
Distance Constraints in Constraint Satisfaction

Emmanuel Hebrard
4C, Computer Science Dept.

UCC, Ireland
e.hebrard@4c.ucc.ie

Barry O’Sullivan
4C, Computer Science Dept.

UCC, Ireland
b.osullivan@4c.ucc.ie

Toby Walsh
NICTA and UNSW
Sydney, Australia

tw@cse.unsw.edu.au

Abstract

Users can often naturally express their preferences
in terms of ideal or non-ideal solutions. We show
how to reason about logical combinations of dis-
tance constraints on ideals and non-ideals using a
novel global constraint. We evaluate our approach
on both randomly generated and real-world config-
uration problem instances.

1 Introduction
In many application domains users specify their desires in
terms of assignments to (a subset of) problem variables. For
example, when planning a vacation, a user might have an
ideal holiday in mind. This ideal holiday might, however,
be infeasible. Consider as another example purchasing a car.
The user might like two models on display (say Volvo and
Jaguar). Moreover, she does not like at all a third model (say
Lada). As a result, she might want to sample models similar
to Volvo and Jaguar whilst different from Lada. She might
therefore specify“I would like something either like the Volvo
or the Jaguar, but not the Lada”. This type of query is dif-
ficult to tackle using usual constraint-based preferences since
it is not articulated in terms of variables and/or constraints but
rather (partial) solutions. Many formalisms for representing
preferences in constraint satisfaction assign preferences to in-
dividual constraints[Bistarelli et al., 1997]. Others, such as
CP-Nets[Boutilier et al., 2004], specify preferences at a vari-
able level. However, users often like to describe their prefer-
ences at a solution level[Rossi and Sperduti, 2004].

In this paper we present an algebra for complex expres-
sions of distance constraints. We describe a novel soft
global constraint for propagating constraints of distance,
characterise the conditions under which we can propagate it
tractably, and report encouraging results on real-world and
randomly generated instances.

2 Preliminaries
A constraint satisfaction problem (CSP) is a triple P =̂
〈X ,D, C〉 where X is a finite set of variablesX =̂
{x1, . . . , xn}, D is a set of finite domainsD =̂
{D(x1), . . . , D(xn)} where the domainD(xi) is the finite
set of values that variablexi can take, and a set of constraints

C =̂ {c1, . . . , cm}. Each constraintci is defined by an or-
dered setvar(ci) of variables and a setsol(ci) of allowed
combinations of values. An assignment of values to the vari-
ables invar(ci) satisfiesci if it belongs tosol(ci). A feasible
solutionis an assignment to each variable of a value from its
domain such that every constraint inC is satisfied. In addi-
tion to theCSP, we assume that we have some symmetric,
reflexive, total and polynomially bounded distance function,
δ, between (partial) instantiations of the variables, i.e. an as-
signment of values to some subset ofX . To make reason-
ing easier, we assume that distance is decomposable into a
sum of distances between the assignments to individual vari-
ables. For example, we might have the Hamming distance
given by

∑
i(X[i] 6= Y [i]), or the generalised Manhattan dis-

tance given by
∑

i |X[i]− Y [i]|.

3 Problems of Distance

We suppose the user expresses her preferences in terms of
ideal or non-ideal (partial) solutions. Partiality is important
so we can ignore irrelevant attributes. For example, we might
not care whether our ideal car has run-flat tires or not. The
fundamental decision problems underlying our approach en-
sure that a solution is at a given distance to (resp. from) an
ideal (resp. non-ideal) solution.

dCLOSE (resp.dDISTANT)
Instance. A CSP, P , a symmetric, reflexive, total
and polynomially bounded distance functionδ, and
p, a partial instantiation of the variables ofP .
Question. Does there exist a solutions ∈ sol(P)
such thatδ(p, s) < d (resp.δ(p, s) ≥ d).

dCLOSEanddDISTANT are NP-complete in general, since
they can be used to decide theCSP, P . If the distanced is not
fixed,dCLOSEanddDISTANT are not necessarily polynomial
even if the underlyingCSP is itself polynomial[Bailleux and
Marquis, 1999]. However, one can identify tractable restric-
tions of these problems ifd is fixed and the underlyingCSP
is polynomial[Bailleux and Marquis, 1999]. We can spec-
ify more complex problems of distance by combining primi-
tive distance constraints using negation, conjunction and dis-
junction; some examples are shown in Figure 1. The laws of
our basic algebra for constructing constraint expressions are
as follows (we slightly abuse the notation used to define the

decision problems, without consequence) wherea andb are
ideal and non-ideal (partial) assignments to the variables:

dDISTANT(a) ↔ ¬dCLOSE(a)
dDISTANT(a ∨ b) ↔ dDISTANT(a) ∨ dDISTANT(b)

↔ ¬dCLOSE(a ∧ b)
dDISTANT(a ∧ b) ↔ dDISTANT(a) ∧ dDISTANT(b)

↔ ¬dCLOSE(a ∨ b)
More complex expressions are also possible. For exam-

ple, we can construct expressions usingimplies, iff, xor, or
ifthen. Such connectives can, however, be constructed using
the standard Boolean identities.

a

sol(P)

(a) dCLOSE(a)

a

sol(P)

(b) dDISTANT(a)

a b

sol(P)

(c) dCLOSE(a ∨ b)

a b

sol(P)

(d) dDISTANT(a ∧ b)

a b

sol(P)

(e) dCLOSE(a ∧ b)

a b

sol(P)

(f) dCLOSE(a)∧dDISTANT(b)

Figure 1: A graphical representation of the basic constraint
expressions that can be constructed;a and b are solutions,
sol(P) is the set of solutions to theCSP P , and the radius
of the circles represents the distance,d. The shaded region
represents the solutions that satisfy the constraints.

4 Optimisation problems
Rather than specify the precise distance from the ideals and
non-ideals to the solution it may be more useful to minimise
(maximise) the distance to an ideal (resp. a non-ideal).

CLOSE (resp. DISTANT)
Instance. A CSP, P , a distance functionδ, and a
partial solutionp.
Question. Find a solutions ∈ sol(P) such that
for all s′ ∈ sol(P) − {s}, δ(p, s) ≤ δ(p, s′) (resp.
δ(p, s) ≥ δ(p, s′)).

These optimisation problems are closely related to MOST-
CLOSEand MOSTDISTANT defined in[Hebrardet al., 2005].
Like these problems, CLOSE and DISTANT are FPNP [log n]-
complete. However, there are some differences. First, MOST-
CLOSE finds the feasible solution nearest to a given subset of
solutions. By comparison, CLOSE finds the feasible solution
nearest to just one solution. We will soon extend CLOSE to
nearness to combinations of solutions. Second, the ideal solu-
tion that CLOSE is trying to get near to might not be feasible
whereas in MOSTCLOSE it is. Third, if the ideal solution is
feasible then CLOSE will return it whilst MOSTCLOSE will
find the next nearest feasible solution.

We can again consider logical combinations of ideals and
non-ideals. For example, we might want to minimise the dis-
tance to one ideal or maximise the distance from a non-ideal.
Distances can be combined in a number of ways. For exam-
ple, if we want to minimise the distance to idealsa andb, we
minimise the maximum distance to either. Similarly, if we
want to minimise the distance to idealsa or b, we minimise
the minimum distance to either. This gives us a new global
objective,F , as shown in Table 1.

Table 1: Examples of some simple distance constraints and
their corresponding objective functions to be minimised.

Constraint Objective function
CLOSE(a ∨ b) F = min(δ(s, a), δ(s, b))
CLOSE(a ∧ b) F = max(δ(s, a), δ(s, b))

Other combinators like+ andmin are also possible. We
also permit the distance function to depend on the ideal
or non-ideal. For example, we might want distance from
ideal c to count twice as much as distance fromd. In
this case, CLOSE(c ∨ d) gives the objective functionF =
min(2δ(s, c), δ(s, d)). To make combinations uniform, we
convert maximising the distance,δ, from a non-ideala into
minimising a new distance,m− δ, to a wherem is the max-
imum possible distance returned byδ. In this way, we get a
single objectiveF which we need to minimise. Finally, we
consider compiling out an objective function for a more com-
plex logical combination of distance constraints.

Example 1 (Conjunction) We consider again the example
of the choice of car configuration within a large catalogue
used in Section 1. A customer is interested in two models
(Volvo and Jaguar), whilst disliking a third model (Lada).
The queryCLOSE(Volvo), CLOSE(Jaguar), DISTANT(Lada)
implements this wish. This expression means that we seek
a solutions that is simultaneously as similar as possible to
Volvo and Jaguar and as different as possible from Lada. It
can be reformulated as the following logical expression:

(CLOSE(Volvo) ∧ CLOSE(Jaguar) ∧ DISTANT(Lada))

which gives the following objective function,F , substituting
max for logical conjunction and converting maximising dis-
tance to minimising the distance complement:

F = max(δ(s, Volvo), δ(s, Jaguar),m− δ(s, Lada)).

5 Propagation and Complexity
We consider how to propagate such distance constraints. We
observed in[Hebrardet al., 2005] that the problems MOST-
CLOSE and MOSTDISTANT can be solved using symmetri-
cally equivalent algorithms. Similarly, the problems studied
here are symmetric, therefore we focus on minimising the dis-
tance (similarity) rather than maximising it (diversity). Thus,
we introduce a soft global constraints SIMILAR ⊗. Then-ary
operator⊗ ∈ {min,max} is used to aggregate distances to
individual ideals:

SIMILAR ⊗([X1, . . . , Xn], N, V = {v1, . . . , vk}, {δ1, . . . , δk})
iff ⊗j=k

j=1(
Pi=n

i=1 δj(Xi, vj [i])) ≤ N .

The operatormin handles disjunctions of distance constraints
whilst max handles conjunctions. The constraint ensures that
the distance to a set of idealsV = {v1, . . . , vk} is at mostN .
Notice that we assume that the distance between two vectors
is equal to the sum of the distances on all coordinates.

We showed that enforcing generalised arc consistency
(GAC) on this constraint is NP-hard for⊗ = max [He-
brard et al., 2005]. However, enforcing GAC is tractable
when the number of ideals is bounded. On the other hand,
for ⊗ = min, GAC can be enforced in polynomial time for
any number of ideals. Table 2 summarises the complexity of
enforcing GAC on the SIMILAR ⊗ constraint. We now prove
the results given in this table.

Disjunction (SIMILAR min). Propagating the SIMILAR ⊗
constraint for a single ideal can be done in polynomial time.
Indeed, it is equivalent to the problemdCLOSE on a network
involving only domain constraints. Algorithm 1 implements
a linear (O(nd)) algorithm for filtering SIMILAR with respect
to a single ideal (the value of⊗ is undefined in this case).

Algorithm 1 : Prune a distance constraint, single ideal.
Data: X1, . . . , Xn, N, v, δ
Result: GAC closure of SIMILAR ([X1, . . . , Xn], N, v, δ)
LB ← 0;
foreachXi do1

lb[i]← min(δ(v[i], j), ∀j ∈ D(Xi));
LB ← LB + lb[i]

min(N)← max(min(N), LB);2
foreachXi do3

foreach j ∈ D(Xi) do
if min(N) + δ(v[i], j)− lb[i] > max(N) then

D(Xi)← D(Xi) \ {j};

The notationmin(N) stands for the minimal value in the

Table 2: The complexity of propagating the SIMILAR con-
straint on a disjunction (SIMILAR min) or a conjunction
(SIMILAR max) of k ideals wherek is bounded by a constant,
or a polynomial function (p(n)) in the size of the problem.

SIMILAR min SIMILAR max

k ∈ O(1) O(ndk) O(d2nk+2)
k ∈ O(p(n)) O(ndk) NP-hard

domain ofN . Algorithm 1 first computes the smallest dis-
tance to the idealv in loop 1. Then the domain ofN and of
X1, . . . , Xn are pruned in line 2 and loop 3. For disjunctive
combinations, we compute the values that are inconsistent for
each distance constraint using Algorithm 1, and prune those
values in the intersection. Using constructive disjunction, we
achieve GAC inO(ndk) time.

Conjunction (SIMILAR max). Conjunctive combinations of
distance constraints are more problematic. Consider the con-
junctive Hamming distance constraint:

maxj=k
j=1

i=n∑
i=1

(Xi 6= vj [i]) ≤ N.

Deciding the satisfiability of this formula is NP-hard. Hence,
enforcing GAC on SIMILAR max with respect to an arbitrary
number of ideals is NP-hard[Hebrardet al., 2005]. However,
we shall investigate filtering methods stronger than a straight-
forward decomposition into distance constraints with respect
to a single ideal. We shall see in the next section that even
though a distance constraint to a single ideal is easy to propa-
gate and the conjunction of such constraints can naturally be
processed as individual constraints in a network, stronger fil-
tering can be obtained by considering the whole conjunction.

Algorithm 2 : Lower bound onN .
Data: X1, . . . , Xn, N, V = {v1, . . . , vk}, {δ1, . . . , δk}
Result: A lower bound onN
Q← [0, 0, . . . , 0];
foreachXi do

Q′ ← ∅;
foreach j ∈ D(Xi) do

foreachM ∈ Q do
M ′ ←M ;
foreachvl ∈ V do

M ′[l]←M ′[l] + δl(j, vl[i]);

Q′ ← Q′ ∪M ′;

Q← Q′;
returnmax(M [l], ∀l ∈ [1, . . . , k], ∀M ∈ Q);

We show that under the assumption that the distance mea-
sure is discrete and bounded in size by the number of vari-
ables (as is the case for Hamming distance), enforcing GAC
on the SIMILAR max constraint with respect to a bounded
number of ideals is tractable. Algorithm 2 finds a sharp lower
bound with respect to a set of ideals. Moreover its worst-case
time complexity isO(dnk+1), hence polynomial when the
numberk of ideals is bounded. It is therefore easy to derive a
polynomial filtering procedure for this constraint by checking
this lower bound against the upper bound ofN for each of the
nd possible assignments. The complexity of such a filtering
procedure would thus beO(d2nk+2).

Theorem 1 Algorithm 2 finds a correct lower bound on the
maximal Hamming distance to a set of ideals, and runs in
O(dnk+1) time.

Proof: This algorithm builds a partially ordered set of vectors
of distances to ideals. A set of vectors is computed for each
variable. Given two consecutive variablesXi andXi+1, two
vectorsM andM ′ are related in the partial order (M ′ ≥ M)
iff there exists an assignmentXi+1 = j such thatM ′−M =
[δ1(j, v1[i + 1]), . . . , δk(j, vk[i + 1])]. All reachable vectors
of distances are thus computed, so the bound is correct.

We first show that the cardinality of the whole poset is
at mostnk. Indeed, the distance measures are discrete and
bounded by the numbern of variables, and each vector is of
dimensionk, hence there are at mostnk distinct vectors. The
cardinality of any layer is thus at mostnk. For each layer we
create at mostd new vectors for each vector in the previous
layer. This algorithm needs fewer thandnk steps for each
layer, giving a worst-case time complexityO(dnk+1). �

Example 2 (Conjunction) We show on our example how a
logical expression formulating preferences in terms of ideals
can be compiled into a constraint network. We assume that
the configuration database involvesn variables{X1, . . . Xn}
subject to a set of constraintsC. The objective function

F = max(δ(s, Volvo), δ(s, Jaguar),m− δ(s, Lada))

is compiled into the following constraint program:

minimise(N) subject to:
C(X1, . . . , Xn) &
SIMILAR max(X1, . . . , Xn, N,

{Volvo, Jaguar, Lada},
{Hamming, Hamming, n− Hamming})

6 Approximation Algorithm
We have seen in the previous section that enforcing GAC on
the SIMILAR max constraint for a bounded number of ide-
als is polynomial. However, the algorithm we introduced
may be impractical on large problems. We therefore propose
an approximation algorithm, reducing the complexity from
O(d2nk+2) to O(nd2k). This algorithm does less pruning
than enforcing GAC but more than decomposing into indi-
vidual distance constraints.

As seen previously, a conjunction of distance constraints
can be represented ask individual constraints. First, we can
decompose it intok individual constraints, one for each ideal:

i=n∑
i=1

(Xi 6= vj [i]) ≤ N.

Each individual constraint can be made GAC in linear time.
However, by considering the ideals separately, we will not do
as much pruning as is possible.

To see this, consider the following example. LetX1

to X5 be 0/1 variables. Consider two ideals:v1 =
〈0, 0, 0, 0, 0〉, v2 = 〈1, 1, 1, 1, 1〉. We assume thatδ is the
Hamming distance, and that the distanceδ from a solution
to any ideal must be at most2, i.e.,D(N) = [0, 1, 2]. Even
though no inconsistency can be inferred when looking atv1

andv2 separately, the constraint is globally inconsistent. Any
variableXi will either be assigned to0 or 1 but not both.
Therefore, the total sum of pairwise differences between a

solution andall the ideals will be at least5. To minimise
the maximum distance from either ideal, this total number
of discrepancies should be evenly distributed across ideals,
i.e., the minimum maximum distance is at leastd5/2e = 3.
Hence we cannot achieve a distance of2. The approxima-
tion is based on the following inequality, wherēX denotes
the vector[X1, . . . , Xn]:

d
j=k∑
j=1

δ(X̄, vj)/ke ≤ maxj=k
j=1δ(X̄, vj). (1)

Now consider a second example where we add the ideal
v3 = 〈0, 1, 0, 1, 0〉. We can compute a lower bound for the
minimum maximum distance in the same way.X1 can either
be assigned0 which entails1 discrepancy, or1 leading to2
discrepancies. The same is true forX3 andX5 while the op-
posite holds forX2 andX4. Therefore we know that the total
number of discrepancies will be at least5. Hence we can de-
rive a lower bound ofd5/3e = 2, and we do not detect an
inconsistency. However, we cannot distribute these discrep-
ancies evenly. As the ideals considered in the first example all
appear in the second example, the maximum distance cannot
be smaller. This observation gives us a tighter lower bound.
In fact, the distance from a solution to a setS1 cannot be less
than the distance to a subsetS2 of S1:

S2 ⊆ S1 ⇒ maxj∈S2δ(X̄, vj) ≤ maxj∈S1δ(X̄, vj). (2)

Therefore, we can consider any subset of ideals, and get a
sound lower bound. By combining (1) and (2), we get the
following lower bound:

maxS⊆{1..k}(d
∑
j∈S

δ(X̄, vj)/|S|e) ≤ maxj=k
j=1δ(X̄, vj). (3)

We introduce an algorithm (Algorithm 3) based on Equa-
tion 3. Notice that in this algorithm we do not require the
distance measure to be the same on all ideals, however the
“threshold” variableN used to bound the maximum distance
to any ideal is unique. This algorithm goes through all sub-
sets ofV and computes the minimal sum of distances that
is achievable with the current domains. Then for any assign-
mentX = v that would increase this distance abovemax(N)
we removev from D(X). The complexity is inO(nd|S|) for
each setS considered. If the number of ideals is too large
then only part of the power may be considered. In this case,
the computed lower bound remains valid.

For each subsetS of ideals, we computeLB (line 2), a
lower bound on the maximum distance toS. For each value
on each coordinate we can compute the number of ideals in
S whose distance to the solution would be increased if that
value was chosen. This number, divided by|S| (line 3) is a
lower bound on the contribution that this value makes to the
whole distance. The minimum of each of these individual
distances are aggregated to compute a lower bound on the
distance to the complete set of ideals (line 4). Finally, the
lower bound and the individual distances are used to prune
values. Any value which increases the lower bound above
max(N) can be pruned (line 5).

Theorem 2 Algorithm 3 finds a valid lower bound on the
maximal Hamming distance to a set of ideals, filters the do-
mains with respect to this bound and runs inO(nd2k).

Algorithm 3 : Prune a distance constraint, multiple ideals.
Data: X1, . . . , Xn, N, V = {v1, . . . , vk}, δ1, . . . , δk

Result: A closure of SIMILAR max([X1, . . . , Xn], N, V =
{v1, . . . , vk}, {δ1, . . . , δk})

foreachS ⊆ V do1
LB← 0;2
foreachXi do

foreach j ∈ D(Xi) do
Dist[i][j]←

P
vl∈S δl(j, vl[i]);3

LB← LB + min(Dist[i])/|S|;4
if LB > max(N) then Fail;

min(N)← max(LB, min(N));
foreachXi do

D(Xi)← {vj ∈ D(Xi) | (|S|.LB−min(Dist[i]) +5
Dist[i][j])/|S| ≤ max(N)};

Proof: We show that Equation 3 is valid. It is a composition
of two straightforward inequalities. Equation 1 relies on the
fact that the maximal element of a set is larger than the aver-
age, whilst Equation 2 states that the maximal element of a set
is larger than the maximal element of any subset. The proce-
dure used at each iteration of the outer loop (line 1) is similar
to Algorithm 1 with the same linear complexity (O(nd)). The
number of iterations is, in the worst case, equal to the cardi-
nality of the power set of{1, . . . , k}, hence2k. �

Theorem 3 Algorithm 3 achieves a strictly stronger filter-
ing than the decomposition into constraints on a single ideal:
SIMILAR ([X1, . . . , Xn], N, vj) ∀j ∈ [1, . . . , k].

Proof: (sketch) We first show that Algorithm 3 is stronger
than the decomposition. Without loss of generality, consider
an idealvj . When the subset{vj} is explored in loop 1, the
computation, hence the filtering, will be the same as in Algo-
rithm 1. Then we give an example to show that this relation
is strict. LetX1 to Xn be Boolean variables, and consider
two ideals: v1 = 〈0, . . . , 0〉, v2 = 〈1, . . . , 1〉, and assume
that δ is the Hamming distance andN = [0, n/2 − 1]. The
decomposition is GAC, whilst Algorithm 3 fails. �

Unfortunately, this algorithm does not achieve GAC, in
general. This is to be expected given its lower complexity.

7 Empirical Evaluation
We ran experiments using the Renault configuration bench-
mark1, a large real-world configuration problem. The prob-
lem consists of 101 variables, domain size varies from 1 to 43,
and there are 113 table constraints, many of them non-binary.
We randomly generated 100 sets of ideals, of cardinality 2,
3 and 4, giving 300 instances in total. For each instance we
used Branch & Bound to minimise the maximum Hamming
distance to the set (conjunction) of ideals.

We compared the decomposition of distance constraints
on each ideal separately as well as our propagation algo-
rithm approximating GAC (Algorithm 3) for the combined
distance global constraint. We report the results obtained in
Figures 2(a), 2(b) and 2(c) for 2, 3 and 4 ideals, respectively.

1
ftp://ftp.irit.fr/pub/IRIT/RPDMP/Configuration

We plotn minus distance (the distance complement) against
cpu-time, measured in seconds, and number of backtracks av-
eraged over the 100 instances, in each case. More formally,
we plot the following function, whereSt is the set of solu-
tions found at time (or number of backtracks)t, V is the set
of ideals andn is the number of variables:∑

s∈St

(n−maxv∈V δ(s, v))/100. (4)

Our search strategy was to chose the next variable to branch
on with the usualdomain/degreeheuristic. The first value as-
signed was chosen so as to minimise the number of discrep-
ancies with the ideals for its coordinate. In other words, given
k vectors{v1, . . . , vk}, we choose for a variableXi the value
w ∈ D(Xi) such that

∑
j∈[1,...,k] δj(w, vj [i]) was minimal.

 0

 10

 20

 30

 40

 50

 60

 0.1 1 10 100

di
st

an
ce

 c
om

pl
em

en
t

cpu-time (seconds)

decomposition
global constraint

 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53

10 100 1000 1e+4 1e+5 1e+6 1e+7
backtracks

decomposition
global constraint

(a) Configuration Problem: 2 ideals

 0

 10

 20

 30

 40

 50

 60

 0.1 1 10 100

di
st

an
ce

 c
om

pl
em

en
t

cpu-time (seconds)

decomposition
global constraint

 44

 45

 46

 47

 48

 49

 50

 51

10 100 1000 1e+4 1e+5 1e+6 1e+7
backtracks

decomposition
global constraint

(b) Configuration Problem: 3 ideals

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.1 1 10 100

di
st

an
ce

 c
om

pl
em

en
t

cpu-time (seconds)

decomposition
global constraint

 41

 42

 43

 44

 45

 46

 47

 48

 49

10 100 1000 1e+4 1e+5 1e+6 1e+7
backtracks

decomposition
global constraint

(c) Configuration Problem: 4 ideals

 42

 43

 44

 45

 46

 47

 48

 49

 1 2 3 4 5 6 7 8 9 10

di
st

an
ce

 c
om

pl
em

en
t

cpu-time (seconds)

decomposition
global constraint

(d) A “zoom” on Figure 2(c).

Figure 2: Results for the Renault configuration problem.

On this benchmark the gain achieved in runtime using the
global constraint instead of the decomposition is slight. In-
deed, the curves are almost equal regardless of the number of

 31

 31.5

 32

 32.5

 33

 33.5

 34

 0.01 0.1 1 10 100

di
st

an
ce

 c
om

pl
em

en
t

cpu-time (seconds)

decomposition
global constraint

 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34

1 10 100 1000 1e+4 1e+5 1e+6 1e+7
backtracks

decomposition
global constraint

(a) Random instances: 2 ideals

 25
 25.5

 26
 26.5

 27
 27.5

 28
 28.5

 29
 29.5

 30

 0.01 0.1 1 10 100

di
st

an
ce

 c
om

pl
em

en
t

cpu-time (seconds)

decomposition
global constraint

 18

 20

 22

 24

 26

 28

 30

1 10 100 1000 1e+4 1e+5 1e+6 1e+7
backtracks

decomposition
global constraint

(b) Random instances: 3 ideals

 22

 23

 24

 25

 26

 27

 28

 0.01 0.1 1 10 100

di
st

an
ce

 c
om

pl
em

en
t

cpu-time (seconds)

decomposition
global constraint

 16

 18

 20

 22

 24

 26

 28

1 10 100 1000 1e+4 1e+5 1e+6 1e+7
backtracks

decomposition
global constraint

(c) Random instances: 4 ideals

Figure 3: Experimental results for the random instances.

ideals used. The optimal solution is often found very quickly,
independent of the method used. In fact, the first solution is
always found without backtracking, but since the problem is
large there is a time penalty associated with finding it.

The logarithmic scale used to present cpu-time tends to
hide the difference in time. In Figure 2(d) we “zoom” in on
part of Figure 2(c), to show there is a reduction in cpu-time
with the global constraint. We see that the global constraint
achieves a distance complement of 47 in almost half the time
taken by the decomposition.

We also ran experiments on uniform binary random CSPs
so that we could control how hard it is to achieve optimality,
and hence we avoid the earlier situation where optimal solu-
tions were found too easily. All instances have 100 variables,
domain size is 10, and there are 250 binary constraints with a
tightness of 0.3. These instance are thus underconstrained to
allow for a sufficiently large set of solutions. They were gen-
erated using a random uniform CSP generator2. We generated
3 sets of 100 instances, with results presented in Figures 3(a),
3(b) and 3(c), for 2, 3, and 4 ideals, respectively. The im-
provement, both in runtime and number of backtracks, is seen
as soon as the number of ideals exceeds 2. The cpu time over-
head due to larger sets of ideals was not as important as ex-
pected. The reduction in the search tree clearly compensates
for the computational cost of a single call to the algorithm.

2
http://www.lirmm.fr/˜bessiere/generator.html

8 Related Work
Constraints are not typically placed between the two solu-
tions. One exception is the MAX -HAMMING problem where
we seek a pair of solutions such that the Hamming dis-
tance between them is maximised[Angelsmark and Thapper,
2004], without the freedom to specify one of the solutions.
In DISTANCE-SAT we seek solutions within some distance
of each other[Bailleux and Marquis, 1999], which our work
generalises in three important ways. First, we allow opti-
misation of the distances rather that stating a bound on dis-
tance. Second, we permit multiple ideals, and not just one.
Third, we allow complex logical combinations of (non)ideals.
Global constraints for reasoning about pair-wise distances be-
tween variables rather than between solutions, as proposed
here, have also been proposed[Artiouchine and Baptiste,
2005; Ŕegin and Rueher, 2000].

9 Conclusion
We have proposed an approach to representing and reason-
ing about preferences in CSPs specified in terms of ideal and
non-ideal solutions. We presented a novel global constraint
for propagating distance constraints, which works with any
distance metric that is component-wise decomposable like
Hamming distance. Results from experiments with both real-
world and random problem instances are encouraging.

Acknowledgements. Hebrard and O’Sullivan are sup-
ported by Science Foundation Ireland (Grant 00/PI.1/C075).
Walsh is supported by NICTA, which is funded through the
Australian Government’sBacking Australia’s Abilityinitia-
tive, in part through the Australian Research Council.

References
[Angelsmark and Thapper, 2004] O. Angelsmark and J. Thapper.

New algorithms for the maximum Hamming distance problem.
In Proceedings of CSCLP, 2004.

[Artiouchine and Baptiste, 2005] K. Artiouchine and P. Baptiste.
Inter-distance constraint: An extension of the all-different con-
straint for scheduling equal length jobs. InCP, pp.62–76, 2005.

[Bailleux and Marquis, 1999] O. Bailleux and P. Marquis.
DISTANCE-SAT: Complexity and algorithms. InAAAI/IAAI,
pp.642–647, 1999.

[Bistarelliet al., 1997] S. Bistarelli, U. Montanari, and F. Rossi.
Semiring-based constraint satisfaction and optimization.J. ACM,
44(2):201–236, 1997.

[Boutilier et al., 2004] C. Boutilier, R.I. Brafman, C. Domshlak,
H.H. Hoos, and D. Poole. Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference statements.
JAIR, 21:135–191, 2004.

[Hebrardet al., 2005] E. Hebrard, B. Hnich, B. O’Sullivan, and
T. Walsh. Finding diverse and similar solutions in constraint pro-
gramming. InAAAI, pp.372–377, 2005.

[Régin and Rueher, 2000] J.-C. Ŕegin and M. Rueher. A global
constraint combining a sum constraint and difference constraints.
In CP, pp.384–395, 2000.

[Rossi and Sperduti, 2004] F. Rossi and A. Sperduti. Acquiring
both constraint and solution preferences in interactive constraint
systems.Constraints, 9(4):311–332, 2004.

