
Towards an Understanding of Hill-climbingProcedures for SAT �Ian P. GentToby Walsh yDraft of January 12, 1993AbstractRecently several local hill-climbing procedures for propositional satis-�ability have been proposed, which are able to solve large and di�cultproblems beyond the reach of conventional algorithms like Davis-Putnam.By the introduction of some new variants of these procedures, we providestrong experimental evidence to support the conjecture that neither greed-iness nor randomness is important in these procedures. One of the variantsintroduced seems to o�er signi�cant improvements over earlier procedures.In addition, we investigate experimentally how their performance dependson their parameters. Our results suggest that run-time scales less thansimply exponentially in the problem size.1 IntroductionRecently several local hill-climbing procedures for propositional satis�ability havebeen proposed [4, 3, 11]. Propositional satis�ability (or SAT) is the problem ofdeciding if there is an assignment for the variables in a propositional formula thatmakes the formula true. SAT was one of the �rst problems shown to be NP-hard[1]. SAT is also of considerable practical interest as many AI tasks can be encodedquite naturally as SAT problems (eg. planning [5], constraint satisfaction, visioninterpretation [9], refutational theorem proving). Much of the interest in these�This research was supported by SERC Postdoctoral Fellowships to the authors.yDepartment of Arti�cial Intelligence, University of Edinburgh, 80 South Bridge, EdinburghEH1 1HN; Email:I.P.Gent@edinburgh.ac.uk, T.Walsh@edinburgh.ac.uk. We thank Alan Bundy,Bob Constable, Judith Underwood and the members of the Mathematical Reasoning Group fortheir constructive comments and their estimated 100 trillion CPU cycles.1

Hill-climbing Procedures for SAT 2local hill-climbing procedures is because they scale well and because they can solvelarge and di�cult SAT problems beyond the reach of conventional algorithms likethe Davis-Putnam procedure [2].These hill-climbing procedures share three common features. First, they attemptto determine the satis�ability of a formula in conjuctive normal form (CNF)1.Second, they hill-climb on the number of satis�ed clauses. And third, their localneighbourhood (which they search for a better truth assignment) is the set oftruth assigments with the assignment to one variable changed. Typical of suchprocedures is GSAT [11], a greedy random hill-climbing procedure. GSAT startswith a randomly generated truth assignment, and hill-climbs by changing (or\ipping") the variable assignment which gives the largest increase in the numberof clauses satis�ed. Given the choice between several equally good ips, it picksone at random.In [3] we investigated some features of GSAT. In particular, we focused on threequestions. Is greediness important? Is randomness important? Is hill-climbingimportant? One of the aims of this paper is to provide stronger and more completeanswers to each of these three question. In particular, we will show that neithergreediness nor randomness is important.We will propose some new procedures which show considerably improved perform-ance over GSAT on certain classes of problems. Finally, we will explore in moredetail how these procedures scale, and how best to set their parameters. Sincethere is nothing particularly special about GSAT or the other procedures we ana-lyse, we expect that our results will translate to any procedure which performslocal hill-climbing on the number of satis�ed clauses (for example SAT 1.1 andSAT 6.0 [4]). To perform these investigations, we use a generalisation of GSATcalled \GenSAT" �rst introduced in [3].procedure GenSAT(�)for i := 1 to Max-triesT := initial(�) ; generate an initial truth assignmentfor j := 1 to Max-ipsif T satis�es � then return Telse Poss-ips := hill-climb(�,T) ; compute best local neighboursV := pick(Poss-ips) ; pick one to ipT := T with V's truth assignment ippedendendreturn \no satisfying assignment found"1A formula, � is in CNF i� it is a conjunction of clauses, where a clause is a disjunction ofliterals.

Hill-climbing Procedures for SAT 3GSAT is a particular instance of GenSAT in which initial generates a random truthassignment, hill-climb returns those variables whose truth assignment if ippedgives the greatest increase in the number of clauses satis�ed (called the \score"from now on) and pick choses one of these variables at random. An importantfeature of GSAT's hill-climbing is sideways ips { if there exists no ip whichincreases the score, then a variable is ipped which does not change the score.GSAT's performance degrades greatly without sideways ips.2 Greediness and Hill-climbingTo study the importance of greediness, we introduced CSAT [3], a cautious variantof GenSAT. In CSAT, hill-climb returns all variables which increase the score whenipped, or if there are no such variables, all variables which make no change to thescore, or if there are none of these, all variables. Since we found no problem setson which CSAT performed signi�cantly worse than GSAT, we conjectured thatgreediness is not important [3]. To test this conjecture, we introduce three newvariants of GenSAT: TSAT, ISAT, and SSAT.TSAT is timid since hill-climb returns those variables which increase the scorethe least when ipped, or if there are no variables which increase the score, allvariables which make no change, or if there are none of these, all variables. ISATis indi�erent to upwards and sidways ips since hill-climb returns those variableswhich do not decrease the score when ipped, or if there are none of these, allvariables. SSAT, on the other hand, is a sideways moving procedure since hill-climb returns those variables which make no change to the score when ipped, orif there are no such variables, all those variables which increase the score, or ifthere are none of these, all variables. The results for these procedures are givenin table 1.As in [3], we test these procedures on two types of problems: satisifability encod-ings of the n-queens problems, and random k-SAT. The n-queens problem is toplace n-queens on an n�n chessboard so that no two queens attack each other. Itsencoding as a SAT problem use n2 variables, each true i� a particular square is oc-cupied by a queen. Problems in random k-SAT with N variables and L clauses aregenerated as follows: for each clause a random subset of size k of the N variables isselected and each of these variables is made positive or negative with probability12 . For random 3-SAT the ratio L/N = 4.3 has been identi�ed as giving problemswhich are particularly hard for Davis-Putnam and many other algorithms [8, 6].This ratio was also used in an earlier study of GSAT [11] and in [3]. Note thatbecause GenSAT variants typically do not determine unsatis�ablity, unsatis�abileformulas were �ltered out by the Davis-Putnam procedure.In every experiment in this paper (unless explicitlymentioned otherwise) Max-ipswas set at 5 times the number of variables while Max-tries was set large enough

Hill-climbing Procedures for SAT 4Problem Procedure Tries Flips Total Flips s.d.Random GSAT 5.87 93.8 1310 220050 vars TSAT 5.32 96.4 1180 2090ISAT 6.35 127 1460 2560Random GSAT 10.7 158 3550 609070 vars TSAT 10.2 161 3390 5980ISAT 11.9 208 4030 7890Random GSAT 25.7 261 12600 22800100 vars TSAT 26.1 272 12800 22000ISAT 34.6 327 17100 432006-queens GSAT 2.14 65.0 271 267TSAT 2.26 74.1 301 296ISAT 2.22 78.8 298 3108-queens GSAT 1.18 84.5 141 170TSAT 1.20 101 165 171ISAT 1.21 112 178 17316-queens GSAT 1.03 253 288 251TSAT 1.04 282 326 295ISAT 1.02 339 365 226Table 1: Comparison of GSAT, TSAT, and ISATto allow all experiments to succeed. The �gures for tries are the average numberof tries taken until success (and is therefore at least 1), while the �gures for ipsgive the average number of ips in successful tries only. 1000 experiments wereperformed in each case, all of which were successful. For each random problemclass, we performed all experiments in this paper on the same set of randomlygenerated problems; this reduces the variance between the results.The results in table 1 con�rm our conjecture that greediness is not important. Likecautious hill-climbing [3], timid hill-climbing gives very similar performance togreedy hill-climbing. The di�erences between GSAT and TSAT in table 1 are lessthan variances we have observed on problem sets of this size. ISAT does, however,perform signi�cantly worse than GSAT. ISAT's performance falls o� much morequickly as the problem size increases. We conjecture that as the problem sizeincreases, the number of sideways ips o�ered increases and these are typicallypoor moves compared to upwards ips. Combined with other heuristics, however,some of these sideways ips can be good ips to make. In section 4, we willintroduce a variant of ISAT which can give improved performance over GSAT.As well as SSAT, we tried a variant of ISAT which is indi�erent to ips whichincrease the score, leave it constant and decrease it by 1. Both this variant andSSAT failed to solve any of 25 random 3-SAT 50 variable problems in 999 tries.

Hill-climbing Procedures for SAT 5We therefore conclude that you need to perform some sort of hill-climbing.Greediness has also proved useful in several local search procedures for the gen-eration of start positions (eg. in a constraint satisfaction procedure [7], and invarious algorithms for the n-queens problems [12]). To investigate whether suchinitial greediness would be useful for satis�ability, we introduce a new variant ofGenSAT called OSAT which is opportunistic in its generation of an initial truthassignment. In OSAT, the score function (number of satis�ed clauses) is extendedto partial truth assignments by ignoring unassigned variables. OSAT increment-ally builds an initial truth assignment by considering the variables in some randomorder and picking those truth values which maximize the score; considering thevariables in a random order helps prevent any variable from dominating. In addi-tion, if the score is identical for the assignment of a variable to true and false, atruth assignment is chosen at random. OSAT is identical to GSAT in all other re-spects. A comparison of OSAT and GSAT is given in table 2. (Figures in bracketsgive the Total Flips �gure as a percentage of the comparable �gure for GSAT.)Problem Procedure Tries Flips Total Flips (% GSAT) s.d.Random 50 vars OSAT 6.82 78.6 1530 (120%) 4750Random 70 vars OSAT 9.50 139 3110 (88%) 7570Random 100 vars OSAT 32.6 235 16000 (130%) 748006-queens OSAT 2.15 62.0 270 (100%) 2988-queens OSAT 1.18 67.8 126 (89%) 16116-queens OSAT 1.02 145 165 (57%) 211Table 2: Comparison of GSAT and OSATOSAT always takes less ips on average than GSAT on a successful try. OSAT alsotakes the same or slightly more tries as GSAT. The total number of ips performedby OSAT can therefore be slightly less than GSAT on the same problems. However,if we include the O(N) computation necessary to perform the greedy start, OSATis nearly always slower than GSAT.To conclude, our results con�rm that greediness is neither important in hill-climbing nor in the generation of the initial start position. Any form of hill-climbing which prefers up or sideways moves over downwards moves (and doesnot prefer sideways over up moves) appears to work.3 RandomnessGSAT uses randomness in generating the initial truth assignment and in pickingwhich variable to ip when o�ered more than one. To explore the importance of

Hill-climbing Procedures for SAT 6such randomness, we introduced in [3] three variants of GenSAT: FSAT, DSAT,and USAT. FSAT uses a �xed initial truth assignment but is otherwise identicalto GSAT. DSAT picks between equally good variables to ip in a deterministicbut fair way, whilst USAT picks between equally good variables to ip in a de-terministic but unfair way2. On random k-SAT problems both USAT and FSATperformed poorly. DSAT, however, performed considerably better than GSAT. Wetherefore concluded that there is nothing essential about the randomness of pick-ing in GSAT (although fairness is important) and that the initial truth assignmentmust vary from try to try.To explore whether the initial truth assignment can be varied deterministically,and to determine if randomness can be eliminated simultaneously from all partsof GenSAT, we introduce three new variants: NSAT, VSAT, and VDSAT. NSATgenerates initial truth assignments in \numerical" order. That is, on the n-th try,the m-th variable in a truth assignment is set to true i� the m-th bit of the binaryrepresentation of n is 1. VSAT, by comparison, generates initial truth assignmentsto maximize the variability between successive assignments. On the �rst try, allvariables are set to false. On the second try, all variables are set to true. Onthe third try, half the variables are set to true and half to false, and so on. Theexact algorithm used to generate assignments is given in the Appendix. Sincethis algorithm cycles through all possible truth assignments, VSAT is a completedecision procedure for SAT when Max-tries is set to 2N . NSAT and VSAT areidentical to GSAT in all other respects. VDSAT uses the same start function asVSAT and is identical to DSAT in all other respects. Unlike all previous variants,VDSAT is entirely deterministic.As table 3 demonstrates, NSAT's performance was very poor on 50 variableproblems. We conjecture thst this poor performance is a consequence of the lack ofvariability between successive initial truth assignments. VSAT and VDSAT haveinitial truth assignments which vary much more than initial truth assignmentsin NSAT. VSAT's performance is very close to GSAT's. VDSAT performs verysimilarly to DSAT, and better than GSAT. Note that the results for VDSAT onqueens problems are not averages but exact since VDSAT's performance is entirelydetermined once the problem is speci�ed.To conclude, randomness is neither important in the initial start position nor in thepicking between equally good variables. It is important, however, that successiveinitial truth assignments vary on a large number of variables. In section 4 wewill introduce a new and deterministic variant of GenSAT which supports thishypothesis.2We call a variant of GenSAT \fair" if it will eventually pick any variable that is o�eredcontinually. USAT always picks the least variable in a �xed ordering. DSAT picks variables inan order which cycles.

Hill-climbing Procedures for SAT 7Problem Procedure Tries Flips Total ips (% GSAT) s.d.Random VSAT 6.18 91.6 1390 (110%) 237050 vars DSAT 4.79 71.5 1020 (78%) 2040VDSAT 4.32 74.1 904 (69%) 2070NSAT 40.1 106 9870 (750%) 46400Random VSAT 10.4 155 3440 (97%) 571070 vars DSAT 6.82 123 2160 (61%) 3410VDSAT 6.90 124 2190 (62%) 3950Random VSAT 30.4 270 14900 (120%) 36400100 vars DSAT 15.2 227 7350 (58%) 16500VDSAT 14.7 227 7090 (56%) 163006-queens VSAT 2.27 76.0 305 (110%) 346DSAT 1.09 46.1 61.6 (23%) 60.2VDSAT 2 50 230 (85%) |NSAT 2.07 65.1 258 (95%) 2758-queens VSAT 1.17 77.5 132 (94%) 160DSAT 1.11 45.8 80.7 (57%) 110VDSAT 1 30 30 (21%) |NSAT 1.17 74.4 128 (91%) 14716-queens VSAT 1.03 160 196 (68%) 299DSAT 1.03 155 198 (69%) 242VDSAT 2 296 1576 (550%) |NSAT 1.03 156 190 (66%) 252Table 3: Comparison of VSAT, DSAT, VDSAT, NSAT and GSAT4 MemoryInformation gathered during a run of GenSAT can be used to guide future search.For example, Selman and Kautz [10] have introduced a variant of GSAT in whicha failed try is used to weight the emphasis given to clauses by the score functionin future tries. They report that this technique enables GSAT to solve problemsthat it otherwise cannot solve.In [3] we introduced MSAT, which is like GSAT except that it uses memory toavoid making the same ip twice in a row except where climbing gives no otherchoice. MSAT showed improved performance over GSAT particularly on the n-queens problem, although the improvement declines as problems grow larger insize. This is, of course, not the only way we can use memory of the earlier search.In this section we introduce HSAT, and IHSAT. These variants of GenSAT usehistorical information to choose deterministically which variable to pick. Wheno�ered a choice of variables, HSAT always picks the one that was ipped longestago (in the current try): if two variables are o�ered which have never been ipped

Hill-climbing Procedures for SAT 8in this try, an arbitrary (but �xed) ordering is used to choose between them. HSATis otherwise like GSAT. IHSAT uses the same pick as HSAT but is indi�erent likeISAT. Results for HSAT and IHSAT are summarised in table 4.Problem Procedure Tries Flips Total Flips (% GSAT) s.d.Random HSAT 3.82 58.7 763 (58%) 166050 vars IHSAT 3.38 96.0 690 (53%) 1490Random HSAT 4.93 101 1480 (42%) 251070 vars IHSAT 3.84 165 1160 (33%) 1900Random HSAT 8.11 184 3740 (30%) 7770100 vars IHSAT 6.95 274 3250 (26%) 64806-queens HSAT 1.11 43.3 62.9 (23%) 68.7IHSAT 1.08 55.8 70.6 (26%) 58.18-queens HSAT 1.09 44.1 73.9 (52%) 110IHSAT 1.08 66.2 90.5 (64%) 95.216-queens HSAT 1.02 156 183 (64%) 190IHSAT 1.02 220 245 (85%) 183Table 4: Comparison of HSAT and IHSATBoth HSAT and IHSAT perform considerably better than GSAT. Indeed, bothperform better than any previous variant of GenSAT. Many other variants ofHSAT also perform very well (eg. HSAT with cautious hill-climbing, with timidhill-climbing, with VSAT's start function). Note also that, unlike MSAT, theimprovement in performance does not appear to decline as the number of variablesincreases.HSAT picks based on when variables were last ipped: a natural variant usesinstead the last time that variables were returned by hill-climb whether or notthey were picked. Since hill-climb can return a set of variables, a method is neededto pick one variable if a number were o�ered equally long ago. We implementedthree such versions of HSAT using random, deterministic and historical methodsfor this subsidiary picking. The performance of the random and deterministicmethods was not as good as HSAT, whilst the the last method seemed to o�erclosely comparable performance to HSAT. To date we have not observed any ofthese variants o�ering a signi�cant performance improvement over HSAT.To conclude, memory of the current try can signi�cantly improve the performanceof many variants of GenSAT. In particular, picking variables based on the historyof the try rather than randomly is one such improvement.

Hill-climbing Procedures for SAT 95 Running GenSATWe have studied the behaviour of GenSAT as the functions initial, hill-climb, andpick are varied. However, we have not discussed the behaviour of GenSAT aswe vary its explicit parameters, Max-tries and Max-ips. The setting of Max-tries is quite simple { it depends only on one's patience. Increasing Max-trieswill increase one's chance of success. Indeed, since all our experiments are onsatis�able problem sets, we have often set Max-tries to in�nity.The situation for Max-ips is rather di�erent to that for Max-tries. Althoughincreasing Max-ips increases the probability of success on a given try, it candecrease the probability of success in a given run time. To understand this fullyit is helpful to review some features of GenSAT's search space identi�ed in [3].GenSAT's hill-climbing is initially dominated by increasing the number of satis�edclauses. GSAT, for example, on random 3-SAT problems is typically able to climbfor about 0.25N ips, where N is the number of variables in the problem, increasingthe percentage of satis�ed clauses from 87.5% (78 of the clauses are initially satis�edby a random assignment) to about 97%. From this point on, there is little climbing;the vast majority of ips are sideways, neither increasing nor decreasing the score.Occasionally a ip can increase the score. On some tries, this happens oftenenough before Max-ips is reached that all the clauses are satis�ed.In Figure 1, we have plotted the percentage of problems solved against the totalnumbers of ips used by HSAT for 50 variable random problems, with Max-ips= 150. The dotted lines represent the points when new tries were started. Duringthe initial climbing phase almost no problems are solved: in fact no problems weresolved in less that 10 ips on the �rst try. Note that 10 is 0.2N, approximatelythe length of the initial climbing phase. This behaviour is repeated during eachtry: very few problems are solved during the �rst 10 ips of a try. After about10 ips, there is a dramatic change in the gradient of the graph. There is nowa signi�cant chance of solving a problem with each ip. Again, this behaviour isrepeated on each try. Finally, after about 100 ips of a given try, the gradientdeclines noticeably. From now on, there is a very small chance of solving a problemduring the current try if it has not been solved already.In Figure 2, we have added the comparable graph with Max-ips = 75. Theperformance over the �rst 75 ips is identical. After this, the �rst experimentwith Max-ips = 150 continues to solve problems on the �rst try, but the secondexperiment with Max-ips = 75 starts another try, and hence fails to solve anyproblems for a short period. However, it very soon enters a highly productivephase and overtakes the experiment with Max-ips = 150. These graphs suggestthat 75 is a better setting for Max-ips for HSAT on these problems than 150.To determine the optimal values for Max-ips, we have plotted in Figure 3 theaverage total number of ips used on 50 variable problems against integer valuesof Max-ips from 25 to 300 for three variants of GenSAT: HSAT, DSAT, and

Hill-climbing Procedures for SAT 10
 0

 20

 40

 60

 80

100

0 75 150 225 300 375 450

Try 1

Try 2
Try 3

Total Flips

 50 Var / 215 Clause problems

Max-flips = 150

Solved

%

 0

 20

 40

 60

 80

100

0 75 150 225 300 375 450

 0

 20

 40

 60

 80

100

0 75 150 225 300 375 450

Max-flips = 150

Max-flips = 75

 50 Var / 215 Clause problems

Solved

%

Total FlipsFigure 1: HSAT, Max-ips = 150 Figure 2: HSAT, Max-ips = 75, 150GSAT. The total number of ips used is a measure of computational resources.Note that it does not bear a simple linear relationship with cpu time as there is astart-up cost of O(N) associated with each try. For small values of Max-ips, notenough ips remain after the hill-climbing phase to give a high chance of successon each try. Each variant performs much the same which is to be expected as eachis performing the same (greedy) hill-climbing. The optimum value for Max-ips isabout 60. Since this minimum is not very sharp, it is not, however, too importantto �nd the exact optimal value. For Max-ips larger than about 100, the laterips of most tries are unsuccessful and hence lead to wasted work. As Max-ipsincreases, the amount of wasted work increases almost linearly. For everything butsmall values of Max-ips, HSAT takes fewer ips than DSAT, which in turn takesfewer than GSAT. The type of picking performed thus seems to have a signi�cante�ect on the chance of success in a try if more than a few ips are needed.
 0

2000

0 50 100 150 200 250 300

 0

2000

0 50 100 150 200 250 300

 0

0 50 100 150 200 250 300

GSAT

DSAT

HSAT

Max-flips

 1600

Average Total Flips

1200

800

400

50 Var / 215 Clause problems

 0

 400

 800

2000

0

 0

 400

 800

2000

0

 0

 400

 800

2000

0

 0

 400

 800

2000

0

 0

 400

 800

2000

0

 0

 400

 800

2000

0 N 2N 3N 4N 5N 6N

Av.

Flips
Total

 1600

1200

N = 70

N=60

N = 50

N = 40

N = 30

Max-flips

HSAT
L/N = 4.3

Figure 3: Varying Max-ips Figure 4: Varying Max-ips & NSimilar results are observed when the problem size is varied. In Figure 4, we

Hill-climbing Procedures for SAT 11have plotted the average total number of ips used by HSAT on random problemsagainst integer values of Max-ips for di�ering numbers of variables N. The optimalvalue of Max-ips appears to increase approximately as N2. Even with 100 variablerandom problems, the optimal value is, however, only about 2N ips. Figure 4also supports the claim made in [11] and [3] that these hill-climbing proceduresappear to scale better than conventional procedures like Davis-Putnam.To investigate more precisely how various GenSAT variants scale, Figure 5 givesthe average total number of ips used by GSAT, DSAT and HSAT on randomproblems against the number of variables N (at 10 variable intervals from 10 to100). Although the average total ips increases rapidly with N, the rate of growthseems to be less than a simple exponential. In addition, the improvement in per-formance o�ered by HSAT over DSAT, and by DSAT over GSAT increases greatlywith N. One cause of variability in these results is that Max-ips is set to 5N andnot its optimal value. In �gure 6, we have therefore plotted the optimal valuesfor the average total ips against the number of variables again at 10 variableintervals. For clarity, the average total ips is plotted on a log scale. The per-formances of GSAT, DSAT and HSAT in Figure F are consistent with a small (lessthan linear) exponential dependence on N. Note that the data does not rule outa polynomial dependency on N of about order 3. Further experimentation and amore complete theoretical understanding are needed to choose between these twointerpretations. We can, however, observe (as have Selman, Kautz and Mitchell[11]) that these hill-climbing procedures have solved some large and di�cult ran-dom 3-SAT problems well beyond the reach of conventional procedures. At worse,their behaviour appears to be exponential with a small exponent. Note also thatthe improvement in performance o�ered by HSAT over DSAT, and by DSAT overGSAT increases with N. Procedures like HSAT therefore o�er real advantages overGSAT and DSAT, not just constant factor speed-ups.
 0

0 20 40 60 80 10000

 8000

 6000

 4000

 2000

10000

DSAT

HSAT

L/N = 4.3

N

Average Total Flips

GSAT

0 20 40 60 80 100

 10

0 20 40 60 80 1000 20 40 60 80 100

GSAT
DSAT

HSAT

 10000

 1000

 100

 1

N

Average Total Flips

(log scale)

Figure 5: Max-ips = 5N Figure 6: Max-ips Optimal

Hill-climbing Procedures for SAT 126 Related and Future WorkHill-climbing search has been used in many di�erent domains, both practical (eg.scheduling) and arti�cial (eg. toy problems like the 8-puzzle). Only recently,however, has hill-climbing been applied to SAT. Some of the �rst procedures to hill-climb on the number of satis�ed clauses were proposed in [4]. GSAT also hill-climbson the number of satis�ed clauses and was �rst presented in [11]. Unfortunately,it is di�cult to compare these procedures directly as they use di�erent controlstructures. One common problem with hill-climbing is escaping local maxima.Although simulated annealing has often proved successful at tackling this problem,it is probably of little use in GenSAT given the low density of local maxima, andthe use of di�erent start positions.These experiments have been performed with just two types of SAT problems:random k-SAT for k = 3 and L=N = 4:3, and an encoding of the n-queens. Al-though we expect that similar results would be obtained with other random andstructured problem sets, we intend to con�rm this conjecture experimentally. Inparticular, we would like to try other values of k and L=N , and other non-randomproblems (eg. blocks world planning encoded as SAT [5], boolean induction, stand-ard graph colouring problems encoded as SAT). To test problem sets with largenumbers of variables, we intend to implement GenSAT on a Connection Machine.This will be an interesting exercise as GenSAT appears to have a large degree ofparallelizability.Two aspects of GenSAT that we have not probed in detail are the control structureand the scoring function. Alternative control structures for hill-climbing on thenumber of satsi�ed clauses are proposed in [4]. We intend to perform some exper-iments to determine if such control structures give rise, as we expect, to similarperformance. In GenSAT the score function has always been the number of clausessatis�ed. Since much of the search consists of sideways ips, this score functionis perhaps a little insensitive. We therefore intend to investigate alternative scorefunctions. Finally, we would like to develop a better theoretical understanding ofthese experimental results. Unfortunately, as with simulated annealing, we fearthat such a theoretical analysis may be rather di�cult to construct.7 ConclusionsRecently, several local hill-climbing procedures for propositional satis�ability havebeen proposed [11, 3]. In [3], we conjectured that neither greediness nor random-ness was essential for the e�ectiveness of the hill-climbing in these procedures. Bythe introduction of some new variants, we have con�rmed this conjecture. Any(random or fair deterministic) hill-climbing procedure which prefers up or side-ways moves over downwards moves (and does not prefer sideways over up moves)

Hill-climbing Procedures for SAT 13appears to work. In addition, we have shown that randomness is not essential forgenerating the initial start position, and that greediness here is actually counter-productive. We have also proposed a new variant, HSAT, which performs muchbetter than previous procedures on our problem sets. Finally, we have studied indetail how the performance of these procedures depends on the setting of theirparameters. At worst, our experimental evidence suggests that they scale with asmall (less than linear) exponential dependence on the problem size. This sup-ports the conjecture made in [11] that such procedures scale well and can be usedto solve large and and di�cult SAT problems beyond the reach of conventionalalgorithms.AppendixThe initial truth assignment generated by VSAT uses a successive binary divisionon the variables. VSAT therefore ideally needs 2M variables. Given a numberof variables N which is not a power of 2, VSAT generates a truth assignmentfor 2M variables where 2M is the smallest integer power of 2 equal to or biggerthan N and truncates to the �rst N assignments. Let vstart(M;p) be the truthassigment given to 2M variables at the p-th try by VSAT. Truth assignments willbe represented by lists of truth values.The function vstart uses a simple recursion onM . For the base case (M = 0, ie. 1variable), vstart(0; p) is [false] if p is even, and [true] otherwise. This is, of course,maximally variable. For the step case, we divide the 2M variables into two setsof 2M�1 variables. We assume that we can assign truth values in some maximallyvariable way to 2M�1 variables (with a cycle of length 22M�1). We assign both setsof variables using this cycle. With the �rst set, however, we rotate through thecycle every time we go through it completely (that is, after every 22M�1 calls tovstart). Thus,vstart(M;p) = vstart(M � 1; p+ r) <> vstart(M � 1; p)where r = floor(p22M�1) and <> is the in�x list append operator. This functioncycles through all possible truth assignments.References[1] S.A. Cook. The complexity of theorem proving procedures. In Proceedingsof the 3rd Annual ACM Symposium on the Theory of Computation, pages151{158, 1971.[2] M. Davis and H. Putnam. A computing procedure for quanti�cation theory.J. Association for Computing Machinery, 7:201{215, 1960.

Hill-climbing Procedures for SAT 14[3] I. Gent and T. Walsh. The Enigma of SAT Hill-climbing Procedures. Tech-nical Report 605, Dept. of Arti�cial Intelligence, University of Edinburgh,1992. Under review for IJCAI-93.[4] J. Gu. E�cient local search for very large-scale satis�ability problems.SIGART Bulletin, 3(1):8{12, 1992.[5] H.A. Kautz and B. Selman. Planning as Satis�ability. In Proceedings of the10th ECAI, pages 359{363, 1992.[6] T. Larrabee and Y. Tsuji. Evidence for a Satis�ability Threshold for Ran-dom 3CNF Formulas. Technical Report UCSC-CRL-92-42, Baskin Centerfor Computer Enigineering and Information Sciences, University of Califor-nia, Santa Cruz, 1992.[7] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird.Solving large-scale constraint satisfaction and scheduling problems using aheuristic repair method. In AAAI-90, Proceedings Eighth National Confer-ence on Arti�cial Intelligence, pages 17{24. AAAI Press/MIT Press, 1990.[8] David Mitchell, Bart Selman, and Hector Levesque. Hard and easy distribu-tions of SAT problems. In AAAI-92: Proceedings Tenth National Conferenceon Arti�cial Intelligence. AAAI Press/The MIT Press, July 12-16 1992.[9] R. Reiter and A. Mackworth. A logical framework for depiction and imageinterpretation. Arti�cial Intelligence, 41(3):123{155, 1989.[10] B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solvinglarge structured satis�ability problems. Technical report, Arti�cial Intelli-gence Principles Research, AT & T Bell Laboratories, Murray Hill, NJ, 1993.[11] B. Selman, H. Levesque, and D. Mitchell. A New Method for Solving HardSatis�ability Problems. In Proceedings of the 10th National Conference onAI, pages 440{446. American Association for Arti�cial Intelligence, 1992.[12] Rok Sosi�c and Jun Gu. Fast search algorithms for the N-queens problem.IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1572{1576,November/December 1991.

