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Abstract

Users can often naturally express their preferences
in terms of ideal or non-ideal solutions. We show
how to reason about logical combinations of dis-
tance constraints on ideals and non-ideals using a
novel global constraint. We evaluate our approach
on both randomly generated and real-world config-
uration problem instances.
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C = {ci,...,cm}. Each constraint; is defined by an or-
dered setar(c;) of variables and a sebl(c;) of allowed
combinations of values. An assignment of values to the vari-
ables invar(c;) satisfies; if it belongs tosol(c;). A feasible
solutionis an assignment to each variable of a value from its
domain such that every constraint@nis satisfied. In addi-
tion to thecsk, we assume that we have some symmetric,
reflexive, total and polynomially bounded distance function,
6, between (partial) instantiations of the variables, i.e. an as-
signment of values to some subsetXf To make reason-
ing easier, we assume that distance is decomposable into a
sum of distances between the assignments to individual vari-

In many application domains users specify their desires ilples. For example, we might have the Hamming distance

terms of assignments to (a subse’g of) problem v_ariables. Fajiven by>",(X[i] # Yi]), or the generalised Manhattan dis-
example, when planning a vacation, a user might have agynce given by, | X[i] — Yi]|.

ideal holiday in mind. This ideal holiday might, however,
be infeasible. Consider as another example purchasing a ¢

The user might like two models on display (say Volvo and%[. Problems of Distance

Jaguar). Moreover, she does not like at all a third model (Sayye suppose the user expresses her preferences in terms of
Lada). As a result, she might want to sample models similajyeq| or non-ideal (partial) solutions. Partiality is important

to Volvo and Jaguar whilst different from Lada. She might5q \ve can ignore irrelevant attributes. For example, we might
therefore specifyl would like something either like the VOIVO 1ot care whether our ideal car has run-flat tires or not. The
or the Jaguar, but not the Lada"This type of query is dif-  t,nqamental decision problems underlying our approach en-

ficult to tackle using usual constraint-based preferences sinc§,re that a solution is at a given distance to (resp. from) an
itis not articulated in terms of variables and/or constraints bufyeg) (resp. non-ideal) solution.

rather (partial) solutions. Many formalisms for representing

preferences in constraint satisfaction assign preferences to in-

dCLOSE (resp.dDISTANT)

dividual constraintg§Bistarelli et al, 1997. Others, such as
CP-NetdBoutilier et al,, 2004, specify preferences at a vari-

able level. However, users often like to describe their prefer-

ences at a solution levBRossi and Sperduti, 2004

In this paper we present an algebra for complex expres-
We describe a novel soft

e}’pey can be used to decide ther, P. If the distancel is not

sions of distance constraints.
global constraint for propagating constraints of distanc
characterise the conditions under which we can propagate
tractably, and report encouraging results on real-world an
randomly generated instances.

2 Preliminaries

A constraint satisfaction problencép is a triple P
(X,D,C) where X is a finite set of variablest
{z1,...,z,}, D is a set of finite domainsD
{D(z1),...,D(z,)} where the domairD(x;) is the finite

set of values that variable can take, and a set of constraints

(I

Instance. A cspk, P, a symmetric, reflexive, total
and polynomially bounded distance functigrand
p, a partial instantiation of the variables Bf
Question. Does there exist a solutione sol(P)
such that(p, s) < d (resp.d(p, s) > d).

dCLoseanddDISTANT are NP-complete in general, since

xed,dCLOSEanddDISTANT are not necessarily polynomial
even if the underlyingspis itself polynomial[Bailleux and
Marquis, 1999. However, one can identify tractable restric-
tions of these problems if is fixed and the underlyingsp
is polynomial[Bailleux and Marquis, 1999 We can spec-
ify more complex problems of distance by combining primi-
tive distance constraints using negation, conjunction and dis-
junction; some examples are shown in Figure 1. The laws of
our basic algebra for constructing constraint expressions are
as follows (we slightly abuse the notation used to define the



decision problems, without consequence) wheendb are These optimisation problems are closely related 9w
ideal and non-ideal (partial) assignments to the variables: CLoseand MosTDISTANT defined in[Hebrardet al., 2005.
Like these problems, sk and DISTANT are FPYPliog nl.
complete. However, there are some differences. Firsts#

dDISTANT —-dCLOSE ) . . .
(a) (a) CLoskefinds the feasible solution nearest to a given subset of

dDISTANT(a V ) < dDISTANT(a) V dDISTANT(D) solutions. By comparison, ®sE finds the feasible solution
— =dCLOSE(a A D) nearest to just one solution. We will soon extendoGE to
dDISTANT(a A b) < dDISTANT(a) A dDISTANT(b) nearness to combinations of solutions. Second, the ideal solu-

tion that Q.0SE s trying to get near to might not be feasible
< dCLOSE(a VD) whereas in MSTCLOSE it is. Third, if the ideal solution is

More complex expressions are also possible. For examfeasible then Coske will return it whilst MOSTCLOSE will

ple, we can construct expressions usimplies iff, xor, or  find the next nearest feasible solution.

ithen Such connectives can, however, be constructed using we can again consider logical combinations of ideals and

the standard Boolean identities. non-ideals. For example, we might want to minimise the dis-

tance to one ideal or maximise the distance from a non-ideal.

Distances can be combined in a number of ways. For exam-

ple, if we want to minimise the distance to idealandb, we

minimise the maximum distance to either. Similarly, if we

want to minimise the distance to idealor b, we minimise

the minimum distance to either. This gives us a new global

sol(P) objective,F, as shown in Table 1.

sol(P)
(a) dO.osE(a) (b) dDISTANT(a)

Table 1: Examples of some simple distance constraints and
their corresponding objective functions to be minimised.

Constraint | Obijective function
CLosE(a vV b) [ F =min(0(s,a),d(s,b))
CLOSE(a A b) | F = max(d(s,a),d(s,b))

sol(P) sol(P)

(c) dCLOSE(a V b) (d) dDISTANT(a A b) Other combinators like- andmin are also possible. We
also permit the distance function to depend on the ideal
or non-ideal. For example, we might want distance from
ideal ¢ to count twice as much as distance frain In
this case, Coske(c Vv d) gives the objective functiodF =

a min(24(s,c),d(s,d)). To make combinations uniform, we
convert maximising the distancé, from a non-ideak into
Sol(P) Sol(P) minimising a new distancep — §, to a wherem is the max-
imum possible distance returned by In this way, we get a
(e) dQ.osE(a A b) () dCLOSE(a)AdDISTANT(b)  gingle objectiveF which we need to minimise. Finally, we

consider compiling out an objective function for a more com-
Figure 1: A graphical representation of the basic constrainplex logical combination of distance constraints.
expressions that can be constructedand b are solutions,
sol(P) is the set of solutions to thesp P, and the radius
of the circles represents the distande, The shaded region
represents the solutions that satisfy the constraints.

Example 1 (Conjunction) We consider again the example

of the choice of car configuration within a large catalogue
used in Section 1. A customer is interested in two models
(Volvo and Jaguar), whilst disliking a third model (Lada).
The queryCLoSE(Molvo), CLosE(Jaguar), DISTANT(Lada)
S implements this wish. This expression means that we seek
4 Optimisation problems a solutions that is simultaneously as similar as possible to
Rather than specify the precise distance from the ideals angblvo and Jaguar and as different as possible from Lada. It
non-ideals to the solution it may be more useful to minimisecan be reformulated as the following logical expression:
(maximise) the distance to an ideal (resp. a non-ideal).

CLOSE (resp. DSTANT) (CLosE(Volvo) A CLosE(Jagual) A DISTANT(Lada))

Instance. A csp, P, a distance functiod, and a which gives the following objective functiaf, substituting
partlal_ solutl_or;n. _ mazx for logical conjunction and converting maximising dis-
Question. Find a solutions € sol(P) such that tance to minimising the distance complement:

g‘;;a;');fg(spolg@ ) 0(p.s) < 0p, ) (resp. F = max(8(s, Volvo), 6(s, Jaguan, m — 5(s, Lada)).



5 Propagation and Complexity domain of N. Algorithm 1 first computes the smallest dis-
We consider how to propagate such distance constraints. Wance to the ideal in loop 1. Then the domain oV and of
observed ifHebrardet al, 2009 that the problems MsT  Xi,..., X, are pruned in line 2 and loop 3. For disjunctive
CLosE and MosTDISTANT can be solved using symmetri- combinations, we compute the values that are inconsistent for
cally equivalent algorithms. Similarly, the problems studiedeach distance constraint using Algorithm 1, and prune those

here are symmetric, therefore we focus on minimising the disvalues in the intersection. Using constructive disjunction, we
tance (similarity) rather than maximising it (diversity). Thus, gchieve GAC inO (ndk) time.

we introduce a soft global constraintsMiLAR . Then-ary
operator® € {min,max} is used to aggregate distances to
individual ideals:

SIMILAR & ([ X1, ..., Xn], N,V = {v1,..., 0}, {01, ..

iff @127 (3027 6( X, vii])) < N.

The operatofnin handles disjunctions of distance constraints i=n
whilstmaz handles conjunctions. The constraint ensures that
the distance to a set of idedls= {vy, ..., vy} is at mostV.
Notice that we assume that the distance between two vectors
is equal to the sum of the distances on all coordinates. Deciding the satisfiability of this formula is NP-hard. Hence,

We showed that enforcing generalised arc consistencgnforcing GAC on SVILAR ,,,4, With respect to an arbitrary
(GAC) on this constraint is NP-hard fab = max [He-  humber of ideals is NP-haftHebrardet al., 2009. However,
brard et al, 2009. However, enforcing GAC is tractable we shall investigate filtering methods stronger than a straight-
when the number of ideals is bounded. On the other handorward decomposition into distance constraints with respect
for ® = min, GAC can be enforced in polynomial time for to a single ideal. We shall see in the next section that even
any number of ideals. Table 2 summarises the complexity ofhough a distance constraint to a single ideal is easy to propa-
enforcing GAC on the B1ILAR & constraint. We now prove gate and the conjunction of such constraints can naturally be

Conjunction (SIMILAR ,,,4;). Conjunctive combinations of
distance constraints are more problematic. Consider the con-
junctive Hamming distance constraint:

'76k})

the results given in this table.

Disjunction (SIMILAR ,,;,). Propagating the IBILAR g

processed as individual constraints in a network, stronger fil-
tering can be obtained by considering the whole conjunction.

constraint for a single ideal can be done in polynomial time. Algorithm 2 : Lower bound onV.

Indeed, it is equivalent to the proble?CLOSE on a network
involving only domain constraints. Algorithm 1 implements
alinear O(nd)) algorithm for filtering SMILAR with respect
to a single ideal (the value of is undefined in this case).

Algorithm 1: Prune a distance constraint, single ideal.

Data: Xi,...,Xn, N,v,0
Result GAC closure of SMILAR ([ X1, ...
LB «— 0;
1 foreach X; do
1[i] — min(d(vli, j), Vj € D(X));
| LB «— LB+ 1b[i
2 min(N) «— maz(min(N), LB);
3 foreach X; do
foreachj € D(X;) do
L if min(N) + d(v[é], 5) — 1b[i] > max(N) then

)
L D(Xi) < D(X)\ {7}
The notationmin(N) stands for the minimal value in the

aX”]7N7U76)

Table 2: The complexity of propagating theMBLAR con-
straint on a disjunction (®IILAR ,,;,) OF a conjunction
(SIMILAR ;,,4.) Of k ideals wheré: is bounded by a constant,
or a polynomial functiong(n)) in the size of the problem.

SIMILAR 1in SIMILAR 1ax
ke O(1) O(ndk) O(d*n*"?)
k€ O(p(n)) O(ndk) NP-hard

Data: X1,...,Xn, N,V = {v1,..
Result A lower bound onV
Q < [0,0,...,0];
foreach X; do
Q 0
foreachj € D(X;) do
foreach M € @Q do
M' — M;
foreachv;, € V do
L M) — M[l) + 60, wli]);
Q/ — Q/ U M/,

L Q< Q"
returnmax(M|l], VI € [1,...,k], VM € Q);

.,vk},{él,...,ék}

We show that under the assumption that the distance mea-
sure is discrete and bounded in size by the number of vari-
ables (as is the case for Hamming distance), enforcing GAC
on the SMILAR ., constraint with respect to a bounded
number of ideals is tractable. Algorithm 2 finds a sharp lower
bound with respect to a set of ideals. Moreover its worst-case
time complexity isO(dn**1), hence polynomial when the
numberk of ideals is bounded. It is therefore easy to derive a
polynomial filtering procedure for this constraint by checking
this lower bound against the upper bound\ofor each of the
nd possible assignments. The complexity of such a filtering
procedure would thus b®(d?n*+2).

Theorem 1 Algorithm 2 finds a correct lower bound on the
maximal Hamming distance to a set of ideals, and runs in
O(dn**1) time.



Proof: This algorithm builds a partially ordered set of vectors solution andall the ideals will be at leasi. To minimise
of distances to ideals. A set of vectors is computed for eackhe maximum distance from either ideal, this total number
variable. Given two consecutive variabl&s and X; 1, two of discrepancies should be evenly distributed across ideals,

vectorsM and M’ are related in the partial ordekd’ > M) i.e., the minimum maximum distance is at le@5t2] = 3.
iff there exists an assignmeft; . ; = j such thatV’ — M = Hence we cannot achieve a distance2ofThe approxima-
[01(4,v1]e + 1]), ..., 0k (4, v[é + 1])]. All reachable vectors tion is based on the following inequality, whefé denotes
of distances are thus computed, so the bound is correct.  the vectof X, ..., X,]:

We firskt show that the cardinality of the whole poset is =k
at mostn”. Indeed, the distance measures are discrete and (Z 5(X,v;)/k] < maz?;]fé(X,vj). 1)

bounded by the number of variables, and each vector is of
dimensionk, hence there are at mast distinct vectors. The
cardinality of any layer is thus at most. For each layer we
create at mosf new vectors for each vector in the previous

layer. '_I'his algorithm neec_zls fewer thaln’f Stif’ﬁ for each be assigned which entailsl discrepancy, oi leading to2
layer, giving a worst-case time complexty(dn™""). discrepancies. The same is true 65 and X5 while the op-
Example 2 (Conjunction) We show on our example how a posite holds forX, andX,. Therefore we know that the total
logical expression formulating preferences in terms of idealshumber of discrepancies will be at leastHence we can de-
can be compiled into a constraint network. We assume thaive a lower bound of 5/3] = 2, and we do not detect an
the configuration database involvewariables{X1,... X}  inconsistency. However, we cannot distribute these discrep-

j=1
Now consider a second example where we add the ideal

vs = (0,1,0,1,0). We can compute a lower bound for the

minimum maximum distance in the same wa§. can either

subject to a set of constraints The objective function ancies evenly. As the ideals considered in the first example all
F— 5(s.Volvo. §(s. Jaqua _ §(s. Lada appear in the second example, the maximum distance cannot
. .max.( (s, ) _(S’ g D’_m (5, )) be smaller. This observation gives us a tighter lower bound.
is compiled into the following constraint program: In fact, the distance from a solution to a $gtcannot be less
than the distance to a subsgtof S;:
| minimise(N) subject to: | Sy C 81 = maxjes,0(X,v;) < mazjes, 0(X,v;).  (2)
C(X1,..., Xn) & Therefore, we can consider any subset of ideals, and get a
SIMILAR gz ( X1,..., Xy, N, sound lower bound. By combining (1) and (2), we get the
{Volvo, Jaguar Lada}, _ following lower bound:
{Hamming Hamming n — Hamming )

mazscy gy (Y 8(X,v;)/IS[1) < maxlZy6(X,v)). (3)
6 Approximation Algorithm J€S

We have seen in the previous section that enforcing GAC on W% intNrod_uce r‘;’m glgc;]r_ithnr (A!ghorithm ﬁ) based on qu;]a-
the SMILAR ,,.. constraint for a bounded number of ide- gpn - Notice that mg |sha gorithm we” %nolt r%quwe t eh
als is polynomial. However, the algorithm we introduced diStance measure to be the same on all ideals, however the

may be impractical on large problems. We therefore proposghreSh‘)'d" variableN used to bound the maximum distance
an approximation algorithm, reducing the complexity from

to any ideal is unique. This algorithm goes through all sub-
O(d?n**2) to O(nd2*). This algorithm does less pruning sets of V' and computes the minimal sum of distances that
than enforcing GAC but more than decomposing into indi-IS achievable with the current domains. Then for any assign-
vidual distance constraints. mentX = v thatwould increase this distance abavexz (V)

As seen previously, a conjunction of distance constraintd/€ removev from D(.X). The complexity is irO(nd|S|) for

can be represented asndividual constraints. First, we can ehach SE—;‘S CO”S'Sehred- If the nurl?ber Of'lc?ealj I? tor$_ large
decompose it inté individual constraints, one for each ideal: €N only part of the power may be considered. In this case,
the computed lower bound remains valid.

n For each subsef of ideals, we comput&.B (line 2), a
Z(Xi # v;[i]) < N. lower bound on the maximum distance$o For each value
on each coordinate we can compute the number of ideals in
Each individual constraint can be made GAC in linear time.S Whose distance to the solution would be increased if that

However, by considering the ideals separately, we will not dovalue was chosen. This number, divided |5y (line 3) is a

1=

—

7=

as much pruning as is possible. lower bound on the contribution that this value makes to the
to X; be 0/1 variables. Consider two idealss; —  distances are aggregated to compute a lower bound on the

(0,0,0,0,0),v5 = (1,1,1,1,1). We assume thai is the distance to the complete set of ideals (line 4). Finally, the

) 3 ) )

Hamming distance, and that the distaricom a solution lower bound and the individual distances are used to prune
to any ideal must be at mosti.e., D(N) = [0,1,2]. Even  Values. Any value which increases the lower bound above
though no inconsistency can be inferred when looking; at max(N) can be pruned (line 5).

andv, separately, the constraint is globally inconsistent. AnyTheorem 2 Algorithm 3 finds a valid lower bound on the
variable X; will either be assigned t0 or 1 but not both. maximal Hamming distance to a set of ideals, filters the do-
Therefore, the total sum of pairwise differences between anains with respect to this bound and rungnd2”).



Algorithm 3 : Prune a distance constraint, multiple ideals. We plotn minus distance (the distance complement) against
: cpu-time, measured in seconds, and number of backtracks av-
Data: Xi,...,X,, N,V = {1}1,...,1}k},(517...,(5k

Result A closure of SMILAR mae (X1, ..., Xu], N,V = eraged over the 100 instances, in each case. More formally,

(01,..., 00}, {61 o)) we plot the following function, wheré; is the set of solu-
1 foreachS C Vdo tions found at time (or number of backtracks) is the set
2 LB — 0; of ideals and: is the number of variables:
fore?ocrl;;iihczoe DX do Z (n — maz,evd(s,v))/100. 4)
3 | Distli][j] — 3, cs 000, wilil); s€St

Our search strategy was to chose the next variable to branch
on with the usuatlomain/degredeuristic. The first value as-
signed was chosen so as to minimise the number of discrep-
ancies with the ideals for its coordinate. In other words, given

4 LB « LB + min(Dist[i])/|S];
| if LB > max (V) then Fall;
min(N) — maz(LB, min(N));
foreach X; do

5 D(X,) — {v; € D(X:) | (|S|.LB — min(Dist]i]) + k vectors{vy, ..., v}, we choose for avariablﬁi the_ value
Dist[i][5])/|S| < maz(N)}; w e D(Xl) such thatzzje[l,...,k] (Sj (w, Vj [’L]) was minimal.
60 gg o
§ % PR g
Proof: We show that Equation 3 is valid. It is a composition & 4 - % b
of two straightforward inequalities. Equation 1 relies on the § o 48 /"
fact that the maximal element of a set is larger than the aver-£ = “
. . . s /
age, whilst Equation 2 states that the maximal element of a se¢ o f Jecompositon —— 1 goocompostion ]
is larger than the maximal element of any subset. The proce- ° ; s 0 T e o et o e T
dure used at each iteration of the outer loop (line 1) is similar cpu-time (seconds) backiracks
to Algorithm 1 with the same linear complexit§p(nd)). The (a) Configuration Problem: 2 ideals
number of iterations is, in the worst case, equal to the cardi-
nality of the power set of1, ..., k}, hence2”. | 60 51 > —
€ 50 +
Theorem 3 Algorithm 3 achieves a strictly stronger filter- £ iz pro 49 ,,"(
ing than the decomposition into constraints on a single ideal: £ | 48 7
SIMILAR ([X1, ..., X,], N,v;) Vi € [1,..., k. 8 ol 7 /
Proof: (sketch) We first show that Algorithm 3 is stronger @ ™|, sepuicen 1% o goscompostion ———
than the decomposition. Without loss of generality, consider  °; ; I 100 T 10 100 1000 1erd 101 Tesb Tes7
an idealv;. When the subseftv; } is explored in loop 1, the cpu-ime (seconds) backiracks
computation, hence the filtering, will be the same as in Algo- (b) Configuration Problem: 3 ideals
rithm 1. Then we give an example to show that this relation
is strict. LetX; to X,, be Boolean variables, and consider o ; 49 —
two ideals:v; = (0,...,0),v2 = (1,...,1), and assume § w[ o - g
thaté is the Hamming distance amdl = [0,n/2 — 1]. The £ 5 46 £
decomposition is GAC, whilst Algorithm 3 fails. ] 8 2 -
Unfortunately, this algorithm does not achieve GAC, in § oy wr
general. This is to be expected given its lower complexity. ° 5 P.gggfgagi;;m ....... . Zf L g,gggfppagf:g;q —
0.1 1 10 100 10 100 1000 1e+4 1e+5 le+6 1e+7
cpu-time (seconds) backtracks

7 Empirical Evaluation

We ran experiments using the Renault configuration bench-
markt, a large real-world configuration problem. The prob-

lem consists of 101 variables, domain size varies from 1 to 43,
and there are 113 table constraints, many of them non-binary.
We randomly generated 100 sets of ideals, of cardinality 2,

(c) Configuration Problem: 4 ideals

49

48 P
o o i
47 ! 17

o Lo

45

distance complement

m i
3 and 4, giving 300 instances in total. For each instance we © ;’ﬁ decompesiion ——
used Branch & Bound to minimise the maximum Hamming BT s 4 s s 7 s 9 w0
distance to the set (conjunction) of ideals. cputme (seconds)

We compared the decomposition of distance constraints (d) A “zoom” on Figure 2(c).

on each ideal separately as well as our propagation algo- . _
rithm approximating GAC (Algorithm 3) for the combined  Figure 2: Results for the Renault configuration problem.
distance global constraint. We report the results obtained in

Figures 2(a), 2(b) and 2(c) for 2, 3 and 4 ideals, respectively. On this benchmark the gain achieved in runtime using the
- global constraint instead of the decomposition is slight. In-

Ltp:/#ftp.irit.fr/pub/IRIT/RPDMP/Configuration deed, the curves are almost equal regardless of the number of



a4 ) % e 8 Related Work
g 3332 e / Constraints are not typically placed between the two solu-
g L % / tions. One exception is the AKk-HAMMING problem where
8 / 28 / we seek a pair of solutions such that the Hamming dis-
£ o 7{ _ b ) tance between them is maximisg&hgelsmark and Thapper,
° - decomposition 7 25 [ decomposition i . . .
N _ global constraint ------- 2 _global constraip ------- 2004, without the freedom to specify one of the solutions.
001 01 1 10 100 1 10 100 1000 fe+4 fes5 fes6 fes? In DISTANCE-SAT we seek solutions within some distance

cpu-time (seconds) backtracks

of each othefBailleux and Marquis, 1999which our work
generalises in three important ways. First, we allow opti-
misation of the distances rather that stating a bound on dis-

(a) Random instances: 2 ideals

30 30

B O » T tance. Second, we permit multiple ideals, and not just one.
£ s - s i Third, we allow complex logical combinations of (non)ideals.
£l il Global constraints for reasoning about pair-wise distances be-
g 2Tri 2 tween variables rather than between solutions, as proposed
2 28 /. dasarsesion 20 Lo 4 decompostion | here, have also been proposk&ttiouchine and Baptiste,

.5 I _ global constraint -=-==-= § | global constraint ====--= 2005, %gln and Rueher, 20@)0

25 18
0.01 0.1 1 10 100 1 10 100 1000 1e+4 1e+5 1e+6 1e+7
cpu-time (seconds) backtracks

(b) Random instances: 3 ideals 9 Conclusion

We have proposed an approach to representing and reason-

28 BT : ing about preferences in CSPs specified in terms of ideal and
R R S = 2 Pt non-ideal solutions. We presented a novel global constraint
g opr 24 T R e for propagating distance constraints, which works with any
§ & f 2 7 distance metric that is component-wise decomposable like
I S Rl Hamming distance. Results. from experiments with poth real-
2 zz / e — : - st world and random problem instances are encouraging.
0.01 0.1 1 10 100 1 10 100 1000 1e+4 1e+5 1e+6 1e+7
eputme (soconde) _ packtiacks Acknowledgements. Hebrard and O'Sullivan are sup-
(¢) Random instances: 4 ideals ported by Science Foundation Ireland (Grant 00/PI.1/C075).

_ _ . Walsh is supported by NICTA, which is funded through the
Figure 3: Experimental results for the random instances. Australian Government'8acking Australia’s Abilityinitia-
tive, in part through the Australian Research Council.

ideals used. The optimal solution is often found very quickly,
independent of the method used. In fact, the first solution iBeferences
always found without backtracking, but since the problem ig/Angelsmark and Thapper, 2000. Angelsmark and J. Thapper.
large there is a time penalty associated with finding it. New algorithms for the maximum Hamming distance problem.
The logarithmic scale used to present cpu-time tends to 'h Pro?eed'ngs of C,SCL'BOOA" . ) )
hide the difference in time. In Figure 2(d) we “zoom” in on [Artiouchine and Baptiste, 2005K. Artiouchine and P. Baptiste.
part of Figure 2(c), to show there is a reduction in cpu-time Inter-distance constraint: An extension of the all-different con-
with the global constraint. We see that the global constraing Staint for scheduling equal length jobs. @, pp.62-76, 2005.
achieves a distance complement of 47 in almost half the timéBailleux and Marquis, 19990.  Bailleux and P. Marquis.
taken by the decomposition. DISTANCE-SAT: Complexity and algorithms. [AAAI/IAAI
We also ran experiments on uniform binary random CSP? _pp'64?_647’ 1999. _ _ _ _
so that we could control how hard it is to achieve optimality, [Bistarellietal, 1997 S. Bistarelli, U. Montanari, and F. Rossi.
and hence we avoid the earlier situation where optimal solu- Semiring-based constraint satisfaction and optimizatioACM
tions were found too easily. All instances have 100 variables 44@'201_236’ 1997. o
domain size is 10, and there are 250 binary constraints with EBoutilier etal, 7—0(?4 C. BIOU“"er' R.I. Brafnrefm, C. Domshlak, g
tightness of 0.3. These instance are thus underconstrained to 7-H- H00s, and D. Poole. Cp-nets: A tool for representing an

L . _ reasoning with conditional ceteris paribus preference statements.
allow for a sufficiently large set of solutions. They were gen JAIR 21:135-191. 2004

erated using a random uniform CSP genefatdfe generated | ich sulli
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