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Abstract. To improve solution robustness, we introduce the concept
of super solutions to constraint programming. An (a,b)-super solution
is one in which if a variables lose their values, the solution can be re-
paired by assigning these variables with ¢ new values and at most b
other variables. Super solutions are a generalization of supermodels in
propositional satisfiability. We focus in this paper on (1,0)-super solu-
tions, where if one variable loses its value, we can find another solution
by re-assigning this variable with a new value. To find super solutions, we
explore methods based both on reformulation and on search. Our refor-
mulation methods transform the constraint satisfaction problem so that
the only solutions are super solutions. Our search methods are based on a
notion of super consistency. Experiments show that super MAC, a novel
search-based method shows considerable promise. When super solutions
do not exist, we show how to find the most robust solution. Finally,
we extend our approach from robust solutions of constraint satisfaction
problems to constraint optimization problems.

1 Introduction

Where changes to a solution introduce additional expenses or reorganization,
solution robustness is a valuable property. A robust solution is not sensitive
to small changes. For example, a robust schedule will not collapse immediately
when one job takes slightly longer to execute than planned. The schedule should
change locally and in small proportions, and the overall makespan should change
little if at all. To improve solution robustness, we introduce the concept of su-
per solutions to constraint programming (CP). An (a, b)-super solution is one in
which if the values assigned to a variables are no longer available, the solution
can be repaired by assigning these variables with a new values and at most b
other variables. An (a,b)-super solution is a generalization of both fault toler-
ant solutions in CP [18] and supermodels in propositional satisfiability (SAT)
[12]. We show that finding (a, b)-super solutions for any fixed a is NP-Complete
in general. Super solutions are computed offline and do not require knowledge
about the likely changes. A super solution guarantees the existence of a small
set of repairs when the future changes in a small way.
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In this paper, we focus on the algorithmic aspects of finding (1,0)-super solu-
tions, which are the same as fault tolerant solutions [18]. A (1,0)-super solution
is a solution where if one variable loses its value, we can find another solution by
re-assigning this variable with a new value, and no other changes are required
for the other variables. We explore methods based both on reformulation and on
search to find (1,0)-super solutions. Our reformulation methods transform the
constraint satisfaction problem so that the only solutions are super solutions. We
review two reformulation techniques presented in [18], and introduce a new one,
which we call the cross-domain reformulation. Our search methods are based
on notions of super consistency. We propose two new search algorithms that
extend the maintaining arc consistency algorithm (MAC [9, 8]). We empirically
compare the different methods and observe that one of them, super MAC shows
considerable promise. When super solutions do not exist, we show how to find
the most robust solution closest to a super solution. We propose a super Branch
& Bound algorithm that finds the most robust solution, i.e., a solution with the
maximum number of repairable variables. Finally, we extend our approach from
robust solutions of constraint satisfaction problems to constraint optimization
problems. We show how an optimization problem becomes a multi-criterion op-
timization problem, where we optimize the number of repairable variables and
the objective function.

2 Super Solutions

Supermodels were introduced in [12] as a way to measure solution robustness.
An (a,b)-supermodel of a SAT problem is a model (a satisfying assignment)
with the additional property that if we modify the values taken by the variables
in a set of size at most a (breakage variables), another model can be obtained
by flipping the values of the variables in a disjoint set of size at most b (repair
variables).

There are a number of ways we could generalize the definition of supermodels
from SAT to CP as variables now can have more than two values. A break could
be either “losing” the current assignment for a variable and then freely choosing
an alternative value, or replacing the current assignment with some other value.
Since the latter is stronger and potentially less useful, we propose the following
definition.

Definition 1. A solution to a CSP is (a,b)-super solution iff the loss of the
values of at most a variables can be repaired by assigning other values to these
variables, and modifying the assignment of at most b other variables.

Ezample 1. Let us consider the following CSP: X,Y,Z € {1,2,3} X <YAY <
Z. The solutions to this CSP are shown in Figure 1, along with the subsets of
the solutions that are (1, 1)-super solutions and (1, 0)-super solutions.

The solution (1,1,1) is not a (1, 0)-super solution. If X loses the value 1,
we cannot find a repair value for X that is consistent with ¥ and Z since
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| solutions (1, 1)-super solutions|(1, 0)-super solutions]
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(2)2’ 2)3 (2)2)3) (2)2’ 3)’ (2)3’ 3)

(2,3,3), (3,3,3)

Fig. 1. solutions, (1,1)-super solutions, and (1,0)-super solutions for the CSP: X <
Y < Z.

neither (2,1,1) nor (3,1,1) are solutions. Also, solution (1,1,1) is not a (1,1)-
super solution since when X loses the value 1, we cannot repair it by changing the
value assigned to at most one other variable, i.e., there exists no repair solution
when X breaks since none of (2,1,1), (3,1,1), (2,2,1), (2,3,1), (2,1,2), and
(2,1, 3) is a solution. On the other hand, (1,2,3) is a (1, 0)-super solution since
when X breaks we have the repair solution (2,2, 3), when Y breaks we have the
repair solution (1,1,3), and when Z breaks we have the repair solution (1,2, 2).
We therefore have a theoretical basis to prefer the solution (1,2,3) to (1,1,1),
as the former is more robust.

A number of properties follow immediately from the definition. For example,
a (¢, d)-super solution is a (a, b)-super solution if (a < cor d < b) and c+d < a+b.
Deciding if a SAT problem has an (a, b)-supermodel is NP-complete [12]. It is
not difficult to show that deciding if a CSP has an (a, b)-super solution is also
NP-complete, even when restricted to binary constraints.

Theorem 1. Deciding if a CSP has an (a,b)-super solution is NP-complete for
any fized a.

Proof. To see it is in NP, we need a polynomial witness that can be checked in
polynomial time. This is simply an assignment which satisfies the constraints,
and, for each of the O(n®) (which is polynomial for fixed a) possible breaks, the
a + b repair values.

To show completeness, we show how to map a binary CSP onto a new binary
problem in which the original has a solution iff the new problem has an (a,b)-
super solution. Our reduction constructs a CSP which, if it has any solution, has
an (a,b)-super solution for any a + b < n. The problem will even have a (n,0)-
super solution. It is possible to show that if we have a (n,0)-super solution then
we also have an (a, b)-super solution for any a + b < n. However, we will argue
directly that the original CSP has a solution iff the constructed problem has an
(a, b)-super solution.

We duplicate the domains of each of the variables, and extend the constraints
so that the behave equivalently on the new values. For example, suppose we have
a constraint C(X,Y") which is only satisfied by C(m,n). Then we extend the
constraint so that is satisfied by just C(m,n), C(m',n), C(m,n') and C(m',n’)
where m' and n' are the duplicated values for m and n. Clearly, this binary
CSP has a solution iff the original problem also has. In addition, any break of
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a variables can be repaired by replacing the a corresponding values with their
primed values (or unpriming them if they are already primed) as well as any b
other values. 0

A necessary but not sufficient condition to find supermodels in SAT or su-
per solutions in CSPs is the absence of backbone variables. A backbone variable
is a variable that takes the same value in all solutions. As a backbone variable
has no alternative, a SAT or CSP problem with a backbone variable cannot have
any (a, b)-supermodels or (a, b)-super solutions.

Another important factor that influences the existence of super solutions is
the way the problem is modeled. For instance, the direct encoding into SAT
(i-e., one Boolean variable for each pair variable-value in the CSP [15]) of the
problem in Example 1 has no (1,0)-supermodels, even though the original CSP
had a (1, 0)-super solution. Moreover, the meaning of a super solution depends
on the model. For example, if a variable is a job and a value is a machine,
the loss of a value may mean that the machine has now broken. On the other
hand, if a variable is a machine and the value is a job, the loss of a value may
mean that the job is now not ready to start. The CP framework gives us more
freedom than SAT to choose what variables and values stand for, and therefore
to the meaning of a super solution. For the rest of the paper, we just focus on
(1,0)-super solutions and refer to them as super solutions when it is convenient.

3 Finding (1,0)-Super Solutions Via Reformulation

Fault tolerant solutions [18] are the same as (1,0)-super solutions. The first
reformulation approach in [18] allows only fault tolerant solutions, but not all of
them (see [3] for a counter example). The second approach in [18] duplicates the
variables. The duplicate variables have the same domain as the original variables,
and are linked by the same constraints. A not equals constraint is also posted
between each original variable and its duplicate. The assignment to the original
variables is a super solution, where the repair for each variable is given by its
duplicate. We refer to the reformulation of a CSP P with this encoding as P+ P.

We now present a third and new reformulation approach. Let S = (v, v2) be
part of a (1,0)-super solution on two variables X and Y. If v; is lost, then there
must be a value r; € D(X) that can repair vy, that is (ry,v2) is a compatible
tuple. Symmetrically, there must exists ro such that (v{,rs) is allowed. Now
consider the following subproblem involving two variables:

v v2 means (v1,v2) is allowed.

Since it satisfies the criteria above, S = (v1, v2) is a super solution whilst any
other tuple is not. One may try to prune the values r1, 79, 41,and i2 as they do not
participate in any super solution. However r; and ry are essential for providing
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support to v; and ve. On the other hand, 4; and i» are simply not supported
and can thus be pruned. So, we cannot simply reason about extending partial
instantiations of values, unless we keep the information about the values that can
be used as repair. So, let us instead think of the domain of the variables as pairs
of values (v, ), the first element corresponding to the super value (which is part
of a super solution), the second corresponding to the repair value (which can
repair the former). Our cross-domain reformulation exploits this. We reformulate
a CSP P = {X,D,C} such that any domain becomes its own cross-product
(less the doubletons),i.e. D(X) becomes D(X)xD(X)—{{v,v)|v € D(X)}. The
constraints are built as follows. Two pairs (vy,r1) and {(va,r2) are compatible iff

— v and vy are compatible (the solution must be consistent at the first place);
— v and ry are compatible (in case of a break involving vs, r2 can be a repair);
— vy and 71 are compatible (in case of a break involving v1, 71 can be a repair).

The new domain CD(X) and CD()) of variable X and Y are:
{{v1,m1), (v1,41), {r1, 01), (r1, 1), {in, 1), (ia, 1) }

{{v2,72), (v2,42), {r2, va), (r2,42), (i2, v2), (i2, 72) }

The only one allowed tuple is S = ((v1,71), (v2,72)). We refer to the cross-domain
reformulation of a problem P as PxP.

4 Finding (1,0)-Super Solutions Via Search

We first introduce the notion of super consistency for binary constraints, and
then use it to build some new search algorithms.

4.1 Super Consistency

Backtrack-based search algorithms like MAC use local consistency to detect un-
satisfiable subproblems. Local consistency can also be used to develop efficient
algorithms for finding super solutions. We shall introduce three ways of incorpo-
rating arc consistency (AC) into a search algorithm for seeking super solutions.

AC+ is a naive approach that augments the traditional AC by a further con-
dition, achieving a very low level of filtering.

AC(PxP) maintains AC on the cross-domain reformulation of P. This method
allows us to infer all that can be inferred locally, just as AC does in a regular
CSP [5]. However, this comes at a high polynomial cost.

Super AC gives less inference than AC(Px P), but is a good tradeoff between
the amount of pruning and complexity.

Informally, the consistent closure of a CSP contains only partial solutions
for a given level of locality. However, the situation with super solutions is more
complex because values that do not get used in any local super solution can still
be essential as a repair and thus cannot be simply pruned.
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AC+: If S is a super solution, then for every variable, at least two values are
consistent with all the others values of S. Consequently, being arc consistent
and having non-singleton domains is a necessary condition for the existence of
super solution. AC+ is therefore defined as follows: for a CSP P = {X,D,C}:
AC+(P) ©AC(P)AVD € D,|D| > 1. Whilst AC+ is usually too weak to give
good results, it is the basis for an algorithm for the associated optimization
problem (discussed in section 5).

AC(PxP): AC on PxP is the tightest local domain filtering possible. Note
that Px P also has the same constraint graph topology as the original problem
P. As a corollary, if the constraint graph of P is a tree, we can use AC on PxP
to find (1, 0)-super solutions in polynomial time.

Super AC: AC on PxP allows us to infer all that can be inferred locally.
In other words, we will prune any value in a cross-domain that is not locally
consistent. However, this comes at high cost. Maintaining AC will be O(d*)
where d is the initial domain size. We therefore propose an alternative that does
less inference, but at just O(d?) cost.

The main reason for the high cost is the size of the cross-domains. A cross-
domain is quadratic in the size of the original domain since it explicitly represents
the repair value for each super value. Here we will simulate much of the inference
performed by super consistency, but will only look at one value at a time, and
not pairs. We will divide the domain of the variable into two separate sets of
domains:

— The ”super domain” (SD) where only super values are represented;
— The "repair domain” (RD) where repair values are stored.

We propose the following definition for super AC:

— A value v is in the super domain of X iff for any other variable Y, there
exists v’ in super domain of ¥ and r in repair domain of ¥ such that (v,v')
and (v,r) are allowed and v' # r.

— A value v is in repair domain of X iff for any other variable Y, there exists
v' in super domain of Y such that (v,v') is allowed.

The definition of super AC translates in a straightforward way into a filtering
algorithm. The values are marked as either super or repair, and when looking
for support of a super value, an additional and different support marked either
as super or repair is required. The complexity of checking the consistency of an
arc increases only by a factor of 2 and thus remains in O(d?).

Theoretical Properties: We now show that maintaining AC on P x P achieves
more pruning than maintaining super AC on P, which achieve more pruning than
maintaining AC on P+P or AC+ on P (which are equivalent). For the theorem
and the proof below, we use the notation (x)(P) to denote that the problem P
is “consistent” for the filtering (x).
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Theorem 2 (level of filtering). For any problem P, AC(PxP )= super AC(P)
= AC(P+P) < AC+(P).

Proof. (1) AC(P+P) = AC+H(P): Suppose that P is not AC+, then in the arc
consistent closure of P, there exists at least one domain D; such that |D;| < 1.
P+P contains P. In its arc consistent closure, we have |D;| < 1 as well. X; is
linked to a duplicate of itself in which the domain D} is then equal to D; and
therefore singleton (with the same value) or empty. However, recall that we force
X; # X}, thus P+P is not AC.

(2) AC+(P) = AC(P+P): Suppose we have AC(P) and any domain D
in P is such that |D| > 1, now consider P+P. The original constraints are AC
since P is AC. The duplicated constraints are AC since they are identical to
the original ones. The not equals constraints between original and duplicated
variables are AC since any variable has at least 2 values.

(3) super AC(P) = AC+H(P): Suppose that P is not AC+, then there
exists two variables X, Y such that any value of X has at most one support on Y,
therefore the corresponding super domain is wiped-out, and P is not super AC.

(4) super AC(P) £ ACH(P): See counter-example in Figure 2.

(5) AC(PxP) = super AC(P): Suppose that AC(Px P), then for any two
variables X,Y there exist two pairs (vl,r1) € D(X) x D(X), (v2,r2) € D(Y) x
D(Y), such that (v1,r2),{rl,v2) and (v1,v2) are allowed tuples. Therefore vl
belongs to the super domain of X and vl and r1 belong to the repair domain
of X. Thus, the super domain of X is not empty and the repair domain of X is
not singleton. Therefore, P is super AC.

(6) AC(PxP) # super AC(P): See counter-example in Figure 3. |

Fig. 2. The first graph shows the microstructure of a simple CSP, two variables and
three values each, allowed combinations are linked. P is AC+ since the network is
arc consistent and every domain contains 3 values. However, P is not super AC since
the grayed values (in the second graph) are not in super domains, they have only
one support. In the second step, the whitened variables (in the third graph) are also
removed from both repair and super domains since they do not have a support in a
super domain.

4.2 Super Search Algorithms
We now present two new search algorithms: MAC+ and super MAC.

MAC+ This algorithm establishes AC+ at each node. That is, it maintains
AC and backtracks if a domain wipes out or becomes singleton. In the MAC
algorithm, we only prune future variables, since the values assigned to past
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Fig. 3. The first graph shows the microstructure of a simple CSP, three variables and
four values each, allowed combinations are linked. P is super AC since the black values
have each one “black” support, and another “gray” or “black” for every neighbor, and
all gray values have one “black” support. The super domains thus contain “black”
values (size 2), and repair domains contain “black” and “gray” values (size 4). The
second graph shows P x P, which is not AC.

variables are guaranteed to have a support in each future variable. Here, this
also holds, but the condition on the size of the domains may be violated for an
assigned variable because of an assignment in the future. Therefore, AC is first
established on the whole network, and not only on the future variables. Second,
variables are not assigned in a regular way (e.g. by reducing their domains to
the chosen value) but one value is marked as super value, that is added to
the current partial solution, and unassigned values are kept in the domain as
potential repairs. The algorithm can be informally described as follows:

— Choose a variable X.

— Mark a value v € D(X) as assigned, but keep the unassigned values.

— For all Y # X, backtrack if Y has less than two supports for v.

— Revise the constraints as the MAC algorithm, and backtrack if the size of
any domain falls bellow 2.

Super MAC: We give the pseudo code of super MAC in Figure 4. The algo-
rithm is very similar to the MAC algorithm. Most of the differences are grouped
in the procedure revise-Dom. The super domains (SD) and repair domains (RD)
are both equal to the original domains for the first call. The values are pruned
by maintaining super AC (revise-dom, loop 1). The algorithm backtracks if a
super domain wipes out or a repair domain becomes singleton (line 2). Note
that, as for MAC+, super AC is also maintained on the domains of the assigned
variables (super AC, loop 1).

We have established an ordering relation on the different filterings. However,
for the two algorithms above, assigning a value to a variable in the current solu-
tion does not give the same subproblem as in a regular algorithm. For a regular
backtrack algorithm, the domains of assigned variables are reduced to the chosen
value, whilst unassigned values are still in their domain for the algorithms above.
We have proved that a problem P is AC+ iff P+P is AC. However, consider
the subproblem P’ induced by the assignment of X by MAC+. P’ may have
more than one value in the domain of X, whereas the corresponding assignment
in P+P leaves only one value in the domain of X (see Figure 5). Therefore
the ordering on the consistencies does not lift immeditately to an ordering on
the number of backtracks of the algorithms themselves. However, MAC(PxP)
always backtracks when one of the other algorithms does, whilst MAC+ never
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Algorithm 1: super MAC
Data : CSP: P = {X,S8D,RD,C}, solution: S = 0, variables: V = X
Result : Boolean // 35 a (1,0)-super solution
if YV = 0 then return True;
choose X; € V;
foreach v; € SD; do
save SD and RD;
SDi — {’U,’};
if super AC(P, {X;}) then
| if super MAC(P, SU {v;},V — {X:}) then return True;
restore SD and RD;
return False;

Algorithm 2: super AC
Data : CSP: P ={X,S8D,RD,C}, Stack: {X;}
Result : Boolean // P is super arc consistent
while Stack is not empty do
pop X; from Stack;
1 foreach Cij € C do
switch revise-Dom(SDj;, RD;,SD;, RD;) do
case not-cons
| return False;

case pruned

| push X; on Stack;

return True;

Procedure revise-Dom(SD;, RD;,SD;, RD;) : {pruned,not-cons,nop}
1 foreach v; € SD; do
if Av; € SD;, v, € RD; such that (v;,v;) € Cij A (v},v;) € Cij Av; # v} then
L SDj + SD;j —{vj};

foreach v; € RD; do
if Av; € SD; such that (vi,v;) € C;; then
L RD; « RD; —{vj};

if at least one value has been pruned then return pruned;
2 if |SD;| =0V |RD;| < 2 then return not-cons;
return nop;

Fig. 4. super MAC algorithm

backtracks unless all the other algorithms do. Therefore any solution found by
MAC(Px P) will eventually be found by the others, and MAC+ will only find
solutions found by one of the other algorithms. We prove that MAC+ is correct
and MAC(Px P) is complete. Hence all four algorithms are correct and complete.

Theorem 3. For any given CSP P, the sets of solutions of MAC+(P), of su-
per MAC(P), of MAC(PxP), and of MAC(P+P) are identical and equal to the
super solutions of P.

Proof. MACH+ is correct: suppose that S is not a super solution, then there exists
a variable X assigned to v in S, such that Yw € D(X), v # w, w cannot replace
v in S. Therefore when all the variables are assigned, and so there remain in the
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Z 1 2

Fig. 5. Left: A CSP P, P is still AC+ after assigning X to 1. Middle: P+P, each
variable has a duplicate which must be different, the constraints linking those variables
are not represented here, the constraints on X’ are exactly the same as the ones on
X. Right: When the same assignment, X = 1 is done in P+P, we have the following
propagation X' #1 =Y #1AZ #1—Y' #2AZ" # 2. Now consider (Y’ : 1) and
(Z : 2). They are not allowed, and the network is no longer AC.

domains only the values that are AC, D(X) = {v} and thus S is not returned
by MAC+.

MAC(Px P) is complete: let S be a super solution, for any variables X,Y, let
v1 be the value assigned to X in S, and r1 one of its possible repairs. Similarly
v2 is the value assigned to Y and r2 its repair. It is easy to see that the pairs
(v1,71) and (v2,72) are super arc-consistent, i.e, (v1,v2), {v1,72) and (rl,v2)
are allowed tuples. O

5 Extensions

Finding the Most Robust Solutions Often super solutions do not exist. First,
from a theoretical perspective, the existence of a backbone variable guarantees
that super solutions cannot exist. Second, from an experimental perspective (see
next section), it is quite rare to have super solutions in which all variables can be
repaired. To cure both problems, we propose finding the ”most robust” solution
that is as close as possible to a super solution.

For a given solution S, a variable is said to be repairable iff there exists
at least a value v in its domain different from the one assigned in S, and v is
compatible with all other values in S. The most robust solution is a solution
where the number of repairable variables is maximal. Such a robust solution is
guaranteed to exist if the problem is satisfiable. In the worst case, none of the
variables are repairable. We hope, of course, to find some of the variables are
repairable. For example, our experiments show that satisfiable instances at the
phase transition and beyond have a core of roughly n/5 repairable variables.

To find the most robust solutions, we propose a branch and bound algorithm.
The algorithm implemented is very similar to MAC+ (see 4.2), where AC is es-
tablished on the non-assigned as well as on the assigned variables. The current
lower bound computed by the algorithm is the number of singleton domains.
The initial upper bound is n. Indeed, each singleton domain corresponds to an
un-repairable variable, since no other value is consistent with the rest of the so-
lution. The rest of the algorithm is a typical branch and bound procedure. The
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[ MAC+ [MAC on P+P[MAC on PXxP[super MAC]
{50, 15,0.08,0.5)

CPU time (5) 788 13 53 1.8
backtracks 152601000 111836 192 2047
time out (3000 5)| 12% 0% 0% 0%
{100, 6, 0.05, 0.27)
CPU time (s) 2257 430 3.5 1.2
backtracks 173134000 3786860 619 6487
time out (3000 s) 66% 7% 0% 0%

Fig. 6. Results at the phase transition. (* only 50 instances of this class were given to MAC+)

first solution (or the proof of unsatisfiability) needs exactly the same time as
the underlying MAC algorithm. Afterward, it will continue branching and dis-
covering more robust solutions. It can therefore be considered as an incremental
anytime algorithm. We refer to this algorithm as super Branch & Bound.

Optimization Problems For optimization problems, the optimal solution may not
be a super solution. We can look for either the most repairable optimal solution or
the super solution with the best value for the objective function. More generally,
an optimization problem then becomes a multi-criterion optimization problem,
where we are optimizing the number of repairable variables and the objective
function.

6 Experimental Results

We use both random binary CSPs and job shop scheduling problems. Random
CSP instances are generated using the 4 parameters (n,m, p1,p2) of Bessiere’s
generator [1], where n is the number of variables, m is the domain size, p; is the
constraint density, and p» is the constraint tightness. The job shop scheduling
problem consist of n jobs and m machines. Each job is a sequence of activities
where each activity has a duration and a machine. The problem is satisfiable
iff it is possible to schedule the activities such that their order is respected and
no machine is required by two activities that overlap, within a given makespan
mk. Instances were generated with the generator of Watson et al. [17]. We define
an instance with five parameters (j, m, dmin, dmaz, mk) where j is the number
of jobs, m the number of machine, d,,;, the minimum duration of an activity,
dmaz the maximum duration and mk the makespan. The actual duration of any
activity is a random number between d,,;,, and dp,qz-

Comparison: We compared the different solution methods using two samples of
100 random instances of the classes (50,15,0.08,0.5) and (100, 6,0.05,0.27) at
the phase transition. We observe, in Figure 6, that MAC on Px P prunes most,
but is not practical when the domain size is large. As the problem size increases,
super MAC outperforms all other algorithms in terms of runtimes.

Constrainedness and Hardness: We locate the phase transition of finding su-
per solutions both experimentally and by an approximation based on the kappa
framework [10].
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Empirical Approach: We fixed n = 40 and m = 10 and we varied p; from
0.1 to 0.9 by steps of 0.02 and p» from 0.1 to 0.32 by steps of 0.012. For every
combination of density/tightness, a sample of 100 instances were generated and
solved by MAC and super MAC, with dom/deg as a variable ordering heuristic
for MAC and (super_dom)/deg for super MAC. The number of visited nodes
are plotted in Figure 7 (a) for MAC and in Figure 7 (b) for super MAC. As
expected, the phase transition for super MAC happens earlier. Also, the phase
transition peak is much higher (two orders of magnitude) for super CSP than
for CSP.

Probabilistic Approximation Approach: For a CSP P = {X,D,C} the
expected number of solutions (Sol) is:

(Soly = (I m=) x (JJ (1 = pe))
TEX ceC
Where m, is the domain size of x and p. the tightness of the constraint ¢. A
phase transition typically occurs around (Sol) = 1 [10]. In our case, domain sizes
and constraint tightness are uniform, therefore the formula can be simplified as
follows: n(n_1)
T=m"x (1—py) "7 P

We assume that the P x P reformulation behaves like a random CSP. Note that
P x P has one solution iff P has a single super solution. We can derive the values
m' and (1 — p}) of the CSP P x P:

m' =ges (M* —m)

Moreover, we can see (1 — p) as the probability that a given tuple of val-
ues on a pair of constrained variables satisfies the constraint. For a given pair
{{v1,va2), (w1, ws)), this pair satisfies the reformulated constraint iff (v, w1) € ¢
and (v, ws) € ¢ and (v2,w;) € ¢, which has a probability of (1 — p,)3. Hence,

we have:
(1—p5) = (1—p)°
The formula thus becomes:
1= (m? —m)"™ x (1 — pg)3*52p0)

In Figure 7 (c), we plotted those equations along with the values gathered from
the empirical study. To do so, we considered, for every p;, the minimal value
p2 such that the sample (n,m,p:,p2) has more than half of its instances un-
satisfiable. We observe that our approximations are very close to the empirical
findings.

Job Shop Scheduling: We formulate the jobshop scheduling problem as a CSP,
with one variable for each activity, and a domain size equal to the makespan mk
minus its duration. We wish to minimize the makespan. We do so by iteratively
increasing the makespan (mk) and solving the resulting decision problem. When
a solution is found, we stop. We solved a sample of 50 problem instances for
j,m € {3,4,5}, dmin = 2 and dpnar € {10,20,30}. Each sample was solved with

! In Figure 8, for every sample m x m the first three histograms stand for dmaes = 10,
the three following for dpq. = 20, etc.
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Fig. 7. Respective hardness to find a solution or a super solution

MAC, super MAC, and with super Branch & Bound. MAC and super Branch
& Bound stopped at the same value of mk for which the problem is satisfiable.
Whilst super MAC continued until the problem has a (1,0)-super solution and
then we optimize the makespan.

— Makespan: In Figure 8(a) we plot the makespan of the optimal solution
found by MAC, the makespan of the optimal (1,0)-super solution returned
by super MAC, and the worst possible makespan in case of a break to the
optimal (1,0)-super solution. We observe that we have to sacrifice optimality
to achieve robustness. Nevertheless, the increase in the makespan appears to
be independent of the problem size and is almost constant.

— Search Effort: In Figure 8(b), we plot the time needed by MAC to find the
optimal solution, by super MAC to find the optimal (1,0)-super solution, and
by super Branch & Bound to find the most robust solution with the optimal
makespan as found by MAC. As expected, more search is needed to find
more robust solutions. Super MAC is on average orders of magnitude worse
than MAC. Super Branch & Bound requires little effort for small instances,
but much more effort when the problem size increases.

— Repairability: In Figure 8(c), we compare the percentage of repairable vari-
able for the optimal solution found by MAC and the most robust optimal
solution returned by super Branch & Bound. The optimal solutions returned
by MAC have on average 33% of repairable variables, whilst the most re-
pairable optimal solutions found by super Branch & Bound have 58% on
average.

Minimal Core of Repairable Variables: We generated two sets of 50,000 random
CSPs with 100 variables, 10 values per variable, 250 constraints forbidding re-
spectively 56 and 57 tuples. Those problems are close to the phase transition,
which is situated around 54 or 55 disallowed tuples, and at 58, no satisfiable
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Fig. 8. super solutions for the jobshop scheduling problem

instances were found among the 50,000 generated. The satisfiable instances (a
total of 2407 for the first set, and 155 for the second) have in average 22% and
19% of repairable variables, respectively. The worst cases being 9% and 11%,
respectively.

7 Related Work

Supermodels [12] and fault tolerant solutions [18] have been discussed earlier.

The notions of neighborhood interchangeability [7] and substitutability are
closely related to our work, but whereas, for a given problem, interchangeability
is a property of the values and works for all solutions, repairability is a property
of the values in a given solution.

Uncertainty and robustness have been incorporated into constraint solving
in many different ways. Some have considered robustness as a property of the
algorithm, whilst others as a property of the solution (see, for example, dynamic
CSPs [2] [11] [14], partial CSPs [6], dynamic and partial CSPs [13], stochastic
CSPs [16], and branching CSPs [4]). In dynamic CSPs, for instance, we can reuse
previous work in finding solutions, though there is nothing special or necessarily
robust about the solutions returned. In branching and stochastic CSPs, on the
other hand, we find solutions which are robust to the possible changes. However
both these frameworks assume significant information about the likely changes.

8 Conclusion

To improve solution robustness in CP, we introduced the notion of super solu-
tions. We explored reformulation and search methods to finding (1,0)-super solu-
tions. We introduced the notion of super consistency, and develop a search algo-
rithm, super MAC based upon it. Super MAC outperformed the other methods
studied here. We also proposed super Branch & Bound, an optimization al-
gorithm which finds the most robust solution that is as close as possible to a
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(1,0)-super solution. Finally, we extended our approach to deal with optimization
problems as well.

The problem of seeking super solutions becomes harder when multiples re-

pairs are allowed, i.e, for (1,b)-super solutions. We aim to generalize the idea
of super consistency to (1,b)-super solutions. In a similar direction, we would
like to explore tractable classes of (1,b)-super CSPs. Furthermore, as with dy-
namic CSPs, we wish to consider the loss of n-ary no-goods and not just unary
no-goods.
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