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Abstract

Although Answer Set Programming (ASP) systems are highly optimised, their perfor-
mance is sensitive to the size of problem encodings. We address this deficiency by intro-
ducing a new extension to ASP solving. The idea is to integrate external propagators to
represent parts of the encoding implicitly, rather than generating it a-priori. To match the
state-of-the-art in conflict-driven solving, however, external propagators can generate an
encoding of their inference on demand. We demonstrate the applicability of our approach
in a novel Constraint Answer Set Programming system that can seamlessly integrate
Constraint Programming techniques without sacrificing the advantages of conflict-driven
techniques. Experiments provide evidence for computational impact.

KEYWORDS: Answer Set Programming, Conflict-Driven Nogood Learning, Constraint
Propagation, Lazy Nogood Generation

1 Introduction

Developing a powerful paradigm for declarative problem solving is one of the key

challenges in the area of knowledge representation and reasoning. A promising can-

didate is answer set programming (ASP; Baral 2003) which builds on logic program-

ming and non-monotonic reasoning. Its success depends on two factors: efficiency

of the solving capacities, and modelling convenience. Efficient ASP solvers (cf. Lin

and Zhao 2002, Giunchiglia et al. 2006, Gebser et al. 2007) match the state-of-

the-art in conflict-driven solving (Mitchell 2005), including conflict-driven learning,

lookback-based heuristics, and backjumping. However, their performance is sensi-

tive to the size of problem encodings which can quickly become infeasible, for in-

stance, through the worst-case exponential number of loops in a logic program (Lif-

schitz and Razborov 2006), or constructs that are naturally non-propositional, like

constraints over finite domains. A variety of extensions to ASP have been proposed

that deal with some of these issues via other declarative problem solving paradigms,

similar to the idea of Satisfiability Modulo Theories (SMT, Nieuwenhuis et al.

2006). Recently, for example, we have witnessed the development of Constraint

Answer Set Programming (CASP) that integrates Constraint Programming (CP)

with ASP, supporting constraints over finite domains, and most importantly, global

constraints. While this approach certainly increases modelling convenience and can
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drastically decrease the size of an encoding, it does not fully carry over to conflict-

driven solving technology (cf. Drescher and Walsh 2010).

We address this problem and present a new computational extension to ASP

solving, called Lazy Nogood Generation. Motivated by the success of Lazy Clause

Generation (Ohrimenko et al. 2009) in Constraint Satisfaction Problem (CSP) solv-

ing, the key idea is to generate (parts of) the problem encoding on demand, only

when new information can be propagated. We make several contributions to the

study of Lazy Nogood Generation in ASP. First, we lay the foundations of external

propagation based on a uniform characterisation of answer sets in terms of no-

goods. This provides the underpinnings to represent conditions on the answer sets

of a logic program without encoding the entire problem a-priori. However, exter-

nal propagators can make parts of the encoding explicit, in particular, when they

can trigger inference. As we shall see, our techniques generalise existing ones, e.g.,

loop formula propagation (Gebser et al. 2007), and weight constraint rule propaga-

tion (Gebser et al. 2009). Second, we specify a decision procedure for ASP solving

with Lazy Nogood Generation. It is centred around conflict-driven solving and in-

tegrates external propagation. Third, we demonstrate applicability. We show how

to seamlessly integrate constraint propagation with our framework, resulting in a

novel approach to CASP solving. Finally, we empirically evaluate a prototypical

implementation and compare to the state-of-the-art in ASP and CASP solving.

2 Background

Many tasks from the declarative problem solving domain can be defined as CSP,

that is a tuple (V ,D ,C ) where V is a finite set of constraint variables, each v ∈ V

has an associated finite domain dom(v) ∈ D , and C is a set of constraints. A

constraint c is a k -ary relation, denoted range(c), on the domains of the variables

in scope(c) ∈ V k . A (constraint variable) assignment is a function A that assigns

to each variable v ∈ V a value from dom(v). For a constraint c with scope(c) =

(v1, . . . , vk ) define A(scope(c)) = (A(v1), . . . ,A(vk )). The constraint c satisfied if

A(scope(c)) ∈ range(c). Otherwise, we say that c is violated. Let CA = {c ∈C |
A(scope(c))∈range(c)}. An assignment A is a solution iff C = CA. CP systems are

oriented towards solving CSP and typically interleave backtracking search to explore

assignments with constraint propagation to prune the set of values a variable can

take. The effect of constraint propagation is studied in terms of local consistency.

E.g., a binary constraint c is called arc consistent iff a variable in scope(c) is assigned

any value, there exists a value in the domain for the other variable in scope(c)\{v}
such that c is not violated. An n-ary constraint c is called domain consistent iff v ∈
scope(c) is assigned any value, there exist values in the domains of all other variables

in scope(c) \ {v} such that c is not violated. Observe that, in general, a constraint

propagator that enforces domain consistency prunes more values than one that

enforces arc consistency on a binary decomposition of the original constraint.

CSPs can be encoded with ASP (Niemelä 1999), which is founded on logic pro-

gramming. A (normal) logic program P over an alphabet A is a finite set of rules r

of the form a0 ← a1, . . . , am ,not am+1, . . . ,not an where ai ∈ A are atoms for
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0 ≤ i ≤ n. A default literal is an atom a or its default negation not a. The atom

head(r) = a0 is called the head of r and the set of default literals body(r) =

{a1, . . . , am ,not am+1, . . . ,not an} is called the body of r . A fact is a rule r such

that body(r) = ∅. We also use← a1, . . . , am ,not am+1, . . . ,not an as a shorthand for

a0 ← a1, . . . , am ,not am+1, . . . ,not an ,not a0, referred to as integrity constraint.

For a set of default literals S , define S+ = {a | a ∈S} and S− = {a | not a ∈S}.
For restricting S to atoms E , define S |E = {a | a∈S+ ∩ E} ∪ {not a | a∈S− ∩ E}.
For X ⊆ A define external support for X as ESP (X ) = {body(r) | r ∈P , head(r)∈
X , body(r)+ ∩ X = ∅}. The set of atoms occurring in P is denoted by atom(P),

and the set of bodies in P is body(P) = {body(r) | r ∈ P}. For regrouping rules

sharing the heads in X ⊆ A, define PX = {r ∈ P | head(r) ∈X }, and for bodies

sharing the same head a, define body(a) = {body(r) | r ∈P , head(r) = a}. A logic

program with externals over E is a logic program P over an alphabet distinguishing

regular atoms A and external atoms E , such that head(r) ∈ A for each r ∈ P .

Let Y ⊆ E . For a logic program P over externals from E define the pre-reduct

P(Y ) = {head(r) ← body(r)|A\E | r ∈P , body(r)+|E ⊆ Y , body(r)−|E ∩ Y = ∅}.
A splitting set for a logic program P (Lifschitz and Turner 1994) is a set E ⊆ A
if head(r) ∈ E then body(r)+ ∪ body(r)− ⊆ E for each r ∈ P . Observe that, if E
is a splitting set of P , it splits P into a logic program PE over E and a logic pro-

gram PA\E with externals over E . The semantics of a logic program P is given by

its answer sets. A set X ⊆ A is an answer set of P , if X is a minimal model of

the reduct PX = {head(r) ← body(r)+ | r ∈P , body(r)− ∩ X = ∅} (Gelfond and

Lifschitz 1988). If E is a splitting set of P , the set Z ⊆ A is an answer set of P iff

Z = X ∪Y with X is an answer set of PE and Y is an answer set of PA\E(Y ) (Split-

ting Set Theorem, Lifschitz and Turner 1994). Although the language of ASP is

propositional, atoms in A and can be constructed from a first-order signature via

a grounding process, systematically substituting all occurrences of first-order vari-

ables by terms, resulting in a (ground) instantiation.

Following Gebser et al. (2007), the answer sets of a logic program P can be

characterised as Boolean assignments over atom(P) ∪ body(P) that do not conflict

with the conditions induced by the Clark (1978) completion and all loop formulas

of P (Lee 2005). These conditions are expressed in terms of nogoods (Dechter 2003).

Formally, a (Boolean) assignment A is a sequence (σ1, . . . , σn) of (signed) literals σi
of the form Ta or Fa where a is in the scope of A, e.g., scope(A) = atom(P) ∪
body(P). The complement of a literal σ is denoted σ. True and false variables

in A are accessed via AT and AF. A nogood represents a set δ = {σ1, . . . , σn} of

signed literals, expressing a condition conflicting with any assignment A if δ ⊆ A.

If δ \ A = {σ} and σ 6∈ A, we say that δ is unit and asserts the unit-resulting

literal σ. A total assignment, that is AT ∪AF = scope(A) and AT ∩AF = ∅, is a

solution for a set of nogoods Γ if δ 6⊆ A for each δ ∈ Γ.

3 Nogoods of Logic Programs with Externals

We generalise the approach of Gebser et al. (2007) and describe nogoods capturing

inferences from Clark completion and loop formulas for logic programs P with
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externals over E . For β = {a1, . . . , am ,not am+1, . . . ,not an} ∈ body(P), define

∆β =

{
{Ta1, . . . ,Tam ,Fam+1, . . .Fan ,Fβ},
{Fa1,Tβ}, . . . , {Fam ,Tβ}, {Tam+1,Tβ}, . . . , {Tan ,Tβ}

}
·

Intuitively, the nogoods in ∆β enforce the truth of body β iff all its elements are

satisfied. For an atom a ∈ atom(P) with body(a) = {β1, . . . , βk}, define

∆a =
{
{Tβ1,Fa}, . . . , {Tβk ,Fa}, {Fβ1, . . . ,Fβk ,Ta}

}
.

Let ∆EP =
⋃
β∈body(P) ∆β ∪

⋃
a∈atom(P)\E ∆a . The solutions for ∆∅P correspond to

the models of the completion of P (Gebser et al. 2007). To capture the effect of loop

formulas induced by a set L ⊆ atom(P)\E , for a ∈ L define λ(a,L) = {{Ta}∪{Fβ |
β∈ESP (L)}}. The set of loop nogoods is ΛEP =

⋃
L⊆atom(P)\E,L6=∅{λ(a,L) | a∈L}.

Let P be a logic program and X ⊆ A. Then, X is an answer set of P iff there is a

(unique) solution for ∆∅P ∪ Λ∅P such that AT ∩ atom(P) = X (Gebser et al. 2007).

We combine this result with the Splitting Set Theorem (Lifschitz and Turner 1994).

Proposition 1
Let P be a logic program, E a splitting set for P , and X ⊆ A. Then, X is an answer

set of P iff there is a (unique) solution A for ∆∅PE
∪Λ∅PE

∪∆EPA\E
∪ΛEPA\E

such that

AT ∩ (atom(PE) ∪ atom(PA\E)) = X .

An efficient algorithm for computing solutions to ∆∅P ∪ Λ∅P is Conflict-Driven No-

good Learning (CDNL, Gebser et al. 2007). It combines search and propagation by

recursively assigning the value of a proposition and performing unit-propagation to

determine consequences of an assignment (Mitchell 2005).

4 Lazy Nogood Generation

Instead of generating all nogoods ∆∅P ∪ Λ∅P a-priori, referred to as eager encoding,

we introduce external propagators to generate nogoods on demand, i.e., only when

they are able to propagate new information. We call this technique Lazy Nogood

Generation, generalising an approach to encoding constraints over finite domains

into sets of clauses by executing constraint propagation during SAT search and

recording the propagation in terms of clauses (Lazy Clause Generation, Ohrimenko

et al. 2009). Formally, an external propagator for a set of nogoods Γ is a function π

that maps a Boolean assignment A to a subset of Γ such that for each total as-

signment A if δ ⊆ A for some δ ∈ Γ then δ′ ⊆ A for some δ′ ∈ π(A). In other

words, an external propagator generates a conflicting nogood from Γ iff some nogood

in Γ is conflicting with a total assignment. We call an external propagator conflict-

optimal, if this condition holds for each (partial) assignment. Notice that, even for a

conflict-optimal external propagator, unit-propagation on Γ might be stronger than

unit-propagation on lazily generated nogoods, i.e., infer more unit-resulting liter-

als. To close this gap, we define inference-optimal external propagators. An external

propagator π for a set of nogoods Γ is inference-optimal if π is conflict-optimal and

for each non-conflicting assignment A if δ \ A = {σ} such that σ 6∈ A for some

δ ∈ Γ then δ′ \A = {σ} for some δ′ ∈ π(A). The correspondence between external

propagation and the set of nogoods it represents can be formalised as follows.
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Proposition 2

Let ∆ be a set of nogoods, and π be an external propagator for Γ ⊆ ∆. Then, the

assignment A is a solution of ∆ iff A is a solution of (∆ \ Γ) ∪ π(A).

One of the advantages of Lazy Nogood Generation over eager encodings is space

efficiency. For instance, the worst-case exponential number of loops in a logic pro-

gram P makes an eager encoding of the conditions induced by Λ∅P infeasible (Lif-

schitz and Razborov 2006). External propagation, however, can check all loop for-

mulas in linear time (Calimeri et al. 2002). The approach of Gebser et al. (2007)

applies non-optimal external propagation that determines the nogoods in Λ∅P on

demand via directed unfounded set inference.

To reflect Lazy Nogood Generation also on the language level of ASP, we make

use of splitting (Lifschitz and Turner 1994) for outsourcing conditions over E ⊆ A
into PE . Instead of making PE explicit, however, a set of external propagators Π

can be provided that precisely represent the conditions induced by PE . We will

write atom(Π) to access E . The previous propositions yield the following result.

Theorem 1

Let P be a logic program, E a splitting set for P , Π a set of external propagators

for ∆∅PE
∪ Λ∅PE

, and X ⊆ A. Then, X is an answer set of P iff there is a (unique)

solution A for ∆EPA\E
∪ΛEPA\E

∪
⋃
π∈Π π(A) s.t. AT ∩ (atom(PE)∪ atom(Π)) = X .

External propagation provides a form of modularity that allows programmers to

select encodings which propagate better, but were previously avoided for space-

related reasons. For instance, in (Drescher and Walsh 2010) we describe eager en-

codings that simulate constraint propagators for the all-different constraint

which achieve arc, bound, or range consistency. A constraint propagator that can

achieve domain consistency exists (Régin 1994) but it cannot be simulated effi-

ciently (Bessière et al. 2009). Because of the fact that external propagators generate

nogoods only on demand, however, we can implicitly represent encodings via Lazy

Nogood Generation that are otherwise infeasible.

5 Conflict-Driven Nogood Learning with Lazy Nogood Generation

We develop a decision procedure for answer set solving with Lazy Nogood Gener-

ation based on CDNL (Gebser et al. 2007). It is centred around conflict analysis

according to the First-UIP scheme (Mitchell 2005). That is, a conflicting nogood

is iteratively resolved against other nogoods until a conflicting nogood that con-

tains a unique implication point is obtained. This guides backjumping. Recording

the resolved nogood enables conflict-driven learning, which can further prune the

search space. For controlling the set of recorded nogoods, deletion strategies can be

applied (cf. Moskewicz et al. 2001). In contrast to CDNL we will integrate external

propagators that perform Lazy Nogood Generation in order to represent conditions

on the answer sets of a logic program that are not encoded eagerly. Like their eager

encoded counterpart, lazily generated nogoods can contribute to conflict analysis.

This can improve propagation and contribute to lookback-based search heuristics.
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Input : A logic program P with external propagators Π.
Output: An answer set of P if one exists.

1 A← ∅ // Boolean assignment
2 ∇ ← ∅ // set of recorded nogoods
3 dl ← 0 // decision level
4 loop
5 (A,∇)← Propagation(P ,Π,∇,A)

6 if δ ⊆ A for some δ ∈ ∆
atom(Π)
P ∪∇ then

7 if dl = 0 then return no answer set
8 (ε, k)← ConflictAnalysis(δ,P ,∇,A)
9 ∇ ← ∇∪ {ε}

10 A← A\{σ ∈ A | k < dl(σ)}
11 dl ← k

12 else if AT ∪AF = atom(P) ∪ body(P) ∪ atom(Π) then
13 return AT ∩ (atom(P) ∪ atom(Π))
14 else
15 σd ← Select(P ,Π,∇,A)
16 A← A ◦ (σd)
17 dl ← dl + 1

Fig. 1. CDNL-LNG

Different from eager encoded nogoods, the amount of recorded nogoods can be

controlled via deletion. If needed, however, deleted nogoods will be rediscovered.

5.1 Main Algorithm

The main algorithm, CDNL-LNG, is shown in Fig. 1. It takes a logic program P

with external propagators Π, and starts with an empty assignment A and an empty

set ∇ that will store recorded nogoods, including lazily generated nogoods. The de-

cision level dl is initialised with 0. Its purpose is counting decision literals in the

assignment. We use dl(σ) to access the decision level of literal σ. The following

loop is very similar to CDNL. First, Propagation (Line 5) extends A and ∇, as

described in the next section. If this encounters a conflict (Line 6), the Conflict-

Analysis procedure generates a conflicting nogood ε by exploiting interdependen-

cies between nogoods in ∆
atom(Π)
P ∪ ∇ through conflict resolution, and determines

a decision level k to continue search at. Then, ε is added to the set of recorded no-

goods ∇ in Line 9. This can prune the search space and lead to faster propagation.

Lines 10–11 account for backjumping to level k . Thereafter ε is unit and triggers

inference in the next round of propagation. If ConflictAnalysis, however, yields

a conflict at level 0, no answer set exists (Line 7). Furthermore, we distinguish the

cases of a complete assignment (Lines 12–13) and a partial one (Lines 14–17). In

case of a complete assignment, the atoms in AT obtain an answer set of P . In the

other case, A is partial and no nogood is conflicting. Then, a decision literal σd is

selected by some heuristic, added to A, and the decision level is incremented. While

the ConflictAnalysis and Select procedures are similar to the ones in CDNL,

we extend Propagation to accommodate Lazy Nogood Generation.
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Input : A logic program P with external propagators Π, recorded nogoods ∇,
Boolean assignment A.

Output: An extended assignment and set of recorded nogoods.

1 loop
2 repeat // unit-propagation

3 if δ ⊆ A for some δ ∈ ∆
atom(Π)
P ∪∇ then return (A,∇)

4 Σ← {δ ∈ ∆
atom(Π)
P ∪∇ | δ\A = {σ}, σ /∈ A}

5 if Σ 6= ∅ then let σ ∈ δ\A for some δ ∈ Σ in
6 A← A ◦ (σ)

7 until Σ = ∅
8 foreach π ∈ Π do
9 Σ← π(A) // external propagation

10 if Σ 6= ∅ then break

11 if Σ = ∅ then
12 Σ← LoopFormulaPropagation(P ,A) // loop formula propagation

13 if Σ = ∅ then return (A,∇)
14 ∇ ← ∇∪ Σ

Fig. 2. Propagation

5.2 Propagation

A specification of our Propagation procedure is shown in Fig. 2. It works on a

logic program P with external propagators Π, a set of recorded nogoods ∇, and

an assignment A. Propagation interleaves unit-propagation on nogoods ∆
atom(Π)
P

and recorded nogoods ∇ including lazily generated nogoods from external propa-

gators. We start with unit-propagation (Lines 2–7), resulting either in a conflict,

i.e., some nogood is conflicting (Line 3), or in a fixpoint possibly extending A

with unit-resulting literals. If there is no conflict, Propagation performs external

propagation following some priority (Lines 8–10). Based on A, each propagator may

encode inference in a set of lazily generated nogoods Σ which is added to the set of

recorded nogoods ∇ at the end of the loop in Line 14. The LoopFormulaPropa-

gation procedure (Line 12, c.f. Gebser et al. 2007) works similarly to ensure that

no loop formula is violated, i.e., no loop nogood in Λ
atom(Π)
P is conflicting. This only

has an effect if the logic program is non-tight (Erdem and Lifschitz 2003).

Note that external propagation is interleaved by unit-propagation in order to

assign unit-resulting literals immediately and detect conflicts early. Our algorithm

also favours external propagation over loop formula propagation, motivated by the

fact that external propagators can affect the assignment to atoms in atom(Π),

possibly falsifying external support for a loop in P .

6 Constraint Answer Set Solving via Lazy Nogood Generation

One difficult task for answer set solving with Lazy Nogood Generation remains, i.e.,

the one of creating efficient external propagators. A research area that is largely

concerned with efficient propagation in declarative problem solving is CP. We here

follow the idea of Ohrimenko et al. (2009) and apply CP techniques to generate
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(1) #var $value(x ) = 1..|S |
(2) $value(x ) #== i ← hint(x , i)
(3) #all-different {$value(x ) | ∀x ∈ S} ←
(4) cns(x , y) ← conn(x , y), #linear [$value(y),−$value(x )] == 1
(5) in path(x , y) ← conn(x , y), not in path(x , y), not hint(y , 1)
(6) out path(x , y) ← conn(x , y), not out path(x , y)
(7) ← in path(x , y), in path(x , z )
(8) reached(1) ←
(9) reached(y) ← reached(x ), in path(x , y)
(10) ← not reached(x )
(11) ← in path(x , y), not cns(x , y)

where x , y , z ∈ S , x 6= y , y 6= z , and i ∈ {1, . . . , |S |}

Fig. 3. CASP encoding of Hidato.

lazy nogoods representing constraints over finite domains. To reflect this on the

language level, we use of CASP, a paradigm that naturally merges CP and ASP.

6.1 A Language for Lazy Nogood Generation

CASP abstracts from non-propositional constraints by incorporating constraint

atoms into logic programs. We access the constraint atom associated to a con-

straint c via the function atom(c). A constraint logic program is a tuple P =

(V ,D ,C ,P), where V ,D ,C are the same as in the definition of a CSP, and P is

a logic program with externals over constraint atoms C = {atom(c) | c ∈ C}. To

improve the modelling convenience, however, we follow Gebser et al. (2009) and

view a rule r with head(r) ∈ C as an integrity constraint ← body(r),not head(r).

Example 1

Hidato is a number-placement puzzle game. Its goal is to fill a grid with consecutive

integers connecting horizontally, vertically, or diagonally. Some numbers, including

the smallest and the highest number on the grid, are preassigned in order to guar-

antee a unique solution. Logic programming based approaches are particularly well

suited for modelling Hidato because reachability is encoded straightforwardly

using recursive transitive closure. This is difficult to represent, e.g., in CP. Let S

be the set of cells on the grid. Fig. 3 provides a CASP encoding of Hidato. It works

on a set of facts about connections between cells x , y ∈ S of the form conn(x , y),

and preassigned values of the form hint(x , i), representing that cell x ∈ S has the

value i ∈ {1, . . . , |S |} preassigned. We distinguish variable definitions and constraint

atoms, indicated by the # symbol, and constraint variables, indicated by the $ sym-

bol, from regular atoms. Line 1 defines a constraint variable for each cell in the grid

with values between 1 and |S |. Line 2 makes use of primitive constraints. It insures

that preassignments are respected by the corresponding variables. Line 3 encodes

the condition that the values taken by the cells in the grid are all-different.

Line 4 defines an auxiliary atom cns(x , y) which indicates whether two connected

cells x and y take consecutive values. Lines 6–10 encode a Hamiltonian path, rep-

resented by atoms of the form in path(x , y), and the integrity constraint in Line 11
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insures that the values taken by two connected cells in the Hamiltonian path are

consecutive. Note that the global all-different constraint is redundant in this

encoding, but it improves run time.

A fundamental difference to traditional CP is that, in CASP, each constraint c is

reified via atom(c). Its truth value is determined by the conditions induced by P

and an assignment A to the variables in scope(c). The set of constraint atoms CA =

{atom(c) | c ∈ CA} correspond to the constraints satisfied by A. Let P be a

constraint logic program and A an assignment. The pair (X ,A) is a constraint

answer set of P iff X is an answer set of P(CA) (cf. Gebser et al. 2009). Given

that assignments A and their effect on each constraint can be represented in a

logic program (Niemelä 1999), the task of computing constraint answer sets can be

reduced to the one of computing answer sets of P with external propagators for

generating assignments A and capturing the inference of constraint propagation.

6.2 Conflict-Driven Constraint Answer Set Solving

To begin with, CASP solving via Lazy Nogood Generation requires a proposi-

tional representation of assignments to constraint variables. A popular choice is

called the value encoding. In the value encoding, an atom value(v , i), represent-

ing v = i , is introduced for each variable v ∈ V and value i ∈ dom(v). Intuitively,

the atom value(v , i) is true if v takes the value i , and false if v takes a value differ-

ent from i (cf. Walsh 2000). To insure that an assignment A represents a consistent

set of possible values for v , for instance, the atoms value(v , 1) and value(v , 3) can-

not both be true, we encode the conditions that v must not take two values, i.e.,

{Tvalue(v , i),Tvalue(v , j )} 6⊆ A for all i , j ∈ dom(v), i 6= j , and that v must take

at least one value, i.e., Fvalue(v , i) 6∈ A for some i ∈ dom(v), in the set of nogoods

Γv = {{Tvalue(v , i),Tvalue(v , j )} | i , j ∈ dom(v), i 6= j} ∪ {{Fvalue(v , i) | i ∈
dom(v)}} (Drescher and Walsh 2010). We employ external propagators to represent

the nogoods in Γv . The algorithm in Fig. 4 provides a specification of an inference-

optimal external propagator for this task. It takes a Boolean assignment A and

returns a set of lazily generated nogoods, initialised in Line 1, that are unit or

conflicting. Lines 2–3 insure that if v is assigned a value i then all other values are

removed from its domain, while Lines 4–5 deal with the condition that there is at

least one value that can be assigned to v . This procedure can be made very efficient,

for instance, by using watched literals (Moskewicz et al. 2001). Another popular

choice for representing constraint variables is the bound encoding, where an atom

is introduced for each variable v ∈ V and value i ∈ dom(v) to represent that v is

bounded by i , i.e., v ≤ i (cf. Tamura et al. 2006). Similar to the value encoding,

we can define nogoods that insure a consistent Boolean assignment (Drescher and

Walsh 2010). A combination of value and bound encoding is also possible.

We see atoms from the value and bound encoding as primitive constraints, as all

constraints can be decomposed into nogoods over them, e.g., by describing changes

in the variables’ domains inferred by constraint propagation. This way, constraint

propagators can be encoded eagerly or lazily. Transforming a constraint propaga-

tor into an external propagator is straightforward: Rather than applying domain
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Input : A Boolean assignment A.
Output: A set of lazily generated nogoods.

1 ∇ ← ∅ // set of lazily generated nogoods
2 if Tvalue(v , i) ∈ A for some i ∈ dom(v) then
3 ∇ ← {{Tvalue(v , i), Tvalue(v , j )} | j ∈ dom(v)\{i}, Fvalue(v , j ) 6∈ A}
4 if Tvalue(v , i) 6∈ A for some i ∈ dom(v) ∧ ∀j ∈ dom(v)\{i} Fvalue(v , j ) ∈ A then
5 ∇ ← {{Fvalue(v , i) | i ∈ dom(v)}}
6 return ∇

Fig. 4. An external propagator for the value encoding Γv .

changes directly, the constraint propagator has to be made encoding its inferences

in form of nogoods over primitive constraints (Ohrimenko et al. 2009).

Example 2

An external propagator for encoding the reified all-different constraint c is

specified in the algorithm given by Fig. 5. Provided with a Boolean assignment A,

it starts with an empty set of lazily generated nogoods, followed by a distinction

into two cases. First, if the constraint is to be satisfied, i.e., Tatom(c) ∈ A, then

for each variable in the scope of the constraint that has a value assigned, a nogood

is generated that asserts the removal of this value from the domain of all other

variables in the scope of the constraint (Lines 3–4). On the other hand, if the

constraint is not set to be satisfied, the algorithm checks whether two variables in

the scope of the constraint have the same value assigned (Lines 6–10). If so, the

all-different constraint is violated and a nogood asserting that the constraint

atom is set to false will be returned (unless Fatom(c) ∈ A, in which case the

constraint atom is already false). If, however, no such two variables can be found

and all variables in the scope of the constraint have a value assigned, then the all-

different condition is satisfied and a nogood is generated that asserts the truth

of the constraint atom (Lines 11–12).

Observe that this propagator enforces arc consistency on the binary decompo-

sition of the reified all-different constraint if atom(c) is true, but propagates

weakly if atom(c) is false. However, propagators that achieve higher levels of local

consistency are also possible (Régin 1994).

Constraint propagators encode new information into unit or conflicting nogoods,

while unit-propagation performs the encoded inference within the next iteration.

This can change (the representation of) some variable’s domain. Unit-propagation,

constraint propagation, and loop formula propagation are repeated until a fixpoint

is reached or a conflict is encountered. By generating a conflicting nogood, for in-

stance, a constraint propagator can yield that the underlying constraint is violated.

Notice that constraint answer set solving via Lazy Nogood Generation is fun-

damentally more general then the SAT-based approach to CP solving presented

in (Ohrimenko et al. 2009), which can be seen as a special case of our techniques,

that is, if the truth value of each constraint atom is known a-priori and every nogood

is represented by a clause.
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Input : A Boolean assignment A.
Output: A set of lazily generated nogoods.

1 ∇ ← ∅ // set of lazily generated nogoods
2 if Tatom(c) ∈ A then
3 foreach v ∈ scope(c) s.t. Tvalue(v , i) ∈ A for some i ∈ dom(v) do

4
∇ ← ∇∪ {{Tatom(c), Tvalue(v , i), Tvalue(w , i)} | w ∈ scope(c)\{v},

i ∈ dom(w), Fvalue(w , i) 6∈ A}

5 else
6 foreach v ∈ scope(c) s.t. Tvalue(v , i) ∈ A for some i ∈ dom(v) do
7 if w ∈ scope(c)\{v} s.t. Tvalue(w , i) ∈ A then
8 if Fatom(c) 6∈ A then
9 ∇ ← {{Tatom(c), Tvalue(v , i), Tvalue(w , i)}}

10 return ∇

11 if ∀v ∈ scope(c) ∃i ∈ dom(v) s.t. Tvalue(v , i) ∈ A then

12
∇ ← {{Fatom(c)} ∪ {Tvalue(v , i) | v ∈ scope(c),

i ∈ dom(v), Tvalue(v , i) ∈ A}}

13 return ∇

Fig. 5. An ext. propagator for encoding the reified all-different constraint c.

7 Experiments

We have implemented Lazy Nogood Generation for constraint variables, the all-

different and integer linear constraints within a new version of our prototypical

CASP system inca1. It is based on the latest development version of the ASP sys-

tem clingo2 (3.0.92), and uses CDNL-LNG as its core reasoning engine. We also

include the CASP system clingcon2 (2.0.0-beta) in our analysis. It too extends

clingo (3.0.92), but integrates the CP solver gecode3 (3.7.1). Similar to our ap-

proach, clingcon is based on CDNL and abstracts from the constraints via con-

straint atoms. Following the idea of SMT, however, clingcon employs its CP solver

to check the existence of a constraint variable assignment that does not violate any

constraint according to the assignment to constraint atoms. In turn, the CP solver

can yield a conflict or propagate constraint atoms by generating nogoods over only

constraint atoms that occur in the constraint logic program. Hence, this process

constitutes a very limited form of Lazy Nogood Generation. We have set clingcon

to generate nogoods by looking at dependency between constraints according to

the irreducibly inconsistent set construction method in “forward” mode, when we

noticed that this option significantly improves the performance of clingcon on our

benchmarks. For a comparison with the state-of-the-art in answer set solving, our

experiments also consider eager encodings. We often use inca to generate eager

encodings, but it only relies on its ASP subsystem clingo (3.0.92) for the solving

process. Hence, we denote this option as clingo. Note that loop formulas are en-

1 to be released
2 http://potassco.sourceforge.net
3 http://www.gecode.org
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Fig. 6. Results on Latin square problems of size 40. Left: Maximum memory usage in GB
by preassigned values in percent. Right: Runtime in minutes by number of solved instances.

coded lazily in all settings. Experiments were run on a Linux PC, where each run

was limited to 600 sec CPU time on a 2.00 GHz core and 2 GB RAM.

7.1 Latin Squares

We consider Latin squares to test Lazy Nogood Generation for the all-different

constraint. A Latin square is an n × n-table filled with n different elements such

that each element occurs exactly once in each row and each column of the table.

The Latin square problem is to determine whether a partially filled table can be

completed in such a way that a Latin square is obtained. We consider randomly

generated tables because they combine the features of purely random problems and

highly structured ones (Gomes and Selman 1997). Previous experiments on this

benchmark domain (Drescher and Walsh 2010) with n = 20 have shown eager en-

codings outperforming systems like clingcon (0.1.2), a previous version of clingcon

with only very limited capacities for conflict-driven learning and no support for

global constraints. In order to study the computational behaviour on large-scale

tables we have increased size to n = 40. We have generated 200 instances near

to the phase transition. Phase transition can be observed, e.g., at the maximum

memory consumption of clingo in relation to the preassignment rate (Fig. 6). In

fact, we observe most cases of memory exhaustion with a preassignment rate of

50 percent. Since all atoms in the CASP model for Latin squares are constraint

atoms whose truth value is known a-priori, clingcon cannot make use of its conflict-

driven capacities. Instead, search and propagation in clingcon is carried out by its

backtracking-based CP solver, i.e., following a smallest domain and smallest value

first selection heuristic, whilst search in clingo and inca is based on activity in con-

flict analysis according. This is likely be the reason that renders clingcon ineffective

on this benchmark domain, solving only 9 of 200 instances. To our surprise, enabling

learning capacities in clingcon by decomposing the all-different constraints into

primitive constraints, like in the eager encoding used by clingo, exhausts CPU time

on all instances. Within the allowed execution time, clingo, however, solves almost

half of all instances. Though, clingo performs drastically worse on Latin square

problems with the increased size, compared to previous experiments (Drescher and

Walsh 2010). Lazy Nogood Generation in inca, on the other hand, avoids huge
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Table 1. Average time in seconds over completed runs on Latin square, Packing,

and Numbrix benchmarks. Number of completed runs are given in parenthesis.

benchmark class (#instances) clingo clingcon inca

Latin squares (200) 106.61 (93) 34.38 (9) 86.19 (171)
Packing (50) 104.06 (1) 33.10 (50) 24.61 (50)
Numbrix (12) 10.42 (12) 17.36 (12) 1.29 (12)

weighted, penalised avg. time 323.69 208.34 62.20

encodings while preserving conflict-driven learning capacities. In fact, inca solves

twice as many instances as clingo within one hour of execution time, and nearly

twice as many instances overall (Fig. 6).

7.2 Packing

To test Lazy Nogood Generation for integer linear constraints, we consider in-

stances of the Packing problem, that is the problem of packing objects together

inside a container. A special case of the packing problem formed a benchmark

class in the third ASP competition (Calimeri et al. 2011). There, a set of squares

of known dimensions had to be packed into a rectangular area such that no two

squares overlap each other and all the squares are packed, possibly leaving space

in the rectangular area unoccupied. Problems like Packing are particularly hard to

solve with ASP systems because they typically involve large domains that affect the

size of their encoding. In fact, the encoding that was given in the system track of

the competition quickly reaches the memory limit of 2 GB in 49 over 50 instances,

while the CASP systems clingcon and inca solve every instance within a reasonable

amount of space and time. On the Packing domain, the advantage of inca over

clingcon is only marginal.

7.3 Numbrix

Numbrix is a variant of Hidato. It is played on an n × n grid with the restriction

that only horizontal and vertical connections are allowed. The other difference is

that the positions of the smallest and the highest number are not always given.

The objective of Numbrix is the same as Hidato. Our experiments determine the

existence of a unique solution for n = 9. While clingo, clingcon, and inca, all are

able to solve all puzzles considered in our analysis, we observe that execution time

improves when CP constructs are encoded into nogoods, as in the options clingo

and inca, and drastically improves when this encoding is lazy, as in the option inca.

7.4 Discussion

A summary of our experiments is provided in Table 1. Although more benchmark

classes are needed for a meaningful comparison, we can draw a few interesting
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conclusions. First, execution time can improve when CP constructs are treated

by external propagation rather than encoding them eagerly. The latter can lead

to huge encodings, in particular, when large domains are involved. Second, the

advantage of generating nogoods to describe the inferences of constraint propagators

is that CDNL can exploit constraint interdependencies for directing search, and

most importantly conflict analysis. The fact that clingcon does not encode CP

constructs into nogoods, by design, is likely to be the reason for its limited success in

our experiments. Third, experiments show that our approach, represented through

inca, combines the best of both worlds: It can avoid huge encodings via abstraction

to external propagation while retaining the ability to make the encoding explicit.

It outperforms the state-of-the-art in constraint answer set solving on individual

benchmark classes, and is more robust over all benchmark instances.

8 Related Work

Related work on the integration of ASP with other declarative problem solving

paradigms is plentiful, and roughly falls into one of three categories: translation-

based approaches, modular approaches, and integrated approaches.

In translation-based approaches, all parts of an (extended) ASP model are ea-

gerly encoded into a single language for which highly efficient off-the-shelf solvers

are available. Niemelä (1999) provides a simple mapping of constraints into ASP

given by allowed or forbidden combinations of values in a very straightforward and

easily maintainable way. We have demonstrated efficiency in (Drescher and Walsh

2010), describing what type of local consistency the unit-propagation of an ASP

solver achieves on value, bounds, and range encodings. Specialised encodings for

grammar and related constraints are presented in (Drescher and Walsh 2011b).

There is also a substantial body of work on encoding constraints into SAT which

can be translated into ASP (Niemelä 1999). For instance, Walsh (2000) analyses

two different mappings of binary CSPs into SAT, i.e., the direct encoding and the

log encoding. While the direct encoding is reflected by our value encoding, the log

encoding represents the bit-vector of each variable. Although the log encoding is

more space-efficient, unit-propagation on the direct encoding prunes more possible

values than unit-propagation (Walsh 2000). Gent (2002) proposes to encode support

rather than encoding conflicts, and proves that unit-propagation on the support

encoding achieves arc consistency. Bessière et al. (2003) generalises this technique

to n-ary CSP. Specialised SAT encodings that can be propagated more efficiently

have been proposed, e.g., for pseudo-Boolean constraints (Eén and Sörensson 2006),

and integer linear constraints (Tamura et al. 2006).

In a modular approach, theory-specific solvers interact in order to compute solu-

tions, similar to the idea of SMT (Nieuwenhuis et al. 2006). Baselice et al. (2005)

and Mellarkod and Gelfond (2008) combine systems for solving ASP and CP such

that no full grounding of first-order ASP is required. Instead, they are handled in a

CP solver. Dal Palù et al. (2009) employs the CP solver to also compute the answer

sets. The approach taken by Balduccini (2009) consists of writing logic programs

whose answer sets encode a desired CSP, which is, in turn, solved by a CP sys-
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tem. Järvisalo et al. (2009) obtain the overall semantics from the ones of individual

modules, including CP modules. While the mentioned modular approaches see ASP

and CP solvers as blackboxes, Mellarkod et al. (2008) integrate a CP solver into

the decision engine of a backtracking-based ASP solver. To match the performance

of SMT solvers, i.e., by employing conflict-driven techniques, Gebser et al. (2009)

extend the conflict analysis of an ASP solver to include constraint atoms. The ab-

straction from the inference performed by constraint propagation, however, limits

the exploitation of constraint interdependencies.

Answer set solving via Lazy Nogood Generation was first outlined in (Drescher

and Walsh 2011a), and falls into the category of integrated approaches. The related

work closest to this paper is Lazy Clause Generation (Ohrimenko et al. 2009), a

SAT-based approach to CSP solving where lazy clause generators encode the in-

ference of propagation rules into clauses. However, our approach generalises Lazy

Clause Generation: Every nogood can be syntactically represented by a clause, but

other ASP constructs are also possible, such as cardinality rules, their generalisation

to weight constraint rules (Niemelä et al. 1999), and aggregations and other forms

of set constructions that have been shown to be useful (Dell’Armi et al. 2003). E.g.,

Gebser et al. (2009) show that constraint variables can be conveniently expressed

by means of cardinality rules. Elkabani et al. (2004) provide a generic framework

which provides an elegant treatment of such extensions to ASP, employing con-

straint propagators for their handling, though, without support for conflict-driven

techniques. A thorough approach to integrating propagators for weight constraint

rules within a conflict-driven framework is presented in (Gebser et al. 2009).

9 Conclusion

We presented a comprehensive extension for answer set solving to address the scala-

bility and efficiency of ASP, called Lazy Nogood Generation. Founded on a nogood-

based characterisation of external propagation, our techniques allow for representing

encodings that are otherwise infeasible. However, external propagators can make

parts of the encoding explicit whenever it triggers inference. Deletion strategies can

be applied for controlling its size. We presented key algorithms that are centred

around conflict-driven learning, and seamlessly applied our techniques to CASP

solving by employing constraint propagation. Experiments show that our proto-

typical implementation is competitive with the state-of-the-art in CASP solving,

and also advocate a dedicated treatment of feasible encodings via external prop-

agation. We expect further significant computational impact given the empirical

evidence provided by Lazy Clause Generation (Ohrimenko et al. 2009). However,

Lazy Nogood Generation generalises Lazy Clause Generation, as every nogood can

be syntactically represented by a clause, but other ASP constructs are also possi-

ble. Future work considers the exploitation of ASP constructs like aggregation and

loops. This can lead to further impact. Many questions on modelling and solving

CASP also remain open, concerning encoding optimisations and further language

extensions. For instance, we plan to explore the different choices that arise from

the combination of translation-based and integrated constraint answer set solving.
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Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. 2009. Answer set programming
with constraints using lazy grounding. In Proceedings of ICLP’09. Springer, 115–129.

Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., and Pfeifer, G. 2003. Aggregate
functions in disjunctive logic programming: Semantics, complexity, and implementation
in DLV. In Proceedings of IJCAI’03. Morgan Kaufmann, 847–852.

Drescher, C. and Walsh, T. 2010. A translational approach to constraint answer set
solving. Theory and Practice of Logic Programming 10, 4-6, 465–480.

Drescher, C. and Walsh, T. 2011a. Conflict-driven constraint answer set solving with
lazy nogood generation. In Proceedings of AAAI’11. AAAI Press, 1772–1773.

Drescher, C. and Walsh, T. 2011b. Modelling grammar constraints with answer
set programming. In ICLP’11 Technical Communications. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 28–39.
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