ABSTRACT
Social networks are increasingly being used to conduct polls. We introduce a simple model of such social polling. We suppose agents vote sequentially, but the order in which agents choose to vote is not necessarily fixed. We also suppose that an agent’s vote is influenced by the votes of their friends who have already voted. Despite its simplicity, this model provides useful insights into a number of areas including social polling, sequential voting, and manipulation. We prove that the number of candidates and the network structure affect the computational complexity of computing which candidate necessarily or possibly can win in such a social poll. For social networks with bounded treewidth and a bounded number of candidates, we provide polynomial algorithms for both problems. In other cases, we prove that computing which candidates necessarily or possibly win are computationally intractable.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-numerical Algorithms and Problems—computations on discrete structures; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—multiagent systems

General Terms
Algorithms, Economics, Theory

Keywords
Social polls; social choice; possible winner; necessary winner; computational complexity

1. INTRODUCTION
A fundamental issue with voting is that agents may vote strategically. Results like those of Gibbard-Satterthwaite demonstrate that, under modest assumptions, strategic voting is likely to be possible [20, 32]. However, such results do not tell us how to vote strategically. A large body of work in computational social choice considers how we compute such strategic votes [14, 13]. Typically such work starts from strong assumptions. For example, it is typically assumed that the manipulators have complete information about the other votes. The argument given for this assumption is that computing a strategic vote will only be computationally harder with incomplete information. In practice, of course, we often only have partial or probabilistic information [34, 8]. It is also typically assumed that manipulators will vote in any way that achieves their ends. However, in practice, agents may be concerned about peer pressure and may not want to deviate too far from either their true vote or that of their peers [28]. Bikhhardani et al. [4] identified several factors that limit strategic voting by an individual agent such as sanctions on deviation, and conformity of preferences. A third strong assumption is that all voting happens simultaneously or that the manipulators get to vote after all the other agents.

These issues all come to a head in social polling. This is a context in which voting meets social networks. Startups like Quipol and GoPollGo use social networks to track public opinions. Such polls are often not anonymous. We can see how our friends have voted and this may influence how we vote, as for example in [21, 26]. By their very nature, such polls also happen over time. The order in which agents vote can therefore be important. The structure of social networks is also important. For example, a distinctive feature of social networks is the small world property which allows members of these communities to share information in a highly efficient and low cost manner. A rumor started in the Twitter network reaches about 90% of the network in just 8 rounds of communication [11]. In a similar way, one member of a social network can quickly create and publicize a poll among a large group of agents starting from his friends. The massive size of social networks, like Facebook, Twitter and Google+, gives statistically significant polls.

To study social polling, we set up a general model that captures several important features of voting within a social network. First, our model supposes agents vote sequentially and the order in which they vote is not under their control. For example, when you vote may depend on when one of your friends chooses to invite you to vote. Second, our model supposes that agents are influenced by their friends in the social network. In fact, an agent’s vote is a function of their true preferences and of the votes of their friends that have already voted. We can obtain different instances of our model by choosing different functions.

To study this model, we consider a particular instance that captures some of the features of a Doodle poll. More precisely, each agent has a set of k preferred candidates and is indifferent about other candidates. Among these k preferred candidates, one candidate is her top choice. If a particular candidate among her k preferred candidates has a majority amongst her friends that have already voted, then she mimics their choice. Otherwise, she votes for her top choice. Note that any computational lower bounds derived for this particular instance also hold for the general model.
Even though this instance of the model is simple and lacks some of the subtleties of social influence in practice, it nevertheless provides some valuable insights. For example, we prove that it is computationally hard to determine if a given candidate has necessarily won a social poll, irrespective of how the remaining agents vote. We also show that this intractability holds even if the social graph has a simple structure like a disjoint union of paths. Of course, in practice social influence is much more complex and subtle. In addition, social graphs often have much a richer structure than simple paths. Finally, agents in general do not know precisely how all the other agents will vote. However, all these issues will only increase the computational complexity of reasoning about social influence.

We focus on computing the possible and necessary winners of a social poll. A candidate is a possible winner if there exists a voting order such that this candidate is a plurality winner over the vote outcomes. Similarly, a candidate is a necessary winner if he is a plurality winner over the vote outcomes for every voting order. The possible and necessary winner problems are interesting in their own right. In addition, they provide insight into several related problems. For example, in the control problem the chair chooses an order of participation for the agents that favors a particular outcome. In particular, the chair can control the result of the election in this way iff their desired candidate is a possible winner. If their desired candidate is even a necessary winner, the chair might want to check whether their second-most desired candidate is a possible winner, etc. A strategic voter may even want to change her vote to a lesser preferred candidate if it turns out her most preferred candidate is a necessary winner or not a potential winner.

2. PROBLEM STATEMENT

We consider a scenario where each agent votes for exactly one candidate. We are given a social network graph \(G = (V, E) \) whose \(n \) vertices are the agents \(x_1, \ldots, x_n \), a set \(C = \{ c_1, \ldots, c_m \} \) of \(m \) candidates, a distinguished candidate \(c^* \in C \), and a choice function \(h \), which for every agent \(x_i \), every subset \(S \subseteq N_G(x_i) \) of its neighbors in \(G \), and every vote of an agent in \(S \), assigns the candidate that \(x_i \) votes for. Each agent casts exactly one vote according to the following model. For a given voting order \(\pi = (x_{\pi(1)}, \ldots, x_{\pi(n)}) \), let \(S_i \) denote the set \(\{ x_j : \pi^{-1}(j) < \pi^{-1}(i) \} \cap N_G(x_i) \), i.e., the neighbors of \(x_i \) that vote before \(x_i \). Each agent \(x_i \) votes for the candidate that the choice function \(h \) assigns for the given candidate \(x_i \), the subset \(S_i \) and the votes of the agents in \(S_i \). The score of a candidate \(c \) is the number of agents that vote \(c \) in the voting order \(\pi \). A candidate \(c \in C \) is a possible winner in the voting order \(\pi \) if no other candidate has higher score than \(c \). A candidate is a possible winner if there exists a voting order where \(c \) is a winner. A candidate is a necessary winner if for every voting order, \(c \) is a winner.

Simple model. We introduce a particular instance of the choice function \(h \). This is defined via two preference functions \(p_1 : V \to C \) and \(P : V \to 2^C \). Each agent \(x \in V \) has a set \(P(x) \subseteq C \) of \(k \) preferred candidates, where \(k \) is at least 1. Among the preferred candidates, one candidate \(p_1(x) \in P(x) \) is the top preferred candidate. Let \(x \) be an agent and \(S \) be the subset of \(N_G(x) \) that voted before \(x \). If there exists a candidate \(c \in P(x) \) such that more than half of the agents from \(S \) voted for \(c \), then \(x \) votes for \(c \). Otherwise, \(x \) votes for \(p_1(x) \). Note that all complexity lower bounds for the simple model also hold in the general model, and for any model generalizing the simple model.

The unweighted possible (necessary) winner problem, \(UPW \) (\(UNW \)), is to determine whether \(c^* \) is a possible/necessary winner. The weighted possible (necessary) winner problem, \(WPW \) (\(WNW \)), is defined similarly, except that integer weights are as-sociated with agents and the score of a candidate is the sum of the weights of the agents that vote him. Weighted voters would occur naturally when some voters have more decision-power than others (share holders in companies, electoral representatives, group members versus outsiders, etc.).

3. OVERVIEW OF RESULTS

We show that the computational complexity of the possible and necessary winner problem depends on the structure of the underlying social graph and the number of candidates. If the underlying social graph is arbitrary, the \(UPW \) and \(WPW \) problems are NP-complete and the \(UNW \) and \(WNW \) problems are co-NP-complete. These intractability results hold even when the graph is bipartite and the number of candidates is upper bounded by a constant. If the underlying social graph has bounded treewidth, \(UNW \) and \(WNW \) can be solved in polynomial time. However, \(UPW \) and \(WPW \) remain NP-complete even when the graph is a disjoint union of paths of length 1. When the treewidth and the number of candidates are bounded, \(UPW \) becomes polynomial whereas \(WPW \) remains NP-complete, even for paths of length at most 2.

For \(WPW \) with a constant number of candidates and a social network graph with constant treewidth, the degree of the polynomial bounding the running time of our algorithm is a function of the number of candidates and the treewidth of the social network graph. We give evidence that this cannot be avoided. Our results, which are summarised in Table 1, demonstrate that the possible winner problem is inherently computationally harder than the necessary winner problem. We refer the reader to [19] for a full version of the paper.

4. RELATED WORK

The possible and necessary winner problems were introduced in the context of simultaneous voting to capture uncertainty in preferences. For example, due to incomplete preference elicitation, we may have only have partial orders over the candidates as the preferences of the voters. Konczak and Lang considered two questions over a profile with partial orders [24]. Let \(c^* \) be a distinguished candidate. The first question is whether there is an extension of the partial orders to linear orders such that the candidate \(c^* \) wins. The second question is whether the candidate \(c^* \) wins for every extension of the partial orders to linear orders. Our definitions of possible and necessary winner problems are inspired by these two questions, but with uncertainty introduced by the voting order.

Xia and Conitzer [35] identified connections between possible and necessary winner problems and a number of important problems in computational social choice, including manipulation and preference elicitation problems. The computational complexity of the possible and necessary winner problems under many commonly used voting rules has been extensively investigated [35, 34]. If the number of candidates is bounded and votes are unweighted then these problems can be solved in polynomial time for any voting rule that itself is polynomial [34, 7, 29]. If the number of candidates is unbounded and votes are weighted, these problems become computationally hard [34, 7]. Xia and Conitzer also investigated the setting where the number of candidates is unbounded and votes are unweighted [35]. They showed that the computational complexity in this case depends on the voting rule. Their results also demonstrate that the possible winner problem is computationally harder than the necessary winner problem for many rules, including a class of positional scoring rules, Maximin and Bucklin voting rules. We observe a similar relation between the computational complexity of possible and necessary winner problems in social polls.
Perhaps closest to this work is Alon et al. [1]. However, the problems studied there are rather different. In their model, agents have private preferences and vote strategically. An agent experiences disutility if the winning candidate differs from his vote. The authors derive an equilibrium voting strategy as a function of previously cast votes. As soon as a candidate accumulates a (small) lead, all future votes are cast in his favor independent of private preferences. This “herding” behavior is compared across simultaneous and sequential voting equilibria. Simultaneous and sequential voting mechanisms have also been compared based on how well preferences are aggregated in equilibrium of corresponding games [9, 2]. Preference aggregation over multiple issues in the presence of influence has also been studied by Maudet et al. [26].

5. PRELIMINARIES

Graph theory. We refer to [10] for basic notions of graphs and digraphs. The path on k vertices is denoted P_k. For our algorithmic results, a central notion is the treewidth of graphs [30]. A tree decomposition of a graph G = (V, E) is a pair ((B_i : i ∈ I), T) where the sets B_i ⊆ V, i ∈ I, are called bags and T is a tree with elements of I as nodes such that:
1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ B_i, and
2. for each vertex v ∈ V, T{v ∈ I : v ∈ B_i} is a tree with at least one node.

The width of a tree decomposition is max_{i ∈ I}|B_i| − 1. The treewidth of G is the minimum width taken over all tree decompositions of G.

A social network graph is a graph whose vertices represent individuals and edges represent friendship relations.

NP-complete problems. Our hardness reductions rely on the NP-completeness of several classic problems [18]. A partition instance contains a set of integers A = {k_0, …, k_{n-1}} such that \sum_{j=0}^{n-1} k_j = 2k. The problem is to determine whether there exists a partition of these numbers into two sets which sum to K. A 3-Hitting set instance contains two sets: Q = \{q_0, …, q_{n-1}\} and S = \{S_1, …, S_t\}, where t ≥ 2 and for all j \leq t, |S_j| = 3. The problem is to determine whether there exists a set H, a so-called hitting set, of size at most k such that H ∩ S_i ≠ ∅, i = 1, …, t. Consider a set of Boolean variables X = \{x_1, …, x_n\}. A clause is a disjunction of literals. A Boolean formula in conjunctive normal form (CNF) is a conjunction of m clauses, \{c_1, …, c_m\}. A (3\leq, 3\leq)-SAT instance is a CNF formula such that every clause has at most 3 literals and each variable occurs at most 3 times. The problem is to check whether there exists an instantiation of Boolean variables X to make the formula evaluate to TRUE, which is an NP-complete problem [33].

6. TRACTABLE CASES

In this section we describe algorithms for the polynomial time solvable cases in Table 1. To simplify the description, we use the concept of nice tree decompositions. A tree decomposition \(\{B_i : i \in I, T\}\) is nice if each node i of T is of one of four types:

- **Leaf node**: i is a leaf in T and |B_i| = 1;
- **Insert node**: i has one child j, |B_j| = |B_i| + 1, and B_i ⊂ B_j;
- **Forget node**: i has one child j, |B_j| = |B_i| − 1, and B_i ⊂ B_j;
- **Join node**: i has two children j and k and B_i = B_j ∪ B_k.

An algorithm by Kloks [23] converts any tree decomposition into a nice tree decomposition of the same width in linear time.

A score function \(C\) is a function \# : \(\mathbb{C} \to \mathbb{N}\). A score function \# can be achieved by an instance if there is a voting order where c is voted by \#(c) agents, for every candidate c ∈ \(\mathbb{C}\).

Our tractability results all rely on the algorithm of the next theorem. It is a dynamic-programming algorithm proceeding bottom-up from the leaves to the root of a nice tree decomposition. The main difficulty is to bound the amount of information that needs to be transmitted when proceeding from child nodes to parent nodes in the tree decomposition. Once one has identified what information needs to be transmitted, the computation relies on dynamic programming recurrences as is standard for such algorithms.

THEOREM 1. There is a polynomial time algorithm, which, given a social network graph G = (V, E) with treewidth t = O(1), a set \(\mathbb{C}\) of \(m = O(1)\) candidates, and preference functions P and \(p_1\), computes all possible score functions that can be achieved by this instance.

PROOF. By Bodlaender’s algorithm [5], compute a minimum width tree decomposition of G in linear time. Let t denote the width of this tree decomposition. Using Kloks’ algorithm [23], convert it into a nice tree decomposition of width t with \(O(n)\) nodes in linear time. Select an arbitrary leaf of this tree decomposition, add a neighboring empty bag \(r\) and root the tree decomposition at \(r\). Denote the resulting tree decomposition by \(\{(B_i : i \in I), T\}\).

In the description of our algorithm, we denote by \(G_{i,j}\) the subgraph induced by the subset of all vertices occurring in \(B_i\) and bags associated to descendants of i in T.

First, observe that the vote of a given agent does not depend on the ordering of the agents that voted before her, but solely on which subset of her friends were ordered before her. Therefore, instead of storing partial orderings of agents that have already been processed, we may merely store acyclic orientations of subgraphs of the friendship graph, where an edge oriented from x to y represents that x votes before y. Any linear ordering extending a given acyclic orientation of the friendship graph will produce the same voting outcome.

Our dynamic programming algorithm will process bottom-up from the leaves to the root of the tree decomposition. The computation at an internal node i looks up the already computed results stored at its children. Note that we cannot afford to remember all oriented paths in all relevant orientations of \(G_{i,j}\) that were computed at descendants of node i. All we need to remember at node i is whether for two vertices x, y \(\in B_i\), our computations rely on orientations of subgraphs of \(G_{i,j}\) that contain a directed path from x to y. If so, we remember that there is a path from x to y by adding...
an arc \((x, y)\) to a directed acyclic graph (DAG) with vertex set \(B_i\) to the local information stored at this node. Additionally, for every edge \(xy\) in \(G[B_i]\), we also need to decide (resp., go over all possible decisions), whether \(x\) votes before \(y\), or \(y\) votes before \(x\). This is again stored by orienting the edge \(xy\) accordingly. Therefore, at a node \(i\), we process all DAGs on the vertex set \(B_i\) whose underlying undirected graphs are supergraphs of \(G[B_i]\). For such a DAG \(D_i\), we also process all votes of the vertices in \(B_i\) (a voting function \(v : B_i \rightarrow C\), all potential scores of candidates resulting from the votes of vertices in \(G_{ij}\) (a score function \(# : C \rightarrow \{0, \ldots, n\}\)). In addition, in order to do a sanity check to determine whether an agent \(x \in B_i\) has indeed cast her vote according to our model after we have seen the votes of all her friends, we store for each candidate in \(P(x) \setminus p_i(x)\) how many friends voted that candidate (an influence function \(s\) mapping an agent \(x \in B_i\) and a candidate \(v \in P(x) \setminus p_i(x)\) to a natural number in \(\{0, \ldots, n\}\) and how many of her friends voted before her (an anterior function \(a : B_i \rightarrow \{0, \ldots, n\}\)).

A voting function \(v : X \rightarrow C\) on a subset of agents \(X \subseteq V\) is legal if \(v(x) \in P(x)\) for every agent \(x \in X\). A voting function \(v : X \rightarrow C\) extends a voting function \(v' : X' \rightarrow C\) if \(X' \subseteq X\) and \(v(x) = v'(x)\) for every \(x \in X'\). An anterior function \(a : X \rightarrow \{0, \ldots, n\}\) is compatible with an influence function \(s : X \times C \rightarrow \{0, \ldots, n\}\) if for every \(x \in X\), we have that \(\sum_{v \in P(x) \setminus p_i(x)} s(x, v) \leq a(x)\). A voting function \(v\) is compatible with two compatible anterior and influence functions \(a : X \rightarrow \{0, \ldots, n\}\) and \(s : X \times C \rightarrow \{0, \ldots, n\}\) if for every vertex \(x \in X\) with \(N(x) \subseteq X\), we have that \(v(x) = c\) if there exists a \(c \in P(x) \setminus p_i(x)\) such that \(s(x, c) > a(x)/2\), and \(v(x) = p_i(x)\) otherwise. A voting function \(v : X \rightarrow C\) is compatible with a score function \(# : C \rightarrow \{0, \ldots, n\}\) if for every candidate \(c \in C\), \(\{x \in X : v(x) = c\} = \{x \in X : v(x) = c\}\). The function \(s\) is compatible with \(D\) with \(X\) with a DAG voting function \(v\) and a voting function \(v\) if for every agent \(x \in X\) and every candidate \(c \in P(x) \setminus p_i(x)\), we have that \(s(x, c) = \{y \in N_D(x) : v(y) = c\}\). The function \(a\) is compatible with \(D\) if for every agent \(x \in X\), \(a(x) = \{|N_D(x)\}\). We say that \(v, D, \#, s, a\) are mutually compatible if \(a\) is compatible with \(s\) and vice versa.

The algorithm computes a table entry for every relevant set of parameters \((i, v, D, \#, s, a)\), which is a Boolean and is true if and only if there is an acyclic orientation \(D_{ij}\) of \(G_{ij}\) such that:

- if there are two vertices \(x, y\) in \(B_i\) and a directed path from \(x\) to \(y\) in \(D_{ij}\), then the arc \((x, y)\) is in \(D\);
- the voting function \(v : B_i \rightarrow C\) can be extended to a legal voting function \(v' : V(G_{ij}) \rightarrow C\), and
- \(v', D_{ij}\) are mutually compatible.

Now that we have identified the relevant information stored at each node of the tree decomposition, the actual dynamic programming recurrences are fairly straightforward. We only need to ensure that the computations rely on already-computed table entries that are compatible with the entry that is being computed. For simplicity, we disregard issues arising from out-of-bounds table parameters and undefined values by assuming those entries to be False.

Leaf. Suppose \(i\) is a leaf with \(B_i = \{x\}\). We set \(T(i, v, D, \#, s, a)\) to true if \(D = \{(x), \emptyset\}, v : \{x\} \rightarrow C\) is legal, and \(v, D, \#, s, a\) are mutually compatible, and to False otherwise.

Insert node. Suppose \(i\) is an insert node in \(T\) with child \(j\). Let \(x\) be the unique agent in \(B_j \setminus B_i\). We set \(T(i, v, D, \#, s, a)\) to false if \(v\) is not legal or \(s(x, c)\) is not the number of \(y \in N_D(x)\) such that \(v(y) = c\), for every \(c \in P(x) \setminus p_i(x)\), or \(a(x) \neq |N_D(x)|\). Otherwise, set \(T(i, v, D, \#, s, a) := (j, v', D', \#, s', a')\) where:

- \(v' = v|_{B_j}\),
- \(D' = D - x\),
- \(#'\) is obtained from \(#\) by decrementing \(#(v(x))\) by one,
- \(s'\) is obtained from \(s|_{B_j \times C}\) by decrementing \(s(y, v(x))\) by one for every \(y \in N_D^++\) such that \(v(x) \in P(y) \setminus p_i(y)\), and
- \(a'\) is obtained from \(a|_{B_j}\) by decrementing \(a(y)\) by one for every \(y \in N_D^+(x)\).

Here, \(f_A\) denotes the restriction of a function \(f : B \rightarrow C\) to a subdomain \(A \subseteq B\).

Forget node. Suppose \(i\) is a forget node in \(T\) with child \(j\). Let \(x\) be the unique agent in \(B_j \setminus B_i\). Since \(x\) occurs only in \(B_i\) and its descendants in \(T\), all neighbors of \(x\) are in \(V(G_{ij})\). Therefore, we now do a sanity check and disregard all situations where \(x\) does not vote according to our model. We set \(T(i, v, D, \#, s, a) = \text{false}\) if \(v\) is not legal, or \(v(x) = p_i(x)\) but there exists a candidate \(c \in P(x) \setminus p_i(x)\) with \(s(x,c) > a(x)/2\), or \(v(x) \neq p_i(x)\) but \(s(x,c) \leq a(x)/2\) for every candidate \(c \in P(x) \setminus p_i(x)\). Otherwise it is obtained by computing a disjunction of all \((j, v', D', \#, s', a')\) such that:

- \(v'\) extends \(v\),
- \(D = D' - x\),
- \(# = \#'\),
- \(s = s'\),
- \(a = a'\),
- if \(v'(x) = p_i(x)\) then \(s(x,c) \leq a(x)/2\) for every \(c \in P(x) \setminus p_i(x)\), and
- if \(v'(x) \neq p_i(x)\) then \(s(x,v'(x)) > a(x)/2\).

Join node. Suppose \(i\) is a join node in \(T\) with children \(j\) and \(j'\). Since all agents that occur in both \(G_{ij}\) and \(G_{ij'}\) also occur in \(B_i\), we can easily correct any overcounting resulting from summing values for the subproblems at \(j\) and \(j'\) when computing the functions \(#, s\), and \(a\) at node \(i\). We set \(T(i, v, D, \#, s, a)\) to be a disjunction over all \(T(j, v', D', \#, s', a') \land T(j', v'', D'', \#, s'', a'')\) with:

- \(v = v' = v''\),
- \(D = D' = D''\),
- \(#(c) = #(c') + #(c') - 1)\) for every \(c \in C\),
- \(s(x,c) = s'(x,c) + s''(x,c) - 1)\) for every \(x \in B_i\) and \(c \in P(x) \setminus p_i(x)\), and
- \(a(x) = a'(x) + a''(x) - 1)\) for every \(x \in B_i\).

After all table entries have been computed, we inspect the entries at the root node \(r\) of \(T\). Since \(B_i\) is empty, all table entries associated with node \(r\) have an empty voting function \(v\), a vertexless DAG \(D\), and empty anterior and influence functions \(a\) and \(s\). The only relevant information still contained in these entries are the score functions \(#\) that can be achieved by the instance. The algorithm returns these score functions.

Let us now upper bound the number of table entries. The number of nodes of \(T\) is \(O(n)\). For each node \(i\) of \(T\), \(|B_i| \leq k\). Thus, the number of legal voting functions \(v : B_i \rightarrow C\) is at most \(k^{|}\). Denoting by \(q_i\) the number of labeled directed acyclic graphs on \(t\) nodes, \(q_i\) can be expressed by the recurrence relation

\[q_t = \sum_{k=1}^{t} (-1)^{t-k-1} \binom{t}{k} 2^{k(t-k)} q_{t-k} \]

with \(q_1 = 1\) [22, 31]. Asymptotically, \(q_t \leq O(\Omega^2(1)) \cdot 1.488^{t}\) (see, e.g., [25]). The number of distinct score functions is bounded by \(n^{|C|}\). The number of influence functions is bounded by \(n^{|C|}^{|t|\cdot1.488^{t}}\).
The number of anterior functions is bounded by \(n^t \). Finally, the number of table entries is \(O(n \cdot k^t \cdot t^2 \log(\frac{2}{\delta}) \cdot n^{t(k-1)} \cdot n^t) \).

Each table entry can be computed in time \(O(n^{3|C|^t + tk}) \). Indeed, the computations at the leaf and the insert nodes can be done in time \(O(1) \). A table entry computed at a forget node \(i \) ranges over all legal extensions \(v' \) of \(v \) and all digraphs \(D' \) such that \(D = D' - x \). Since \(|V(D')| \leq t \), there are \(O(3^t) \) such digraphs: each vertex from \(D \) is either not a neighbor or an in-neighbor or an out-neighbor of \(x \) in \(D' \). The number of legal extensions of \(v \) to the domain \(B_i \) or \(\{x\} \) is \(k \). Thus, table entries at a forget node can be computed in time \(O(3^t) \) which is in \(O(n^{3|C|^t + tk}) \) if \(n > 1 \). Computations at join nodes range over all possibilities to sum \(\#'(c) \) and \(\#''(c) \) to \(\#(c) \) + \(|\{(x \in B_i : v(x) = c)\}|\) for each \(c \in C \), all possibilities to sum \(s'(x,c) \) and \(s''(x,c) \) to \(s(x,c) \) and \(|\{y \in N_D(x) : v(y) = c\}\) for each \(x \in B_i \) and each \(c \in P(x) \setminus p_i(x) \), and all possibilities to sum \(a'(x) \) and \(a''(x) \) to \(a(x) \) and \(|N_D(x)|\) for each \(x \in B_i \). Thus, the computation of a table entry at a join node looks up \(O(n^{3|C|^t + tk}) \) table values. All in all, our algorithm has running time \(O(n^{1+2|C|^t + 2tk} \cdot k^t \cdot t! \cdot t^2) = O(n^{1+2|C|^t + 2tk} \cdot 2^t \log k + t \log t + t^2) \).

After executing this algorithm, one can easily identify whether a candidate \(c \) is a possible or necessary winner by inspecting the score functions that can be achieved by the instance.

Corollary 1. For any class of instances where the treewidth of the social network and the number of candidates are bounded by a constant, UPW and UNW can be solved in polynomial time.

Theorem 4 shows that the weighted version of the winner problem is NP-hard under the same restrictions. The necessary winner problem can be reformulated as \(m - 1 \) subproblems of the following type: is there a voting order where candidate \(d \) achieves a higher score than candidate \(c \)? If some other candidate can achieve a higher score than our distinguished candidate \(c^* \), then \(c^* \) is not a necessary winner. Testing whether a candidate \(d \) can achieve a higher score than a candidate \(c \) can be done by a slight variation of our previous algorithm, even for the weighted version of the problem and for an unbounded number of candidates.

Corollary 2. WNW can be solved in polynomial time for social network graphs with treewidth \(O(1) \).

Proof. We need a polynomial time test of whether a candidate \(d \) achieves a higher score than a candidate \(c \). We modify the algorithm in the proof of Theorem 1 as follows. Remove the function \(\# \) from the table parameters. Instead, each table entry is an integer, representing the maximum possible value of the score of candidate \(d \) minus the score of candidate \(c \) in this subinstance. This change implies some other changes in the computation of the table entries (a disjunction of table entries becomes a maximum, setting a table entry to FALSE becomes setting its value to \(-\infty\), etc.), all of which are straightforward. In the end, there is a voting order where \(d \) achieves a higher score than \(c \) if the unique table entry at the root of the tree decomposition is positive. Since all factors of the form \(n^{|C|} \) in the running time bound of Theorem 1 are due to the table parameter \(\# \), this variant is polynomial even for an unbounded number of candidates.

Although the algorithm from Theorem 1 is polynomial whenever \(|C| \) and \(t \) are upper bounded by a fixed constant, its running time seems prohibitive even for relatively small values of \(|C| \) and \(t \). This is largely due to the degree of the polynomial bounding the running time depending on \(|C| \) and \(t \). Therefore, a natural question is whether the problems can be solved in time \(f(|C|, t) \cdot n^t \), where \(c \) is a constant independent of \(|C| \) and \(t \), and \(f \) is a function independent of \(n \). Formulated in the terms of multivariate complexity [12, 15, 17, 27]: are the problems fixed-parameter tractable (FPT) parameterized by \(|C| + t \)? We conjecture that they are \(W[1] \)-hard, and give supporting evidence in terms of finite-state properties of graphs [3, 6, 16].

Definition 1. An \(l \)-boundaried graph is a triple \((V, E, B)\) with \((V, E)\) a simple graph, and \(B \subseteq V \) an ordered subset of \(l \geq 0 \) vertices. Vertices in \(B \) are called boundary vertices.

Definition 2. The operation \(\oplus \) maps two \(l \)-boundaried graphs \(G \) and \(H \), \(l \geq 0 \), to a graph \(G \oplus H \), by taking the disjoint union of \(G \) and \(H \), then identifying corresponding boundary vertices, i.e., for \(i = 1, \ldots, l \), identifying the \(i \)th boundary vertex of \(G \) with the \(i \)th boundary vertex of \(H \), and removing multiple edges.

If \(F \) is an arbitrary family of (ordinary) graphs, we define the following canonical equivalence relation \(\sim_{F,t} \) induced by \(F \) on the set of \(l \)-boundaried graphs.

Definition 3. \(G_1 \sim_{F,1} G_2 \) if and only if for all \(l \)-boundaried graphs \(H, G_1 \oplus H \in F \Leftrightarrow G_2 \oplus H \in F \).

The graph family \(F \) is of finite index if \(\sim_{F,1} \) has a finite number of equivalence classes for all \(l \geq 0 \). Slightly abusing notation, we use the previously defined terms for instances of our problems instead of graphs.

Theorem 2. The class of unweighted instances where the social network graph has treewidth at most \(1 \), the number of candidates is at most \(2^l \), and \(c^* \) is a possible (respectively, necessary) winner is not of finite index.

We skip the proof of this theorem since it will follow from Theorem 3. An explicit proof can be found in the full version [19].

Consequently, finite-state automata are not amendable to give an FPT algorithm, even for the parameter treewidth when the number of candidates is upper bounded by a constant. Intuitively, Theorem 2 implies that the amount of information that the usual kind of algorithms need to transmit when transitioning from one bag of the tree decomposition to the next cannot be upper bounded by a function depending only on the width of the tree decomposition. It could still be upper bounded by an FPT function though, in which case the other standard algorithmic technique for bounded-treewidth instances, dynamic-programming, could still give an FPT algorithm. However, the following theorem shows that the index cannot be upper bounded by an FPT function.

Theorem 3. For every integer \(n \), the class of unweighted instances whose social network graph has \(n \) vertices and treewidth at most \(1 \), the number of candidates is \(k \), and \(c^* \) is a possible (respectively, necessary) winner has index at least \(|n/k|^{k-1}\).

Proof. Let \(F_n \) be this class of instances. We consider the equivalence relation \(\sim_{F_n,0} \) and show that it has at least \(|n/k|^{k-1}\) equivalence classes. Let \(\ell := \lfloor n/k \rfloor \). For positive integers \(i_1, \ldots, i_{k-1} \leq \ell \), define the 0-boundaried instance \(I_{i_1, \ldots, i_{k-1}} \) whose social network graph is a disjoint union of paths \(P_{i_1, j} = 1, \ldots, k - 1 \), and every voter \(x \) on the path \(P_{i_1, j} \) has \(P(x) = \{c^*, a_j\} \) and \(p_i(x) = a_j \). For positive integers \(i_1, \ldots, i_k \leq \ell \), define the 0-boundaried instance \(I_{i_1, \ldots, i_k} \) whose social network graph is a disjoint union of paths \(P_{i_j, j} = 1, \ldots, k \), and every voter \(x \) on the path \(P_{i_j, j} \) with \(i_j < k \) has \(P(x) = \{c^*, a_j\} \) and
p_1(x) = a_j \text{ and every voter } x \text{ on the path } P_k \text{ has } P(x) = \{c^+, a_1\} \\
\text{and } p_1(x) = c^+. \text{ Now, if } (t_1, \ldots, t_{\ell-1}) \neq (t_1^*, \ldots, t_{\ell-1}^*), \text{ then } L_{t_1, \ldots, t_{\ell-1}} \neq \bigoplus F_{\alpha_0}. \text{ To see this, suppose, w.l.o.g., that } i_1 < i_1'. \text{ Then } c^* \text{ is a winner in } L_{t_1', \ldots, t_{\ell-1}'} \oplus R_{t_{\ell-1}', \ldots, t_{1}'}, \text{ for every ordering of the voters, but } c^* \text{ is not a winner in } L_{t_1, \ldots, t_{\ell-1}} \oplus R_{t_{\ell-1}, \ldots, t_{1}} \text{ for any ordering of the voters. Thus, every } L_{i_1, \ldots, i_{\ell-1}, 0} \leq i_1 \leq \ell \text{, is in a different equivalence class of the relation } \sim_{F_{\alpha_0}}. \quad \Box

Thus, for any dynamic-programming algorithm for UPW or UNW based on boolean tables, like the one of Theorem 1, the running time cannot be upper bounded by an FPT function. Therefore, we have little hope that the running time of the algorithm from Theorem 1 can be improved significantly.

7. INTRACTABLE CASES

We observe that an isolated agent that has no friends always votes for her top preferred candidate. To simplify notations, we call the score of a candidate that comes from all isolated agents the basic score. Our intractability results hold even if each voter has two preferred candidates. We denote the two preferred candidates of a voter \((x, y)\), where \(x\) is the top preferred candidate.

THEOREM 4. WPW is NP-complete even if the social network graph is a disjoint union of paths of length at most two, the number of candidates is constant, and each agent has two preferred candidates.

PROOF. We reduce from the PARTITION problem to WPW with three candidates \((a, b, c)\).

For each integer \(k_j, j = 0, \ldots, n - 1\) we introduce 3 agents \(3j, 3j + 1\) and \(3j + 2\), with preferences \((b, c), (a, c), (b, c)\), respectively. The weights of the \((3j)\)th agent and the \((3j + 1)\)th agent are one. The weight of the \((3j + 2)\)th agent is \(k_jB\), where \(B\) is a large integer, for instance \(2n + 1\). Agents \(3j, 3j + 1\) and \(3j + 2\) form the \(j\)th path of friends, \((3j, 3j + 1), (3j + 1, 3j + 2))\), that corresponds to the \(k_j\)th element. An additional agent without friends has preferences \((a, c)\) and weight \(KB + 2n\). We ask whether \(a\) is a possible winner. Fig. 1 illustrates the construction.

The basic score of \(a\) is \(KB + 2n\). The idea of the construction is to make sure that the preferred candidate \(a\) wins iff the weighted votes of \((3j + 2)\)th agents, \(j = 0, \ldots, n - 1\), are partitioned equally between candidates \(b\) and \(c\). Consider the \(j\)th path \((3j, 3j + 1), (3j + 1, 3j + 2))\). The \((3j + 2)\)th agent either votes for \(b\) or \(c\) depending on the relative order of the candidates in this path. As the weight of the \((3j + 2)\)th agent is \(k_jB\), either \(c\) or \(b\) increases its score by \(k_jB\). Let \(J\) be a set of paths such that the \((3j + 2)\)th agent selects \(b\), \(j \in J\) and \(J' = \{0, \ldots, n - 1\} \setminus J\) contains all paths such that the \((3j + 2)\)th agent selects \(c\), \(j \in J'\). Then the total weight that the candidate \(b\) gets is \(\sum_{j \in J} k_jB = B \sum_{j \in J} k_j\). If \(\sum_{j \in J} k_j > K\) then the score of \(b\) is strictly greater than the maximum score of \(a\). Similarly, the total weight that the candidate \(c\) gets is \(\sum_{j \in J'} k_jB = B \sum_{j \in J'} k_j\).

Figure 1: The construction from Theorem 4

If \(\sum_{j \in J} k_j > K\) then the score of \(c\) is strictly greater than the final score of \(a\). Therefore, the only way for \(a\) to win is if there exists a partition \(\sum_{j \in J} k_j = K\) and \(\sum_{j \in J'} k_j = K\). In this case, \(score(c) \leq KB + 2n, score(b) \leq KB + 2n\) and \(score(a) \geq KB + 2n\). Hence, \(a\) is a co-winner if the PARTITION instance is a YES-instance.

Suppose a partition \((J, J')\) of \(A\) exists with \(\sum_{j \in J} k_j = \sum_{j \in J'} k_j\). For the \(j\)th path, \(j \in J\) we fix an order \(3j < 3j + 1 < 3j + 2\), where \(x < y\) means \(x\) votes before \(y\). For the \(j\)th path, \(j \notin J\) we fix an order \(3j + 1 < 3j < 3j + 2\). This ensures that the weights of the \((3j + 2)\)th agents in all paths are split equally between \(b\) and \(c\). Hence, \(a\) is a co-winner. \(\Box\)

THEOREM 5. UPW is NP-complete even if the number of candidates is constant, the social network graph is bipartite, and each agent has two preferred candidates.

PROOF. We reduce from 3-hitting set. For each element \(q_j, j = 0, \ldots, n - 1\) we introduce 4 agents \(4j, 4j + 1, 4j + 2\) and \(4j + 3\), with preferences \((b, c), (a, c), (b, c)\) and \((b, c)\) respectively. Agents \(4j, 4j + 1, 4j + 2\) and \(4j + 3\) form a path of friends. We say that agents \(4j, 4j + 1, 4j + 2\) and \(4j + 3\) represent the \(j\)th path that corresponds to the \(q_j\)th element. In particular, we refer to the \((4j + 1)\)th agent as an element-agent, as her decision corresponds to a selection of the \(q_j\)th element into a hitting set. For each set \(S = (q_{s_1}, q_{s_2}, q_{s_3}), i = 1, \ldots, t\) we introduce \(D\) agents \(\{(4n + 1) + D(i - 1) + p, p = 1, \ldots, D\}, \text{ with preferences } (b, a)\). The \((4n - 1) + D(i - 1) + p\)th agent is a friend of the \((4h + 1)\)th, \((4h + 2)\)th and \((4r + 1)\)th agents. Moreover, \((4n - 1) + D(i - 1) + p\) wins iff \(p = 1, \ldots, D\) form a path of friends that starts at \((4n - 1) + D(i - 1) + 1\) and ends at \((4n - 1) + D(i - 1) + D\). We refer to these as set-agents. Finally, we introduce \(B - k - Dt\) isolated agents with preferences \((a, c)\) and \(B - 2k\) isolated agents with preferences \((b, c)\), where \(B\) and \(D > t\) are large integers such as \(n^2\) and \(n^4\). We ask whether \(a\) is a possible winner. Fig. 2 illustrates the construction. The basic score of \(a\) is \(B - k - Dt\) and of \(b\) is \(B - 2k\). The idea of the construction is that for \(a\) to win it needs at least \(Dt - k\) votes. The construction ensures that at most \(k\) of the \((4j + 1)\)th element-agents, \(j = 0, \ldots, n - 1\), can vote for \(a\), otherwise \(b\) beats \(a\). This corresponds to a selection of \(k\) elements in the hitting set. The \(Dt\) set-agents must all vote for \(a\), otherwise \(a\) loses, which is possible iff a set of element-agents that selected \(a\) forms a hitting set.

Select a set of elements. If the \((4j + 1)\)th element-agent in the \(j\)th path selects the candidate \(a\) then the agents \((4j + 2)\) and \((4j + 3)\) will select their choice \(b\). Hence, increasing the score of \(a\) by 1 increases the score of \(b\) by 2 if we only consider voters in the \(j\)th
path. The basic score of \(a \) is \(B - k - tD \), the maximum number of points of \(a \) can gain from set-agents is \(DT \), and the basic score of \(b \) is \(B - 2k \); hence at most \(k \) element-agents can select \(a \).

Check a hitting set. Suppose exactly \(k' \) element-agents selected \(a \) and the corresponding \(k' \) variables cover \(t' \) sets. Then the remaining set of element-agents vote for \(c \). Hence, \(DT' \) set-agents vote for \(a \) and the remaining \((t - t')D \) vote for \(b \). Then the maximum score of \(a \) is \(B - (k + DT) + (k' + t'D) \). The maximum score of \(b \) in this case is \(B - 2k + 2k' + (t - t'D) \). For \(a \) to beat \(b \) we need \(B - (k + DT) + (k' + t'D) \geq B - 2k + 2k' + (t - t'D) \) or \(2D't + k \geq k' + 2Dt \). As \(D > t \), this inequality holds iff \(t' \geq t \). Hence, \(k' \) selected elements must form a hitting set. As at most \(k \) element-agents are allowed to select \(a \), the problem has a solution iff there is a solution to the hitting set problem.

Order construction. Let \(H \) be a hitting set of size \(k \). Then \(J = \{ h : q_h \in H \} \) and \(J' = \{0, \ldots, n - 1\} \setminus J \). First, the agents \(\{4j, \ldots, 4j + 3\} \), \(j \in J \) vote in the order \(4j + 1 \prec 4j \prec 4j + 2 \prec 4j + 3 \), so that each agent selects his top choice. Then all set-agents vote in the order \((4n - 1) + 1 \prec (4n - 1) + 2 \prec \cdots \prec (4n - 1) + D(t - 1) + D \). As the set \(J \) corresponds to the hitting set \(H \), all set-agents vote for \(a \). Finally, the agents \(\{4j, \ldots, 4j + 3\} \), \(j \in J' \), vote in the order \(4j \prec 4j + 1 \prec 4j + 2 \prec 4j + 3 \), so that each of these agents selects \(c \).

Theorem 6. UNW is co-NP-complete even if the number of candidates is constant, the social network graph is bipartite, and each agent has two preferred candidates.

Proof. We use the construction from Theorem 5 and ask if the candidate \(b \) is a necessary winner. Note that \(c \) cannot win the poll under any order as the maximum possible score of \(c \) is \(4n \). Hence, \(b \) is a necessary winner iff there is no order such that \(a \) gets more points than \(b \). From Theorem 5 it follows that \(a \) gets more points than \(b \) iff there exists a solution to the 3-HITTING SET problem.

Theorem 7. UPW is NP-complete even if the social network graph is a disjoint union of paths of length at most 1 and each agent has two preferred candidates.

Proof. We reduce from \((3^L, 3^L) \)-SAT. We assume that the formula does not contain unit clauses and pure literals as those can be removed during a preprocessing step. Therefore, each variable occurs either twice positively and once negatively or once positively and twice negatively. Hence, each variable can satisfy at most 2 clauses. For each literal, \(x_i \), \(i = 1, \ldots, n \), we introduce a candidate labeled with \(x_i \). For each clause, \(c_j \), \(j = 1, \ldots, m \), we introduce a candidate labeled with \(c_j \). Finally, we introduce a dummy candidate \(d \) and the distinguished candidate \(a \). For each variable \(x_i \), \(i = 1, \ldots, n \), we introduce two var-agents, \(\{2i, 2i + 1\} \), with preferences \((x_i, \bar{x}_i) \) and \((\bar{x}_i, x_i) \), respectively. Agents \(2i \) and \(2i + 1 \) are friends. For each clause \(c_j \), \(j = 1, \ldots, m \), of length \(3 \), \(c_j = (l_t, l_s, l_r) \), \(j = 1, \ldots, m \), \(l_t \in \{x_h, \bar{x}_h\}, h \in \{t, s, r\} \), we introduce 6 clause-agents, \(\{2n + 6j + 1, \ldots, 2n + 6j + 6\} \), that we split into three groups of two agents, one group for each literal in a clause. Agents in each group are friends. The first group contains two agents with preferences \((c_j, d) \) and \((l_t, c_j) \), the second – two agents with preferences \((c_j, d) \) and \((l_s, c_j) \) and the third – two agents with preferences \((c_j, d) \) and \((l_r, c_j) \). For each clause \(c_j \), \(j = 1, \ldots, m \), of length \(2 \), \(c_j = (l_t, l_s) \), \(j = 1, \ldots, m \), \(l_t \in \{x_h, \bar{x}_h\}, h \in \{t, s\} \), we introduce 6 clause-agents: two groups of two agents for each literal in the clause as described above and two isolated dummy agents with preferences \((c_j, d) \). Finally, we introduce 3 isolated agents with preferences \((l_h, d) \), for each literal \(l_h \in \{x_h, \bar{x}_h\}, h = 1, \ldots, n \) and 5 isolated agents with preferences \((a, d) \). We ask whether \(a \) is a possible winner. Fig. 3 illustrates the construction.

The basic score of \(a \) is 5, of a literal \(l_h, l_h \in \{x_h, \bar{x}_h\}, h = 1, \ldots, n \), is 3 and of a clause \(c_j \) of size 2, \(j \in \{1, \ldots, m\} \), is 2.

Select an assignment. Consider a variable \(x_i \) and the two corresponding var-agents, \(2i \) and \(2i + 1 \). These agents make sure that either \(x_i \) or \(\bar{x}_i \) gets two points exclusively. As the basic score of \(x_i \) and \(\bar{x}_i \) is 3, if \(x_i \) (\(\bar{x}_i \)) gets 2 points from var-agents then it is not allowed to get any points from clause-agents. We say that the candidate \(x_i \) is selected by an assignment \(i \bar{i} \), gets two points from var-agents and \(x_i \) is selected otherwise. We emphasize that candidates that are not selected by an assignment are not allowed to obtain any additional points from clause-agents.

Check an assignment. Consider a clause \(c_j = (x_i, \bar{x}_i, x_r) \). Due to clause-agents, the candidate \(c_j \) gets at least three points from the corresponding clause-agents regardless of the voting order. Moreover, the candidate \(c_j \) can get at most five points from these clause-agents, otherwise \(a \) loses. Hence, at least one point has to be given to one of the candidates \(\{x_i, \bar{x}_i, x_r\} \). Hence, at least one of these candidates must be selected to the assignment. In other words, the corresponding literal satisfies the clause \(c_j \). The analysis for clauses with two literals is similar. Note that a candidate in an assignment can gain at most two points from clause-agents. In other words, it can satisfy at most two clauses, which is the maximum number of clauses that a variable can satisfy in the \((3^L, 3^L) \)-SAT problem that we consider in the reduction. Hence, \(a \) wins iff there exists a solution of the \((3^L, 3^L) \)-SAT problem.

Order construction. Let \(L \) be the literals in a satisfying assignment. For \(i = 1, \ldots, n \), if \(x_i \in L \) then the agent \(2i + 1 \) votes at position \(i \) and, otherwise, the agent \(2i \) votes at position \(i \). This fixes the voting order of the first agents. Then all clause-agents cast their votes. Note that as \(L \) is a satisfying assignment, none of the candidates \(c_j \), \(j = 1, \ldots, m \), has more than 5 points. The voting order of the remaining agents is arbitrary.
8. CONCLUSIONS

We have introduced a general model of social polls in which an agent’s vote is influenced by her friends that have already voted. We considered a particular instantiation of this model in which influence is very simple: an agent votes for her most preferred candidate unless one of her k most preferred candidates has already received a majority of votes from her friends. We considered how to compute who can possibly or necessarily win such a social poll depending on the order of the agents yet to vote. These problems are closely related to questions regarding control and manipulation. Our results show that the complexity of the possible and necessary winner problems depends on the structure of the social graph and the number of candidates. The possible winner problem is NP-hard to compute, even under strong restrictions on the structure of the social graph. By comparison, the necessary winner problem can be computationally easier to compute. For instance, it is polynomial to compute if the social graph has bounded treewidth.

9. ACKNOWLEDGMENTS

NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council (ARC) through the ICT Centre of Excellence Program. SG acknowledges support from the ARC, grant DE120101761.

10. REFERENCES