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Abstract
Steel mill slab design, which reduces to variable-sized bin packing with colour constraints,
is a challenging problem for constraint satisfaction techniques. Starting from a basic model,
we add symmetry-breaking and implied constraints which greatly reduce the amount of search
required. We further discuss how each of these constraints might be generated automatically.

1 Introduction

We consider an industrial steel mill slab design problem, which is a type of bin-packing problem
with colour side-constraints [3]. This problem is an instance of a class of difficult problems where
the problem structure (in this case, the number and size of slabs) is not fixed initially, but deter-
mined as part of the solution process. Basic models of this problem struggle to cope with even
very small instances [7]. In order to improve a basic model, it is important to a) deal with the
symmetry in the problem, and b) add implied constraints (i.e. constraints which logically follow
from the initial specification) which help the solver to reduce search. This paper develops a model
which addresses both of these issues. The model was formulated by hand, but we will discuss it
in terms of how it could be generated automatically from a basic version.

1.1 Automatic Generation of Implied Constraints

Extending a constraint satisfaction problem with implied constraints can often result in a marked
reduction in the amount of search needed to solve the problem [10]. Consequently, we often add
such constraints to an initial problem formulation. Typically, however, this process is performed
by hand. We have begun the process of automating the generation of implied constraints, using
a system based on proof planning [6], a technique used for guiding the search for a proof in
automated theorem proving [1]. Common patterns in proofs are identified and encapsulated in
methods, which the planner selects and applies successively to reduce goals to sub-goals. Methods
have strong preconditions which limit their applicability and prevent combinatorially explosive
search. Rather than a goal-directed search for proof, our system begins from a basic specification
of the problem and forward chains, in a search for useful implied constraints. We use methods
which encapsulate common patterns in generating implied constraints by hand. The lessons learnt
from generating implied constraints for the steel mill problem will be used to expand the current
set of methods and inform the way in which the proof planner performs its search.

2 A Steel Mill Slab Design Problem

Steel is produced by casting molten iron into slabs. A finite number, o, of slab sizes is available.
An order has two properties, a colour corresponding to the route required through the steel mill



and a weight. The problem is to pack the d input orders onto slabs such that the total slab capacity
is minimised. There are two types of constraint:

1. Capacity constraints. The total weight of orders assigned to a slab cannot exceed the
slab capacity.

2. Colour constraints. Each slab can contain at most p of k total colours (p is usually 2).
This constraint arises because it is expensive to cut the slabs up in order to send them to
different parts of the mill.

2.1 An Example

There follows a small illustrative example problem which will be used throughout the paper. For
this problem, p = 2.

e Slab Sizes Available: {1, 3, 4} (¢ = 3).
e Colours: {Red, Green, Blue, Orange, Brown} (k = 5).

Table 1 shows the input orders (d = 9) to this problem, and presents an example solution.

[ Order | Weight [ Colour |

1 2 Red

2 3 Green [ Slab | Size | Orders Assigned |
3 1 Green 1 1 7 8.9

4 1 Blue 9 3 17 3’

5 1 Orange 3 3 2’

6 1 Orange 4 3 4.5 6

7 1 Orange 2

8 2 Brown

9 1 Brown

Table 1: Input Orders and a Solution for the Example Problem

3 A Matrix Model

We focus on developing the most successful of three basic models for the slab design problem
[7]. Potentially redundant variables are used to cope with the fact that that the number of slabs
required by an optimal solution is unknown. If we assume that the greatest order weight does not
exceed the maximum slab size, the worst case consists of assigning each order to an individual
slab. Hence, a maximum of d slabs are used, giving slab variables, s1,...s4 with domains of size
o consisting of the size of each slab. This gives a simple expression for the total weight of slabs
used, which must be minimised:

Z s; = totalWeight

Generally, some slab variables will remain unused. 0 is added to the domain of each slab variable
such that if s; = 0, s; is not necessary to solve the problem.

3.1 The Order Matrix

Rather than d order variables with domains identifying the slab that each order is assigned to, as
presented in [7], a d x d 0-1 matrix, ordera, is used:

01 09 Oq
s1 (0/1 0/1 .. 0/1
se | 0/1 0/1 ... 0/1
sa \0/1 0/1 .. 0/1



Constraints on the rows ensure that the slab capacity is not exceeded,
Vg Zweight(oi) x orderali, j] < s;
i
Constraints on the columns ensure that each order is assigned to one and only one slab.
Vi Zordem[z’,j] =1
J

The justification for this matrix model is that it allows us to remove the symmetry from the
problem, as discussed in section 4.

3.2 The Colour Matrix

In [7], we advocated the use of a specialised daemon to enforce the colour constraints. A (less
opaque) alternative is to use a second 0-1 matrix, colours with dimensions k x d.

red green ... brown
st {0/1 0/1 ... 0/1
s2 {0/1 0/1 .. 0/1
sq \0/1 0/1 .. 0/1

Constraints link orders to colourys.
ViVj.order 4[i, j] = 1 — colour g[colour(o;),j] =1

Constraints on the rows of colours ensure that orders with at most p colours are assigned to each
slab.

Vg Z colourali,j] <p

k3

3.3 A Matrix Model Solution

A solution using the matrix model is presented below. In this solution, only 4 slabs are used, so
the remaining variables and corresponding rows of ordery and coloury are set to 0.

01 02 03 04 05 0 O7 0 Og red green blue orange brown
ss;=4/0 0 0 0 0 O 1 1 1 s1=4 /0 0 0 1 1
ss=3(1 0 1 0 0 0 0 0 O 8o = 1 1 0 0 0
s3s=3|0 1 0 0 O 0 0 0 O s3=31 0 1 0 0 0
=310 0 0 1 1 1 0 0 O s4=3| 0 0 1 1 0

0O 0 0 0 0 0O 0O 0 O 0 0 0 0 0

4 The Role of Symmmetry

Symmetry-breaking constraints are not implied, but are very useful in reducing the amount of
search required. Furthermore, the generation of some implied constraints is not possible without
the prior existence of symmetry-breaking constraints (see [6], and one of the first examples in [8]).
Therefore, symmetry in the slab design problem is discussed first.

The slab variables, s, ..., 54 are indistinguishable: the slab sizes assigned to each of these vari-
ables may be permuted without affecting the solution (assuming order assignments are updated
appropriately). The proof planner contains a symmetry method designed to identify indistin-
guishable variables and terms and add appropriate symmetry-breaking constraints, as described



in detail in [6]. Firstly, a normal form is imposed on the set of constraints which describe the
problem. All occurrences of two candidate variables or terms, z and y are swapped. Following
re-normalisation, if the set of constraints derived matches the original set, z and y are indistin-
guishable. The symmetry breaking constraints imposed by this method take the form of ordering
constraints (assuming algebraic constraints). Hence, in this case we have:

81 2 82 2 .- 2 84

However, symmetry persists in the problem in two areas. Firstly, columns of order4 associated
with identical orders (i.e. same weight and colour) are symmetrical. Exploiting the matrix model, a
powerful method of removing this symmetry is to impose a lexicographic order on the symmetrical
columns. Hence,

weight(o;) = weight(o;) A colour(o;) = colour(o;) — Yhorder ali, h] <iey ordera[j, h)

where <;, represents lexicographically less or equal to. The current symmetry method is capable
of detecting this symmetry via term comparison. However, to add the lexicographic ordering it is
useful to know that these terms represent the columns of a matrix. This, coupled with the common
occurrence of matrix models (see [5]) suggests that matrices should be made first class objects in
the input language to the proof planner. A further benefit, given that symmetry detection is a
potentially expensive process, is that matrix rows and columns are heuristically strong things to
compare for symmetry [4].

Secondly, rows of orders associated with slabs assigned the same size are indistinguishable.
In any solution, the collection of orders assigned to two such slabs may be swapped. Again,
we can use a lexicographic ordering to remove this symmetry. The order matrix allows us to
reason about the collection of orders assigned to symmetrical slabs in a way that is difficult using
single order variables. In order to generate the lexicographic ordering constraints automatically,
the proof planner must recognise that symmetry can occur based on partial assignments, and
compare variables and terms under the assumption that certain assignments have been made. For
example, the following pair may be compared under the assumption that s; and s, are equal.

Zweight(o,-) x order 4[i, 1] < s1
Zweight(oi) x order4[i, 2] < sg

2

Since Viweight(o;) are constant, we concentrate on the rows of 0-1 variables. Using the existing
symmetry method, i.e. exchanging every occurrence of the terms Vi order 4[i, 1] and Vi order 4[i, 2]
throughout the constraint set and normalising, Vi order 4[i, 1] and Vi order 4[i, 2] are clearly sym-
metrical under our assumption. Hence, we can impose:

s1 = 82 = Viorder4li, 1] <jep orderali,2)

Lexicographic orderings imposed on more than one dimension of a matrix must be chosen carefully
to avoid conflicts [4]. Clearly, it would be very expensive generally to test arbitrary terms for
symmetry under partial assignments, reinforcing the need for a heuristic approach based on high
level constructs such as matrix objects.

5 Implied Constraints

A variety of implied constraints exist for the slab design problem which can dramatically improve
performance on this problem. We consider first some unary constraints that can be derived in
a straightforward manner. Unary implied constraints are desirable because they lead directly
to domain reductions without recourse to any search. A first example follows directly from the



symmetry-breaking constraints on the slab variables. Given that s; is always the largest, or
largest-equal slab:
s1 > maz;(weight(o;))

That is, the first slab must be able to accommodate the largest order. Otherwise, the order is too
large to be assigned to any slab or Js;i > 1 A s; > s1, which violates the ordering constraints.

The combined weight of the input orders provides a lower bound on the total weight of steel
to be produced (since all orders must be assigned).

Zweight(oi) < totalWeight

2

A lower bound can also be derived on the number of slabs required by dividing the combined
weight of the input orders by the largest available slab size.

> weight(o;)
maz(slabSizes)

When combined with the binary ordering constraints on the slab variables, this decomposes into
unary constraints, allowing the removal of the 0 element from the first few slab variables.

The unary implied constraints described above require fairly extensive algebraic manipula-
tion. The proof planner currently contains some simple algebraic manipulation methods, such as
isolate, collect and attract from the PRESS system [2]. In the future, we plan to interface
with computer algebra packages to make these sorts of manipulations for us.

5.1 Assigned Weight Variables

This section gives an example of the utility of adding new variables to the problem representation,
which we encapsulate as the introduce method. Since the uncontrolled introduction of new
variables would quickly cause an explosion in the size of the problem representation, we must be
very careful about its use. One possible criterion is that a variable should only be added if we can
immediately prune its domain. In addition, adding a set of similar variables is justified if we can
make use of an efficient constraint (e.g. all-different) to constraint its elements.

We introduce d new variables ass Wt; which contain the weight of orders assigned to s;.

assWt; = Z order 4[j,i] x weight(o;)
J

The reason for introducing these new variables is that their domains can be pruned more effectively
than through the use of bounds consistency alone. This is achieved using a dynamic programming
approach based on [11] that reasons about reachable values, taking into account both available
order sizes and their colours. Figure 1 presents part of the network that is constructed by this
process for the example problem. A non-horizontal directed arc represents setting an entry in
ordery to 1, hence adding the weight of the corresponding order to the assigned weight. Similarly,
a horizontal directed arc represents the case where the entry in order4 is set to 0. At each reachable
node, a ‘history’ list is kept of the colours of the order combinations that have been used to reach
this value thus far. In the example problem, the assigned weight 2 can be reached using just the
colour red (o7), or colours green and blue (03 and o04) or various other combinations. Each of these
combinations are added as an entry in the history list of the appropriate node.

When considering whether or not an order o; can be added to the current combination (i.e. a
non-horizontal move in the network), the following are checked:

e Whether adding o; would exceed the maximum slab size.

e The colour of 0;. To be added, an order’s colour must be compatible with at least one entry
in the history for the current node. That is, its colour must be present in the entry or there
must be a free slot in the entry (recall that up to p colours are allowed per slab).



The history list for the node reached by adding the weight of a new order is constructed from
the combination of the new order’s colour and the compatible history entries. History lists from
two arcs incident into the same node are merged. In a horizontal move, no new orders are assigned,
hence the history list is the same as that of the adjacent reachable node to the left.

One special case exists: if one entry in the list is subsumed by another, it is removed. In figure
1, for instance, (green) subsumes (red, green) in the entry for o3, assigned weight 3. Hence the
latter can be discarded. It is safe to do so because (green) supports a superset of the additional
orders that (red, green) does.

4 O O (green)— =7 (green)
(green; blue)
3 O (green) (green)
(red, blue)
2 (red) (red) (red)
{}X/gsi ned (green, blue)
eight
1 O O (green) (green)
(blue)
0
(O Unreachable o1 02 03 04 ...
red, 2 green, 3 green, 1 blue, 1

Figure 1: Reasoning about reachable assigned weight values.

Once the network is constructed, all unreachable values can be pruned from the domain of every
ass Wt;. This doesn’t do anything for the example problem because the slab sizes involved are very
small, but can lead to a lot of pruning in more realistic instances. Currently, this process is used as
a pre-processing step. However, we hope it will be much more effective during search. As soon as
entries are set in ordery, this further constrains the reachable values, allowing still more pruning of
the ass Wt variables. At first sight, this is a very specialised piece of reasoning. However, knapsack
constraints (equivalent to the rows of the order matrix) are a sufficiently common occurrence to
warrant specific mechanisms to deal with them. The colour constraints involved in the above
method are quite specialised, but we envisage a basic knapsack pruning method, with the ability
to accept certain forms of side-constraints.

This process also provides a maximum assigned weight for any slab. So the lower bound on
the number of slabs required can be revised:

> weight(o;)
maxAssWt

5.2 Wasteage Variables

As a further application of the introduce method, another set of d variables, waste;, are now
introduced, representing the unused (i.e. wasted) portion of each slab.

waste; = s; — assWt;



We can put an upper bound on the total waste in a solution by considering again the worst case
where each order is assigned to a single slab. Under this assumption, we choose for each order the
smallest slab that is large enough to contain it. More formally:

1. Vivj.i :/é Jj—o0; 7é 0j
2. Vi.o; = j = —Ja.a € slabSizes A a < s; A a > weight(o;)

The maximum total waste is found by summing the waste for each such assignment. This allows
us to put an upper bound on the optimisation variable.

totalWeight < maxT otalW aste + Z weight(o;)

2

We can put an upper bound on each waste;. This is simply the largest of the cases encountered
when computing the maximum total waste. If this value is exceeded for a particular slab, we know
we can do better simply by assigning all the orders on that slab to individual slabs of their own.

Wasteage variables have been found to be useful previously, for example in rack configuration
[9] and template design [8]. This suggests that wasteage is a feature that the proof planner should
be able to recognise and reason about.

6 Results

Table 2 presents results generated from (small) subsets of industrial data, implemented in ILOG
Solver 5.0. The basic model cannot solve and find a proof of optimality to any of these instances.
Adding symmetry-breaking constraints alone drastically improves performance, enabling the solver
to find and prove optimal solutions for all but the largest instances. Adding the implied constraints
improves the model further still, with the new bounds on the optimisation variable especially
helpful to the proof of optimality.

Orders Optimal Basic Model Basic + Basic +
Sym-Breaking Sym-Breaking +
Implied
12 77 80:285607,23.7s 83:21,0.2s 83:4,0.1
79:288871,24.0s 78:446,0.1s 78:165,0.2
77:289337,24.1s 77:4954,1.1s 77:1245,0.5
P: — P:23165,3.8 P:1254,0.6
13 79 80:285607,25.2,0.1s 83:21,0.12s 83:4,0.11s
79:290989,25.6s 80:829,0.3s 80:68,0.15s
— 79:4545,0.9s 79:941,0.4s
P:39513,6.7s P:951,0.6s
14 87 — 95:46,0.19s 95:5,0.2s
89:1128,0.5s 89:831,0.42s
88:1187,0.6s 88:845,0.5s
87:34071,6.4s 87:8572,2.1s
P:179336,31.8s P:8584,2.2s
15 92 — 95:76,0.2s 95:4,0.2s
94:8476,1.9s 94:4446,1.1s
93:8617,2.0s 93:4461,1.3s
92:63709,12.7s 92:16741,3.7s
P:643459,119.2s P:16749,3.7s
16 99 — 107:100,0.2s 107:5,0.2s
101:6323,1.4s 101:5100,1.3s
100:6690,1.6s 100:5117,1.4s
99:377970,78.1s 99:93627,20.3s
P:— P:93641,20.2s
17 103 — 107:64,0.3s 107:5,0.2s
105:19541,5.4s 105:9473,2.8s
104:38167,10.3 104:9550,3.0s
— 103:213618,59.6s
18 110 — 119:371,0.32s 119:6,0.2s
111:9241,2.7s 111:3941,1.3s
— 110:741206,227.13s
P:741221,228.3s

Table 2: Results for Model A, Model A /B (Solution Quality: Cumulative Fails, Cumulative Time).
‘P2 is proof of optimality. A dash means that the search was halted after 1,000,000 fails.

The real problems from which these instances are derived are orders of magnitude larger
than those considered here, and are solved to within a bound of optimal via linear programming
techniques [3]. Despite being unable (yet) to compete with these techniques, it is encouraging to
note that the best model of the problem enables the solver to get close to the optimal solution
very rapidly.



7 Conclusion

We have developed a model for steel mill slab design, a difficult problem to solve successfully via
constraint satisfaction. Starting from a basic model, we showed how the removal of symmetry
and the addition of implied constraints lead to significant improvements in performance. We
described how some of the symmetry-breaking and implied constraints can already be generated
automatically via a proof-planning system, and discussed how that system could be extended to
generate the remainder. In order to solve realistic-sized instances, further significant improvements
to the current model are necessary. We expect a substantially improved proof planning system to
be able to help in the search for these improvements.
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