
Conflict-Driven Constraint Answer Set Solving with Lazy Nogood Generation

Christian Drescher and Toby Walsh
NICTA and University of New South Wales, Locked Bag 6016, Sydney NSW 1466, Australia

Phone: +61-2-83060457, Email: {christian.drescher,toby.walsh}@nicta.com.au

Abstract
We present a new approach to enhancing answer set program-
ming (ASP) with constraint programming (CP) techniques
based on conflict-driven learning and lazy nogood generation.

Introduction
ASP has been put forward as a powerful paradigm to solve
constraint satisfaction problems (CSP), i.e., empirical com-
parisons with CP has shown that, whilst ASP encodings are
often highly competitive, non-propositional constructs like
constraints over finite domains are more efficiently handled
by CP systems (cf.Dovier, Formisano, and Pontelli, 2005).
This led to the integration of CP techniques into ASP. Sim-
ilar to satisfiability modulo theories, the key idea is to in-
corporate theory-specific predicates into propositional for-
mulas, and extending an ASP solver’s decision engine for a
more high-level proof procedure. A promising approach to
constraint answer set programming (CASP) has been pre-
sented in (Gebser, Ostrowski, and Schaub 2009) embed-
ding a CP solver into an ASP solver and adding support
for advanced backjumping and conflict-driven learning tech-
niques. However, the elaboration of constraint interdepen-
dencies is limited by the poor interface between the ASP and
the CP solver. To tackle this weakness, our work contributes
constraint propagation via lazy nogood generation.

Constraint Answer Set Programming
Given a set of (constraint) variables V (each v ∈ V has an
associated finite domain dom(v)), a (constraint logic) pro-
gram Π over an alphabet distinguishing regular atomsA and
constraint atoms C is a finite set of rules of the form

a0 ← a1, . . . , am, not am+1, . . . , not an

where a0 ∈ A, ai ∈ A ∪ C for 1 ≤ i ≤ n, and not a
is the default negation of an atom a. For a rule r, define
body(r) = {a1, . . . , am, not am+1, . . . , not an}. The set
of atoms occurring in Π is denoted by atom(Π), the set of
constraint atoms occurring in Π is denoted by con(Π), and
the set of bodies in Π is body(Π) = {body(r) | r ∈ Π}.
Constraint atoms are identified with constraints via a func-
tion ϕ. The semantics of a program is given by its constraint

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

answer sets. We refer the reader to (Gebser, Ostrowski, and
Schaub 2009) for a comprehensive introduction to the se-
mantics of CASP. In our approach to constraint answer set
solving, an ASP solver deals with the atomic structure of
the program, while a CP solver manages the constraints as-
sociated with constraint atoms. The variables, however, are
tightly integrated with the ASP solver: Each possible vari-
able assignment of the form v = d or v ≤ d for v ∈ V and
d ∈ dom(V) is represented as a regular atom from a dis-
tinguished alphabet V , while possible variable assignments
are identified with their representatives via a function ψ for
providing a CP solver access to the domains of V . Rules
have to be added to Π in order to enforce a node consis-
tent set of variable assignments (cf. Drescher and Walsh,
2010). Then, constraint answer sets of the resulting pro-
gram can be characterized via Boolean assignments over
atom(Π) ∪ body(Π) that do not violate a set of nogoods
imposed by Π. Formally, a Boolean assignment A is a se-
quence (σ1, . . . , σn) of (signed) literals σi of the form Ta
or Fa where a ∈ dom(A). The complement of a literal σ
is denoted σ. We access true and false objects in A via AT

and AF. A nogood represents a set δ = {σ1, . . . , σn} of
signed literals, expressing a constraint violated by any as-
signment A such that δ ⊆ A. We denote by ∆Π the no-
goods derived from the completion of Π, and by ΛΠ the ones
given through loop formulas (Gebser et al. 2007). Simi-
larly, we denote by Λc the nogoods that characterize φ(c)
for c ∈ con(Π). The pair (A ∩ atom(Π), ψ−1(AT ∩ V))
is a constraint answer set of Π iff AT ∪ AF = dom(A),
AF∩AT = ∅, δ 6⊆ A for all δ ∈ ∆Π∪ΛΠ∪

⋃
c∈con(Π) Λc.

CDNL with Lazy Nogood Generation
Our decision procedure for CASP is based on the one for
ASP called conflict-driven nogood learning (CDNL; Gebser
et al., 2007). It includes conflict-driven learning and back-
jumping according to the 1UIP scheme (Mitchell 2005), but
in contrast to CDNL we integrate external constraint propa-
gators in form of lazy nogood generators to deal with non-
propositional constraints. Given an updated variable assign-
ment, a lazy nogood generator passes nogoods describing
the inferences of the underlying constraint propagator to the
ASP solver, similar to the principle of lazy clause genera-
tion (Ohrimenko, Stuckey and Codish 2009). Our main pro-
cedure is shown in Algorithm 1. It adds to the given pro-

Algorithm 1: CDNL-CASP
Input : A constraint logic program Π, variables V .
Output: A constraint answer set of Π.

1 A← ∅ // Boolean assigment
2 ∇ ← ∅ // set of dynamic nogoods
3 dl← 0 // decision level
4 ΠV ← ENCODE(V,Π)
5 loop
6 (A,∇)← PROPAGATION(ΠV ,∇,A)
7 if δ ⊆ A for some δ ∈ ∆ΠV

∪∇ then
8 if dl = 0 then return no answer set
9 (ε, k)← ANALYSIS(δ,ΠV ,∇,A)

10 ∇ ← ∇∪ {ε}
11 A← A \ {σ ∈ A | k < dl(σ)}
12 dl← k

13 else if AT ∪AF = atom(ΠV) ∪ body(ΠV) then
14 return (AT ∩ A, ψ−1(AT ∩ V))
15 else
16 σd ← SELECT(ΠV ,∇,A)
17 dl← dl + 1
18 A← A ◦ (σd)

gram Π an encoding of consistent assignments to the vari-
ables in V (Line 4), and combines propagation (Line 6) with
heuristic search (Lines 16–18). Conflict-driven learning is
reflected by the dynamic nogoods in∇, initialized in Line 2,
and filled with learnt nogoods in Line 6 and 10. Lines 11–12
amount to backjumping guided by a decision level k deter-
mined by conflict analysis. Our algorithm returns a con-
straint answer set in form of an assignment to the regular
atoms in Π and the variables in V , if a conflict-free total as-
signment was determined. We now explain our propagation
procedure shown in Algorithm 2. (Observe that Π is instan-
tiated by ΠV in Algorithm 1.) Lines 2–8 capture unit propa-
gation (Mitchell 2005) on the nogoods in ∆Π ∪∇, resulting
in either a conflict (Lines 3–4) or a fixpoint A. The remain-
ing Lines 9–14 amount to external propagators, i.e., the un-
founded set check for addressing loop nogoods (Gebser et
al. 2007), and constraint propagation (Lines 9,11). The un-
founded set propagator returns a loop nogood ε ∈ ΛΠ pro-
vided that a non-empty unfounded set has been determined,
while the constraint propagator returns a nogood ε ∈ Λc

encoding its propagation provided a variable’s domain was
updated. The nogood ε is recorded in Line 14, triggering
either unit propagation or conflict analysis.

Conclusions
We have outlined CDNL with lazy nogood generation as a
hybrid approach to constraint answer set solving. Its key ad-
vantages are: First, conflict analysis can exploit constraint
interdependencies which can improve propagation between
constraints. Second, constraint propagation can contribute
to search heuristics through lazy generated nogoods. Third,
deletion strategies can be applied to lazy generated nogoods.
We expect significant computational impact given the em-

Algorithm 2: PROPAGATION

Input : A program P , dyn. nogoods∇, assignment A.
Output: An extended assignment and set of nogoods.

1 loop
2 repeat // unit propagation
3 if δ ⊆ A for some δ ∈ ∆Π ∪∇ then
4 return (A,∇)
5 Σ← {δ ∈ ∆Π ∪∇ | δ \A = {σ}, σ /∈ A}
6 if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in
7 A← A ◦ (σ)

8 until Σ = ∅
9 ε← UNFOUNDEDSETPROPAGATION(Π,A)

10 if ε = ∅ then // no unfounded set
11 ε← CONSTRAINTPROPAGATION(A|V ,A|C)
12 if ε = ∅ then // nothing to propagate
13 return (A,∇)
14 ∇ ← ∇∪ {ε}

pirical evidence provided by lazy clause generation (Ohri-
menko, Stuckey and Codish 2009). However, our approach
abstracts the one from lazy clause generation: Every nogood
can be syntactically represented by a clause, but other ASP
constructs are also possible, such as cardinality and weight
constraints. Future work includes the implementation of our
hybrid system, and its experimental evaluation. A challenge
that concerns the implementation is that all constraints are
reified, but CP algorithms typically do not give any informa-
tion about the negation of a constraint. However, they can
be made to propagate weakly.

Acknowledgements NICTA is funded by the Department
of Broadband, Communications and the Digital Economy,
and the Australian Research Council.

References
Dovier, A.; Formisano, A.; and Pontelli, E. 2005. A compar-
ison of CLP(FD) and ASP solutions to NP-complete prob-
lems. In Proceedings of ICLP’05, 67–82. Springer.
Drescher, C., and Walsh, T. 2010. A translational approach
to constraint answer set solving. Theory and Practice of
Logic Programming 10(4-6):465–480.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proceedings of
IJCAI’07, 386–392. AAAI Press/MIT Press.
Gebser, M.; Ostrowski, M.; and Schaub, T. 2009. Constraint
answer set solving. In Proceedings of ICLP’09, 235–249.
Springer.
Mitchell, D. 2005. A SAT solver primer. Bulletin of
the European Association for Theoretical Computer Science
85:112–133.
Ohrimenko, O.; and Stuckey, P. J.; and Codish, M.
2009. Propagation via lazy clause generation. Constraints
14(3):357–391.

