven-
ted the concept of integers where the number of divisors is
prime, which is this sequence:

[4009087] 2,3,4,5,7,9,11,13,16,17,19,23,25, ...

To investigate this we looked for subsequences described as
‘nice’ in the Encyclopedia. The first answer supplied was:

[4023194] 2,4,9, 16,25, 64, 289, 729, 1681, 2401, . ..

which has the definition: integers for which the sum of di-
visors is prime. Therefore, HR made the conjecture that,
given an integer, if the sum of divisors is prime, then
the number of divisors will also be prime, which we sub-
sequently proved. It is difficult to know whether this result
is genuinely new, but it is certainly not well known, and is
indicative of the kind of surprising and aesthetic conjectures
it is possible to find using HR as an automated assistant.

Related Work

The aim of the SeekWhence program (Hofstadter 1995),
(Meredith 1987) was not to invent sequences but to discover
a definition for a given sequence. SeekWhence used heur-
istics to determine the nature of a sequence, such as tak-
ing the difference between two terms, or trying to extract
and identify well known sub-sequences. For example, given
the sequence 1,1, 3, 4, 6,9, SeekWhence would identify that
square numbers: 1,4,9, and triangle numbers: 1, 3,6, had
been composed with repetition to form this sequence. Hof-
stadter aimed to model how humans search for reason-
able definitions of sequences, rather than to provide a tool
to identify sequences. The Guess program (Krattenthaler
1991) is such a tool which uses techniques from determ-
inant calculus to produce a closed form definition for a
given sequence. We have recently applied HR to the prob-
lem of identification and extrapolation of integer sequences
(Colton, Bundy, & Walsh 2000), which requires more search
control and is a distinct task to inventing sequences.

The AM program (Davis & Lenat 1982) worked in hum-
ber theory, constructing a theory using a heuristic search
to guide the invention of definitions. In contrast to HR,
which starts with only a handful of concepts, 8 heuristic
measures and 10 production rules (7, general, 3 specific to
number theory), AM was supplied with 115 elementary con-
cepts and used 242 heuristics to search for concepts. Some
of these heuristics were very specific and often used only
once during a session. AM re-invented well known se-
guences such as prime numbers and square numbers and the



7-function and Lenat originally claimed that one of AM’s
sequences, integers with more divisors than any smaller in-
teger was original. However, it later turned out that these
had been defined as highly composite numbers and explored
by Ramanujan (Hardy 1927). HR covers all the sequences
re-invented by AM, and finds many outside of AM’s range,
such as powers of 2.

Conclusions and Further Work

The aim of the HR project is to provide a model for theory
formation in pure mathematics and to investigate possible
applications of this to mathematics and to areas of Artificial
Intelligence such as machine learning. By implementing ad-
ditional production rules and the ability to present concepts
as sequences, we have applied HR to the invention of integer
sequences. In a matter of minutes, it can re-invent more than
50 well known sequences, including 14 core sequences and
can supply, in order of complexity, over 100 new sequences
for investigation. We have linked HR to the Encyclopedia
of Integer Sequences so the user can investigate a new se-
quence using HR to make conjectures about the sequence in
relation to those in the Encyclopedia.

We have demonstrated that the theory formation tech-
niques can scale up to produce interesting results and can
be applied successfully in different domains. HR is the first
program to both define new mathematical concepts and de-
tail why they are of interest. This model for the invention of
integer sequences has produced interesting novel results in
number theory with the new sequences and conjectures gen-
erating genuine interest from mathematicians. For example,
there are now over 30 sequences in the Encyclopedia related
to refactorable numbers, submitted by various people.

The class of concepts which HR cannot invent is still
large. In particular, it cannot invent concepts with recursive
definitions, such as the factorial function. We are currently
implementing a ‘path’ production rule which will output re-
cursive definitions, thus increasing HR’s coverage of these
types of concepts. Also, many of the sequences in the En-
cyclopedia have aspects from more than one domain, eg.
the first sequence in the Encyclopedia counts the number of
groups with n elements. We are presently building on the
work of (Steel 1999) to add cross domain functionality to
HR. We have recently written the Integer Sequence Gener-
ator (ISG) as a Java implementation of the work presented
here. We hope this will be an online tool which mathem-
aticians use to invent and investigate new sequences. For
instance, if the user was interested in refactorable numbers,
the ISG would not only investigate refactorables, but would
specialise the concept to, say, odd refactorable numbers. It
would then conjecture, as we did in (Colton 1999), that all
odd refactorables are squares.

Computer generated discoveries in mathematics such as
the remarkable new formula for 7 detailed in (Bailey 1998)
are still rare and often rely on specialised algorithms - in
this case the PSLQ algorithm. Neil Sloane, the author of the
Encyclopedia, states that coincidences arising from using
the Encyclopedia have led to surprising conjectures (Sloane
1998). Whilst we cannot hope for such results as the fam-
ous moonshine conjectures (Conway & Norton 1979) which

arose coincidentally, we hope to further the possibility of
surprising conjectures arising from the use of the Encyclo-
pedia and theory formation programs such as HR.
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