
University of LeedsSCHOOL OF COMPUTER STUDIESRESEARCH REPORT SERIESReport 97.27
How Not To Do ItbyIan P Gent1, Stuart A. Grant, Ewen MacIntyre1,Patrick Prosser1, Paul Shaw1, Barbara M Smith& Toby Walsh1May 19971Department of Computer Science, University of Strathclyde, Glasgow G1 1XH,Scotland.



AbstractWe give some dos and don'ts for those analysing algorithms ex-perimentally. We illustrate these with many examples from our ownresearch on the study of algorithms for NP-complete problems such assatis�ability and constraint satisfaction. Where we have not followedthese maxims, we have su�ered as a result.1 IntroductionThe empirical study of algorithms is a relatively immature �eld with manytechnical and scienti�c problems. We support the calls of McGeoch (1986,1996),Hooker (1994), and others for a more scienti�c approach to the empiricalstudy of algorithms. Our contribution in this paper is colloquial. We admitto a large number of mistakes in conducting our research. While painful, wehope that this will encourage others to avoid these mistakes, and thereby todevelop practices which represent good science.Much of our research has been on the experimental analysis of algorithmsand phase transitions in NP-complete problems, most commonly in satis�a-bility or constraint satisfaction problems. Hayes (1997) gives a non-technicalintroduction to satis�ability and phase transition research, and Kumar (1992)surveys constraint satisfaction problems.1 The advice we give should be par-ticularly appropriate for researchers in similar areas. However, we will notassume knowledge of the research we cite, as we believe that our lessonsshould be more generally valuable.As well as McGeoch and Hooker, a number of authors give advice to thoseseeking to perform computational experiments as part of their research intoalgorithms. Cohen (1995) gives invaluable advice to workers in empiricalarti�cial intelligence, particularly in the area of experimental design andstatistical testing, although the empirical study of NP-complete problems isnot discussed. Johnson (1996) gives general advice to experimenters, whileMitchell and Levesque (1996) give advice to those interested in the particulardomain of random satis�ability. The particular novelty of this paper is thatwe own up to manymistakes that we ourselves have made. As well as avoidingany need to be fair to the authors being criticised, it also means we are awareof many mistakes that cannot be seen simply from reading our papers.1More technical surveys of constraint satisfaction problems are given in articles byDechter (1992) and Mackworth (1992) as well as the book by Tsang (1993). Volume 81of Arti�cial Intelligence is a recent source of research papers on phase transition research[Hogg et al. 1996]. 1



We will maintain a convention throughout: we hold all authors of a jointpaper equally responsible for any mistake that one of them may have made.In what follows, the context will usually make clear that we are referring toa particular paper. Where we write `I' or `we', this should be taken to meanthe author or all the authors of the relevant paper.2 Getting StartedSuppose you have selected an algorithm that you wish to investigate experi-mentally. Typically you will end up writing your own implementation of thisalgorithm, either because it is new, or because you are interested in featuresof the algorithm you cannot investigate using publicly available code. Of themany lessons we have learnt about getting started, here are some of the mostimportant.Don't trust yourselfBugs always �nd their way into the most harmful parts of your code. Hav-ing implemented the algorithm GSAT, a local search procedure for sat-is�ability [Selman et al. 1992], and written a version of a research paper[Gent and Walsh 1992], we discovered a bug in one of the most frequentlycalled subroutines which biased the picking of a random element from a set.We noticed this bug when we observed very di�erent performance runningthe same code on two di�erent continents (from this we learnt, Do use dif-ferent hardware). All our experiments were awed and had to be rerun.Curiously one version of the bugged code gave better performance than thecorrect code. This suggests a hypothesis, which we have still to investigatefully, that systematic bias in GSAT's search may improve performance. Inan attempt to prevent this happening again, we advocate a strategy of cod-ing due to Boyer and Moore. That is, every line of code should be read andapproved of by an independent source. Sometimes we even do this.Do make it fast enoughSurprisingly, it is not always necessary to have optimal code. But it doeshave to be fast enough. For example, our initial implementation of GSAThad an update time between moves so large as to make it practically use-less. For standard problem sets, we eventually reduced this by the squareof the number of variables in the problem, and how to do this was knownat the time we wrote our code. It was a year before we got to this point,having reinvented several wheels. (Suggesting the advice Do report im-portant implementation details, though it is very hard to follow thisin papers with tight page limits.) In the meantime we had published resultsabout GSAT [Gent and Walsh 1993a, Gent and Walsh 1993b] using code of2



intermediate e�ciency. Your code has got to be fast enough to do what youneed: it need not be the fastest in the world. Occasionally we have inadver-tently gone too far in this direction. For example, when studying the scalingof search cost [Gent et al. 1997] we accidentally ran interpreted rather thancompiled Lisp, for a �fty-fold slowdown. So Do compile code.Do use version controlThe software systems we use to conduct our empirical studies are inevitablylarge and complex. A typical experimental system might be made up of�fteen or more program modules. These modules are constantly evolving,thanks to the addition of new algorithms and methods of problem generation.Especially for versions of software used to produce published results, wesuggest that you Do preserve your software. But we have found toour cost that doing this on an ad hoc basis can lead to the recurrence ofold faults. In reporting the values of a constrainedness parameter, �, wemiscalculated values by a few percent, but did not notice it until the reporthad been published [Grant and Smith 1996]. The cause was a crass errorinvolving a defective for loop. This error had been spotted and �xed once,but had reappeared. Some other modi�cations to the relevant module hadbeen attempted at the same time as the bug-�x. When these were abandoned,the previous version of this module was recalled, and the error re-introduced.Although the underlying data was una�ected, principled use of a sourcecontrol system such as RCS or SCCS [Bolinger and Bronson 1995] wouldhave prevented the problem recurring at all.3 Experimental DesignOnce you have played with your debugged code, you may notice interestingbehaviour, or implement interesting variants of the algorithm. From this,you may form various hypotheses about the algorithm's performance. Indevising experiments to test such hypotheses, we have made many mistakes.Do measure with many instrumentsIs it wise to only use one instrument to take measurements? A study of bi-nary constraint satisfaction problems (CSPs) focussed on the nature of thephase transition, the crossover point, and the complexity peak [Prosser 1996].In our eagerness we decided that we needed to look at many problems, us-ing large sample sizes and varying as many problem parameters as possi-ble. To do this we naturally used our best and fastest algorithm. Essen-tially, the algorithm was used as an instrument to take measures of char-acteristics of the problems. At that time Tad Hogg told us he had seensome unusual behaviour, namely hard problems where they were least ex-3



pected. But we did not, no matter how hard we tried. The algorithmswere di�erent; Tad used a chronological backtracker, and we used a back-jumper. Tad observed what later became known as exceptionally hard prob-lems [Hogg and Williams 1994], something that is very di�cult to �nd withsmart backjumping. Our own observation of exceptionally hard constraintsatisfaction problems was delayed by some time.Do vary all relevant factorsWe have reported on many series of experiments using the forward checkingalgorithm. It is well-known that the smallest-domain-�rst variable orderingheuristic [Haralick and Elliott 1980] gives good results for random CSPs, sowe used this heuristic. Eventually we carried out some experiments using astatic, random, variable ordering, and found that some of the e�ects we hadreported were due to the heuristic rather than to the algorithm. For instance,we claimed that forward checking does not su�er from such exceptionallyhard problems when the constraint density is high [Smith and Grant 1995a].Later experiments showed that this is only when using the smallest-domain-�rst heuristic. We realised that we should vary both the heuristic and thealgorithm in this kind of experiment only after carrying out a new series ofexperiments comparing forward checking with simple backtracking. It wasonly when we were some way into the experiments, and after some results hadalready appeared in print [Smith and Grant 1995b], that we started usingforward checking with the same static variable ordering as the backtrackingalgorithm. We had, in fact, broken another rule (Don't change twothings at once): some of the e�ects we had previously seen were dueto the change in algorithm, and some to the change in variable orderingheuristic.Do measure cpu timeUsing cpu time as a measure of performance is often looked down upon,rightly, as it can lead to unproductive e�ciency wars between researchers[Hooker 1995]. However, comparing cpu times within di�erent versions ofyour own code can be very valuable. This came to light in (unpublished) ex-periments on variable ordering heuristics for the CSP. We were using variousheuristics, one a complex version of a simple heuristic with a complex (andcomputationally very expensive) tie-breaking rule added. During search,evaluation of the tie-breaking rule alone used three to �ve times as manyconsistency checks as the search using the simple heuristic. Using total con-sistency checks as the sole measure of performance turned out to be a badidea, since in many cases, and especially on the hardest instances, cpu timewas reduced. It turned out that the code in which the heuristic was evaluatedwas very simple and needed to do less additional work per consistency checkthan the main search. To �nd this out we had to rerun our experiments,4



measuring cpu time.Do collect all data possibleUsually, there are several obvious statistics to collect as well as cpu time.For example, for backtracking procedures there is the number of branchessearched while for local search procedures there is the number of movesmade. However, you should collect as many meaningful aspects of dataas you can think of. For a long time, we did not record the number ofbranching points for backtracking procedures, a statistic subtly di�erentfrom the number of branches. In investigating the satis�ability constraintgap [Gent and Walsh 1996], the most meaningful statistic turned out to bethe ratio of constraint propagations to branching points. We therefore had torerun many experiments. To have produced this data in the �rst place wouldhave involved almost no extra expense. It pays to collect everything you canthink of, whether or not you expect it to be important. When rerunningthese experiments, we collected for the �rst time the minimal search depth,and this also turned out to be a very important statistic.Do be paranoidHow do you know your instruments are working correctly? What hope isthere for independent calibration when we are applying algorithms that wehave invented to problems that we have randomly generated? One way roundthis is to replicate experiments independently. We often encode CSP algo-rithms [Prosser 1993b] in Scheme initially and then in C, often doing this atdi�erent sites. We can then replicate large scale experiments, and also lookin detail at speci�c instances to make sure that we are obtaining identicalresults. Inevitably, apparently minor implementation details inuence be-haviour. For example, we encoded in Scheme (once) and C (twice) forwardchecking with conict-directed backjumping using the smallest-domain-�rstheuristic. All three implementations gave di�erent behaviour. We had notagreed what to do when many variables had the same heuristic value, i.e. intie breaking situations. One of us took the �rst variable with best heuristicvalue, another the last variable, and one chose at random. While this did notmake a signi�cant di�erence on average, when we were examining an individ-ual problem we got di�erent results. Naturally our con�dence went out thewindow. Enter the `paranoid ag.' We now have two modes of running ourexperiments, one with the paranoid ag on. In this mode, we put e�ciencyaside and make sure that the algorithms and their heuristics do exactly thesame thing, as far as we can tell.Do check your solutionsA feature of NP-complete problems is the ability to verify any solution withinpolynomial time. A sensible and inexpensive security device is therefore tocheck every solution produced. 5



Do it all againOr at least, be able to do it all again. Reproducibility should always be animportant aim. Even if di�erent random number generators preclude otherresearchers literally duplicating your results, you should be able to run thesame experiment on the same seeds if necessary. Keeping random seeds has asecond great bene�t. Testing di�erent procedures on identical problems, notmerely problems generated in the same way, greatly reduces the variance inthe di�erence in performance of the two procedures, and makes it much easierto obtain statistically signi�cant results (Do use the same problems). Wehave tried to do this as much as possible, but occasionally our own stupidityhas got the better of us. When a process going through a supposedly easyproblem class had not written to the �le for several hours, we thought theprogram had crashed so we killed the job and deleted the �le. Fortunately,the next day the same thing happened with some new data, and we realisedthat some problems were remarkably di�cult in this otherwise easy problemclass [Gent and Walsh 1994a]. If the behaviour had been slightly rarer, wemight have never seen it again, and would not have been able to go back tothe original hard problem (Don't ignore crashes).Do it often and do it bigOne reason for making your code e�cient (Do make it fast enough) is sothat you can perform lots of experiments on large problems. This is impor-tant since emergent behaviour is often not apparent with small problems. Inaddition, running lots of experiments will reduce noise and may uncover rarebut important hard cases. For example, we ran many experiments on random3-SAT looking for bad worst case performance [Gent and Walsh 1994a]. Wetried many di�erent backtracking procedures at many di�erent problem sizesusing experiments with 1000 randomly generated problems per data point.We found nothing. So we tried again with 10,000 randomly generated prob-lems at each data point. We still found nothing. With other problem classes,we had had no di�culty in �nding bad worst case performance using just 1000randomly generated problems. Persistence eventually paid o�. In a monthlong experiment with 100,000 randomly generated problems at each datapoint, we �nally observed bad worst case performance. Sometimes gettingan interesting result requires a lot of perspiration and very little inspiration.Don't kill your machinesOur previous piece of advice needs to be treated with some care. Because ofthe exponential nature of search algorithms for NP problems, it is very easyfor a small misjudgement in experimental parameters to result in experimentsthat will take a very long time. When using shared resources such as cpucycles donated from other projects, the temptation is to use more than yourfair share to �nish the experiment. As a result we have sometimes run into6



trouble with colleagues or system administrators. The irony is that it is oftenon just these occasions that the results were unimportant anyway. Thisis particularly true where scaling methods such as `�nite-size scaling' areavailable, enabling results from smaller sizes to be extrapolated accurately[Gent et al. 1997]. So Do look for scaling results. They can often befound from data involving surprisingly small problem sizes and samples.Do be stupidApparently stupid experiments can sometimes give fascinating results. Forexample, one of the fundamental features of GSAT is the greediness of itshill-climbing. Through perversity, we implemented a variant which was notgreedy but indi�erent to upwards or sideways moves [Gent and Walsh 1993b].We did not expect this variant to perform at all well. To our surprise, itsperformance was similar to GSAT. Indeed it was even able to outperformGSAT when combined with a tabu-like restriction. Such chance discoverieshelp us understand the nature of GSAT's hill-climbing and will, we expect,guide future theoretical analyses. There is, however, a limit to stupidity.We also implemented a variant of GSAT which didn't even bother with thehill-climbing. Of course, this was stupid and ran very poorly.4 Problems with Random ProblemsFollowing Cheeseman, Kanefsky & Taylor (1991) and Mitchell, Selman &Levesque (1992) , many authors have performed many experiments on ran-domly generated problems: or rather pseudo-randomly generated problems.The use and misuse of pseudo-random number generators has led us intomany problems.Don't trust your source of random numbersAlthough problems with the low bits of the standard C library rand() arewell known, any random number generator can cause you problems, includ-ing the rather better random(). At one stage, we modi�ed code which hadbeen previously used to generate results for a publication [Gent et al. 1995].The change meant that constraints or conicts could be added to each prob-lem in a given sample, but without a�ecting the next problem. This wasdone by repeatedly re-seeding the random number generator before gener-ating each constraint, thus using many short streams of random numbersrather than one long stream. This in turn interacted with the way randomnumbers from random() were used. In general this interaction does not seemto have a�ected results, but when performing new experiments on the ran-dom n-queens problem [Gaschnig 1979] we observed anomalous behaviour ona board of size 16. Extensive investigations eventually showed that the com-7



bination of using a power of 2 and short streams of random numbers fromrandom() had led to a signi�cant bias in the way problems were generated.The problem only arose because we took the random number modulus theboard size, so we were simply examining the lowest four bits. The result wasproblems where the frequency of conicts occurring with certain combina-tions of values could be systematically higher than others. So the problemswere not truly random. One general lesson is clear: Do check changesmade to core code.Do understand your problem generatorAssuming your random numbers are sound, there are many pitfalls on the wayto generating random problems, to the extent that you can even fail to gen-erate any problems at all. For many applications, where we seek a subset ofproblems with a certain property, it is appropriate to use a `generate-and-test'method. To do otherwise might lead to subtle biases you are not aware of.For example, in investigating bin-packing problems [Gent and Walsh 1997]we generated bags of numbers and discarded those with a sum outside a cer-tain range. We then proceeded to waste hundreds of hours of cpu time overa holiday. We had asked some machines to use this generator with a set ofparameters which make it impossible ever to generate a valid problem.Do check your health regularlyAn even more elementary mistake shows up a general lesson: that whereverpossible you should check your results against those published by others. Afew days before submitting a paper to a conference [Gent et al. 1995], werealised that our data was entirely inconsistent with some reported by Frost& Dechter (1994) . We quickly realised the cause: when we sought to obtain3 conicts out of a possible 9, our generator took the integer part of theoating point calculation 9 � (3=9) = 9� 0:333 : : : = 2:999 : : : and obtained2. Ironically, every line of every result �le contained the correct conictdensity of 0:222 : : :, showing that we had not looked at our raw data.Do control sources of variationChance features of randomly generated problems can obscure the features ofthe problem you are trying to control. For example, when generating satis�a-bility problems from the `constant probability model' we allowed tautologiesto occur [Gent and Walsh 1994a]. A clause which is a tautology is irrelevant,so a 100 clause problem with 50 tautologies is really a 50 clause problem. Soin e�ect we have lost control of the number of clauses the problem contains.Fortunately in our experiments the number of tautologies was never large andso the e�ect was negligible. A similar issue arose in experimenting on randombinary CSPs, in a model containing the parameter p2 indicating the aver-age number of conicts per constraint [Prosser 1996, Smith and Dyer 1996].In each constraint we include exactly p2 times the total possible number of8



conicts: if we included each conict with probability p2 then the numberof conicts in each constraint would vary outside our control. Controllingsources of variation is not the same as eliminating them. We later wished toexperiment on non-uniform problems in which p2 varies within a problem. Todo this we designed a random problem generator to allow for this explicitlyand under our control [Gent et al. 1996].5 Analysis of DataHaving run your computational experiments, you are now in a position toanalyse the data. Somewhat surprisingly, it is often quite hard to determinethe actual outcome of the experiments. One reason is the mega-bytes of datagenerated. Here are some of the lessons we have learnt in sifting through suchmountains of data.Do look at the raw dataSummaries of the data inevitably present an approximate view. By lookingat the raw data, you can often spot trends, and interesting odd cases whichare hidden in the summaries. For example, we couldn't miss the worst caseproblem that needed a week of cpu whilst most other problems in the regiontook seconds [Gent and Walsh 1994a]. However, we had failed to see thise�ect at smaller problem sizes. Although our experiments had come acrossother such problems, orders of magnitude harder than the typical problemsin that region, graphs of median behaviour gave no hint of their existence.At best, graphs of mean behaviour for smaller problem sizes only showedmore noise within this region.Do look for good viewsAlmost all the insights we have had into the behaviour of our algorithms havecome from �nding a good view of the data. For example, for hill-climbingprocedures like GSAT, we tried plotting the number of unsatis�ed clauses(the \score") against the number of moves performed. Such graphs were notvery illuminating. We therefore looked for a better view. We tried manypossibilities before arriving at a simultaneous plot of the number of variableso�ered at each ip and the derivative of the score. >From this, we were ableto see clearly the very di�erent stages in the search [Gent and Walsh 1993a].Sometimes an experiment will suggest a good view of old data. It's importanttherefore not to throw away data (Don't discard data).Do face up to the consequences of your resultsIn testing out a new algorithm, which we expected to reduce search, we found2 cases out of 450 where it increased search. The obvious explanation for thiswas bugged code. We re-coded the algorithm from scratch, but got the same9



results. We couldn't understand it, and thought that we should just forgetthe algorithm once and for all. But sometimes it's not easy to forget. Weresorted to a detailed analysis of the two problems, tracing every feature ofthe algorithm as it progressed through the search space. A visual analysistook days, and resulted in an explanation of the phenomenon and an abilityto replicate it [Prosser 1993a].Don't reject the obviousSeveral times we have looked at some result and rejected { or not considered{ an obvious interpretation. For example, we plotted graphs of the scorefor GSAT decaying with the number of moves performed, but did not con-sider the obvious possibility of exponential decay. This would have been toosimple for such a complex system. Several weeks later, with the aid of astatistics package, we discovered it was indeed a simple exponential decay[Gent and Walsh 1993a]. It would, however, have only taken a quick log plotto have found this out.6 Presentation of ResultsHaving found a good view of the data which supports or rejects your hy-potheses, you now will want to present your results to a wider audience.There are still many mistakes to make.Do present statisticsAll too often, we have presented our results by simple tables of mean per-formance. With experience, we have learnt that even the very simplest ofstatistics can provide considerably more information, giving your audiencesome feel for the spread of values or the accuracy of a �t. When we havepresented talks without this data, it has on occasion frustrated audiencesconsiderably. As a matter of course, we advise giving the minimum, mean,maximum, median and standard deviation. Such statistics are easy to com-pute, yet give a much more complete picture.Do report negative resultsIt is tempting just to report your successes. This should be resisted atall costs. Reporting negative results can be just as valuable as reportingpositive results. You will save other people wasting time on dead-ends.For example, we reported that adding memory of where you had previ-ously been in the search space did not signi�cantly improve the perfor-mance of GSAT [Gent and Walsh 1993b]. It was not an exciting result butit does save others from exploring that fruitless avenue. Negative resultsmay also suggest important new hypotheses. For example, we reported inone short paragraph our inability to observe with GSAT the very variable10



behaviour seen with backtracking procedures in mostly satis�able regions[Gent and Walsh 1994b]. We are happy to applaud Davenport (1995) for re-porting more detailed results, also failing to �nd any such behaviour. We donot know if exceptionally hard problems do not occur, or if they just occurless frequently or with larger problem sizes.Don't push deadlinesA deadline does, as Dr Johnson said, concentrate the mind wonderfully.Experiments we report in most of our papers have been run in the last twoweeks before a deadline, because we �nd in writing a �rst draft that theexperimental data we have is incomplete or does not cover all the cases weneed. To date, we have very rarely succeeded in following this advice, andhave learnt from it only to the extent of giving ourselves deadlines wherenone is imposed from outside.Do check your referencesThis advice is easily given but harder to follow. For example, in an earlierversion of this very paper [Gent and Walsh 1994c], we gave the incorrect pagenumbers for a classic in our �eld. This was because, to our shame, we hadcribbed the reference from another paper rather than the source itself.7 ConclusionsWe have presented some of the lessons we have learnt in studying NP-complete problems experimentally. With hindsight, most of these lessonsnow seem obvious. Indeed, most of them are obvious. However, this did notstop us making many mistakes along the way. Perhaps the use of appropri-ate quality assurance techniques would have prevented them occurring. Weshould stress that this list of lessons is far from comprehensive. It was notintended to be. There are still many mistakes for us to make in the future.To distort a famous saying, those unable to learn from their mistakes aredestined to repeat them. We therefore hope you can bene�t a little from ourmistakes and stupidity.AcknowledgementsWe thank our colleagues in the APES Research Group, of which the authorsare all members, especially Philip Kilby for particularly helpful comments.We wish to thank the various funding bodies that have supported ourresearch over the years, and the various colleagues we have discussed ourwork with. Our mistakes, however, remain our own.11



References[Bolinger and Bronson 1995] D. Bolinger and T. Bronson. 1995. ApplyingRCS and SCCS. O'Reilly & Associates.[Cheeseman et al. 1991] P. Cheeseman, B. Kanefsky and W. Taylor. 1991.Where the really hard problems are. In Proceedings of the 12th IJCAI,331{337.[Cohen 1995] P. Cohen. 1995. Empirical methods for Arti�cial Intelligence.MIT Press.[Davenport 1995] A. Davenport. 1995. A comparison of complete and incom-plete algorithms in the easy and hard regions. In Proceedings, Workshopon Studying and Solving Really Hard Problems, CP-95, 43{51.[Dechter 1992] R. Dechter. 1992. Constraint networks. In Encyclopedia ofArti�cial Intelligence, 276{286. Wiley. 2nd Edition.[Frost and Dechter 1994] D. Frost and R. Dechter. 1994. In search of thebest search: an empirical evaluation. In Proceedings AAAI-94, 301{306.[Gaschnig 1979] J. Gaschnig. 1979. Performance measurement and analysisof certain search algorithms. Technical report CMU-CS-79-124, Carnegie-Mellon University.[Gent and Walsh 1992] I. Gent and T. Walsh. 1992. The enigma of SAT hill-climbing procedures. Research Paper 605, Dept. of Arti�cial Intelligence,University of Edinburgh.[Gent and Walsh 1993a] I. P. Gent and T. Walsh. 1993a. An empirical anal-ysis of search in GSAT. Journal of Arti�cial Intelligence Research 1:47{59.[Gent and Walsh 1993b] I. P. Gent and T. Walsh. 1993b. Towards an under-standing of hill-climbing procedures for SAT. In Proceedings of AAAI-93,28{33.[Gent and Walsh 1994a] I. Gent and T. Walsh. 1994a. Easy problems aresometimes hard. Arti�cial Intelligence 335{345.[Gent and Walsh 1994b] I. Gent and T. Walsh. 1994b. The hardest ran-dom SAT problems. In B. Nebel and L. Dreschler-Fischer., eds., KI-94:Advances in Arti�cial Intelligence. 18th German Annual Conference onArti�cial Intelligence, 355{366. Springer-Verlag.12



[Gent and Walsh 1994c] I. Gent and T. Walsh. 1994c. How not to do it.Research Paper 714, Dept. of Arti�cial Intelligence, Edinburgh.[Gent and Walsh 1996] I. Gent and T. Walsh. 1996. The satis�ability con-straint gap. Arti�cial Intelligence 81:59{80.[Gent and Walsh 1997] I. Gent and T. Walsh. 1997. From approximateto optimal solutions: Constructing pruning and propagation rules. InProceedings of IJCAI 97. In press.[Gent et al. 1995] I. Gent, E. MacIntyre, P. Prosser and T. Walsh. 1995.Scaling e�ects in the CSP phase transition. In Principles and Practice ofConstraint Programming, 70{87. Springer.[Gent et al. 1996] I. Gent, E. MacIntyre, P. Prosser, B. Smith and T. Walsh.1996. An empirical study of dynamic variable ordering heuristics forthe constraint satisfaction problem. In Proceedings of CP-96, 179{193.Springer.[Gent et al. 1997] I. Gent, E. MacIntyre, P. Prosser and T. Walsh. 1997.The scaling of search cost. In Proceedings of AAAI-97, to appear.[Grant and Smith 1996] S. Grant and B. Smith. 1996. The arc and path con-sistency phase transitions. Report 96.09, Research Report Series, Schoolof Computer Studies, University of Leeds.[Haralick and Elliott 1980] R. Haralick and G. Elliott. 1980. Increasing treesearch e�ciency for constraint satisfaction problems. Arti�cial Intelligence14:263{313.[Hayes 1997] B. Hayes. 1997. Can't get no satisfaction. American Scientist85:108{112.[Hogg and Williams 1994] T. Hogg and C. Williams. 1994. The hardestconstraint problems: A double phase transition. Arti�cial Intelligence69:359{377.[Hogg et al. 1996] T. Hogg, B. Huberman and C. Williams., eds. 1996. Ar-ti�cial Intelligence, volume 81. Elsevier. Special Volume on Frontiers inProblem Solving: Phase Transitions and Complexity.[Hooker 1994] J. N. Hooker. 1994. Needed: An empirical science of algo-rithms. Operations Research 42:201{212.13



[Hooker 1995] J. N. Hooker. 1995. Testing heuristics: We have it all wrong.Journal of Heuristics 1:33{42.[Johnson 1996] D. S. Johnson. 1996. A theoretician's guide to the exper-imental analysis of algorithms. Invited talk at AAAI-96. Partial draftavailable at http://www.research.att.com/~dsj/papers/exper.ps.[Kumar 1992] V. Kumar. 1992. Algorithms for constraint satisfaction prob-lems: a survey. AI Magazine 13:32{44.[McGeoch 1986] C. McGeoch. 1986. Experimental Analysis of Algorithms.Ph.D. Dissertation, Carnegie Mellon University. Also available as CMU-CS-87-124.[McGeoch 1996] C. McGeoch. 1996. Toward an experimental method foralgorithm simulation. INFORMS Journal on Computing 8:1{15.[Mitchell and Levesque 1996] D. G. Mitchell and H. J. Levesque. 1996. Somepitfalls for experimenters with random SAT. Arti�cial Intelligence 81:111{125.[Mitchell et al. 1992] D. Mitchell, B. Selman and H. Levesque. 1992. Hardand easy distributions of SAT problems. In Proceedings, 10th NationalConference on Arti�cial Intelligence, 459{465. AAAI Press/The MITPress.[Prosser 1993a] P. Prosser. 1993a. Domain �ltering can degrade intelligentbacktracking search. In Proceedings of IJCAI-93, 262{267.[Prosser 1993b] P. Prosser. 1993b. Hybrid algorithms for the constraintsatisfaction problem. Computational Intelligence 9:268{299.[Prosser 1996] P. Prosser. 1996. An empirical study of phase transitions inbinary constraint satisfaction problems. Arti�cial Intelligence 81:127{154.[Selman et al. 1992] B. Selman, H. Levesque and D. Mitchell. 1992. A newmethod for solving hard satis�ability problems. In Proceedings of AAAI-92, 440{446.[Smith and Dyer 1996] B. Smith and M. Dyer. 1996. Locating the phasetransition in binary constraint satisfaction problems. Arti�cial Intelligence81:155{181. 14



[Smith and Grant 1995a] B. Smith and S. Grant. 1995a. Sparse constraintgraphs and exceptionally hard problems. In Proceedings of IJCAI-95, 646{651.[Smith and Grant 1995b] B. Smith and S. Grant. 1995b. Where the excep-tionally hard problems are. Report 95.35, Research Report Series, Schoolof Computer Studies, University of Leeds.[Tsang 1993] E. Tsang. 1993. Foundations of Constraint Satisfaction. Aca-demic Press.

15


