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Abstract

We present a new approach to enhancing Answer Set Programming (ASP) with Con-
straint Processing techniques which allows for solving interesting Constraint Satisfaction
Problems in ASP. We show how constraints on finite domains can be decomposed into
logic programs such that unit-propagation achieves arc, bound or range consistency. Ex-
periments with our encodings demonstrate their computational impact.
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1 Introduction

Answer Set Programming (ASP; Baral 2003) has been put forward as a power-

ful paradigm to solve Constraint Satisfaction Problems (CSP) in (Niemelä 1999).

Indeed, ASP has been shown to be a useful in various applications, among them

planning (Lifschitz 1999), model checking (Heljanko and Niemelä 2003), and bio-

informatics (Baral et al. 2004), and decision support for NASA shuttle controllers

(Nogueira et al. 2001). It combines an expressive but simple modelling language

with high-performance solving capacities. In fact, modern ASP solvers, such as

clasp (Gebser et al. 2007a), compete with the best Boolean Satisfiability (SAT;

Biere et al. 2009) solvers. An empirical comparison of the performance of ASP and

traditional Constraint Logic Programming (CLP; Jaffar and Maher 1994) on solv-

ing CSP conducted by Dovier et al. (2005) shows ASP encodings to be more com-

pact, more declarative, and highly competitive, but also revealed shortcomings:

non-Boolean constructs, like resources or functions over finite domains, in par-

ticular global constraints, are more naturally modelled and efficiently handled by

Constraint Processing (CP; Dechter 2003; Rossi et al. 2006) systems.

This led to the integration of CP techniques into ASP. Similar to Satisfiability
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Modulo Theories (SMT; Nieuwenhuis et al. 2006), the key idea of an integrative ap-

proach is to incorporate theory-specific predicates into propositional formulas, and

extending an ASP solver’s decision engine for a more high-level proof procedure.

Recent work on combining ASP with CP was conducted in (Baselice et al. 2005;

Mellarkod et al. 2008; Mellarkod and Gelfond 2008) and (Gebser et al. 2009). While

Mellarkod and Gelfond both view ASP and CP solvers as blackboxes, Gebser et al.

embed a CP solver into an ASP solver adding support for advanced backjumping

and conflict-driven learning techniques. Balduccini (2009) and Järvisalo et al. (2009)

cut ties to ad-hoc ASP and CP solvers, and principally support global constraints.

Dal Palù et al. (2009) put further emphasis on handling constraint variables with

large domains, and presented a strategy which only consider parts of the model that

actively contribute in supporting constraint answer sets. However, each system has

a subset of the following limitations: either they are tied to particular ASP and CP

solvers, or the support for global constraints is limited, or communication between

the ASP and CP solver is restricted.

This paper introduces a translational approach to Constraint Answer Set Solving

rather than an integrative one. Motivated by the success of SAT-based constraint

solvers, such as the award-winning system Sugar (Tamura et al. 2006), we show

how to enhance ASP with Constraint Processing techniques through translation to

ASP. A first study was conducted in Gebser et al. (2009) with the system xpanda

for representing multi-valued propositions in ASP. One of the key contributions

of our work is an investigation of constraint decomposition techniques in the new

field of Constraint Answer Set Programming, illustrated on the popular all-different

constraint. The resulting approach has been implemented in the new preprocessor

inca. Empirical evaluation demonstrates its computational potential.

The remainder of this paper is organized as follows. We start by giving the back-

ground notions of ASP and Constraint Satisfaction. Various generic ASP encodings

of constraints on finite domains and proofs of their properties are given in Section 3.

In Section 4, we empirically evaluate our approach and compare to existing research.

Section 5 draws conclusions.

2 Background

2.1 Answer Set Programming

A (normal) logic program over a set of primitive propositions A is a finite set of

rules of the form

h ← a1, . . . , am , not am+1, . . . , not an

where 0 ≤ m ≤ n and h, ai ∈ A is an atom for 1 ≤ i ≤ n. A literal â is an

atom a or its default negation not a. For a rule r , let head(r) = h be the head of

r and body(r) = {a1, . . . , am , not am+1, . . . , not an} the body of r . Furthermore,

define body(r)+ = {a1, . . . , am} and body(r)− = {am+1, . . . , an}. The set of atoms

occurring in a logic program Π is denoted by atom(Π), and the set of bodies in Π

is body(Π) = {body(r) | r ∈ Π}. For regrouping bodies sharing the same head a,

define body(a) = {body(r) | r ∈ Π, head(r) = a}.
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The semantics of a program is given by its answer sets. A set X ⊆ A is an

answer set of a logic program Π over A, if X is the ⊆-minimal model of the reduct

(Gelfond and Lifschitz 1988)

ΠX = {head(r)← body(r)+ | r ∈ Π, body(r)− ∩ X = ∅}·

The semantics of important extensions to normal logic programs, such as choice

rules, integrity and cardinality constraints, is given through program transforma-

tions that introduce additional propositions (cf. Simons et al. 2002). A choice rule

allows for the non-deterministic choice over atoms in {h1, . . . , hk} and has the fol-

lowing form:

{h1, . . . , hk} ← a1, . . . , am , not am+1, . . . , not an

An integrity constraint

← a1, . . . , am , not am+1, . . . , not an

is an abbreviation for a rule with an unsatisfiable head, and thus forbids its body

to be satisfied in any answer set. A cardinality constraint

← k{â1, . . . , ân}

is interpreted as no answer set satisfies k literals of the set {â1, . . . , ân}. It can

be transformed into
(

n
k

)

integrity constraints r such that body(r) ⊆ {â1, . . . , ân}

and |body(r)| = k . Simons et al. provide a transformation that needs just O(nk)

rules, introducing atoms l(âi , j ) to represent the fact that at least j of the literals

with index ≥ i , i.e. the literals in {âi , . . . , ân}, are in a particular answer set can-

didate. Then, the cardinality constraint can be encoded by an integrity constraint

← l(â1, k) and the three following rules, where 1 ≤ i ≤ n and 1 ≤ j ≤ k :

l(âi , j )← l(âi+1, j ) l(âi , j + 1)← âi , l(âi+1, j ) l(âi , 1)← âi

Notice that both transformations are modular. Alternatively, modern ASP solvers

also incorporate propagators for cardinality constraints that run in O(n).

2.2 Nogoods

We want to view inferences in ASP as unit-propagation on nogoods. Following

Gebser et al. (2007b), inferences in ASP rely on atoms and program rules, which

can be expressed by using atoms and bodies. Thus, for a program Π, the domain

of Boolean assignments A is fixed to dom(A) = atom(Π) ∪ body(Π).

Formally, a Boolean assignment A is a set {σ1, . . . , σn} of signed literals σi

for 1 ≤ i ≤ n of the form Ta or Fa where a ∈ dom(A). Ta expresses that

a is assigned true and Fa that it is false in A. (We omit the attribute Boolean

for assignments whenever clear from the context.) The complement of a signed

literal σ is denoted by σ, that is Ta = Fa and Fa = Ta. In the context of ASP,

a nogood (Dechter 2003) is a set δ = {σ1, . . . , σn} of signed literals, expressing a

constraint violated by any assignment A such that δ ⊆ A. For a nogood δ, a signed

literal σ ∈ δ, and an assignment A, we say that δ is unit and σ is unit-resulting if
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Input: A set ∇ of nogoods, and an assignment A.
Output: An extended assignment, and a status (either conflict or success).

repeat

if δ ⊆ A for some δ ∈ ∇ then

return (A, conflict);
Σ← {δ ∈ ∇ | δ \A = {σ}, σ 6∈ A};
if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in

A← A ∪ (σ);
until Σ = ∅;
return (A, success);

Fig. 1. The unit-propagation algorithm.

δ \A = {σ}. Let AT = {a ∈ dom(A) | Ta ∈ A} the set of true propositions and

AF = {a ∈ dom(A) | Fa ∈ A} the set of false propositions. A total assignment,

that is AT ∪AF = dom(A) and AF ∪AT = ∅, is a solution for a set ∆ of nogoods

if δ 6⊆ A for all δ ∈ ∆.

As shown in Lee (2005), the answer sets of a logic program Π correspond to

the models of the completion of Π that satisfy the loop formulas of all non-empty

subsets of atom(Π). For β = {a1, . . . , am , not am+1, . . . , not an} ∈ body(Π), define

∆β =

{

{Ta1, . . . ,Tam ,Fam+1, . . .Fan ,Fβ},

{Fa1,Tβ}, . . . , {Fam ,Tβ}, {Tam+1,Tβ}, . . . , {Tan ,Tβ}

}

·

Intuitively, the nogoods in ∆β enforce the truth of body β iff all its literals are

satisfied. For an atom a ∈ atom(Π) with body(a) = {β1, . . . , βk}, let

∆a =

{

{Fβ1, . . . ,Fβk ,Ta},

{Tβ1,Fa}, . . . , {Tβk ,Fa}

}

·

Then, the solutions for ∆Π =
⋃

β∈body(Π)∆β ∪
⋃

a∈atom(Π)∆a correspond to the

models of the completion of Π. Loop formulas, expressed in the set of nogoods ΛΠ,

have to be added to establish full correspondence to the answer sets of Π. Typically,

solutions for ∆Π ∪ΛΠ are computed by applying Conflict-Driven Nogood Learning

(CDNL; Gebser et al. 2007b). This combines search and propagation by recursively

assigning the value of a proposition and using unit-propagation (Fig. 1) to determine

logical consequences of an assignment (Mitchell 2005).

Example 1

Consider the set of nogoods ∇ = {{Ta1,Fa2,Ta3,Ta4}, {Fa1,Ta4}, {Fa3,Ta4}}

and the assignment A = {Ta4}. Unit-propagation extends A by {Ta1, Ta2, Ta3}.

2.3 Constraint Satisfaction and Consistency

A Constraint Satisfaction Problem is a triple (V ,D ,C ) where V is a set of variables

V = {v1, . . . , vn}, D is a set of finite domains D = {D1, . . . ,Dn} such that each

variable vi has an associated domain dom(vi ) = Di , and C is a set of constraints.

Following Rossi et al. (2006), a constraint c is a pair (RS , S ) where RS is a k -ary



A Translational Approach to Constraint Answer Set Solving 5

relation on the variables in S ⊆ V k , called the scope of c. In other words, RS is

a subset of the Cartesian product of the domains of the variables in S . To access

the relation and the scope of c define range(c) = RS and scope(c) = S . For a

(constraint variable) assignment A : V →
⋃

v∈V dom(v) and a constraint c =

(RS , S ) with S = (v1, . . . , vk ), define A(S ) = (A(v1), . . . ,A(vk )), and call c satisfied

if A(S ) ∈ range(c). A binary constraint c has |scope(c)| = 2. For example, v1 6= v2

ensures that v1 and v2 take different values. A global (or n-ary) constraint c has

parametrized scope. For example, the all-different constraint ensures that a set of

variables, {v1, . . . , vn} take all different values. This can be decomposed into O(n2)

binary constraints, vi 6= vj for i < j . However, as we shall see, such decomposition

can hinder inference. An assignment A is a solution for a CSP iff it satisfies all

constraints in C .

Constraint solvers typically use backtracking search to explore the space of par-

tial assignments, and prune it by applying propagation algorithms that enforce a

local consistency property on the constraints after each assignment. A binary con-

straint c is called arc consistent iff when a variable v1 ∈ scope(c) is assigned any

value d1 ∈ dom(v1), there exists a consistent value d2 ∈ dom(v2) for the other vari-

able v2. An n-ary constraint c is hyper-arc consistent or domain consistent iff when

a variable vi ∈ scope(c) is assigned any value di ∈ dom(vi ), there exist compatible

values in the domains of all the other variables dj ∈ dom(vj ) for all 1 ≤ j ≤ n, j 6= i

such that (d1, . . . , dn) ∈ range(c).

The concepts of bound and range consistency are defined for constraints on or-

dered intervals. Let min(Di) and max (Di) be the minimum value and maximum

value of the domain Di . A constraint c is bound consistent iff when a variable vi is

assigned di ∈ {min(dom(vi )),max (dom(vi ))} (i.e. the minimum or maximum value

in its domain), there exist compatible values between the minimum and maximum

domain value for all the other variables in the scope of the constraint. Such an

assignment is called a bound support. A constraint is range consistent iff when a

variable is assigned any value in its domain, there exists a bound support. Notice

that range consistency is in between domain and bound consistency, where domain

consistency is the strongest of the four formalisms.

2.4 Constraint Answer Set Programming

Following Gebser et al. (2009), a constraint logic program Π is defined as logic

programs over an extended alphabet distinguishing regular and constraint atoms,

denoted by A and C, respectively, such that head(r) ∈ A for each r ∈ Π. Constraint

atoms are identified with constraints via a function γ : C → C , and furthermore,

define γ(C ′) = {γ(c) | c ∈ C ′} for C ′ ⊆ C . For a (constraint variable) assign-

ment A define the set of constraints satisfied by A as satC (A) = {c | A(scope(c)) ∈

range(c), c ∈ C}, and the constraint reduct as

ΠA = {head(r)← body(r)|A | r ∈ Π,

γ(body(r)+|C) ⊆ satC (A), γ(body(r)−|C) ∩ satC (A) = ∅}·
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Then, a set X ⊆ A is a constraint answer set of Π with respect to A, if X is an

answer set of ΠA.

In the translational approach to Constraint Answer Set Solving, a constraint logic

program is compiled into a (normal) logic program by adding an ASP decompo-

sition of all constraints comprised in the constraint logic program. The constraint

answer sets can then be obtained by applying the same algorithms as for calculat-

ing answer sets, e.g. CDNL. Since all variables will be shared between constraints,

nogood learning techniques as in CDNL exploit constraint interdependencies. This

can improve propagation between constraints.

3 Encoding Constraint Answer Set Programs

In this section we explain how to translate constraint logic programs with multi-

valued propositions into a (normal) logic program. There are a number of choices of

how to encode constraints on multi-valued propositions, e.g. a constraint variable v ,

taking values out of a pre-defined finite domain, dom(v). In what follows, we assume

dom(v) = [1, d ] for all v ∈ V to save the reader from multiple superscripts.

3.1 Direct Encoding

A popular choice is called the direct encoding (Walsh 2000). In the direct encoding,

a propositional variable e(v , i), representing v = i , is introduced for each value i

that can be assigned to the constraint variable v . Intuitively, the proposition e(v , i)

is true if v takes the value i , and false if v takes a value different from i . For

each v , the truth-assignments of atoms e(v , i) are encoded by a choice rule (1).

Furthermore, there is an integrity constraint (2) to ensure that v takes at least one

value, and a cardinality constraint (3) that ensures that v takes at most one value.

(1) {e(v , 1), . . . , e(v , d)} ←

(2) ← not e(v , 1), . . . , not e(v , d)

(3) ← 2 {e(v , 1), . . . , e(v , d)}

In the direct encoding, each forbidden combination of values in a constraint is

expressed by an integrity constraint. On the other hand, when a relation is rep-

resented by allowed combinations of values, all forbidden combinations have to be

deduced and translated to integrity constraints. Unfortunately, the direct encoding

of constraints hinders propagation:

Theorem 1 (Walsh 2000)

Enforcing arc consistency on the binary decomposition of the original constraint

prunes more values from the variables domain than unit-propagation on its direct

encoding.

3.2 Support Encoding

The support encoding has been proposed to tackle this weakness (Gent 2002). A

support for a constraint variable v to take the value i across a constraint c is the
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set of values {i1, . . . , im} ⊆ dom(v ′) of another variable in v ′ ∈ scope(c)\{v} which

allow v = i , and can be encoded as follows, extending (1–3):

← e(v , i), not e(v ′, i1), . . . , not e(v ′, im)

This integrity constraint can be read as whenever v = i , then at least one of its

supports must hold. In the support encoding, for each constraint c there is one

support for each pair of distinct variables v , v ′ ∈ scope(c), and for each value i .

Theorem 2 (Gent 2002)

Unit-propagation on the support encoding enforces arc consistency on the binary

decomposition of the original constraint.

We illustrate this approach on an encoding of the global all-different constraint. For

variables v , v ′ and value i it is defined by the followingO(n2d) integrity constraints:

← e(v , i), not e(v ′, 1), . . . , not e(v ′, i − 1), not e(v ′, i + 1), . . . , not e(v ′, d)

To keep the encoding small, we make use of the following equivalence (e)

e(v ′, i) ≡ not e(v ′, 1), . . . , not e(v ′, i − 1), not e(v ′, i + 1), . . . , not e(v ′, d)

covered by (2–3) and get

← e(v , i), e(v ′, i)·

Observe, that this is also the direct encoding of the binary decomposition of the

global all-different constraint. However, this observation does not hold in general

for all constraints. As discussed in the Background section of this paper, we can

express above condition as O(d) cardinality constraints:

(4) ← 2 {e(v1, i), . . . , e(vn , i)}

Corollary 1

Unit-propagation on (1–4) enforces arc consistency on the binary decomposition of

the global all-different constraint in O(nd2) down any branch of the search tree.

Proof

From the definition of cardinality constraints, (4) ensure that for all distinct v , v ′ ∈

scope(c) any value i is not taken by both v and v ′. These integrity constraints

correspond to the support encoding of the global all-different constraint since (2–3)

cover the equivalence (e). By Theorem 2, unit-propagation on this support encoding

enforces arc consistency on the binary decomposition of the all-different constraint.

For each of the n variables, there are O(d) nogoods resulting from (1–3) that

can be woken O(d) times down any branch of the search tree. Each propagation

requires O(1) time. Rules (1–3) therefore take O(nd2) down any branch of the

search to propagate. There are O(nd) nogoods resulting from (4) that each take

O(1) time to propagate down any branch of the search tree. The total running time

is given by O(nd2) +O(nd) = O(nd2).
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3.3 Range Encoding

In the range encoding, a propositional variable r(v , l , u) is introduced for all [l , u] ⊆

[1, d ] to represent whether the value of v is between l and u. For each range [l , u],

the following O(nd2) rules encode v ∈ [l , u] whenever it is safe to assume that

v 6∈ [1, l − 1] and v 6∈ [u + 1, d ], and enforce a consistent set of ranges such that

v ∈ [l , u]⇒ v ∈ [l − 1, u] ∧ v ∈ [l , u + 1]:

(5) r(v , l , u) ← not r(v , 1, l − 1), not r(v , u + 1, d)

(6) ← r(v , l − 1, u), not r(v , l , u)

(7) ← r(v , l , u + 1), not r(v , l , u)

Constraints are encoded into integrity constraints representing conflict regions.

When the combination v1 ∈ [l1, u1], . . . , vn ∈ [ln , un ] violates the constraint, the

following rule is added:

← r(v1, l1, u1), . . . , r(vn , ln , un)

Theorem 3

Unit-propagation on the range encoding enforces range consistency on the original

constraint.

Proof

Suppose we have a set of ranges on the domains of the constraint variables in which

no unit-propagation is possible and no domain is empty. Consider any constraint

variables v1, . . . , vi , . . . , vn and value di such that there is no bound support in

v1, . . . , vi−1, vi+1, . . . vn for vi = di , i.e. there are no compatible values for the other

variables vj distinct from vi where vj ∈ [lj , uj ]. Hence, all instantiations such that

vi = di are in a conflict region v1 ∈ [l1, u1] ⊆ [l ′1, u
′
1], . . . , vn ∈ [ln , un ] ⊆ [l ′n , u

′
n ]. For

each vj we have Tr(vj , lj , uj ) representing vj ∈ [lj , uj ]. Then, the binary nogoods

{Tr(vj , lj , uj ),Fr(vj , lj −1, uj )} and {Tr(vj , lj , uj ),Fr(vj , lj , uj +1)} resulting from

(6) and (7) are unit, and eventually we get Tr(vj , l
′
j , u

′
j ) for [lj , uj ] ⊆ [l ′j , u

′
j ]. But

then the nogood {Tr(v1, l
′
1, u

′
1), . . . ,Tr(vn , l

′
n , u

′
n)} encoding the conflict region is

unit and forces Fr(vi , l
′
i , u

′
i) representing vi 6∈ [l ′i , u

′
i ]. By nogoods resulting from (6)

and (7) we get di is not in the domain of vi , and the domains are bound consistent

as required. Since at least one value must be in each domain, encoded in (5), we

have a set of non-empty domains which are range consistent.

A propagator for the global all-different constraint that enforces range consistency

pruning Hall intervals has been proposed in Leconte (1996) and encoded to SAT in

Bessière et al. (2009). An interval [l , u] is a Hall interval iff |{v | dom(v) ⊆ [l , u]}| =

u − l +1. In other words, a Hall interval of size k completely contains the domains

of k variables. Observe that in any bound support, the variables whose domains are

contained in the Hall interval consume all values within the Hall interval, whilst

any other variable must find their support outside the Hall interval.
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Example 2

Consider the global all-different constraint over the variables {v1, v2, v3, v4} with

dom(v1) = {2, 3}, dom(v2) = {1, 2, 4}, dom(v3) = {2, 3}, dom(v4) = {1, 2, 3, 4}.

[2, 3] is a Hall interval of size 2 as the domain of 2 variables, v1 and v3, is completely

contained in it. Therefore we can remove [2, 3] from the domains of all the other

variables. This leaves v2 and v4 with a domain containing values 1 and 4.

The following decomposition of the global all-different constraint will permit us to

achieve range consistency via unit propagation. It ensures that no interval [l , u] can

contain more variables than its size.

(8) ← u − l + 2 {r(v1, l , u), . . . , r(vn , l , u)}

This simple decomposition can simulate a complex propagation algorithm like

Leconte’s with a similar overall complexity of reasoning.

Corollary 2

Unit-propagation on (5–8) enforces range consistency on the global all-different

constraint in O(nd3) down any branch of the search tree.

Proof

Clearly, the cardinality constraints (8) reflect all conflict regions such that no Hall

interval [l , u] can contain u − l + 2 variables, that are more variables than its size.

Hence, (8) is a range encoding of the global all-different constraint. By Theorem 3,

unit-propagation on this encoding enforces range consistency on the global all-

different constraint.

There are O(nd2) nogoods resulting from (5–7) that can be woken O(d) times

down any branch of the search tree. Each propagation requires O(1) time. Rules

(5–7) therefore take O(nd3) down any branch of the search to propagate. There are

O(nd2) nogoods resulting from (8) that each take O(1) time to propagate down any

branch of the search tree. The total running time is given by O(nd3) +O(nd2) =

O(nd3).

3.4 Bound Encoding

A last encoding is called the bound encoding (Crawford and Baker 1994). In the

bound encoding, a propositional variable b(v , i) is introduced for each value i to

represent that the value of v is bounded by i . That is, v ≤ i if Tb(v , i), and v > i

if Fb(v , i). Similar to the direct encoding, for each v , the truth-assignments of

atoms b(v , i) are encoded by a choice rule (9). In order to ensure that assignments

represent a consistent set of bounds, the condition v ≤ i ⇒ v ≤ i + 1 is posted as

integrity constraints (10). Another integrity constraint (11) encodes v ≤ d , that at

least one value must be assigned to v :

(9) {b(v , 1), . . . , b(v , d)} ←

(10) ← b(v , i), not b(v , i + 1) ∀i ∈ [1, d − 1]

(11) ← not b(v , d)
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Constraints are encoded into integrity constraints representing conflict regions sim-

ilar to the range encoding. When all combinations in the region

l1 < v1 ≤ u1, . . . , ln < vn ≤ un

violate a constraint, the following rule is added:

← b(v1, u1), . . . , b(vn , un), not b(v1, l1), . . . , not b(vn , ln)

Theorem 4

Unit-propagation on the bound encoding enforces bound consistency on the original

constraint.

Proof

Suppose we have a set of bounds on the domains of the constraint variables in which

no unit-propagation is possible and no domain is empty. Consider any constraint

variable vi such that if vi is assigned its minimum domain value li+1 or its maximum

domain value ui there are no compatible values of the other constraint variables

v1, . . . , vi−1, vi+1, . . . , vn between their minimum l1+1, . . . , li−1+1, li+1+1, . . . , ln+1

and their maximum domain values u1, . . . , ui−1, ui+1, . . . , un , respectively. First, we

analyse the case vi = ui , that is, all instantiations such that vi = ui are in a conflict

region l ′1 ≤ l1 < v1 ≤ u1 ≤ u ′
1, . . . , l

′
n ≤ ln < vn ≤ un ≤ u ′

n . For each vj we have

Fb(vj , lj ) andTb(vj , uj ), representing vj > lj and vj ≤ uj . Then, the binary nogoods

{Tb(vj , lj − 1),Fb(vj , lj )} and {Tb(vj , uj ),Fb(vj , uj + 1)} resulting from (10) are

unit, and eventually we get Fb(vj , l
′
j ) for l ′j ≤ lj as well as Tb(vj , u

′
j ) for u ′

j ≥ uj .

But then the nogood {Fb(v1, l ′1),Tb(v1, u
′
1), . . . ,Fb(vn , l

′
n),Tb(vn , u

′
n)} encoding

the conflict region is unit and forces Tb(vi , l
′
i ) representing vi ≤ l ′i . Since l ′i < ui

and by the nogoods resulting from (10) we get ui is not in the domain of vi .

The second case, where vi is assigned its minimum domain value li + 1, is sym-

metric, and we conclude that the domains are bound consistent as required. Since

at least one value must be in each domain, resulting from (11), we have a set of

non-empty domains which are bound consistent.

In order to get a representation of the global all-different constraint that can only

prune bounds, the bound encoding for variables is linked to (8) as follows:

(12) r(v , l , u) ← not b(v , l − 1), b(v , u)

(13) ← r(v , l , u), b(v , l − 1)

(14) ← r(v , l , u), not b(v , u)

Corollary 3

Unit-propagation on (8–14) enforces bound consistency on the global all-different

constraint in O(nd2) down any branch of the search tree.
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Proof

This result follows from Corollary 2 and Theorem 4. Observe that the decomposi-

tions for range and bound consistency both encode the same conflict regions.

For each of the n variables, there are O(d) nogoods resulting from (9–11) that

can be woken O(d) times down any branch of the search tree. Each propagation

requires O(1) time. Rules (9–11) therefore take O(nd2) down any branch of the

search to propagate. Furthermore, there are O(nd2) nogoods resulting from (8)

and (12–14) that each take O(1) time to propagate down any branch of the search

tree. The total running time is given by O(nd2).

Note that an upper bound h can be posted on the size of Hall intervals. The resulting

encoding with only those cardinality constraints (5) for which u− l +1 ≤ h detects

Hall intervals of size at most h, and therefore enforces a weaker level of consistency.

4 Experiments

To evaluate our decompositions, we conducted experiments on encodings1 of CSP

containing all-different and permutation constraints. The global permutation con-

straint is a special case of all-different when the number of variables is equal to the

number of all their possible values. A decomposition of permutation extends (4) by

← not e(v1, i), . . . , not e(vn , i)

or (8) by the following rule where 1 ≤ l ≤ u ≤ k :

← d − u + l {not r(v1, l , u), . . . , not r(vn , l , u)}

This can increase propagation. Our translational approach to Constraint Answer Set

Solving has been implemented within the prototypical preprocessor inca. Although

our semantics is propositional, inca compiles constraint logic programs with first-

order variables, function symbols, and aggregates, etc. in linear time and space,

such that the logic program can be obtained by a grounding process. Experiments

consider inca1 in different settings using different decompositions. We denote the

support encoding of the global constraints by S , the bound encoding of the global

constraints by B , and the range encoding of the global constraints by R. To explore

the impact of small Hall intervals, we also tried Bk andRk , an encoding of the global

constraints with only those cardinality constraints (8) for which u − l +1 ≤ k . The

consistency achieved by Bk and Rk is therefore weaker than full bound and range

consistency, respectively.

We also include the integrated systems clingcon1 (0.1.2), and ezcsp2 (1.6.9) in

our empirical analysis. While clingcon extends the ASP system clingo1 (2.0.2) with

the generic constraint solver gecode3 (2.2.0), ezcsp combines the grounder gringo1

(2.0.3) and ASP solver clasp1 (1.3.0) with sicstus4 (4.0.8) as a constraint solver.

1 http://potassco.sourceforge.net/
2 http://krlab.cs.ttu.edu/~marcy/ezcsp/
3 http://www.gecode.org/
4 http://www.sics.se/sicstus/
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Table 1. Data on time and space for selected translations.

S B R

n time atoms rules atoms rules atoms rules

12 0.1 236 151 1,829 1,907 1,061 2,423
PHP 14 0.1 304 177 2,876 2,981 1,630 3,877

16 0.1 380 203 4,263 4,399 2,375 5,823

8 0.3 655 36,525 1,297 41,565 3,217 38,237
QG5 10 0.9 1,219 109,066 2,421 118,946 7,121 111,446

12 2.3 2,039 267,643 4,057 284,755 13,849 270,067

4 0.6 564 74,945 941 78,848 4,135 81,174
DWn 6 3.0 1,130 363,115 1,983 373,002 12,581 381,724

8 9.2 1,888 1,122,549 3,409 1,142,132 28,355 1,163,810

Note that clingo stands for clasp on gringo and combines both systems in a mono-

lithic way. Since inca is a pure preprocessor, we select the ASP system clingo (2.0.3)

as its backend to provide a representative comparison with clingcon and ezcsp. The

behaviour of xpanda is simulated by setting S and, therefore, is not considered in

our study. We also do not separate time spend on grounding and solving the prob-

lem, since the grounder’s share of the overall runtime is generally insignificant on

our benchmarks.

To compare the performance of Constraint Answer Set solvers against pure CP

systems, we also report results of gecode (3.2.0). Its heuristic for variable selection

was set to a smallest domain as in clingcon. All experiments were run on a 2.00 GHz

PC under Linux. We report results in seconds, where each run was limited to 600

s time and 1 GB RAM.

Space Complexity. Data on the size of selected translations shown in Table 1 con-

firms our theoretical results. For PHP and DWn instances (description follows),

the number of atoms in the support (bound/range) encoding is bounded by O(n2)

(O(n3)). The number of rules is O(n) (O(n3)) for PHP , O(n3) (O(n3)) for DWn

due to constraints represented in the direct encoding. An n×n table is modelled in

QG5, raising the number of atoms to O(n3) (O(n4)), and rules to O(n4) (O(n4)).

4.1 Pigeon Hole Problems

The Pigeon Hole Problem (PHP) is to show that it is impossible to put n pigeons

into n − 1 holes if each pigeon must be put into a distinct hole. Clearly, our bound

and range decompositions are faster compared to weaker encodings (see Table 2).

On such problems, detecting large Hall intervals is essential.

4.2 Quasigroup Completion

A quasigroup is an algebraic structure (Q , ·), where Q is a set and · is a binary

operation on Q such that for every pair of elements a, b ∈ Q there exist unique
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Table 2. Runtime results in seconds for PHP.

n S B1 B2 B3 B R3 R ezcsp clingcon gecode

10 5.4 0.7 0.5 0.1 0.0 0.2 0.0 1.8 1.4 0.9
11 46.5 3.5 1.5 1.0 0.0 1.9 0.0 16.7 15.2 9.0
12 105.0 14.8 7.1 3.9 0.0 2.6 0.1 183.9 172.5 104.1
13 — 91.4 68.6 25.4 0.1 30.4 0.0 — — —
14 — — 350.1 125.0 0.0 196.9 0.1 — — —
15 — — — — 0.1 — 0.1 — — —
16 — — — — 0.1 — 0.1 — — —

Table 3. Average times over 100 runs on QCP. Timeouts are given in parenthesis.

% S B3 B R3 R ezcsp clingcon gecode gecodeBC

10 2.6 5.0 8.2 6.0 7.3 29.6 (7) 9.7 (4) 2.2 (4) 0.5 (1)
20 2.4 5.0 8.0 6.2 7.2 21.3 (20) 6.2 (5) 5.0 (4) 0.9 (3)
30 2.3 4.8 7.9 6.1 7.1 10.3 (30) 12.9 (13) 2.9 (13) 1.1 (5)
35 2.3 4.8 7.9 6.1 7.0 21.6 (24) 11.2 (17) 14.1 (13) 6.2 (7)
40 2.3 4.7 7.8 6.0 6.9 51.6 (29) 23.1 (22) 11.7 (20) 5.7 (9)
45 2.3 4.7 7.8 5.9 6.8 36.3 (35) 14.7 (28) 17.7 (25) 6.3 (13)
50 2.3 4.6 7.7 5.9 6.8 36.1 (50) 21.2 (37) 25.1 (32) 6.3 (18)
55 2.3 4.5 7.6 5.8 6.7 61.4 (51) 24.4 (44) 19.6 (41) 30.9 (29)
60 2.2 4.4 7.5 5.6 6.6 60.2 (63) 31.4 (56) 36.0 (51) 27.2 (35)
70 2.2 4.2 7.1 5.1 6.0 70.0 (66) 30.2 (50) 28.0 (45) 17.0 (27)
80 2.1 4.0 6.7 4.7 5.5 16.2 (18) 4.2 (18) 17.2 (13) 7.0 (7)
90 2.1 4.0 6.7 4.7 5.5 1.4 2.6 (1) 0.4 (1) 3.2

elements x , y ∈ Q which solve the equations a · x = b and y · a = b. The or-

der n of a quasigroup is defined by the number of elements in Q . A quasigroup

can be represented by an n × n-multiplication table, where for each pair a, b the

table gives the result of a · b, and it defines a Latin square. This means that each

element of Q occurs exactly once in each row and each column of the table. The

Quasigroup Completion Problem (QCP) is to determine whether a partially filled

table can be completed in such a way that a multiplication table of a quasigroup is

obtained. Randomly generated QCP has been proposed as a benchmark domain for

CP systems by Gomes and Selman (1997) since it combines the features of purely

random problems and highly structured problems. Table 3 compares the runtime

for solving QCP problems of size 20× 20 where the first column gives the percent-

age of preassigned values. We included gecode with algorithms that enforce bound

and domain consistency, denoted as gecodeBC and gecodeDC (not shown), in the

experiments. Our analysis exhibits phase transition behaviour of the systems ezcsp,

clingcon, gecode, and gecodeBC , while our Boolean encodings and gecodeDC solve

all problems within seconds. Interestingly, learning constraint interdependencies as

in our approach is sufficient to tackle QCP. In fact, most of the time for S , Bk , Rk

is spent on grounding, but not for solving the actual problem.
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Table 4. Runtime results in seconds for QEP.

n S B1 B3 B R3 R ezcsp clingcon gecode

7 1.7 1.7 1.7 1.7 1.7 1.6 65.0 189.8 0.6

QG1 8 19.0 5.9 4.7 19.8 6.4 4.7 — — —
9 — 139.4 152.0 234.6 27.6 466.9 — — —

7 1.7 1.7 1.7 1.8 1.7 1.8 46.1 1.5 1.2

QG2 8 46.6 9.6 10.6 37.7 11.7 14.8 — — —
9 — 246.0 55.7 88.3 119.7 213.4 — — —

7 0.2 0.2 0.2 0.3 0.2 0.3 3.2 1.0 0.0

QG3 8 0.4 0.4 0.5 0.5 0.5 0.5 4.3 9.0 0.2

9 10.2 7.4 9.5 16.5 11.0 12.8 — — 18.2

7 0.2 0.2 0.2 0.3 0.3 0.3 2.8 0.7 0.1

QG4 8 0.5 0.6 0.7 0.9 0.8 0.7 27.9 36.8 0.3

9 1.3 1.0 2.1 3.0 1.1 0.9 442.1 288.8 3.7

8 0.4 0.4 0.4 0.5 0.4 0.4 6.9 5.3 0.0

9 0.7 0.8 0.8 0.9 0.8 0.8 249.2 — 0.0

QG5 10 1.6 1.5 1.6 1.9 1.6 1.6 — — 0.2

11 2.1 2.2 2.4 3.4 2.8 2.4 — — 0.8

12 27.0 6.2 9.1 12.4 8.4 10.4 — — 16.4

8 0.4 0.4 0.5 0.5 0.5 0.4 0.8 — 0.0

9 0.7 0.7 0.8 0.9 0.8 0.8 1.2 — 0.0

QG6 10 1.2 1.4 1.5 1.8 1.6 1.5 10.5 — 0.1

11 2.7 2.8 4.0 4.2 3.9 4.8 125.5 — 1.2

12 32.0 12.9 25.6 36.4 25.7 50.6 — — 24.6

8 0.4 0.4 0.4 0.6 0.5 0.5 1.1 — 0.1

QG7 9 0.7 1.0 1.2 1.7 1.2 1.4 9.1 — 0.9
10 6.7 3.2 5.2 8.0 4.7 4.6 — — 22.0

4.3 Quasigroup Existence

The Quasigroup Existence Problem (QEP) is to determine the existence of cer-

tain interesting classes of quasigroups. We follow Fujita et al. (1993) and look at

problems QG1 to QG7 that were target to open questions in finite mathematics.

We represent them in the direct encoding which weakens the overall consistency.

Furthermore, we add the axiom a · n ≥ a − 1 where n is the order of the desired

quasigroup, to avoid some symmetries in search space. We also assume quasigroups

to be idempotent, that means a · a = a. QEP has been proposed as a benchmark

domain for CP systems in Gent and Walsh (1999). All axioms have been modelled

in ezcsp and gecode using constructive disjunction, and in S , Bk , Rk and clingcon

using integrity constraints. Table 4 demonstrates that both constructive disjunc-

tion and integrity constraints have a similar behaviour, as for ezcsp and clingcon

on benchmark classes QG1 to QG4. On harder instances, conflict-driven learning

appears to be too costly for clingcon. Additional experiments revealed that clingcon

without learning performs like ezcsp. On the other hand, our decompositions benefit
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Table 5. Runtime results in seconds for GGP.

DWn S B1 B3 B R3 R ezcsp clingcon gecode

3 11.4 3.8 5.7 8.7 6.0 10.4 6.5 66.9 1.8

4 1.3 2.0 1.5 3.2 3.0 2.5 0.6 0.1 0.1

5 4.5 5.0 4.5 13.5 12.5 31.4 1.0 2.0 0.1

6 7.2 11.0 17.6 47.7 21.3 110.2 1.2 — 7.2
7 23.8 28.3 67.9 227.9 60.0 432.9 18.0 — —
8 48.4 68.4 — 207.8 58.4 356.8 4.3 — —
9 82.8 106.5 200.4 486.6 227.4 — 390.5 — —

from learning constraint interdependencies, resulting in runtimes that outperform

all other systems including gecode on the hardest problems.

4.4 Graceful Graphs

A labelling f of the nodes of a graph (V ,E ) is graceful if f assigns a unique

label f (v) from {0, 1, . . . , |E |} to each node v ∈ V such that, when each edge

(v ,w) ∈ E is assigned the label |f (v)− f (w)|, the resulting edge labels are distinct.

The problem of determining the existence of a graceful labelling of a graph (GGP)

has been modelled as a CSP in Petrie and Smith (2003). Our experiments consider

double-wheel graphs DWn composed by two copies of a cycle with n vertices, each

connected to a central hub. Table 5 shows that our encodings compete with ezcsp

and outperform the other comparable systems, where the support encoding per-

forms better than bound and range encodings. In most cases, the branching heuris-

tic used in our approach appears to be misled by the extra variables introduced in

Bk and Rk . That explains some of the variability in the runtimes.

5 Conclusions

We have provided a new translation-based approach to incorporating Constraint

Processing into Answer Set Programming. In particular, we investigated various

generic ASP decompositions for constraints on finite domains and proved which

level of consistency unit-propagation achieves on them. Our techniques were for-

mulated as preprocessing and can be applied to any ASP system without chang-

ing its source code, which allows for programmers to select the solvers that best

fit their needs. We have empirically evaluated their performance on benchmarks

from CP and found them outperforming integrated Constraint Answer Set Pro-

gramming systems as well as pure CP solvers. As a key advantage of our novel

approach we identified CDNL, exploiting constraint interdependencies which can

improve propagation between constraints. Future work concerns a comparison to

Niemelä’s encoding (Niemelä 1999; You and Hou 2004), and encodings of further

global constraints useful in Constraint Answer Set Programming.

Acknowledgements. We are grateful to Martin Gebser and Torsten Schaub for useful

discussions on the subject of this paper.
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