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Abstract
We investigate the computational complexity
of two global constraints, CUMULATIVE and
INTERDISTANCE. These are key constraints in
modeling and solving scheduling problems. En-
forcing domain consistency on both is NP-hard.
However, restricted versions of these constraints
are often sufficient in practice. Some examples
include scheduling problems with a large number
of similar tasks, or tasks sparsely distributed over
time. Another example is runway sequencing prob-
lems in air-traffic control, where landing periods
have a regular pattern. Such cases can be char-
acterized in terms of structural restrictions on the
constraints. We identify a number of such struc-
tural restrictions and investigate how they impact
the computational complexity of propagating these
global constraints. In particular, we prove that such
restrictions often make propagation tractable.

1 Introduction
There are many varieties of scheduling problems: produc-
tion, workforce, and resource scheduling, to name just three.
Whilst such scheduling problems are intractable in general,
the actual instances met in practice may contain restrictions
that mean we can solve them efficiently. For example, many
scheduling problems can be encoded into Allen’s interval al-
gebra. If the interval relations used in this encoding are lim-
ited to one of the 18 maximal tractable sub-algebras [Krokhin
et al., 2001] then the problem can be efficiently solved. This
is an example of tractability via a language restriction. An
orthogonal way to obtain tractability is via structural restric-
tions. We impose restrictions on the structure of the problem
like the number of processors, or the number of different start
times which ensure tractability. We illustrate such a study of
scheduling problems with four case studies. The first three are
positive: we identify structural restrictions under which the
scheduling problem is fixed-parameter tractable or polyno-
mial to solve. The fourth case study is negative: we show that
even under strong structural restrictions, a simple scheduling
problem with uniform task lengths remains NP-hard.

Since the consistency check for CUMULATIVE and IN-
TERDISTANCE are equivalent to checking whether there ex-

ists a schedule satisfying certain restrictions, our work can
be seen as studying the tractability of scheduling problems.
Marx (2011) recently noted noted that there is surprisingly
little work on the fixed-parameter tractability of scheduling
problems. The few existing examples [Bodlaender and Fel-
lows, 1995; Fellows and McCartin, 2003] present mostly neg-
ative results. The only known fixed-parameter tractable re-
sults parameterize by the tree-width of the precedence graph
and either the number of late tasks or the number of tasks
that need to be on time. In contrast, we consider CUMU-
LATIVE as a hard constraint, allowing no late tasks and do
not restrict the precedence graph. Instead, we exploit param-
eters related to the number of distinct values defining char-
acteristics of the tasks can take, and to how many tasks can
potentially start at any given time point. Our results for the
INTERDISTANCE constraint complement existing results on
structural restrictions [Artiouchine et al., 2008]. Building on
[Bessière et al., 2004a; Bessière et al., 2004b], the parame-
terized complexity of global constraints was first studied in
[Bessière et al., 2008]. Amongst other results, INTERDIS-
TANCE was shown to be fixed-parameter tractable in the to-
tal number of holes in the domains of the variables. This
line of research was continued in, e.g., [Fellows et al., 2011a;
Gaspers and Szeider, 2011; Samer and Szeider, 2011].

2 Background
CSP. A Constraint Satisfaction Problem (CSP) consists of
a set of variables X , a set of values D, and a set of con-
straints C. The question is whether there exists an assign-
ment α : V → D satisfying all constraints. A constraint is
a pair 〈t, R〉; its scope t = (x1, . . . , xr) is an r-tuple of vari-
ables and its constraint relation R is an r-ary relation on D.
It is satisfied if (α(x1), . . . , α(xr)) ∈ R. When there is no
confusion we also write xi instead of α(xi). In the classical
CSP, these relations are described explicitly, by listing all al-
lowed tuples. A global constraint is an implicitly specified
constraint of arbitrary scope. Next, we describe the global
constraints CUMULATIVE and INTERDISTANCE.
CUMULATIVE. This was introduced in CHIP for scheduling
and related problems [Aggoun and Beldiceanu, 1993]. We
consider a set T = {1, ..., n} of n tasks and P processors.
Each task i has a tuple (ri, li, di, pi) of four natural numbers:

• ri is the release time of the task, i.e., the time point at



which it becomes available,
• li is the length of the task, i.e., the amount of time it

needs to be processed,
• di is the deadline of the task, i.e., the time point at which

it needs to have been processed, and
• pi is the number of processors it uses.

The scope of the constraint contains a variable si for each
i ∈ T , and it is satisfied by an assignment α if

• si ≥ ri for each task i ∈ T ,
• si + li ≤ di for each task i ∈ T , and
•
∑

i∈T :si≤j<si+li
pi ≤ P at each time point j ∈ N.

We also consider precedence constraints between tasks, ex-
pressed by a directed acyclic precedence graph G = (T,A).
For each arc (u, v) ∈ A, we constrain that su + lu ≤ sv .

Due to its expressivity, CUMULATIVE is widely used in
constraint programming and is implemented in most con-
straint solvers. Therefore, a lot of research has been car-
ried out on improving filtering algorithms for this constraint.
Enforcing domain consistency on the constraint is NP-hard.
However, a number of efficient filtering algorithms have been
proposed, e.g. [Caseau and Laburthe, 1996; Mercier and Hen-
tenryck, 2008; Schutt and Wolf, 2010; Vilı́m, 2011].
INTERDISTANCE. Régin (1997) introduced the INTERDIS-
TANCE constraint, which is useful in modeling scheduling
problems on a single processor where all tasks have the same
length. We are given a set T = {1, ..., n} of n tasks, a task
length l, and each task i has a set Si ⊆ N of possible start
times. The question is whether each task can be assigned a
start time si ∈ Si such that no two tasks overlap, i.e., for
every two distinct tasks i, j ∈ T , we have that |si − sj | ≥
l. Enforcing bounds consistency on the INTERDISTANCE
constraint is polynomial [Artiouchine and Baptiste, 2007;
Quimper et al., 2008]. However, enforcing domain consis-
tency is NP-hard [Artiouchine et al., 2008].
Parameterized Complexity. Parameterized complexity is a
2-dimensional analogue of the theory of NP-completeness
[Downey and Fellows, 1999; Fellows et al., 2011b; Flum
and Grohe, 2006; Niedermeier, 2006], where instances are
equipped with a parameter k. A parameterized problem Π
is fixed-parameter tractable (FPT) if there is a computable
function f such that every instance (I, k) of Π can be solved
in time f(k) · nO(1), where n is the instance size. The theory
has a fundamental hierarchy of intractability classes W [1] ⊆
W [2] ⊆ . . . and a problem that is hard for any of these classes
(under parameterized reductions) is not believed to be FPT.

3 Task Types
We first consider the CUMULATIVE constraint when the num-
ber of distinct release times and deadlines is bounded and
there is a single processor. W.l.o.g. we assume that the small-
est release time is zero and the latest deadline is d∗. This
problem is already NP-hard.

Theorem 1 ([Garey and Johnson, 1979]). Checking consis-
tency of the CUMULATIVE constraint is weakly NP-complete
even if the number of distinct releases is two, the number of
distinct deadlines is also two, and there is a single processor.

type 1 type 2 type 3

Schedule 1

Blocks
1 2 3 4 5

Schedule 2

0 5 10 15 20 25 30

Figure 1: The CUMULATIVE constraint.

Theorem 1 suggests that we need to restrict further the prob-
lem to identify tractable cases. In the spirit of parameterizing
by the number of numbers [Fellows et al., 2012], we consider
the CUMULATIVE constraint parameterized by the number of
distinct characteristics. Observe that with this parameteriza-
tion, the number of distinct quadruples consisting of a release
time, a task length, a deadline, and a number of processors, is
also bounded by the parameter. Therefore, we introduce a no-
tion of a task type. A task i with characteristics (ri, li, di, pi)
belongs to the (r, l, d, p)-type iff (ri, li, di, pi) = (r, l, d, p).

Given a sequence of tasks, a run of the (r, l, d, p)-type is
a maximal consecutive subsequence of (r, l, d, p)-type tasks.
An empty run contains no tasks. A block is a maximal time
interval that does not contain release times nor deadlines.
Given the CUMULATIVE constraint, we can always partition
the time-line, [0, d∗], into a set of blocks B.

Example 1. Consider the CUMULATIVE constraint in Fig. 1.
The task types are (0, 2, 10, 1), (6, 2, 25, 1), and (15, 2,
30, 1). Each type consists of three tasks of length 2. Release
times and deadlines partition the time line into five blocks.

The results in this section assume precedences are defined
over task types rather than individual tasks.

Lemma 1. Consider the CUMULATIVE constraint on a sin-
gle processor. Let B be the partitioning of the time-line into
blocks and s be a solution of the constraint. Consider bj ∈ B
and the set of tasks T ′ such that [si, si + li] ⊆ bj for all tasks
i in T ′. Then any permutation of tasks in T ′ satisfying the
precedence constraints gives a solution.

Proof. The proof follows from the definition of bj .

We write that the ith task is in a block bj iff [si, si + li] ⊆ bj .
Schedule 2 in Fig. 1 is a permutation of Schedule 1.

The parameter considered in this section is q, the number
of types. Denote by b the number of blocks in B, |B| = b.
First, note that b ≤ 2q − 1.

Lemma 2. Consider the CUMULATIVE constraint on a sin-
gle processor. If there exists a solution of the constraint then
there exists a solution where for each block bi, there is at most
one run of each type among the tasks starting in block bi.

Proof. Consider any block bi. By Lemma 1, any permutation
of tasks in a block that satisfies the precedence constraints
gives a solution. Let π be a topological order of task types
in the precedence graph G that start in bi. Let j be the type
of the last task that starts in bi. Note that this task could end
after di and, w.l.o.g., assume that this task is the last task in



π. Reorder the tasks starting in bi according to π. This makes
sure that there exists at most one run of each type among the
tasks completely contained in bi and the last run has the same
type as the task that crosses the border between this block
and the following block. Since bi was chosen arbitrarily and
only tasks that lie completely within bi were reordered, we
can perform the same operation in each other block bi′ .

Given Lemma 2, we can write an integer linear program (ILP)
to check consistency of the CUMULATIVE constraint, whose
number of variables is bounded by a function of q. This shows
that consistency checking for CUMULATIVE is FPT. In the
INTEGER LINEAR PROGRAMMING FEASIBILITY problem
(ILPF), the input is an m × n matrix A and m-vector b of
integers, the parameter is n, and we ask if there is an n-vector
x of integers satisfying the m inequalities Ax ≤ b. ILPF
is FPT in the number of variables [Lenstra, 1983]. The cur-
rent fastest algorithm solves ILPF in time O(n2.5n+o(n) · L),
where L is the input size [Lokshtanov, 2009].
Theorem 2. Checking the consistency of the CUMULATIVE
constraint on a single processor is fixed-parameter tractable
parameterized by the number of task types.

Proof. We encode the problem of checking the consistency
of the CUMULATIVE constraint into a set of ILPs, each with
a number of variables bounded by a function of q. The size
of this set is bounded by a function of q as well, and the CU-
MULATIVE constraint is satisfiable iff at least one ILP is fea-
sible. By Lemma 2 we know that if a solution exists then
there exists a solution with at most one run of each type start-
ing in each block. The last run in each block might cross
the border between this block and the next block. To sim-
plify notations, we assume that there exists exactly one run of
each type starting in each block, so that some runs are empty.
We use a pair (i, j) to denote the ith run of type j. Then
the total number of runs is bq ≤ (2q − 1)q. Any solution
of the constraint with at most one run of each type among
the tasks starting in the same block constitutes a permutation
of such runs (i, j), i = 1, . . . , b, j = 1, . . . , q that satisfies
precedence constraints. Moreover, the number of permuta-
tions O((bq)!) is also bounded by a function of q. For each
valid permutation of runs, we will solve an ILP to check if
this permutation can be extended to a feasible solution.

Given a permutation of runs π, we write (i, j) ≺ (k, l) ∈ π
iff the ith run of type j precedes the kth run of type l in π.
We emphasize that we only consider permutations that satisfy
precedence constraints. To build the ILP, we need to identify
the start time of each run and the number of tasks in each
run. We introduce two sets of integer variables. The first set
of variables is si,j , i = 1, . . . , b, j = 1, . . . , q. Variable si,j
equals the starting time for the ith run of the jth type, si,j ∈
[0, d∗]. The second set of variables is xi,j , i = 1, . . . , b, j =
1, . . . , q. Variable xi,j equals the number of tasks in the ith
run of type j, xi,j ∈ [0, nj ], where nj is the number of tasks
of type j. Note that xi,j = 0 means that the ith run of type j
is empty. We obtain the following ILP for i, k ∈ {1, . . . , b}
and j, l ∈ {1, . . . , q}:

rj ≤ si,j , ∀i, j (1)
si,j + xi,j · lj ≤ dj , ∀i, j (2)

type 1
type 2
type 3

Schedule 1

Schedule 2

0 5 10 15 20 25 30

Schedule 3

c

Figure 2: The CUMULATIVE constraint with nested types.

si,j + xi,j · lj ≤ sk,l, ∀i, j, k, l s.t. (i, j) ≺ (k, l) ∈ π (3)∑q

i=1
xi,j = nj . ∀j (4)

Equations 1–2 make sure that each run of type j is performed
within the interval [rj , dj ]. Equation 3 ensures that runs are
performed in the order specified by the permutation π and
that they do not overlap. Finally, Equation 4 guarantees that
all tasks are performed. Since the number of variables is
bounded by a function of q, checking the consistency of CU-
MULATIVE on a single processor is fixed-parameter tractable
parameterized by the number of task types.

Corollary 1. Checking the consistency of the CUMULATIVE
constraint on multiple processors is FPT parameterized by
the number of task types and the number of processors if each
task requires one processor, pi = 1, i = 1, . . . , n.

Proof. As in the proof of Theorem 2, we need to consider
all possible permutations of runs that satisfy precedence con-
straints. However, each run is characterized by an additional
parameter which is a machine where this run is scheduled.
The tuple (i, j, k) describes the ith run of jth type that runs
on the kth machine. The total number of runs is O(qbP )
which is bounded by the parameter. We solve an ILP for each
permutation in a similar way. However, we need to add ex-
tra constraints to the ILP to make sure that for each pair of
tasks of types j and j′, such that j ≺ j′ in G, that run on
different processors, respect precedence. Hence, if we have
(i, j, k) ≺ (i′, j′, k′), k 6= k′, in a permutation π and j ≺ j′

in G, then we add the constraint: si,j,k + xi,j · lj ≤ si′,j′,k′

The obtained ILP has O(qbP ) variables. Hence, the problem
is FPT in the number of task types and processors.

3.1 Nested Task Types
Here, we consider a special case of the CUMULATIVE con-
straint where the task types have a nested structure. The con-
sidered parameter is still the number of task types, q.
Definition 1. Task types are nested if ri ≤ ri+1, di+1 ≤ di
and there is a common point c with c ∈ [ri, di], i = 1, . . . , n.

Example 2. The CUMULATIVE constraint in Fig. 2 has three
nested types: (0, 2, 30, 1), (5, 2, 25, 1) and (10, 2, 20, 1).
Theorem 1 holds for nested types. The reduction is from par-
tition and forces (via release-times and deadlines) one unit-
length task to start at the exact middle of the schedule. The
other tasks have lengths equal to the numbers that need to
be partitioned and release-time 0 and deadline the sum of all
numbers plus one. Note that the claimed polynomial time



algorithm for this problem in [Briand et al., 2006] is actu-
ally incomplete. We now show some useful properties of this
restriction of the CUMULATIVE constraint. Recall that nj
denotes the number of tasks of type j. We say that a solu-
tion has no gaps if there exist time points t1 and t2 such that∑q

j=1 nj lj = t2 − t1 + 1 and the processor is idle within
[0, t1) ∪ [t2, d

∗].

Lemma 3. Consider the CUMULATIVE constraint for a sin-
gle processor with nested types. If there exists a solution of
the constraint then there exists a solution with no gaps.

Proof. Let s be a solution of the constraint. Consider the
first two consecutive tasks i and k in the schedule such that
si + li < sk, where si and sk are starting times of tasks i and
k, respectively. Let c be any time point between the release
time and the deadline of the innermost type. If sk ≤ c then
we can shift all tasks scheduled before the ith task and the ith
task to the right by sk − (si + li) time units. This preserves
the solution due to the nested structure of the types. Similarly,
if si + li ≥ c then we can shift all tasks scheduled after the
kth task and the kth task to the left by sk − (si + li) time
units. Finally, if c ∈ [si + li, sk] then we shift tasks scheduled
before the ith task and the ith task to the right by c − si + li
and tasks scheduled after the kth task and the kth task to the
left by sk−c time units. Again, this transformation preserves
the solution due to the nested structure of the types.

Example 3. Consider the CUMULATIVE constraint from Ex-
ample 2. Schedule 1 is a valid solution of the constraint.
Schedule 2 is a solution with no gaps.

Lemma 4. Consider the CUMULATIVE constraint for a sin-
gle processor with nested types. If there exists a solution to
the constraint then there exists a solution where there are at
most two runs of each type and runs obey the following order:
(1, 1) ≺ . . . ≺ (1, q−1) ≺ (1, q) ≺ (2, q−1) ≺ . . . ≺ (2, 1).

Proof (sketch). Consider the first and the second scheduled
tasks of type q (q1 and q2) and the task j of type j that obey
the order q1 ≺ j ≺ . . . ≺ q2 in a solution. Then, we can
swap tasks j and q2 in the schedule and obtain another valid
solution. Similarly, we reorder the remaining tasks.

Corollary 2. Consider the CUMULATIVE constraint with a
single processor with nested types. If there exists a solution
of the constraint then there exists a solution that satisfies the
conditions of Lemmas 3–4.

Schedule 3 in Fig. 2 is a solution that satisfies the conditions
of Lemmas 3–4.

Theorem 3. Checking the consistency of the CUMULATIVE
constraint on a single processor with nested types is fixed-pa-
rameter tractable parameterized by the number of task types.

Proof. First, we encode the problem of checking the consis-
tency without the precedence graph G into an ILP with a
number of variables bounded by a function of q. Then we
show how to take into account G. By Lemmas 3–4, if a so-
lution exists then we know that there exists a solution with
no gaps and runs obey the order (1, 1) ≺ (1, 2) ≺ . . . ≺
(1, q − 1) ≺ (1, q) ≺ (2, q − 1) ≺ . . . ≺ (2, 1). We exploit

these properties to build the ILP. We know that tasks of type
j are split into at most two runs. The first run completes be-
fore one of the common points c ∈ [rq, dq] and the second
run starts after this point. However, we do not know c and
how many tasks of each type are scheduled before c. First,
we need to select c. Second we need to determine the number
of tasks in these two runs. For convenience, we assume that
the single run of type q is partitioned into two runs at c. The
time point c ∈ [rq, dq] is encoded as a variable in the ILP.
Variable xj , j = 1, . . . , q equals the number of tasks of type
j that are scheduled before c. We obtain the following ILP.

rq ≤ c ≤ dq
c−

∑q

k=j
xklk ≥ rj ∀j ∈ {1, . . . , q} (5)

c+
∑q

k=j
(nk − xk)lk ≤ dj ∀j ∈ {1, . . . , q} (6)

Equations 5–6 makes sure that each run of the jth type is per-
formed within the interval [rj , dj ] by exploiting the fact that
there are no gaps between tasks (Lemma 3) and runs occur in
a specific order (Lemma 4).

Next, we show how to extend this ILP to take into account
the precedence constraints. Consider two types i and j such
that i ≺ j. We distinguish two cases. Suppose that the ith
type is nested inside the jth type. In this case, xj must be
equal zero, otherwise one of the tasks of type j is scheduled
before a task of type i (we assume that there exists at least one
task of each type.) Suppose that the jth type is nested inside
the ith type. In this case, xi = ni. Hence, depending on the
nesting we add one of these equality constraints to ILP. We
perform this extension for each precedence constraint.

Note that Theorem 3 follows from Theorem 2. However, the
ILP in the proof of Theorem 3 has only O(q) variables, while
each of the O((bq)!) ILPs in the proof of Theorem 2 contains
O(bq) variables. These considerations lead to much faster
running times for a nested structure of task types.

4 Pairwise Overlapping Start Intervals
In this section, we consider a parameter that is related to the
well-known disjunctive ratio [Baptiste and Pape, 2000] and
the number of overlapping release-deadline windows. The
start interval of a task i ∈ T is the interval S[i] = [ri; di− li],
which we assume to be non-empty for all tasks. Clearly, in
any valid instantiation each task starts at a time point that is
within its start interval. For a time point t ∈ N, we denote by
T [t] the set of tasks whose start interval contains t. We con-
sider the parameterization by S := maxt∈N |T [t]|. We note
that this parameter is more general than the number of over-
lapping release-deadline windows since for each job, its start
interval is strictly contained in its release-deadline window.
As usual, we also assume that there is a precedence graph G
that defines precedence relations between individual tasks.
Theorem 4. Checking the consistency of the CUMULATIVE
constraint on a single processor is fixed-parameter tractable
parameterized by S.

Proof. We can check the consistency using dynamic pro-
gramming. Let min(∅) = ∞. Let ≺ include explicit prece-
dences fromG and precedences implied by the start intervals.



Given a subset of the tasks S, let ms(S) be the the mini-
mum value of max({si : i ∈ S}) over all valid instantiations
where all tasks in S are scheduled before those not in S. The
following dynamic program computes ms(S).

ms(S) =


−∞ if S = ∅
∞ if ∃i ∈ S, j /∈ S s.t. j ≺ i
min{max(ri,ms(S \ {i})) + li : i ∈ S

and ms(S \ {i}) + li ≤ di} otherwise

The cumulative constraint with precedences is consistent iff
ms(T ) 6= ∞. Naively, it looks like the dynamic program
has complexity O(n2n). However, there are many S for
which ms(S) = ∞ due to the constraints. Such S do
not have to be stored or expanded. Given a subset S, let
lr(S) = argmaxi∈Sri. We claim that for each task k, there
are at most O(2|T [rk]|) subsets with lr(S) = k which need
to be evaluated in the dynamic program. Suppose S is one
such subset. Every task i for which ri > rk is not in S by the
definition of lr(S). Every task i for which di < rk + lk + li
must be in S by the implied precedence constraint. Hence the
only tasks which may be in S are those for which ri ≤ rk and
di − li ≥ rk + lk, which means their start interval contains
time rk. Thus there are at most O(2|T [rk]|) relevant subsets
with lr(S) = k as claimed. The task k can be any of the n
tasks, so there are O(n2S) relevant subsets. Each subset is
processed in the dynamic program by extending it with any
of the O(n) remaining tasks. Hence the overall complexity is
O(n22S), so the consistency check is FPT in S.

5 Decomposable Planning Horizon
Consider the CUMULATIVE constraint where each task i ∈ T
has a set Si ⊆ N of possible start times. Let the overlap
graph L be defined as follows. For each task i and each v ∈
Si, we add the pair (i, v) to L as a vertex. We add an edge
between two vertices (i, v) and (j, w) if [v, v + li] ∩ [w,w +
lj ] 6= ∅. This overlap graph might contain valuable structural
information that can be exploited algorithmically. A clique is
a graph with an edge between every pair of distinct vertices.
The following theorem could, for instance, correspond to a
scenario where tasks are only executed during the daytime,
but no processor can execute two tasks during one day.

Theorem 5. Checking the consistency of the CUMULATIVE
constraint on multiple processors is polynomial if pi = 1 for
each task i ∈ T and L is a disjoint union of cliques.

Proof. Suppose L is a disjoint union of the k cliques
L1, . . . , Lk. Consider the vertices in Li. The set {[v, v +
lj ] : (j, v) ∈ Li} is pairwise intersecting since Li is a
clique. This implies there is some value vi which is con-
tained in all those intervals. Thus at most P of the assign-
ments in Li can be taken without violating the resource con-
straint at time vi. We reduce this to a global cardinality
constraint [Régin, 1996] as follows. For each task i, we
have a variable xi with domain {j ∈ {1, . . . , k} : ∃v ∈
Si, (i, v) ∈ Lj}. The cumulative constraint is satisfiable iff
gcc([x1, . . . , xn], [1, . . . , k], [0, . . . , 0], [P, . . . , P ]) is satisfi-
able, i.e., every task is associated to a clique, and each clique

Parameters
Restrictions on domains types S

No restrictions NPC FPT FPT
Theorem 1 Theorem 2 Theorem 4

No restrictions + precedences NPC FPT FPT
from Theorem 1 Theorem 2 Theorem 4

Nesting NPC FPT –from Theorem 1 Theorem 3

Nesting + precedences NPC FPT –from Theorem 1 Theorem 3

Decomposable into conflict intervals P – –Theorem 5

Table 1: Summary of results for checking consistency for the
CUMULATIVE constraint.

ta
sk

s

time

10 · i

10 · i+ 8

40 · i 40 · (i+ 1)

Figure 3: Gadget for variable xi.

has at most P associated tasks. The reduction is polynomial
time, as is solving the global cardinality constraint.

6 Uniform Task Lengths
An important variant of the CUMULATIVE constraint is the
INTERDISTANCE constraint, which is related to Runway se-
quencing problems for air-traffic control [Artiouchine and
Baptiste, 2007; Artiouchine et al., 2008].

6.1 Start times consist of few intervals
The consistency check for INTERDISTANCE is polynomial if
all Si are intervals, i.e., each Si contains only consecutive
integer values [Artiouchine and Baptiste, 2007]. When l = 1,
INTERDISTANCE is equal to the ALLDIFFERENT constraint,
whose consistency check is polynomial [Régin, 1994]. Based
on a result by Spieksma and Crama (1992), Artiouchine et
al. (2008), we observe that consistency checking is NP-hard
when l = 2 and each Si consists of at most three intervals. We
close this gap by proving that the problem remains NP-hard
when l = 2 and each Si consists of at most two intervals.

Theorem 6. Checking the consistency of the
INTERDISTANCE constraint is NP-complete when l = 2 and
each Si consists of at most two intervals.

Proof (sketch). We give a polynomial time reduction from
(≤ 3,≤ 3)-SAT, the variant of the atisfiability problem where
each clause has at most three literals and each variable occurs
at most three times [Tovey, 1984]. Given a (≤ 3,≤ 3)-SAT
formula F , denote byX = {x0, x1, . . . , xn−1} its set of vari-
ables and C = {C0, C1, . . . , Cm−1} its set of clauses. A
clause Ci ∈ C is a set of at most three literals. We set the



task length l = 2. For each variable xi ∈ X , we introduce
the following variable tasks (see Fig. 3):
• task number 10 · i with S10i = {40i+ 1, 40i+ 5} is the

main task for variable xi,
• tasks number 10 · i+ 1, . . . , 10 · i+ 8 with

S10i+j =



{40i, 40i+ 9} if j = 1

{40i+ 4, 40i+ 13} if j = 2

{40i+ 2, 40i+ 17} if j = 3

{40i+ 6, 40i+ 21} if j = 4

{40i+ 8, 40i+ 25} if j = 5

{40i+ 12, 40i+ 29} if j = 6

{40i+ 10, 40i+ 33} if j = 7

{40i+ 14, 40i+ 37} if j = 8.

For each clause Ci ∈ C, we introduce four new tasks. Sup-
pose Ci = {li1 , li2 , li3}, each lij = xij or lij = ¬xij ,
j = 0, 1, 2, and lij is the kij th occurrence of variable xij
in F , 1 ≤ kij ≤ 3. Then the new tasks are
• literal tasks numbered 10n + 4i + j, with j = 0, 1, 2,

with possible starting times S10n+4i+j ={
{40ij + 13 + 8kij , 40n+ 8i+ 2j} if lij = xij
{40ij + 9 + 8kij , 40n+ 8i+ 2j} if lij = ¬xij .

• a clause task numbered 10n+ 4i+ 3 with possible start-
ing times in the interval [40n+ 8i; 40n+ 8i+ 4].

This finishes the description of the reduction.
The (≤ 3,≤ 3)-SAT instance is satisfiable if and only if the

constructed INTERDISTANCE constraint has a valid instanti-
ation. We set α(xi) = true if the main task for variable xi is
scheduled at time point 40i+ 1 and α(xi) = false otherwise.
In the first case, each task 10 · i + j with j ∈ {3, 5, 7} is
scheduled at time point 40i+ 4j + 5. Therefore, for a clause
containing ¬xi, the corresponding literal task is scheduled af-
ter the time point 40n. The argument for positive literals is
similar. Since the clause task occupies two of the six units of
time where literal clauses can be scheduled after 40n, one of
the literal tasks must be scheduled before 40n and the corre-
sponding literal therefore satisfies the clause.

6.2 Start times at equal distances
Artiouchine et al. (2008) also studied restrictions of the prob-
lem where Si = {ri, ri+h, . . . , ri+ki·h}. In this case, which
we call REGULAR INTERDISTANCE, airplane i approaching
a terminal at time ri can either land immediately or fly some
number of at most ki loops in a holding pattern, each taking
some fixed amount of time h, before it lands.

A proper interval graph is a graph whose vertices can be
bijectively mapped to intervals of the real line, all with inte-
ger coordinates and equal lengths, such that two vertices are
adjacent iff their intervals intersect. The set of these intervals
is the interval model of the graph. We give a reduction from
a graph coloring problem for proper interval graphs, called
(γ, µ)-coloring [Bonomo et al., 2009]. Given a proper inter-
val graph G = (V,E) and functions γ, µ : V → N, we ask if
there exists a coloring f : V → N assigning distinct colors to
adjacent vertices such that γ(v) ≤ f(v) ≤ µ(v).

We construct a REGULAR INTERDISTANCE constraint as
follows. The task length l is the length of an interval in the
interval model. The integer h is the position of the right-
most right endpoint of an interval in the interval model. For
each vertex ui with interval [ai; ai + l), create a task i with
Si = {ai +γ(ui) ·h, ai +(γ(ui)+1) ·h, . . . , ai +µ(ui) ·h}.
NowG has a (γ, µ)-coloring iff there is a solution for the con-
structed REGULAR INTERDISTANCE constraint. Precoloring
Extension, a special case of (γ, µ)-coloring, is NP-complete
on proper interval graphs [Marx, 2006]. Hence, we conclude:
Theorem 7. Checking consistency of REGULAR INTERDIS-
TANCE is NP-complete, even if ki ∈ {1, k} for integer k.
Consider now the special case where k1 = · · · = kn = k and
maxi∈T ri + l ≤ maxi∈T ri + T , i.e., each task has k time
slots where it can be scheduled and the time line can be parti-
tioned into disjoint intervals I0, . . . , Ik where Ii contains all
time points where a task may be scheduled if it occupies its
ith time slot. This is linear-time solvable via a MIP formula-
tion [Artiouchine et al., 2008]. But note that for this special
case the above reduction can be reversed, giving a k-coloring
problem for proper interval graphs, which is linear-time solv-
able [Golumbic, 1980]. Thus, we obtain the same theorem as
[Artiouchine et al., 2008] by simpler means.
Theorem 8. The consistency of the REGULAR INTERDIS-
TANCE constraint with k1 = · · · = kn and maxi∈T ri + l ≤
maxi∈T ri + T can be checked in linear time.
The requirement that k1 = · · · = kn is essential. Without
it, we obtain the NP-complete µ-coloring problem on unit in-
terval graphs [Bonomo et al., 2012], which is equivalent to
(γ, µ)-coloring with γ(v) = 0 for all v ∈ V . It would be in-
teresting to know in this context if (γ, µ)-coloring is FPT for
proper interval graphs with parameter maxv∈V µ(v)− γ(v).

7 Conclusions
Scheduling is an important and well studied domain of com-
binatorial optimization. Due to their combinatorial nature,
scheduling problems are computationally hard even for very
restricted cases. Identifying those parameters for which
scheduling problems which become tractable has received lit-
tle attention. In this paper, we take some steps in this di-
rection. We show that we can exploit structural restrictions
to obtain new tractable classes of scheduling problems. For
example, we proved that scheduling problems with a large
number of identical tasks are tractable. On the other hand,
we demonstrated that scheduling problems with uniform task
lengths remain intractable even under very strong structural
restrictions. This also reveals an interesting connection be-
tween this class of problems and the list coloring problem on
proper interval graphs. Our work raises a number of open
questions. For example, what other interesting structural re-
strictions make scheduling tractable?
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